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Scientific Data Mining
• Scientific data mining: Automated detection of knowledge 

hidden in large & often noisy scientific (experimental, 
simulation, etc.) datasets

• Knowledge: Simplest (i.e., minimal description length) 
explanation to replace exhaustive enumeration of the 
original data 
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Parallel computing on globally distributed supercomputers & 
visualization platforms will revolutionize & democratize 
science & engineering (e.g., Google astronomy in the flat 
world)

Google Science in the Flat World

SDSS image of brown dwarf, 
2MASSI J0104075-005328

www.ipac.caltech.edu 



Atomistic Data as a Graph
• Molecular dynamics data

—Atomic data: species, positions, velocities, stresses,…

—Atomic-pair data: bond order, pair distance,…

• Chemical bond network
—Node degrees
—Paths
—Rings
—Frequently occurring subgraphs

G = (V,E)
V: Set of atoms
E: Set of bonds

𝜆! , 𝑟! , �⃗�! , 𝜎! , … 𝑖 = 1, … , 𝑁

𝐵!" , 𝑟!" , … 𝑖, 𝑗 = 1, … , 𝑁; 𝑖 ≠ 𝑗



Hypervelocity Impact on Ceramics 

[0001]

0.2µm

•Al2O3 plate
•18 km/s   
impact

• 209M-atom MD of AlN
• 300M-atom MD of SiC
• 540M-atom MD of Al2O3



Shock-Induced Structural Phase 
Transformation in AlN

Rocksalt only

• Wurtzite (4-coordinated) to 
rocksalt (6-coordinated) phase 
transformation at 20 GPa

Node Degree!



Stress Domains in Si3N4/Si Nanopixels

70 nm

Stress domains in Si
due to an amorphous
Si3N4 film 

-2GPa 2GPa

Stress well in Si with a 
crystalline Si3N4 film 
due to lattice mismatch

Si

Si3N4



Si(111)/Si3N4(0001) Interface



Stress Domains in Si/Si3N4 Nanopixel

Si3N4:

Si:
SiN
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Stress [GPa]
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50nm

Si(111)/Si3N4(0001) interfaces

1 2 3

N-Si coordination across interface

I II

Lattice mismatch
(1%) induced

interfacial
domain array

Misfit dislocation network
in InAs/GaAs(111) 

Belk et al. ('97)

Cross-Cut Degree!



High-Pressure Structural Transformation
• Wurzite (node degree 4) to rocksalt (node degree 6) 

structural transformation of a GaAs nanoparticle under 
high pressure

• Existence of multiple  domains?

node degree 4 node degree 6

~20 GPa



Graph-Transition Tracking
• Finite set of graph transitions as a classifier

G = (V,E)
↓

G¢ = (V,E¢)

E Ì E¢

Graph Transition!



Chemical Reaction Network
Klamt et al., PLoS Comput. Biol. 
5, e1000385 (’09)

Yin et al., Nature 451, 318 (’08)

Zhang et al., Science 318, 1121 (’07)

Reaction graph = language for self-assembly & 
catalytic cycle design

Arnold group, Nature Rev. MCB 10, 867(’09); COCB 13, 3 (’09)

Directed & accelerated evolution
Chen et al., Nature Nanotechnol. 8, 755 (’13)



Oxidation of an Al Nanoparticle (n-Al)

• Oxide thickness saturates at 40 Å after 0.5 ns, in agreement with experiments
• Oxide region/metal core is under negative/positive pressure
• Attractive Al-O Coulomb forces contribute large negative pressure in the oxide
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20 ps25 ps27 ps30 ps31 ps

Oxidative Percolation

102 103 104

Size of Network

Clusters of OAl4 coalesce 
to form a neutral, 
percolating tetrahedral 
network that impedes 
further growth of the 
oxide

Percorative
Connected Components!



