Scientific Data Mining & Machine Learning

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations Department of Computer Science Department of Physics & Astronomy Department of Quantitative & Computational Biology University of Southern California

Email: anakano@usc.edu

Scientific Data Mining

- Scientific data mining: Automated detection of knowledge hidden in large & often noisy scientific (experimental, simulation, *etc.*) datasets
- **Knowledge:** Simplest (*i.e.*, minimal description length) explanation to replace exhaustive enumeration of the original data

$$m\frac{d^2}{dt^2}\vec{r}(t) = \vec{F}$$

Knowledge

Data

Google Science in the Flat World

Parallel computing on globally distributed supercomputers & visualization platforms will revolutionize & democratize science & engineering (*e.g.*, Google astronomy in the flat world)

SDSS image of brown dwarf, 2MASSI J0104075-005328

Atomistic Data as a Graph

• Molecular dynamics data

-Atomic data: species, positions, velocities, stresses,...

$$\{\lambda_i, \vec{r}_i, \vec{v}_i, \vec{\sigma}_i, \dots | i = 1, \dots, N\}$$

—Atomic-pair data: bond order, pair distance,...

$$\{B_{ij}, \vec{r}_{ij}, \dots | i, j = 1, \dots, N; i \neq j\}$$

- Chemical bond network G = (V,E)
 - -Node degrees

-Paths

-Rings

—Frequently occurring subgraphs

Hypervelocity Impact on Ceramics

- 209M-atom MD of AlN
- 300M-atom MD of SiC
- 540M-atom MD of Al₂O₃

† [0001]

 •Al₂O₃ plate
 •18 km/s impact

0.2µm

Shock-Induced Structural Phase Transformation in AIN

Stress Domains in Si₃N₄/Si Nanopixels

Stress well in Si with a crystalline Si₃N₄ film due to lattice mismatch

70 nm

Stress domains in Si due to an amorphous Si_3N_4 film

Si(111)/Si₃N₄(0001) Interface

Stress Domains in Si/Si₃N₄ Nanopixel

High-Pressure Structural Transformation

• Wurzite (node degree 4) to rocksalt (node degree 6) structural transformation of a GaAs nanoparticle under high pressure

• Existence of multiple domains?

Graph-Transition Tracking

• Finite set of graph transitions as a classifier

$$G = (V,E)$$

$$\downarrow$$

$$G' = (V,E')$$

$$E \subset E'$$

Chemical Reaction Network

Oxidation of an Al Nanoparticle (n-Al)

- Oxide thickness saturates at 40 Å after 0.5 ns, in agreement with experiments
- Oxide region/metal core is under negative/positive pressure
- Attractive Al-O Coulomb forces contribute large negative pressure in the oxide

Oxidative Percolation

Clusters of OAl₄ coalesce to form a neutral, percolating tetrahedral network that impedes further growth of the oxide

Percorative Connected Components!

Fractal Nanocarbon Product

Percolation transition causes carbon clusters to exhibit powerlaw distribution of sizes: $C(i) \sim i^{-\tau}$

Maximum cluster size (10⁶ amu) t ;t 05

0.1

0.2

Shortest-Path Rings

• K-ring: Given a vertex x & two of its neighbors w & y, a Kring generated by the triplet w-x-y is any ring containing the edges [w-x], [x-y] and a shortest path w-y path in G-x

Ring-based Data Mining

Shortest-path ring analysis of intermediate-range order (IRO) in disordered materials

