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I Monte Carlo Basics 
 
§1  Introduction 
 
WHAT IS THE MONTE CARLO METHOD? 
 
• Monte Carlo (MC) method: A computational method that utilizes random numbers. 
• Two major applications of the MC method: 
 1. Multidimensional integrations (e.g., statistical mechanics in physics); 
 2. Simulation of stochastic natural phenomena (e.g., stock price). 
• Numerical vs. MC Integration 
 The simplest numerical integration of a one-dimensional function, f(x), in the range, [a, b], samples 

function values at regular intervals, f(xn = a + (n − 1/2)Δx) (n = 1, ..., M; Δx = (b − a)/M), see the 
figure below (this is just an average of (b − a)f(xn)): 

 dxf (x) ≅ Δxf (xn )
n=1

M

∑a

b
∫ .1 

 The MC method instead generates a sequence of random numbers, rn, in the range, [a, b], and 
approximates the integral as (the only difference being random instead of regular points) 

 dxf (x) ≅
b− a

M
f (rn )

n=1

M

∑
a

b

∫ . 

 Both methods may look similar in this one-dimensional example. 
 Consider now an integration of an N-dimensional function, f(x1, ..., xN), in a unit hypercube, [0, 1]N, 

 dx
1

0

1

∫  dxN
0

1

∫ f (x
1
,…, xN ) . 

 For example, even a crude numerical integration with 10 function evaluations for each of the N 
coordinates requires 10N function evaluations.  This is intractable for a large N, say N = 106.  The 
error of the MC estimates scales with the number, M, of the sample points as 1/M1/2 (to be proven 
later).  The MC method provides an approximate estimation of the integral with increased accuracy 
with an increased number of sample points. 

 
Figure: Numerical integration of a one-dimensional 
function, f(x). 

 
Figure: Numerical integration of a two-dimensional 
function, f(x). 

                                                
1 This is the simplest numerical integration with an error on the order of O(Δx).  For the integration of smooth functions, 
higher-order numerical integration methods with smaller errors can be used, such as the O(Δx2) trapezoid rule and the O(Δx4) 
Simpson’s rule. 



I-2 

• MC simulation of stochastic natural phenomena 
 (Example) stock price 
 The MC method simulates a stochastic natural phenomenon by generating random numbers. 

 
 Stock portfolio trading at Quantlab Financial LLC (courtesy of Dr. Andrey Omeltchenko, 1997 

graduate of the Collaboratory for Advanced Computing and Simulations) 
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MC INTEGRATION 1: HIT AND MISS 
 
 Consider a square, {(x, y) | 0 ≤ x < 1, 0 ≤ y < 1}, of unit area.  Consider 
a subspace inside this square, {(x, y) | 0 ≤ x < 1, 0 ≤ y < 1, x2 + y2 ≤ 1}.  
This subspace is a quarter of a unit circle, so that its area is 1/4 × π × 12 = 
π/4. 
 The subspace area is estimated by the MC method as follows.  
Generate Ntry pairs of random numbers, (x, y), in the range [0, 1].  For each 
pair, test the condition, x2 + y2 ≤ 1.  If this is true, then the pair hits the 
subspace and we increment the number, Nhit, of hits.  The area is estimated 
by 

Nhit/Ntry × the area of the square = Nhit/Ntry 

The value of π is estimated by multiplying this value by four. 
• Program: hit.c 
/* Monte Carlo integration of PI by hit and miss */ 
#include <stdio.h> 
#include <stdlib.h> 
main() { 
  double x, y, pi; 
  int hit = 0, try, ntry; 
  printf("Input the number of MC trials\n"); 
  scanf("%d",&ntry); 
  srand((unsigned)time((long *)0)); 
  for (try=0; try<ntry; try++) { 
    x = rand()/(float)RAND_MAX; 
    y = rand()/(float)RAND_MAX; 
    if (x*x+y*y < 1.0) ++hit; 
  } 
  pi = 4.0*hit/ntry; 
  printf("MC estimate for PI = %f\n", pi); 
} 

> cc hit.c 

> a.out 
Input the number of MC trials 
10000 
Ntry Hit = 10000 7874 
MC estimate for PI = 3.149600 

> a.out 
Input the number of MC trials 
10000 
Ntry Hit = 10000 7798 
MC estimate for PI = 3.119200 

• Random-number generator in the standard library: The Unix standard library on bit includes a 
random-number generator, int rand(), note the header file, #include <stdlib.h>.  Successive 
calls to this routine generate a sequence of random numbers in the range, [0, 231 − 1 = 
2,147,483,647]. 

• void srand( (unsigned) time((int *)0) ); 
 To initialize the sequence of random numbers, use void srand(unsigned seed), where seed is a 

random starting point of a sequence.  In the above, the seed depends on the time the program is run.  
The int time(int *tloc) system call returns the time since 00:00:00 GMT, January 1, 1970, 

 

Figure: 10,000 randomly generated 
points, (x, y), in [0, 1]2.  The 7,874 
blue points satisfy x2 + y2 < 1, while 
the remaining 2,126 (= 10,000 - 
7,874) red points do not. 
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measured in seconds.  If tloc is nonzero, the return value is also stored in the place to which tloc 
points. 

• RAND_MAX is the maximum random number, 231 − 1 = 2,147,483,647, defined in 
/usr/include/stdlib.h.  The expression, rand()/(float)RAND_MAX, generates a random number 
in the range, [0,1]. 

 
MC INTEGRATION 2: SAMPLE MEAN 
 
Recall the MC integration of a one-dimensional function, f(x), in the range, [a, b], 

dxf (x) ≅
b− a

M
f (rn )

n=1

M

∑
a

b

∫ . 

Let’s apply this method to f(x) = 4/(1 + x2) in the range, [0, 1].  Note that 

dx
4

1+ x
2
=

dθ

cos
2θ

4

1+ tan
2θ0

π /4

∫ =
0

1

∫ 4dθ
0

π /4

∫ = π . 

(We have changed the variable from x to θ where x = tan θ.) 
• Program: mean.c 
/* Monte Carlo integration of PI by sample mean */ 
#include <stdio.h> 
#include <stdlib.h> 
main() { 
  double x, pi, sum = 0.0; 
  int try, ntry; 
  printf("Input the number of MC trials\n"); 
  scanf("%d",&ntry); 
  srand((unsigned)time((int *)0)); 
  for (try=0; try<ntry; try++) { 
    x = rand()/(float)RAND_MAX; 
    sum += 4.0/(1.0 + x*x); 
  } 
  pi = sum/ntry; 
  printf("MC estimate for PI = %f\n", pi); 
} 

> cc mean.c 
> a.out 
Input the number of MC trials 
100 
MC estimate for PI = 3.127413 
 
APPLICATION: STATISTICAL MECHANICS 
 
Consider a cubic box of length, L, which contains N particles.  Statistical mechanics deals with the long-
time average behavior of such a system.   
 Let’s specify a configuration of the system using a set of coordinates, 
{

r
i
= (x

i
, y

i
, z

i
) | 0 < x

i
, y

i
, z

i
< L;i =1,...,N} .  The long-time average of any physical quantity, A({r

i
}) , is 

given by a multidimensional integral, 

 
Figure: Function values, f(x) = 4/(1 
+ x2) for 100 random points, x = rn 
(n = 1, ..., 100). 
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A({

r
i
}) =

d

r1 d


r
N
exp(−

V ({

r
i
})

k
B
T
)A({

r
i
})∫∫

d

r1 d


r
N
exp(−

V ({

r
i
})

k
B
T
)∫∫

. 