Fractal Nanocarbon Product

• Fractal nanocarbon product 
with large surface areas may 
find supercapacitor, battery-
electrode & mechanical 
metamaterial applications: 
df = d/(t - 1) ~ 1.85

• Percolation 
transition 
causes carbon 
clusters to 
exhibit power-
law 
distribution of 
sizes: C(i) ~ i-t

K. Nomura et al., Sci. Rep. 6, 24109 (’16)
J. Insley et al., IEEE/ACM SC16



Shortest-Path Rings
• K-ring: Given a vertex x & two of its neighbors w & y, a K-

ring generated by the triplet w-x-y is any ring containing the 
edges [w-x], [x-y] and a shortest path w-y path in G-x



Ring-based Data Mining
Shortest-path ring analysis of intermediate-range order (IRO)

in disordered materials

Correlation between IRO in neutron scattering & ring distribution
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Fast Ring Analysis: Dual-Tree Expansion

 

C. Zhang et al., Computer Physics Communications 175, 339 (’06)



DTE Algorithm 



Spatial Hash-Function Tagging 

 



Numerical Tests 
Linear scaling
on the problem size

Superlinear (strong) scaling
on the number of CPUs



Dislocation Mining

Based on
potential energy

Shown atoms with high energy compared to bulk

Based on
shortest-path ring statistics

Shown atoms with less than 12 6-membered rings



100 km/s Impact on Notched AlN
• Dislocation nucleation & emission from notch during impact 
• Dislocations & surface atoms mined by ring statistics

Stress (GPa)



209 million atom MD of 
hypervelocity impact in AlN
for the design of light-weight 
ceramic armors 

Impact-Damage Tolerant Ceramics?
Inverse problem: design 
materials with desired 
properties 



Crack Nucleation at Kink Bands 

• Series of dislocation dipoles with 
opposite Burgers vectors form a 
kink band to releases stress 

• Tilt grain boundaries of the kink 
bands act as sources of mode-II 
(shear) crack nucleation

Dislocations

Crack



Dislocation Loops at Kink Bands 
Graph (shortest-path circuit) based mining of topological defects

Atoms participating in 
non-6-member circuits

Dislocation network



Nanoindentation on Nanophase SiC

Crossover from intergrain continuous response to 
intragranular discrete response

Load-displacement curveSuperhardness
MD: 39 GPa
(grain size, d = 8 nm)  

Expt.: 30-50 GPa
(d = 5-20 nm)
[Liao et al., APL, ’05] 

Szlufarska, Nakano & Vashishta, Science 309, 911 (’05)



Multimodal Multidisplay Visualization 

Hypervelocity penetration 
through an AlN plate



Singular Value Decomposition &
Data Mining

Aiichiro Nakano
Collaboratory for Advanced Computing & Simulations

Dept. of Computer Science, Dept. of Physics & Astronomy, 
Dept. of Quantitative & Computational Biology

University of Southern California
Email: anakano@usc.edu

Data mining @ data compression



Rank of a Matrix

• N´M matrix A as a mapping: RM → RN

• Range of A: Vector space {b = Ax|"x}
• Rank of A: Number, m, of linearly-independent vectors in the range, i.e., 

how many linearly-independent N-element vectors are there in the 
range, such that   



Low Rank Approximations of a Matrix
• Rank-1 approximation: NM → N + M

• Rank-2 approximation: NM → 2(N + M)

• Rank-m (m << N, M) approximation: NM → m(N + M)

N

M

| ⟩𝑢 ⟨𝑣|∀ ⟩𝑥 ∝ | ⟩𝑢



Singular Value Decomposition

• Theorem: Sort the SVD diagonal elements in descending order, d1 ≥ d2 ≥ ... ≥ 
dM ≥ 0, & retain the first m terms  

which is optimal among "rank-m matrices in the 2-norm sense with the error

• Problem: Optimal approximation of an N´M matrix y of rank-m (m << N)?
• Theorem: An N´M matrix y (assume N ≥ M) can be decomposed as

where U Î RN´RM & V Î RM´RM are column orthogonal & D is diagonal

N

M

N´M
M´M M´M

cf. singular.c & svdcmp.c

⋱

See appendix on polar & singular decompositions

Use the program!

https://aiichironakano.github.io/phys516/src/TB
https://aiichironakano.github.io/phys516/04-2SVD.pdf


D. Richards & A. Abrahamsen 

SVD for Image Compression



SVD in Data Mining

N. Ramakrishnan & A. Y. Grama
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Machine Learning in Simulation

Aiichiro Nakano
Collaboratory for Advanced Computing & Simulations

Dept. of Computer Science, Dept. of Physics & Astronomy, 
Dept. of Quantitative & Computational Biology

University of Southern California
Email: anakano@usc.edu



SVD for Rapid Genome Sequencing
• $10M Archon X prize for decoding 100 human genomes in 10 days & $10K 

per genome (http://genomics.xprize.org): Preemptive attack on diseases 

• Quantum tunneling current for rapid DNA sequencing?

