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Parallel Monte Carlo Simulation 
 
Parallel Lattice Monte Carlo Simulation1 
 

In this section, we implement the MC simulation for a 2-dimensional Ising model on parallel 
computers, based on a spatial decomposition scheme. 
 
SPATIAL DECOMPOSITION—STRIPS 

In parallel computing, a crucial step is to 
decompose the computing task into subtasks, each 
of which is assigned to a processor in a parallel 
computer.  A simple parallelization scheme is 
called spatial decomposition, in which the 
physical space is decomposed into subsystems of 
equal size.  For a L×L 2-dimensional Ising-spin 
lattice, the simplest decomposition is based on 
strips.  Suppose that there are P processors 
(labeled 0, 1,..., P-1), then we can partition the 
lattice into P strips, each consisting of L/P rows of 
spins.  Processor p is assigned spin rows from 
(P/L)p to (P/L)(p + 1). 
Interprocessor caching: Note that, for example, 
the top-row spins in processor 2 interact with the 
bottom-row spins in processor 3.  Similarly the 
bottom-row spins in processor 2 interact with the 
top-row spins in processor 1.  In order for 
processor 2 to compute energy changes associated 
with updating its resident spins, it must “cache” 
the bottom row of processor 3 and the top row of 
processor 1 to itself prior to computing these energy changes.  Each strip is thus augmented with the top 
and bottom cached spin rows. 

 
Figure: Augmented strip with cached top and bottom spin rows. 

The “caching” operations are implemented by message passing—sending and receiving data through 
the communication links between processors.  In order to perform message passings, each processor 
needs to know its identity and the destination to whom it is sending a particular message.  In a message 
passing software system such as the MPI (message passing interface), a process rather than a processor 

                                                
1 D. W. Heermann and A. N. Burkitt, Parallel Algorithms in Computational Science (Springer-Verlag, Berlin, 1991). 

 
Figure: 16×16 grid points are partitioned using strips into 4 
subsystems, each of which is assigned to a processor in a 
parallel computer. 
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is the proper unit to perform a subtask since multiple processes can be created per processor.  The 
system keeps track of the sequential IDs of currently running processes, 0, 1,..., P-1 (not the Unix 
process ID).  The system also provides a mechanism for a running process to inquire its sequential ID.  
Each process should have the following variables: 
int sid        The sequential process ID of this process 
int up_id = (sid + 1)%P   The sequential process ID of the process handling the upper strip 
int lw_id = (sid + P - 1)%P The sequential process ID of the process handling the lower strip 
Note that the processes logically form a ring (or torus).  Message passings often take a circular 
pattern as shown in the Figure. 
Global summation: To compute physical quantities like the magnetization, each process 
performs summation over its “resident” spins.  These “local” contributions are then summed 
globally over processes.  Most message passing systems provide subroutines to perform such 
global summations. 
Single program multiple data (SPMD) program: Our parallel MC program will be based on 
the SPMD model.  Namely, multiple copies of a single executable are created as separate 
processes.  Each process starts executing the program from the first line of code.  After calling a 
system call inquiring its sequential process ID, each process knows its identity.  So each process 
picks up a proper strip and starts executing MC simulations locally.  Except for occasional 
message exchanges and global operations, the simulation proceeds asynchronously, i.e., there is 
no global clock synchronizing the processes. 
Parallel random-number generation: Because of the asynchronicity among processes, initialization of 
a random-number sequence using timing command will probably result in different sequences for 
different processes, if the timing routine uses many clock ticks (~ 103) per second.  Otherwise, use the 
sequential process ID to initialize a sequence, e.g., sid + 1 (to avoid 0 seed). 
Data Structures 
int L:  Number of grid points in each direction 
int P:  Number of processors; LP = L/P is the number of spin rows per processor; LP2 = LP + 2 is 
the number of augmented rows including the top and bottom cached rows. 
int s[LP2][L]:  Spin variables.  s[0][] and s[LP+1][] are the cached bottom and top spin rows, and 
s[i][] are the resident spin rows for i = 1, ..., LP. 
 
DETAILED-BALANCE CONFLICT 

In parallel Ising-spin MC simulations, different processes update different spin sites.  However, we 
need to assure that concurrent spin updates are mutually independent.  Otherwise, the detailed-balance 
condition—the foundation of the Metropolis algorithm—will be violated. 

Let’s consider a simple case of 1-dimensional Ising-spin lattice. 

 
Figure:  One-dimensional Ising spin model. 

Suppose that processes 0 and 1 are concurrently flipping spin i and i+1, respectively.  We denote the 
current spin variables at lattice points, i−1, i, i+1, and i+2 as α, β, γ, and δ, respectively.  Since each 
process is doing their updating independently, the transition probability for both flips to be accepted is 
given by 
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Π−β ,−γ←β ,γ =min 1, exp −2J(αβ +βγ ) / k
B
T( ) min 1, exp −2J(βγ +γδ) / k

B
T( )  . 

In fact, the correct transition probability for flipping two consecutive spins to satisfy the detailed-
balance condition is 

Π−β ,−γ←β ,γ =min 1, exp −2J(αβ +γδ) / k
B
T( )  , 

the value of which can be different from that of the previous expression.  For example, suppose that the 
current spin configuration is given by (α,β,γ,δ) = (1,1,1,−1).  Then the former individual updates give the 
transition probability, 

Π−β ,−γ←β ,γ = exp −4J / k
B
T( ) , 

while the latter correct transition probability is 

Π−β ,−γ←β ,γ =1 . 