Here T is the temperature in Kelvin, kB = 1.38×10-16 erg/K is the Boltzmann constant, and V ({r
i
})  is the 

potential energy of the system in erg.  (An example of A({r
i
})  is 

the average distance of a pair of particles.) 
 For example, if the particles have a charge, e, in the 
electrostatic unit, then the potential energy is given by 

V ({

r
i
}) =

e
2

r
i
− r

ji< j

∑ . 

State-of-the-art particle simulations involve 1 billion particles, 
for which the above expression contains 3-billion dimensional 
integrals.  Numerical integration using regular mesh points is 
prohibitive for such large systems.  The simplest MC integration 
would generate a random point in the 3 billion-dimensional space 
by generating 3 billion random numbers in [0, L], and then 
evaluate the function at the point.  In many cases, however, the 
factor exp(−V ({r

i
}) / k

B
T )  (called the Boltzmann factor) is 

extremely small in most of the points except for the neighbor of 
the point where V ({r

i
})  takes its minimum value. 

 To illustrate this, let’s consider a single particle in one-dimensional space of length 1 cm.  The 
particle is subjected to a potential, V(x) = CkB(x − 0.5)2, where C = 1 K/cm2.  The figure shows the factor 
exp(−V ({


r
i
}) / k

B
T )  for temperatures 0.1, 0.01, 

and 0.001 K.  For the lowest temperature, 0.001 
K, the ranges, [0, 0.4] and [0.6, 1], contribute 
negligibly to the integration.  By generating 
random numbers uniformly in [0, 1], therefore, 
we are wasting 80 % of the computing time.  If 
there are 100 particles in the same 1-
dimensional space all subjected to the same 
potential, only 0.2100 = 1.27×10−70 of the total 
random points contribute to the integral.  Your 
random numbers make a contribution once in 
every 1070 attempts! 
 An efficient MC method should generate 
random points preferentially near the potential 
minimum, x = 0.5.  Techniques to sample 
important points preferentially are called 
importance sampling, which is essential for 
successful MC applications. 

Figure: A set of N particles in a cubic box 
of length L. 

 
Figure: Boltzmann factor for a particle in one-dimensional factor. 
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§2  Probability—Foundation of the MC Method 
 
ELEMENTS OF PROBABILITY THEORY2 
 
• Random variable: Arises when repeated attempts under apparently identical conditions to measure 

a quantity produce different results.  For example, the reading from tossing a dice, x (∈ {1, 2, 3, 4, 5, 
6}), is a random variable. 

• Probability density function: Defines the probability, p(x), when the variable is sampled, that the 
value x will result.  For a large number of samples, 

p(x) = (Number of samples with result x)/(Total number of samples) 
 For example, the probability that the reading of dice is 1, p(1), is 1/6. 
• Normalization condition: Satisfied by the probability density function simply states that the 

number of samples for all the readings add up to the total number of samples.   

p(xk )
k

∑ =1 , 

 i.e., Σx(Number of samples with result, x)/(Total number of samples) = 1.  For example, for a dice, 
p(1) + p(2) + ••• + p(6) = 1. 

• Expectation (mean): of a random variable, x, is defined as 

E[x]= x = xk p(xk )
k

∑ . 

 For example, the expected reading of a dice is, 

1×
1

6
+6×

1

6
=
6× (1+ 6)

2
×
1

6
= 3.5 . 

 
CONTINUOUS RANDOM VARIABLES 
 
Random variables can be continuous, e.g., the position of an atom along x axis in a box.  The probability 
density function now defines the probability that, when the variable is sampled, a value lying in the 
range x to x + dx will result; this probability is 

p(x)dx. 
This is realized in the limit of very large number of sample points such that p(x)dx = (Number of 
samples in the range, [x, x+dx])/(Total number of samples). 

 
The normalization condition now involves an integral, 

                                                
2 M. H. Kalos and P. A. Whitlock, Monte Carlo Methods, Vol. I: Basics (John Wiley & Sons, New York, 1986)—a good 
introduction to the general MC method; P. K. MacKeown, Stochastic Simulation in Physics (Springer, Singapore, 1997)—
contains a practical introduction to probability with many applications in physics; W. Feller, An Introduction to Probability 
Theory and Its Application, Vol. I, 3rd Ed. (John Wiley & Sons, New York, 1968)—a classic of probability theory with 
rigorous treatment of Markov chains. 
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dxp(x)
−∞

∞

∫ =1 . 
and the mean is calculated as 

E[x]= x = dxxp(x)
−∞

∞

∫ . 

We can also define the expectation of a function value, 

E[ f (x)]= f (x) = dxf (x)p(x)
−∞

∞

∫ , 

i.e., if we repeatedly generate random numbers, x, and sample the function value, f(x), then 〈f(x)〉 is the 
average value over the entire samples. 

 
Figure: A continuous probability density function. 

 
Figure: Uniform probability in the range [a, b]. 

For example, if a random variable, x, is uniformly distributed in the range, [a, b], then the probability 
density function is,  

p(x) = 1/(a − b). 
The mean of the random variable, x, is 

x = dxx
1

b− a
=

a

b

∫
1

b− a

x
2

2










a

b

=
b
2 − a2

2(b− a)
=
b+ a

2
. 

For a function, f(x) = x2, the expected value is given by 

x
2
= dxx

2 1

b− a
=

a

b

∫
1

b− a

x
3

3










a

b

=
b
3 − a3

3(b− a)
=
b
2
+ ab+ a

2

3
. 

 
VARIANCE AND STANDARD DEVIATION 
 
• Variance of a random variable, x, is defined as 

Var[x]= x − x( )
2

= x
2
− 2x x + x

2
= x

2
− x

2 . 

For the above uniform distribution, the variance is 

Var[x]= b
2 + ba+ a2

3
−
b+ a
2

"

#
$

%

&
'
2

=
(b− a)2

12
. 

• Standard deviation (standard error) of a random variable, x, is the square root of its variance,  

Std[x]= Var[x] , 

 and it measures how broadly the probability density spreads around its mean.  In the above example, 
the standard deviation is | b− a | /2 3 . 
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§3  MC Estimation 
 
SAMPLE MEAN MC 
 
The sample mean MC estimation of a one-dimensional integral is derived as follows.  Let p(x) be some 
probability density function.  (We assume that p(x) is nonzero in the range, [a, b].)  Then rewrite the 
integration as 

F = dxf (x)
a

b

∫ = dx
f (x)

p(x)











a

b

∫ p(x) =
f (x)

p(x)
. 

(Recall that E[ f (x)]= dxp(x) f (x)∫ .)  Thus the deterministic integration of a function is replaced by the 
mean value, 〈f(x)〉, of the function value over stochastic samples.   

 Consider a uniform distribution, p(x) = 1/(b − a), then 

dxf (x)
a

b

∫ = (b− a) f (x) , 

i.e., generate a uniformly distributed random number sequence, x = rn (n = 1, ..., M), in the range, [a, b], 
and calculate the mean, 〈f(x)〉, of the function value.  The MC estimate of the integral is 

dxf (x)
a

b

∫ = (b− a) f (x) = (b− a)×
1

M
f (rn )

n=1

M

∑ , 

and this is what we have programmed in mean.c in the previous section. 
Example: Statistical mechanics 

A({

r
i
}) = d


r
1
 d


r
N
P({

r
i
})A({


r
i
})∫∫ , 

where 

P({

r
i
}) =

exp(−
V ({

r
i
})

k
B
T
)

d

r1 d


r
N
exp(−

V ({

r
i
})

k
B
T
)∫∫

. 