Correlation between IRO in neutron scattering & ring distribution

Fast Ring Analysis: Dual-Tree Expansion

C. Zhang et al., Computer Physics Communications 175, 339 ('06)

DTE Algorithm

Algorithm dual_tree_expansion()

```
Input:
     V = Set of all vertices (i.e., atoms)
     R_{\rm c} = {\rm Ring \ cutoff \ range \ (Euclidean)}
     R_{\rm bc} = Bond cutoff distance (Euclidean)
     L_{MAX} = Maximum length of ring (integer)
     P = Number of compute nodes
Output:
     The K-ring statistics for all vertices in the network
     List of atoms with abnormal ring profile
Variables:
     Neighbors(V) = Set of vertices that share an edge with vertex V
     K_{p}(p) = Number of p-member rings that go through vertex V
     L_{i} = Length of the ring formed with path (V<sub>i</sub>, V, V<sub>i</sub>)
Steps:
     0 coarse grained spatial decomposition of atoms on P compute nodes with a thin boundary extension of R,
          distance (This step is for the parallel version only)
          create adjacency list G for all node in V, using R, as cutoff distance
     1
     2 for every vertex V \in V_{0}
            for each vertex pair V, and V, in Neighbors(V) do
                     A_{1} = \{V_{1}\}
                     A_2 = \{V_1\}
                     L_{\mu} = 0
                     while (A_1 \cap A_2 = \emptyset \text{ AND } L_b < L_{\text{MAX}}) do
                                L_{\mu} = L_{\mu} + 2
                                if (A_1 \cap \text{Neighbors}(A_2) \neq \emptyset \text{ OR } A_2 \cap \text{Neighbors}(A_1) \neq \emptyset)
                                   L_{n} = L_{n} + 1
                                    break
                                else if (Neighbors(A_1) \cap Neighbors(A_2) \neq \emptyset)
                                    L_{n} = L_{n} + 2
                                A_1 = \text{Neighbors}(A_1)
                                A_{2} = \text{Neighbors}(A_{2})
                      if (L_n < L_{\text{MAX}}) + K_\nu(L_n)
```

Spatial Hash-Function Tagging

Algorithm spatial hash function tagging (SHAFT)

Input:

C(V) = 3D coordinates of all vertices (i.e., atoms)

 $R_{\rm c} = {\rm Ring} {\rm cutoff range} ({\rm Euclidean})$

 $R_{\rm bc}$ = Bond cutoff distance (Euclidean)

 L_{MAX} = Maximum length of ring (integer)

Output:

The integer index that is unique for all vertices in the maximum ring span

$$b = R_{\text{lower}} / \sqrt{3}$$

$$c = R_{\text{upper}} L_{\text{max}}$$

$$m = \lceil c/b \rceil$$

Step:

for each vertex

for each spatial dimension *i* from 1 to 3 $q_i = \lfloor C_i / b \rfloor$

$$q_i \% = m$$

return $q = q_3 \times m^2 + q_2 \times m + q_1$

										_
0	1	2	3	4	0	1	2	3	4	
5	6	7	8	9	5	6	7	8	9	
10	11	12	13	14	10	11	12	13	14	
15	16	17	18	19	15	16	17	18	19	
20	21	22	23	24	20	21	22	23	24	
0	1	2	3	4	0	1	2	3	4	
5	6	7	8	9	5	6	7	8	9	
10	11	12	13	14	10	11	12	13	14	
15	16	17	18	19	15	16	17	18	19	
20	21	22	23	24	20	21	22	23	24	

Numerical Tests

Dislocation Mining

Based on potential energy

Shown atoms with high energy compared to bulk

Based on shortest-path ring statistics

Shown atoms with less than 12 6-membered rings

100 km/s Impact on Notched AIN

- Dislocation nucleation & emission from notch during impact
- Dislocations & surface atoms mined by ring statistics

Impact-Damage Tolerant Ceramics?

209 million atom MD of hypervelocity impact in AlN for the design of light-weight ceramic armors

Shortest-path circuit/topological defect

Atmistic understanding of stress corrosion

cracking

Atom/attribute subset-3

Crack Nucleation at Kink Bands

Dislocation Loops at Kink Bands

Graph (shortest-path circuit) based mining of topological defects

Atoms participating in non-6-member circuits

Dislocation network

Nanoindentation on Nanophase SiC

Superhardness

Load-displacement curve

Crossover from intergrain continuous response to intragranular discrete response Szlufarska, Nakano & Vashishta, *Science* **309**, 911 ('05)

Multimodal Multidisplay Visualization

Singular Value Decomposition & Data Mining

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations Dept. of Computer Science, Dept. of Physics & Astronomy, Dept. of Quantitative & Computational Biology University of Southern California