• Tunneling current alone cannot distinguish the 4 nucleotides (A, C, G, T)

Tsutsui et al., Nature Nanotechnology (’10)

Lagerqvist et al., Nano Letters (’06)



C

A TG

Rapid DNA Sequencing via Data Mining
• Use tunneling current (I)-voltage (V) characteristic (or electronic density-of-

states) as the ‘fingerprints’ of the 4 nucleotides

• Principal component analysis (PCA) & fuzzy c-means clustering clearly 
distinguish the 4 nucleotides  

• Viterbi algorithm for even higher-accuracy sequencing

Shapir et al., 
Nature Materials (’08)

H. Yuen et al., IJCS 4, 352 (’10)

http://www.henryyuen.net/



SVD vs. PCA (in Economics)
• SVD of N (number of companies) ´ T (number of time points) of stock-price 

time series 

• Stock correlation matrix

• Principal component analysis (PCA): 
Eigen decomposition of the 
correlation matrix

Y. Kichikawa et al., Proc. Comp. Sci. 60, 1836 (’15)

T time points
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• Compare the spectrum with 
that of random matrix 
theory (RMT) for judging 
statistical significance

C = ΞΞ!

= VΣ(U!U
"

ΣV!
= VΣ#V!



Learning Materials Phases & Defects

• Feedforward neural network to 
learn phases from local 
symmetry functions

• Variational autoencoder
to generate 
transformation pathways 
from images & latent-
space algebra 

K. Liu et al., Proc. ScalA18 (’18)
S. Hong et al., JPCL 10, 2739 (’19)

P. Rajak et al., Phys. Rev. B 
100, 014108 (’19) 



Learning Transformation Pathways

• Found novel transformation pathways to the stable 2H phase via the 
metastable 1T phase during chemical vapor deposition (CVD) growth of 
MoS2

S. Hong et al., J. Phys. Chem. Lett. 10, 2739 (’19)

2H
1T
disorder



Active Learning of Optimal Materials

L. Bassman et al., npj Comput. Mater. 4, 74 (’18) 

p-type doped heterostructures
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• Bayesian optimization balances exploitation & exploration to find a 
structure with the desired property with a minimal number of quantum-
mechanical calculations

• Predicted three-layered transition-metal chalcogenide (TMDC) heterostacks
with the largest thermoelectric figure-of-merit   

Electrical power from waste heat

?



Reinforcement Learning for Growth

Rajak et al., 
npj Comput. Mater. 7, 108 (’21) 

• In a manner AI plays a board game of Go, use reinforcement learning (RL) 
to design optimal growth conditions (e.g., temperature & gas-pressure 
control) to achieve desired properties such as minimal defect density

• AI model combines:
1. RL agent to design actions
2. Nesural network-based dynamic model trained by molecular-dynamics

(MD) simulation to predict new states

𝐀𝐜𝐭𝐢𝐨𝐧, 𝒂𝒕 = 𝜟𝑻,𝜟𝑺𝟐, 𝜟𝑯𝟐, 𝜟𝑯𝟐𝑺𝑺𝒕𝒂𝒕𝒆 𝒔𝒕

𝒑 𝒔𝒕"𝟏|𝒔𝒕, 𝒂𝒕

𝑹𝒆𝒘𝒂𝒓𝒅 𝒓𝒕

Agent

cf. Sgroi et al., Phys. Rev. Lett. 126, 020601 (’21) 



AI Meets Kirigami
• Reinforcement learning to design optimal kirigami with maximal stretchability

https://www.anl.gov/article/ancient-art-meets-ai-for-better-materials-design

Rajak et al., npj Comput. Mater. 7, 102 (’21) 



Dielectric Polymer Genome
Recurrent neural network for 
polymer property prediction

TDI-EDR148

Graph attention neural network for 
explainable property prediction

Experimental 
validation (Uconn)

Local feature 
value

Nazarova et al., 
J. Chem. Info. Model. 61, 2175 (’21) 



Pareto-Frontal Uncertainty Quantification 
• Train reactive force-field parameters by dynamically fitting reactive 

molecular dynamics (RMD) trajectories to quantum molecular dynamics 
(QMD) trajectories on-the-fly

• Pareto optimal front in multiobjective genetic algorithm (MOGA) provides 
an ensemble of force fields to enable uncertainty quantification (UQ)  

A. Mishra et al., npj Comput. Mater. 4, 42 (’18) 

• Pareto-optimal solutions during genetic training 
(RMD errors for three quantities-of-interest)

• Converged Pareto-optimal front

RMD error bar

QMD