 
ESTIMATION BY FINITE SAMPLING 
 
The above argument is based on the probability density function, p(x), which is defined as the limit of a 
large number of samples.  In reality, we estimate the mean values from finite samples.  The question is 
what is the error associated with the estimation?  We now distinguish the mean in the infinite 
population,  

f (x) = dxf (x)p(x)∫ , 
from that in a finite population, 

f (x) =
1

M
f (rn )

n=1

M

∑ . 

Here we assume that the random numbers, {rn | n = 1, ..., M}, are sampled according to the underlying 
probability density function.  Note that a finite sample itself is a random variable (repeated M-samplings 
will produce different results), and accordingly has the mean and the standard deviation. 
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• Unbiased estimator: If an estimate of a statistical quantity using M samples converges to the 

underlying population value, the estimator is unbiased. 

(Theorem)  The mean of M sampled random variables, f (x) , converges to its expected value, f (x) . 

E f (x){ }=
1

M
E f (rn ){ }=

n=1

M

∑
1

M
f (x) =

n=1

M

∑
1

M
M f (x) = f (x) . 

The second equality holds since each sample is independent and follows the underlying probability 
density function. 
 
VARIANCE OF SAMPLE MEAN 
 
Variance of an MC estimate, f (x) , of the mean is related to the standard deviation of the underlying 
population. 

Var{ f (x)} =Var
1

M
f (rn )

n=1

M

∑







=
1

M
2

m=1

M

∑ f (rm )− f (x)  f (rn )− f (x) 
n=1

M

∑ .  

Now an important assumption is that each sample is independent of each other, i.e., there is no 
correlation between any two samples.  Mathematically the lack of correlation between two random 
variable, A and B, is expressed as 〈AB〉 = 〈A〉〈B〉.  In the above equation, 

f (rm )− f (x)  f (rn )− f (x)  =
Var{ f (x)} (m = n)

f (rm )− f (x) f (rn )− f (x) = 0 (else)





.  

Substituting this relation to the above, 

Var{ f (x)} =
1

M
2

Var{ f (x)} =
Var{ f (x)}

M
m=1

M

∑ . 

By taking the square root, 

Std{ f (x)} =
Std{ f (x)}

M
. 

(Bottom line) The error of an MC estimation decreases as 1/ M . 
 
UNBIASED ESTIMATOR FOR THE STANDARD DEVIATION 
 
The above equation expresses the standard deviation of the mean of finite samples in terms of that of 
infinite samples.  The problem is that we do not know the latter.  Fortunately there is an estimator for the 
standard deviation of the underlying infinite population from finite samples. 
Let’s define the variance, sM, measured in M samples, 

sM =
1
M

f 2 (rn )
n=1

M

∑ −
1
M

f (rn )
n=1

M

∑
#

$
%

&

'
(

2

. 

Note again that sM itself is a random variable.  The value may vary from time to time, but its expectation 
value is 
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sM =
1

M
f
2
(x)

n=1

M

∑ −
1

M
2

m=1

M

∑ f (rm ) f (rn )
n=1

M

∑

= f
2
(x) −

1

M
2

f
2
(x)

m=1

M

∑ −
1

M
2

m=1

M

∑ f (rm ) f (rn )
n=1(n≠m)

M

∑ .

 

For uncorrelated random numbers, 

f (rm ) f (rn ) = f (x) f (x) , 

and therefore 

sM = 1−
1

M









 f

2
(x) −

M (M −1)

M
2

f (x) f (x)

= 1−
1

M









Var{ f (x)}.

 

For the large M limit, 

M

M −1
sM =

M

M −1

1

M
f
2
(rn )

n=1

M

∑ −
1

M
f (rn )

n=1

M

∑










2










→ Var{ f (x)} (M →∞)  

converges to Var{f(x)} and thus it is an unbiased estimator of the latter. 
 
VARIANCE OF SAMPLE MEAN IN PRACTICE 
 
We can now use the relation 

Var{ f (x)} =
Var{ f (x)}

M
, 

to estimate the variance of the MC mean (i.e., what is the uncertainty associated with the MC sample 
mean), since we now have an estimator for Var{f(x)}, 

M

M −1
sM =

M

M −1

1

M
f
2
(rn )

n=1

M

∑ −
1

M
f (rn )

n=1

M

∑










2










→ Var{ f (x)} (M →∞) . 

Combining these two equations, we have 

Var{ f (x)} =
1

M −1
sM =

1

M −1

1

M
f
2
(rn )

n=1

M

∑ −
1

M
f (rn )

n=1

M

∑










2










→

Var{ f (x)}

M
(M →∞) . 
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Let us summarize the main results on the sample mean MC method. 
 Mean: 

  f (x) =
1

M
f (rn )

n=1

M

∑ → f (x) = dxf (x)p(x)∫ (M →∞) . 

 Variance of the mean: 

  Var{ f (x)} =
1

M −1
sM =

1

M −1

1

M
f
2
(rn )

n=1

M

∑ −
1

M
f (rn )

n=1

M

∑










2










→

Var{ f (x)}

M
(M →∞) . 

 
CENTRAL THEOREM ON MC SAMPLING 
 

dxf (x)p(x)∫ ≅ f ±
f
2 − f( )

2

M −1
, 

where finite-samplings are defined through random variables, rn, according to p(x), as 

A ≡
1

M
A r

n( )
n=1

M

∑ . 
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§4  Importance Sampling 
 
In the previous section, we have learned how we can estimate the mean value of a random function and 
its standard error both from random sampling.  The question now is how to sample random variables 
according to the underlying probability density, p(x).  For example, recall the statistical mechanics in the 
previous section.  The statistical average of a function A(r N )  (where r N = {r1,


r
2
,...,

r
N
} ) is estimated by 

generating random samples, {r1
N
,

r
2

N
,...,

r
M

N
} , as 

A =
d!r NA(!r N )exp −V (!r N ) / kBT( )∫
d!r N exp −V (!r N ) / kBT( )∫

≈
A(!rn

N )exp −V (!rn
N ) / kBT( )

n=1

M

∑

exp −V (!rn
N ) / kBT( )

n=1

M

∑
. 

However, we have learned that this approach is practically useless and we instead need to generate 
random points according to the probability that is proportional to exp(−V (r N ) / k

B
T ) .  This is called 

importance sampling. 
 
IMPORTANCE SAMPLING 
 
The discussion of the sample mean MC method in the previous section has assumed that we can 
generate a sequence of random points, r1, r2, ..., so that their population follows a given probability 
density function, p(x). 
• Importance sampling: Chooses random numbers from a probability density function, p(x). 
One importance sampling method generates a sequence of random points so that the population of the 
entire points follows the given probability density rather than generating each point with the probability 
density (the latter is more difficult). 
 
MARKOV CHAIN 
 
For simplicity, let’s consider a finite-state system which at any moment 
can be in one of the states, {Γ1, Γ2, ..., ΓN}.  An example is a system of n 
atoms in a cubic box in which the coordinate in each direction is 
discretized so that it takes only one of m discretized grid points.  A state 
of the system is specified by 3n discretized points, and there are m3n 
combinations for possible states.  The probability density function in 
this case is a 3n-dimensional function, p(Γ1, Γ2,..., ΓN). 
• Markov chain: A sequence of trials that satisfies two conditions: 

(a) The outcome of each trial belongs to a finite set of outcomes, 
{Γ1, Γ2, ..., ΓN}, called the state space; 

(b) The outcome of each trial depends only on the outcome of the 
trial that immediately precedes it (the system has a very short 
memory). 