Email: anakano@usc.edu

Data mining ≅ **data compression**

Rank of a Matrix

1

• $N \times M$ matrix A as a mapping: $\mathbb{R}^M \to \mathbb{R}^N$

$$M \begin{bmatrix} x \\ x \end{bmatrix} x (\in \mathbb{R}^M) \xrightarrow{A} b = Ax (\in \mathbb{R}^N) \begin{bmatrix} b \\ b \end{bmatrix} N$$

- **Range of** *A*: Vector space $\{b = Ax | \forall x\}$
- Rank of A: Number, *m*, of linearly-independent vectors in the range, *i.e.*, how many linearly-independent N-element vectors are there in the range, such that

$$b = A^{\forall} x = \sum_{\nu=1}^{m} c_{\nu} |\nu\rangle$$

Low Rank Approximations of a Matrix

• **Rank-1 approximation:** $NM \rightarrow N + M$

$$\mathbf{N} \begin{bmatrix} \mathbf{M} \\ \psi \end{bmatrix} \cong \begin{bmatrix} u \\ u \end{bmatrix} \begin{bmatrix} v \end{bmatrix} |u\rangle \langle v | \forall x \rangle \propto |u\rangle$$

• Rank-2 approximation: $NM \rightarrow 2(N + M)$

$$\psi \quad] \cong \begin{bmatrix} u_1 \\ u_1 \end{bmatrix} w_1 \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} + \begin{bmatrix} u_2 \\ u_2 \end{bmatrix} w_2 \begin{bmatrix} v_2 \end{bmatrix}$$

• Rank-*m* ($m \ll N, M$) approximation: $NM \rightarrow m(N + M)$

$$\psi \qquad \left] \cong \sum_{\nu=1}^{m} \left[u_{\nu} \right] w_{\nu} \left[v_{\nu} \right] \right]$$

Singular Value Decomposition

- Problem: Optimal approximation of an N×M matrix ψ of rank-m (m << N)?
- **Theorem:** An $N \times M$ matrix ψ (assume $N \ge M$) can be decomposed as

$$\psi = UDV^{T} = \sum_{\nu=1}^{M} U_{i\nu} d_{\nu} V_{j\nu} = \sum_{\nu=1}^{M} u_{i}^{(\nu)} d_{\nu} v_{j}^{(\nu)}$$

where $U \in \mathbb{R}^N \times \mathbb{R}^M$ & $V \in \mathbb{R}^M \times \mathbb{R}^M$ are column orthogonal & D is diagonal

$$U^T U = V^T V = I_M$$

 IVI
 IVI

 Image: See appendix on polar & singular decompositions

$$\mathbf{N} \begin{bmatrix} \psi \\ \psi \end{bmatrix} = \begin{bmatrix} U \\ U \\ M \end{bmatrix} \begin{bmatrix} d_1 \\ \ddots \\ d_M \end{bmatrix} \begin{bmatrix} V^T \\ V^T \end{bmatrix}$$

• Theorem: Sort the SVD diagonal elements in descending order, $d_1 \ge d_2 \ge ... \ge d_M \ge 0$, & retain the first *m* terms $\psi^{(m)} = \sum_{\nu=1}^{m} u^{(\nu)} d_{\nu} v^{(\nu)T}$

which is optimal among \forall rank-*m* matrices in the 2-norm sense with the error $\min_{\substack{n \\ rank(A)=m}} \|A - \psi\|_2 = \|\psi^{(m)} - \psi\|_2 = d_{m+1}$ Use the program!

SVD for Image Compression

Original Image

Iterations

Iterations

D. Richards & A. Abrahamsen

Iterations

Iterations

Iterations

SVD in Data Mining

N. Ramakrishnan & A. Y. Grama

Machine Learning in Simulation

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations Dept. of Computer Science, Dept. of Physics & Astronomy, Dept. of Quantitative & Computational Biology University of Southern California

Email: anakano@usc.edu

SVD for Rapid Genome Sequencing

• \$10M Archon X prize for decoding 100 human genomes in 10 days & \$10K per genome (http://genomics.xprize.org): Preemptive attack on diseases

• Quantum tunneling current for rapid DNA sequencing?