By updating two consecutive spins independently, therefore, we are violating the detailed-balance 
condition and thus it is no longer a valid Markov chain to achieve the equilibrium probability density.   

We must avoid updating consecutive spins simultaneously.  In our strip-decomposition 
implementations, we will only consider cases where each strip consists of at least two spin rows.  If each 
process updates its spins row-by-row starting from the top row toward the bottom, the conflict can be 
avoided. 
 
Algorithm:  Parallel MC simulation of a 2-dimensional Ising model 
_______________________________________________________________________________________________________________________________________________________________________
_ 

/* Main program */ 
Initialize the spins, s[i][j] (1 ≤ i ≤ L/P; 0 ≤ j ≤ L-1) 
LocalSum_A = 0 
for sweep =1 to maximum_sweep 
  Send the bottom-row spins cyclically downwards, s[1][] 
  Receive the top-cache-row spins, s[L/P+1][], cyclically from the strip above 
  for i = L/P downto 2 
    Update the i-th row spins, s[i][] 
  endfor 
  Send the top-row spins cyclically upwards, s[L/P][] 
  Receive bottom-cache-row spins, s[0][], cyclically from the strip below 
  Update the bottom row spins, s[1][] 
  LocalSum_A = LocalSum_A + A(sN) 
endfor 
Calculate GlobalSum_A as a global sum of LocalSum_A over all processes 
Average_A = Sum_A/maximum_sweep 
 
/* Update the i-th row spins */ 
for j = 0 to L-1 
  Compute the change in potential energy, δV, with a single spin flip, si,j → -si,j 
  if dV ≤ 0 
    accept the flip, si,j ← -si,j 
  else if rand() ≤ exp(-δV/kBT) then 
    accept the flip, si,j ← -si,j 
  endif 
endfor 
_______________________________________________________________________________________________________________________________________________________________________
_ 
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MPI Implementation of Parallel Lattice MC 
 
STRIP ID  

Each process uses the following code to determine its own sequential process ID (rank) and its upper 
and lower neighbors’ ranks. 
MPI_Comm_rank(MPI_COMM_WORLD, &sid); 
up_id = (sid + 1)%P; 
lw_id = (sid + P - 1)%P; 
 
SPIN-ROW CACHING  

The following code can be used to cache a spin row.  We use integer arrays, bufs and bufr, to 
compose and receive a message, respectively.  Integers i_send and i_recv are the rows to be sent and 
received.  For example, if a process is caching the top extra row, i_recv = L+1, from the upper 
neighbor, then it needs to send the bottom resident row, i_send = 1, to the lower neighbor.  In this 
example, the destination of its message, dest, is lw_id. 
int bufs[L],bufr[L]; 
/* Message buffering */ 
for (j=0; j<L; j++) 
  bufs[j] = s[i_send][j]; 
/* Message exchange */ 
if (myparity == 0) { /* Even node: send & recv */ 
  MPI_Send(bufs,L,MPI_INT,dest,10,MPI_COMM_WORLD); 
  MPI_Recv(bufr,L,MPI_INT,MPI_ANY_SOURCE,10,MPI_COMM_WORLD,&status); 
} 
else if (myparity == 1) { /* Odd node: recv & send */ 
  MPI_Recv(bufr,L,MPI_INT,MPI_ANY_SOURCE,10,MPI_COMM_WORLD,&status); 
  MPI_Send(bufs,L,MPI_INT,dest,10,MPI_COMM_WORLD); 
} 
else /* Single layer: Exchange information with myself */ 
  for (j=0; j<L; j++) bufr[j] = bufs[j]; 
/* Message storing */ 
for (j=0; j<L; j++) 
  s[i_recv][j] = bufr[j]; 
} 
 
DEADLOCK AVOIDANCE 

A circular send and receive relation could cause a deadlock.  In the following code, suppose that the 
destination node, inode, is defined as in the figure below. 
MPI_Send(bufs,L,MPI_INT,inode,10,MPI_COMM_WORLD); 
MPI_Recv(bufr,L,MPI_INT,MPI_ANY_SOURCE,10,MPI_COMM_WORLD,&status); 

 
Figure: Circular send-receive relation. 

 
Figure: Avoiding circular message passing. 
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With a finite buffer size in the receiver’s communication system, a sender blocks until the receiver’s 
buffer is cleared.  However in the example above, each processor cannot start receiving until its send 
operation is completed. 

To avoid this deadlock, we classify the processors into even and odd processors.  We use int 
myparity to represent the parity of the sequential processor ID.  myparity is 0|1 if the processor ID, 
sid, is even|odd.  If there is only one processor, myparity = 2.  In this case, no message passing is 
performed but rather the row s[1][] is duplicated at s[L+1][] and s[L][] is duplicated at s[0][].  
The wraparound condition is then implemented without performing the modulo operation.  In this way, 
the resulting MPI code works even on a single processor. 
 
MAGNETIZATION 

After each processor computes the local sum, double localM, of the spins in its strip, the following 
call computes the global sum, double globalM, of the spins over all the strips. 
MPI_Allreduce(&localM, &globalM, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); 

 