• Transition probability matrix: Any two states Γn and Γm are linked by a transition probability, πmn, 
which is the conditional probability that the next state is Γm given that the current state Γn, i.e., the 

 
Figure: A two-dimensional system 
with 5 atoms discretized on 11 grid 
points in each direction.  The 
number of all possible 
combinations of atomic positions is 
1110. 
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probability of state transition, n → m.  Each transition probability πmn is an element of the transition 
probability matrix, 

Π =

π
11

π
12
 π

1N

π
21

π
22

 
π
N1

π
NN

















. 

• Normalization: Given that the system is in the state, Γn, then the next state must be one of the N 
possible states so that 

π
mn

m=1

N

∑ =1 . 

 Suppose we start (with 100% probability) from one of the states, say n, then the next state is 
stochastic with probability, 

ρ (1) =

p
1

p
2


p
N
















=Πρ (0) =Π

0

1














 n

. 

 ( p
m

(1)
= π

m ′nδ ′n n

′n =1

N

∑ = π
mn

, where δnn' = 1 if n = n' and 0 otherwise.) 

 The probability distribution of the τ-th time step is given by successive matrix multiplications: 

ρ (τ ) =Πρ (τ−1) =Π2ρ (τ−2) ==Π
τ ρ (0) . 

The following theorem3 gives us a clue how a Markov chain is used to achieve a population with a given 
probability density. 
• Perron-Frobenius theorem: A transition probability matrix has one eigenvalue that equals unity, 

and the corresponding eigenvector is the limiting distribution of the chain.  The absolute values of all 
the other eigenvalues are less than unity. 

1. The consequence of the Perron-Frobenius theorem is that Πτ for large τ converges to a matrix which, 
acting on any initial probability distribution, ρ(0), converges to the eigenvector of the unit eigenvalue.  
All the other eigenvectors, whose eigenvalue being less than unity, are filtered out by successive 
matrix multiplications.  (ρ∞

= lim
τ→∞

Π
τ ρ (0) .) 

2. In order to achieve a distribution of states, which follows a given probability density, find a 
transition probability matrix whose eigenvector with unit eigenvalue (the existence of which is 
guaranteed by the above normalization condition) equals the desired probability density. 

(Example—Two State System)4 
Suppose the reliability of a (rather unreliable) computer follows a certain pattern.  If it is up and running 
on one day, it has a 60% of running correctly on the next.  If it is down, it has a 70% chance of also 
being down the next day. 

                                                
3 For a proof, see W. Feller, Introduction to Probability Theory and Its Applications, Vol. I (John Wiley & Sons, New York, 
1968). 
4 M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Univ. Press, Oxford, 1987) p. 115. 
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The transition probability matrix of this computer is given by, 

Π =
↑ ↓

↑
↓

a 1− b
1− a b( ) , 

where a = 0.6 and b = 0.7.  For example, if the computer is up today, 

p↑
(1)

p↓
(1)









= 0.6 0.3

0.4 0.7( ) 1
0( ) = 0.6

0.4( ) , 

i.e., it will be 60% up and 40 % down tomorrow.  For the day after tomorrow, 

p↑
(2)

p↓
(2)









= 0.6 0.3

0.4 0.7( ) 0.6
0.4( ) = 0.48

0.52( ) . 

In order to obtain a closed form for the probability on day n, we need to solve an eigenvalue problem, 

Πw = λw , 
where λ is an eigenvalue and the corresponding eigenvector is 

w = u
v( ) . 

We can rewrite the eigenvalue equation as 

a 1− b
1− a b( ) u

v( ) = λ u
v( ) , 

or 

λ − a b−1
a−1 λ − b( ) u

v( ) = 0
0( ) . 

For the above equation to have a nontrivial solution (trivial solution is u = v = 0), there should not exist 
the inverse matrix of Π, or the determinant of the matrix must be zero, 

Π = (λ − a)(λ − b)− (a−1)(b−1) = (λ − a− b+1)(λ −1) = 0 . 

There are two solutions, λ+ = 1 and −1 < λ− = a+b−1 < 1.  (For each eigenvalue, the two equations 
constituting the matrix equation become identical: (1−a)u+ + (b−1)v+ = 0 for λ+ and u− + v− = 0 for λ−.)  
The corresponding eigenvectors are 

w+ =
u+
v+









=

1

2− a− b
1− b
1− a( ) and w− =

u−
v
−









= −1

1( ) . 

(Normalization of the vector is not important.)  We can combine the two eigensolutions in a matrix 
equation, 

ΠU =UΛ , 
where U is called the transformation matrix, 

U =
u+ u−
v+ v

−









=

(1− b)
(2− a− b)

−1

(1− a)
(2− a− b)

1
















and Λ =

λ+ 0
0 λ

−









= 1 0

0 a+ b−1( ) . 
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 
a 1− b
1− a b( ) u+

v+









= λ+

u+
v+









=

λ+u+
λ+v+











a 1− b
1− a b( ) u−

v−









= λ−

u−
v−









=

λ−u−
λ−v−











 

By combining these two matrix equations, 

a 1− b
1− a b( ) u+ u−

v+ v−









=

λ+u+ λ−u−
λ+v+ λ−v−









=

u+ u−
v+ v−











λ+ 0

0 λ−









 // 

Or, by multiplying the inverse of U from the right on both sides of the above matrix equation, 

Π =UΛU
−1 , 

where the inverse of the transformation matrix is 

U
−1
=

1 1
(a−1)

(2− a− b)
(1− b)

(2− a− b)









 . 

Let’s multiply the transition probability matrix repeatedly to an arbitrary initial probability distribution, 

p
1

(n)

p
2

(n)









=Π

n p
1

p
2









 . 

Meaning of such a vector is as follows.  Starting from the same initial condition, we monitor the time 
sequence of up and down state for many samples.  On day τ, count the number of up’s and down’s in the 
ensemble, and these give the up and down probabilities on the day. 

p
1

(n)

p
2

(n)









=Π

n p
1

p
2











=UΛn
U

−1 p
1

p
2











=
u+ −1
v+ 1











λ+
n

0

0 λ−
n











1 1
−v+ u+( ) p

1

p
2











=
u+ −1
v+ 1









 1 0
0 0( ) 1 1

−v+ u+( ) p
1

p
2









 (n→∞)

=
u+(p1 + p2 )
v+(p1 + p2 )









=

u+
v+









.

 

Note that in the above derivation, 

UΛU
−1
UΛU

−1
UΛU

−1
=UΛ U

−1
U( )ΛΛ U

−1
U( )ΛU −1

=UΛ
n
U

−1 . 

Therefore repeated application of the transition probability matrix to an arbitrary initial probability 
density converges to the eigenvector corresponding to the unit eigenvalue, and this proves the Perron-
Frobenius theorem for an arbitrary two-state system.  Note that we have used the fact, 

λ−
n
→ 0 (n→∞, λ−

n
<1) . 
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Eventually, the computer has a u+ = (1 − b)/(2 − a − b) = 0.3/0.7 = 0.4286 chance of being up and 
running at any day, and u− = (1 − a)/(2 − a − b) = 0.4/0.7 = 0.5714 chance of being down. 
 
METROPOLIS ALGORITHM5 
 
Now the question of generating a desired probability distribution has reduced to finding a transition 
probability matrix whose eigenvector with unit eigenvalue equals to the probability density function.  To 
do this, recall the eigenvalue equation with unit eigenvalue, 

Πρ = ρ  or Π
mn

n=1

N

∑ ρ
n
= ρ

m
. 

The problem is that given a desired ρ, how to find Π which satisfies the above relation.  A trick is to 
impose the stronger condition below. 
• Detailed balance condition: For any pair of states, 

π
mn
ρ
n
= π

nm
ρ
m

. 