Tsutsui et al., Nature Nanotechnology ('10)

• Tunneling current alone cannot distinguish the 4 nucleotides (A, C, G, T)

Rapid DNA Sequencing via Data Mining

• Use tunneling current (I)-voltage (V) characteristic (or electronic density-ofstates) as the 'fingerprints' of the 4 nucleotides

Principal component analysis (PCA) & fuzzy c-means clustering clearly distinguish the 4 nucleotides
 H. Yuen *et al.*, *IJCS* 4, 352 ('10)

http://www.henryyuen.net/

• Viterbi algorithm for even higher-accuracy sequencing

SVD vs. PCA (in Economics)

• SVD of N (number of companies) × T (number of time points) of stock-price time series

$$\Xi_{T \times N}^{T} = \bigcup_{T \times N} \sum_{N \times N} \sum_{N \times N} V_{N \times N}^{T}$$

• Stock correlation matrix

$$\mathbf{C}_{N \times N} = \mathbf{\Xi} \mathbf{\Xi}^{T}_{N \times T \ T \times N}$$

• Principal component analysis (PCA): Eigen decomposition of the correlation matrix

 $\rho(\lambda)$

Probability Density

0.0

$$C = \Xi \Xi^{T}$$

$$= V\Sigma \widetilde{U^{T}U} \Sigma V^{T}$$

$$= V\Sigma^{2} V^{T}$$

• Compare the spectrum with that of random matrix theory (RMT) for judging statistical significance

Y. Kichikawa et al., Proc. Comp. Sci. 60, 1836 ('15)

RMT

Learning Materials Phases & Defects

Feedforward neural network to learn phases from local symmetry functions

K. Liu *et al.*, *Proc. ScalA18* ('18) S. Hong *et al.*, *JPCL* **10**, 2739 ('19)

 Variational autoencoder to generate transformation pathways from images & latentspace algebra

P. Rajak *et al.*, *Phys. Rev. B* **100**, 014108 ('19)

Learning Transformation Pathways

 Found novel transformation pathways to the stable 2H phase via the metastable 1T phase during chemical vapor deposition (CVD) growth of MoS₂

S. Hong et al., J. Phys. Chem. Lett. 10, 2739 ('19)

Active Learning of Optimal Materials

- Bayesian optimization balances exploitation & exploration to find a structure with the desired property with a minimal number of quantum-mechanical calculations
- Predicted three-layered transition-metal chalcogenide (TMDC) heterostacks with the largest thermoelectric figure-of-merit

L. Bassman et al., npj Comput. Mater. 4, 74 ('18)

Reinforcement Learning for Growth

- In a manner AI plays a board game of Go, use reinforcement learning (RL) to design optimal growth conditions (*e.g.*, temperature & gas-pressure control) to achieve desired properties such as minimal defect density
- AI model combines:
 - 1. RL agent to design actions
 - 2. Nesural network-based dynamic model trained by molecular-dynamics (MD) simulation to predict new states

AI Meets Kirigami

• Reinforcement learning to design optimal kirigami with maximal stretchability Rajak *et al.*, *npj Comput. Mater.* **7**, 102 ('21)

FEATURE STORY | ARGONNE NATIONAL LABORATORY

Ancient art meets AI for better materials design

BY JOHN SPIZZIRRI | APRIL 7, 2022

Ancient Japanese art of kirigami guides artificial intelligence (AI) technique for durable, wearable electronics.

Kirigami is the Japanese art of paper cutting. Likely derived from the Chinese art of jiǎnzhǐ, it emerged around the 7th century in Japan,

https://www.anl.gov/article/ancient-art-meets-ai-for-better-materials-design

Dielectric Polymer Genome

Recurrent neural network for polymer property prediction

Graph attention neural network for explainable property prediction

Pareto-Frontal Uncertainty Quantification

- Train reactive force-field parameters by dynamically fitting reactive molecular dynamics (RMD) trajectories to quantum molecular dynamics (QMD) trajectories on-the-fly
- Pareto optimal front in multiobjective genetic algorithm (MOGA) provides an ensemble of force fields to enable uncertainty quantification (UQ)

- Pareto-optimal solutions during genetic training (RMD errors for three quantities-of-interest)
- Converged Pareto-optimal front

A. Mishra et al., npj Comput. Mater. 4, 42 ('18)