The left-hand side is a flux of probability that the current state is n and that the next state is m.  The 
right-hand side is a flux from m to n.  For any pair of states this balance of fluxes must be 
microscopically balanced. 

In order to show that above detailed balance condition is sufficient for the unit-eigenvalue relation, sum 
the both side over n. 

 π
mn
ρ
n
=

n=1

N

∑ π
nm( )

n=1

N

∑ ρ
m

1

∴ π
mn
ρ
n
=

n=1

N

∑ ρ
m
.

 

• Metropolis’ transition probability matrix: Called an asymmetric solution uses a symmetrical (αmn 
= αnm) attempt matrix: 

π
mn
=

α
mn

ρ
m
≥ ρ

n
m ≠ n

ρ
m
ρ
n( )αmn

ρ
m
< ρ

n
m ≠ n

1− π
m 'n

m '≠n

∑ m = n













. 

The Metropolis’s method is a kind of rejection method—propose and accept/reject: It first attempts a 
move from n → m with probability αmn.  If the destination probability is larger than the source 
probability, then unconditionally accept the attempt.  Otherwise if the destination probability is smaller 
than the source, accept the attempt with a probability, ρm/ρn.  The last relation guarantees the 
normalization condition on the transition probability matrix. 

Proof of detailed balance: 
Assume that ρm < ρn (similar proof for the other case).  π

nm
ρ
m
=α

nm
ρ
m
=α

mn
ρ
m

 due to the symmetrical 
attempt.  On the other hand, π

mn
ρ
n
= ρ

m
/ ρ

n( )α mn
ρ
n
=α

mn
ρ
m

.// 

                                                
5 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of states calculations by fast 
computing machines, J. Chem. Phys. 21, 1087 (1953). 
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An advantage of the Metropolis’ algorithm is that the relative probability density ρm/ρn is relatively easy 
to calculate compared with the absolute probability ρn.  For example, let’s consider the probability 
density in statistical mechanics, 

P({

r
i
}) =

exp(−
V ({

r
i
})

k
B
T
)

d

r1 d


r
N
exp(−

V ({

r
i
})

k
B
T
)∫∫

, 

which is known only after we integrate the exponential factor over the entire configuration space (an 
intractable task).  The Metropolis’ method only requires the evaluation of a relative probability, 

P

r
i

next{ }( )
P

r
i

current{ }( )
=
exp −V


r
i

next{ }( ) kBT( )
exp −V


r
i

current{ }( ) kBT( )
= exp −δV


r
i

next{ },

r
i

current{ }( ) kBT( ) , 

where 

δV

r
i

next{ },

r
i

current{ }( ) =V

r
i

next{ }( )−V

r
i

current{ }( ) . 

Note the denominator of the probability density function (or the normalization factor) cancels out.  Now 
the only requirement is that we are able to calculate the change in the potential energy after and before 
each attempted change in configuration. 
* Caution:  The system remains in the same state if an attempt fails according to the third relation.  If 

you are calculating the statistical average of some quantity, this same next state must be taken into 
account in the averaging process again in addition to the already counted current state.  The 
following pseudocode demonstrates this point. 

• Template:  Metropolis algorithm for statistical mechanics 
Sum_A = 0 
for n = 1 to Ntrial 
  X’ ← X + dX 
  Compute dV = V(X’) - V(X) 
  if dV < 0 then  /* Greedy */ 
    Accept X ← X’ 
  else if rand() < exp(-dV/kBT) then /* Uphill move accepted with a probability*/ 
    Accept X ← X’ 
  /* else the state remains X */ 
  endif 
  Sum_A = Sum_A + A(X)    /* Counting X more than once if a move rejected */ 
endfor 
Avg_A = Sum_A/Ntrial 

* Often an attempt used in the Metropolis’ algorithm is a random displacement.  For example, in the 
discretized 3D atom system, an attempt is made with equal probability, 1/6, from 6 neighbor grid 
points, {north, south, east, west, up, down}. 
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§5  Random Number Generator 
 
LINEAR CONGRUENTIAL GENERATOR6 
 
• Uniform random number generator: A routine to generate a sequence of random numbers within 

a specified range (typically 0 to 1). 
 The simplest uniform random number generator uses a sequence of large positive integers Xi, each 
generated from the previous one by multiplication conducted in finite modulus arithmetic: 

Xi+1 = aXi mod M, 
where a and M are large positive integers and mod is the modulo operator.  Each integer in the sequence 
lies in the range [1, M − 1].  Random numbers ri in the range [0, 1] is obtained by 

ri = Xi/M. 

Since Xi can never exceed M − 1 the sequence must repeat after at most M − 1 iterations.  If M is chosen 
to be prime and a is carefully chosen, the maximum possible period of M − 1 is achieved. 

 The most famous generator is (M, a) = (231 − 1 = 2147483647, 75 = 16807), in which M is the largest 
prime that can be represented by a signed 32-bit integer.  This cannot be implemented using the 32-bit 
integer arithmetic since the multiplication can easily overflow. 
 The following algorithm (due to Schrage) solves this difficulty by using a factorization of m, 

m = aq + r, i.e., q = [m/a], r = m mod a 
with square brakets denoting integer part.  If r < q, then we can show, for an arbitrary z in the range (0, 
m − 1), that both a(z mod q) and r[z/q] lie in the range [0, m − 1] and 

azmodm =
a(zmodq)− r[z / q] if ≥ 0

a(zmodq)− r[z / q]+m otherwise{ . 

 Let factorize z = xq + y (y < q: remainder) so that x = [z/q] and y = z mod q.  Then 

az = a(xq+ y)

= x(m− r)+ ay

= xm+ (ay− xr).

 

 This suggests that ay - xr is equal to az mod m in finite modulus arithmetic.  Now note that 
  0 < ay < aq = m - r ≤ m, therefore 0 < ay < m 
  0 < xr ≤ ar (z < m and x & a are their respective quotients) < aq (r is a remainder with divider q) 
  = m - r ≤ m, therefore 0 < xr < m 
 Therefore -m < ay - xr < m, and it is equal to either (az mod m) itself or (az mod m - m). // 

 The following random number generator uses this algorithm with q = [2147483647/16807] = 127773 
and r = 2147483647 - 16807×127773 = 2836. 

• The cycle of this random number generator is m − 1 = 231 − 2 ~ 2.1 × 109: You can obtain up to 2 
billion independent random numbers. 

                                                
6 M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Univ. Press, Oxford, 1987) Appendix G; W. H. 
Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd Ed. (Cambridge Univ. Press, 
Cambridge, 1992) p. 274. 
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• Program ran0.c 
#define IA 16807 
#define IM 2147483647 
#define AM (1.0/IM) 
#define IQ 127773 
#define IR 2836 
float ran0(int *idum) { 
/* 
Random number generator.  Returns a uniform random number between 0.0 and 1.0. 
Set *idum (to be modified) to any nonzero integer value to initialize the sequence. 
*/ 
  long k; 
  float ans; 
   
  k = (*idum)/IQ; 
  *idum = IA*(*idum - k*IQ) - IR*k; 
  if (*idum < 0) *idum += IM; 
  ans = AM*(*idum); 
  return ans; 
} 
 
The “perfect random-number generator” in Numerical Recipes by W. H. Press, B. P. Flannery, S. A. 
Teukolsky, and W. T. Vetterling (Cambridge Univ. Press) is an extension of this routine with “shuffle” 
and “mix” operations. 
 
SHIFT-REGISTER (XOR) GENERATOR 
 
 We are often interested in generating single random bits, with 0 and 1 equally probable.  The shift-
register or Tausworthe generator uses a recurrence relation for obtaining a new random bit from the n 
preceding ones.7   Let the bits be numbered from 1 (most recently generated) through n (generated n 
steps ago), and denoted a1, a2, ..., an.  We want to give a formula for a new bit a0.  After generating a0 we 
will shift all the bits by one, so that the old an is finally lost, and the new a0 becomes a1.  We then apply 
the formula again, and so on.   
 Particularly useful recurrence relations are obtained from the theory of primitive polynomial modulo 
2 of order n.  One can seed the sequence with any initial bit pattern (except all zeros), and get 2n - 1 
random bits before the sequence repeats.  An example of order n = 18 is 

a
0
= a

18
⊕ a

5
⊕ a

2
⊕ a

1
, 

where the “exclusive or” (XOR) logical operator is used. 

 

                                                
7 R. C. Tausworthe, Mathematics of Computation 19, 201 (1965). 
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 This is suited to hardware implementation using a shift register.  In the C programming language, we 
can use the 18 low-significant bits of unsigned integer variables and the >> (shift right) and << (shift 
left) operators to implement the recursion.8 
• Program: irbit1.c 
#define IB1 1  /* Bit masks */ 
#define IB2 2 
#define IB5 16 
#define IB18 131072 
int irbit1(unsigned long *iseed) { 
  unsigned long newbit; 
  newbit = (*iseed & IB18) >> 17  /* Get bit 18 at the right-most digit */ 
  ^ (*iseed & IB5) >> 4           /* XOR with bit 5 */ 
  ^ (*iseed & IB2) >> 1 
  ^ (*iseed & IB1); 
  *iseed = (*iseed << 1) | newbit /* Left shift the seed & fill bit 1 with newbit 
*/ 
  return (int) newbit; 
} 
 
FIBONACCI GENERATOR9 
 
Constructing a lagged sequence can be done modulo m > 2, e.g., taking the p-th and q-th preceding 
numbers and combining them with some operation, 

ν i = ν i−q◊ν i−p( ) mod m , 

where ◊  is the conventional bitwise XOR.  Recently, however, the arithmetic subtraction has also been 
used.  In the latter case, we add m to ν i−q◊ν i−p  if it becomes negative. 
 
NCSA’S SPRNG10 
 
Most modern random-number generators involve the combination of two or more of elementary 
generators.  The scalability and portability issues are addressed in some public-domain software systems 
such as the SPRNG at the NCSA at University of Illinois, Urbana. 
 

                                                
8 W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd Ed. (Cambridge Univ. 
Press, Cambridge, 1992). 
9 P. K. MacKeown, Stochastic Simulation in Physics (Springer, Singapore, 1997) p. 76. 
10 http://www.ncsa.uiuc.edu/Apps/SPRNG 
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APPENDIX A—GAUSSIAN INTEGRAL 
 
Consider the Gaussian integral, 

I = dxexp −x2( )
−∞

∞

∫ . 

A common trick is instead to evaluate 

I
2
= dxexp −x2( )

−∞

∞

∫ dyexp −y2( )
−∞

∞

∫
= dx

−∞

∞

∫ dyexp −(x2 + y2 )( )
−∞

∞

∫
 

and to introduce a polar coordinate, (x = r cosθ, y = r sinθ).  Note that 

−∞

∞

∫ dxdy =
−∞

∞

∫
0

∞

∫ dr dθ

∂x

∂r

∂x

∂θ
∂y

∂r

∂y

∂θ

0

2π

∫ =
0

∞

∫ dr dθ cosθ −rsinθ
sinθ rcosθ0

2π

∫ =
0

∞

∫ dr dθ rcos2θ + rsin2θ
0

2π

∫

=
0

∞

∫ r dr dθ
0

2π

∫
 

(2D integration is a summation of function values multiplied by a small area, see Appendix B).  Using 
this transformation, 

I
2
= dr

0

∞

∫ dθ
0

2π

∫ rexp −r
2( ) = 2π dr

0

∞

∫ rexp −r
2( ) . 

 
Now a further coordination transformation, x = r2 and dx = (dx/dr)dr = 2rdr, makes 

I
2
= π dx

0

∞

∫ exp −x( ) = π −exp(−x)[ ]
0

∞
= π . 

Therefore, I = dx
0

∞

∫ exp −x2( ) = π . 
 
APPENDIX B—TRANSFORMATION OF AREAL ELEMENT 
 
Q. Consider a variable transformation from (x, y) to (ξ, ζ) = (ξ(x, y), ζ(x, y)) and a tiny rectangle in the 

xy-space with area dxdy, which will be transformed to a parallelogram in the ξζ-space shown below.  
What is the area of the transformed parallelogram? 
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A. S =

∂ξ

∂x

∂ξ

∂y
∂ζ

∂x

∂ζ

∂y

dxdy =
∂ξ

∂x

∂ζ

∂y
−
∂ξ

∂y

∂ζ

∂x









dxdy , where a b

c d
= ad − bc  is the determinant of matrix

a b
c d( ) . 

 
(Proof) 

Consider a parallelogram formed by two 2D vectors 

k = (a,b)  and 


l = (c,d)  with the angle θ between 

them.  Note that 

cosθ =


k •

l

k


l

=
ac+ bd

(a
2
+ b

2
)(c

2
+ d

2
)

 

sinθ = 1− cos
2θ =

(a
2
+ b

2
)(c

2
+ d

2
)− ac+ bd( )

2

(a
2
+ b

2
)(c

2
+ d

2
)

=
ad − bc

(a
2
+ b

2
)(c

2
+ d

2
)

 

The area of the parallelogram is 

S =

k

l sinθ = a

2
+ b

2
c
2
+ d

2
sinθ = ad − bc  

 
The parallelogram under question is instead formed by two vectors, 


k =

∂ξ

∂x
dx,

∂ζ

∂x
dx









 , 


l =

∂ξ

∂y
dy,

∂ζ

∂y
dy









 . 
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Here, we have used the linear approximation, 

(ξ (x + dx, y+ dy),ζ (x + dx, y+ dy)) ≈ (ξ (x, y)+
∂ξ

∂x
dx +

∂ξ

∂y
dy,ζ (x, y)+

∂ζ

∂x
dx +

∂ζ

∂y
dy)  

With this substitution, we get 

S =
∂ξ

∂x
dx
∂ζ

∂y
dy−

∂ζ

∂x
dx
∂ξ

∂y
dy =

∂ξ

∂x

∂ζ

∂y
−
∂ζ

∂x

∂ξ

∂y
dxdy =

∂ξ

∂x

∂ξ

∂y
∂ζ

∂x

∂ζ

∂y

dxdy . 

 
PROBLEM—NORMAL DISTRIBUTION 
What is the standard deviation of the random number, ζ, that follow the normal probability density, 

P ζ( ) =
1

2πσ
exp −

ζ 2

2σ 2









 ? 

(Answer) 
Note that 

I σ( ) = dζ exp −
ζ 2

2σ 2











−∞

∞

∫ = 2σ dsexp −s
2( )

−∞

∞

∫ = 2πσ , 

where we have introduced a new variable, s, through ζ = 2σ s .  By differentiate both sides by σ,  

dI

dσ
= dζ

ζ 2

σ 3
exp −

ζ 2

2σ 2











−∞

∞

∫ = 2π . 

Or 

dζ
2πσ

ζ 2 exp −
ζ 2

2σ 2

"

#
$

%

&
'

−∞

∞

∫ = ζ 2 =σ 2 . 

From the symmetry, the average value, 〈ζ〉 = 0, and therefore the variance of ζ is ζ 2 − ζ
2

=σ 2  and 
the standard deviation is σ. 
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II Monte Carlo Simulation of Spins 
 
§1  MC Simulation of Lattices 
 
ISING MODEL11 
 
• Ising model: A model in statistical mechanics, which was originally used to study the behavior of 

magnetic particles in a magnetic field.  The model consists of a collection of “spins” on lattice sites 
(see the Figure below).  Each spin takes only the value of +1 (up) or −1 (down).  The model has also 
been used to study alloys and even the load-balancing problem in parallel computing. 

 The potential energy of a given spin configuration is 

V (sN ) = −J sksl
(k,l )
∑ −H sk

k
∑ , sk = ±1 , 

where (k, l) are nearest neighbor pairs of lattice sites, H is the external magnetic field, and J is the 
exchange coupling. 
 For a positive J, the first term takes the minimum 
value if all the spins are aligned.  The latter term, for a 
positive H, takes minimum, when the spins are all up.  
In statistical mechanics, the all-down configuration is 
most probable, but other configurations also exist with 
a probability proportional to the Boltzmann factor, 
exp(−V/kBT). 

 For an L × L two-dimensional lattice, each spin 
index consists of a pair of integers, k = (i, j) (0 ≤ i, j ≤ 
L−1).  The four neighbors (north, south, east, west) of 
grid point (i, j) are, (i±1, j) and (i, j±1). 
• Periodic boundary condition:  Used to simulate 

bulk systems without surface effects.  It allows a 
wrap-around condition.  For an L × L two-
dimensional lattice, grid points (L−1, j) and (0, j) 
are east-west neighbors and (i, L−1) and (i, 0) are 
north-south neighbors.   

 
MC ALGORITHM FOR THE ISING MODEL 
 
 The following pseudocode performs a MC simulation for a 2-dimensional Ising model.  The 
simulation consists of a series of single-spin updates.  One grid point, (i, j), is flipped and the 
corresponding change in energy is calculated.  The spin flip is accepted or rejected according to the 
Metropolis algorithm.  In each MC step, one grid point on the lattice is randomly selected.  Totally 
maximum_step steps are performed. 

                                                
11 D. W. Heermann and A. N. Burkitt, Parallel Algorithms in Computational Science (Springer-Verlag, Berlin, 1991). 

 
Figure: A spin configuration of the two-dimensional 
Ising model on a 4 × 4 lattice. 
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Algorithm: MC simulation of a 2-dimensional Ising model 
initialize the spins, s[i][j] (0 ≤ i,j ≤ L-1) 
Sum_A = 0 
for step =1 to maximum_step 
  randomly pick a grid point, (i,j) 
  compute the change in potential energy, δV, with a single spin flip, si,j → -si,j 
  if dV ≤ 0 accept the flip, si,j ← -si,j 
  else if random() ≤ exp(-δV/kBT) then // Here random() is in the range [0,1] 
    accept the flip, si,j ← -si,j 
  endif 
  Sum_A = Sum_A + A(sN) 
endfor 
Average_A = Sum_A/maximum_step 

 Physical quantities we calculate include 

 Magnetization: M = sk
k
∑ ; 

 Fluctuation of the magnetization: Std{M} = M 2 − M 2 . 

 The change in energy, δV(sN) = V(...,skʹ,...) − V(...,sk,...), associated with a single spin flip, sk → skʹ = 
−sk, is calculated as follows: 

δV = −J (sk '− sk )sl
l∈n.n.(k )
∑ −H (sk '− sk ) , 

where n.n.(k) denotes the set of nearest-neighbor grid points of the k-th grid point.  Note that skʹ − sk = 
2skʹ (2 for −1 → 1; −2 for 1 → −1), so that 

δV = −2sk ' J sl
l∈n.n.(k )
∑ +H

$

%
&&

'

(
)) . 

For the 2D Ising model, there are only two possible values for skʹ: ±1 and five values for sll∈n.n.(k )∑ : 0, 

±2, ±4.  It is therefore convenient to set up a table for exp(−δV/kBT) as an array, exp_dV[2][5] in the 
program.  The look-up table eliminates many exponential evaluations, which require a significant CPU 
time, and consequently saves enormous computing.  
 The calculation of the magnetization is also simplified by keeping a running value Mtot that, each 
time a spin sk is flipped to skʹ, is replaced by Mtot + 2skʹ. 
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Table: possible central and neighbor spins. 

Central spin, skʹ 

−1 
1 
 

 Neighbor   spins  Sum 

−1 
−1 
−1 
−1 
1 

−1 
−1 
−1 
1 
1 

−1 
−1 
1 
1 
1 

−1 
1 
1 
1 
1 

−4 
−2 
0 
2 
4 

 
• Initialization: We choose a “cold start” in which all the spins are set to +1.   
 
ISING MC CODE 
 
Follow the explanation and data structures below to implement your Ising MC code. 
• int s[L][L]; 
 #define L 20 
 s[i][j] = 1|−1 represents up|down spin at lattice site, (i, j), where 0 ≤ i, j ≤ L−1.  L = 20 is the size 

of the lattice in each of the x and y directions. 
• Periodic boundary condition: The four (west, east, south, north) neighbors of site (i, j) are (im, j), 

(ip, j), (i, jm), (i, jp), where 

  im = (i + L − 1) % L 
  ip = (i + 1) % L 
  jm = (j + L − 1) % L 
  jp = (j + 1) % L 
 and % represents the modulo operator (in C notation). 
• double exp_dV[2][5]; 

exp_ dV[k][l]= exp −
δV
kBT

"

#
$

%

&
'= exp 2 (s

J
kBT

s
s∈n.n.( (s )
∑ +

H
kBT

+

,
-
-

.

/
0
0

"

#
$
$

%

&
'
' , 

 where the array indices and spin variables satisfy the following relations, 

  k = (1 + sʹ)/2 (k = 0,1; sʹ = −1,1) 
  l = (4 + S)/2 (l = 0,1,2,3,4; S = Σneighbor(sʹ) s = −4, −2,0,2,4) 
• Ising model parameters: There are two independent model parameters. 
  double JdivT = J/kBT: Exchange coupling in unit of temperature 
  double HdivT = H/kBT: Magnetic field in unit of temperature 
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• double runM, sumM = 0, sumM2 = 0; 

 runM is the running value of the total magnetization, runM =
i=0

L−1

∑
j=0

L−1

∑ s[i][ j] . 

 When the simulation is cold started, s[i][j] = 1 for all (i ,j), runM is initialized to 1.0*L2.  Every 
time a spin is flipped from s → snew = −s, update runM += 2×snew. 

 After each MC step (i.e., a spin-flip attempt that may or may not be accepted), update the 
accumulated values for the magnetization and its square: 

  sumM += runM; 
  sumM2 += runM*runM; 

 (Even though these are integer values, they can become too big to be represented by a 32-bit integer.  
Therefore we use 64-bit double type.  Note M2 can be as large as (202)2 = 160,000, and accumulated 
sum of 5,000 M2 values is 0.8 × 109, close to the largest integer ~ 231 ~ 2 × 109.) 

• int Sta_step; 
 Number of MS steps to be performed.  There will be Sta_step accumulated values of M and M2. 
• double avgM, sigM; 
 The mean magnetization and its standard deviation are given by 

  avgM = sumM Sta_ step , 

  sigM = sumM2 Sta_ step− avgM 2 . 
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§2  Cluster MC Algorithm—Swendsen-Wang12 
 
To achieve the desired Boltzmann distribution, exp(−V(x)/kBT), the hybrid MC algorithm13 uses the 
extended phase space, (x, p), as a vehicle to generate a Markov chain, (x1, x2, ...), which efficiently 
samples a wide coordinate space, x, by allowing collective motions of the entire system.  In cluster MC 
methods, a dual representation is introduced for the system: A state of a lattice spin system can be 
represented either as a collection of lattice spins or as a graph with edges connecting nearest-neighbor 
parallel spins.  Clusters of connected spins are flipped at a time to realize collective motions. 

 
Warping through an extended space. 

 
Dual representation. 

 
Graph representation of lattice spins. 

 A drawback of the hybrid MC method, however, arises from the limitation of the molecular 
dynamics (MD) method it utilizes.  The MD discretization time unit, δt, must be on the order of the time 
scale of the fastest motion which exists in the system to achieve a reasonable acceptance ratio.  
However, global motions of the entire system are often characterized by much longer time than δt, and it 
requires many MD iterations to achieve such motions, resulting in enormous computing time. 
 In cluster MC methods, cluster flips help exploring a wide configuration space rapidly.  The number 
of MC steps required before two states become uncorrelated is known as the correlation time, τ.  (Note 
that before and after one spin flip, the two states are very well correlated.)  The correlation time thus 
describes how long it takes to lose a memory of an old state.  Near the critical temperature, Tc, at which 
the spin system transforms from a magnetic (at the low-temperature side) to a nonmagnetic (at the high-
temperature side) states, the correlation time scales with the system size, L, as τ ~ Lz.  The exponent, z, 
known as the dynamical critical exponent, is 2.125 for the two-dimensional Ising model, if a standard 
single spin flips are used.  For a large system, therefore, the correlation time becomes very long.  This 
critical slowing down of the system dynamics causes computational inefficiency.  An MC simulation 
must be performed much longer than τ to achieve a reasonable sampling of the configuration space.  
Therefore the computation time for the standard MC simulation scales as roughly quadratically as the 
problem size, O(L2.125).  The first cluster MC developed by Swendsen and Wang in 1987 achieves z = 
0.35 for the same model, achieving a significant reduction in computing time.  Later we will learn that 
by introducing a multilevel concept, the critical slowing down can be completely eliminated, z ~ 0.  
Namely, the multilevel algorithm is scalable! 
 
POTTS MODEL 
 The Swendsen-Wang algorithm is most simply described for a Potts model with the energy function, 

                                                
12R. H. Swendsen and J.-S. Wang, “Nonuniversal critical dynamics in Monte Carlo simulations,” Physical Review Letters 58, 
86 (1987). 
13 B. Mehlig, D. W. Heermann, and B. M. Forrest, “Hybrid Monte Carlo method for condensed-matter systems,” Physical 
Review B 45, 679 (1992). 

x

p
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H = −J δσ (i),σ ( j ) −1( )
(i, j )

∑ , 

where the spins, σ(i), take on the values, 1, 2, ..., q.  For a given spin configuration, σ = (σ(1), σ(2), ..., σ 
L)) (L is the number of lattice sites), the probability density function takes a value, 

P(σ ) = exp −H (σ ) / k
B
T( ) / Z , 

where the partition function, 

Z = exp −H (σ ) / k
B
T( )

σ

∑ , 

consists of a summation over all possible spin configurations, σ.  Below we consider a two-state Potts 
model for which q = 2.  This model is equivalent to the Ising model except for a constant in the energy 
function. 
 
THE SWENDSEN-WANG ALGORITHM 

 In the Swendsen-Wang algorithm, a transition, σ → σ’, in a Markov chain is achieved in two phases 
like the double-buffer mode in computer graphics.  In the first phase, the starting spin configuration, σ, 
is converted to a bond configuration, Γ, which is a set of bonds (or edges) connecting nearest-neighbor 
spin sites.  This transition, σ → Γ, is achieved by the following algorithm: 

Phase 1: Spin-to-bond transition 
1. There are no bonds between anti-parallel nearest-neighbor spins. 
2. A bond between parallel nearest-neighbor spins is created randomly with probability, 

p =1− exp −J / kBT( ) . 

 In the second phase of the Swendsen-Wang algorithm, the resulting bond configuration at the first 
phase is converted to a new spin configuration, Γ → σʹ, as follows. 

Phase 2: Bond-to-spin transition 
1. Build clusters of connected spins by bonds. 
2. Each cluster is randomly given either spin up or down with equal probability, 1/2. 

 Below, we prove that the joint transition probability, 

P( ′σ |σ ) = P( ′σ |Γ)P(Γ |σ )
Γ

∑ , 

has the Boltzmann distribution as its unit eigenstate, i.e., the Boltzmann distribution is achieved as the 
asymptotic limit by successive applications of the transitions: 

1

Z
exp −H ( ′σ ) / k

B
T( ) = P( ′σ |σ )

σ

∑
1

Z
exp −H (σ ) / k

B
T( ) . 

 
CLUSTER IDENTIFICATION 
 Before proving the eigenstate property mentioned above, let us consider the cluster-identification 
step in the second phase of the algorithm.  In the physics community, the most popular cluster-
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identification algorithm is the Hoshen-Kopelman algorithm.14  Here we describe an alternative 
algorithm, i.e., the breadth-first search,15 which is more familiar to computer science students. 

 We consider a two-dimensional lattice with size, NX×NY.  A Vertex (spin site) has an integer ID, iv, 
in the range, [1,nv].  In addition, a vertex’s position is encoded sequentially in the column-major 
fashion: For row ix and column iy, id = ix*NY+iy.  Periodic boundary conditions are imposed.  
Each vertex is assigned an image index, m = (mx+2)*5+(my+2)+1, where mx and my denote which 
image the vertex belongs in the x and y directions, respectively. 
 We construct a cluster starting from a seed vertex, which is assigned the central image index m = 2*5 
+ 2 + 1 = 13.  The cluster is grown by traversing all the connected vertices by the breadth-first fashion.  
Bonded neighbors are assigned image indices relative to the seed vertex. 
 It is often of interest to determine whether a cluster is percolating or not, i.e., whether the infinitely 
repeated periodic images are connected in one or more directions or they are all disconnected.  In the 
breadth-first traverse, percolation is easily detected by an attempt to assign different indices to a single 
vertex. 

 
Figure: Periodic image indices with percolating and isolated clusters. 

Data structures 
#define NVMAX  10000 /* Maximally accommodated vertices */ 
int nv; /* Number of vertices */ 
struct vertex { /* Vertex data structure */ 
  int id;    /* Scalar site ID */ 
  int image; /* Which periodic image to belong to */ 
}; 
struct vertex vcl[NVMAX]; 
 
 In the bond picture, the state of the spin system is represented as a graph: Nodes are spin sites and 
edges are bonds connecting neighboring spin sites.  Adjacency lists are used to store the graph.  For 
vertex id, adj[id] points to the first neighbor nodes in the list; a self-pointing node is used to signify 
the tail of the list. 

 

                                                
14D. Stauffer, Introduction to Percolation Theory (Taylor & Francis, London, 1985). 
15B. B. Lowekamp and J. C. Schug, “An efficient algorithm for nucleation studies of particles using the octree data structure,” 
Computer Physics Communications 76, 281 (1993). 
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struct node { /* Data structure for linked-list elements */ 
  int v;             /* Node value */ 
  struct node *next; /* Pointer to the next node */ 
}; 
struct node *adj[NVMAX];     /* Adjacency-list headers */ 
struct node *zz;             /* Tail node for linked lists */ 
zz = (struct node *) malloc(sizeof *zz); 
zz->next = zz; /* Artificial tail node *zz points to itself */ 
 
 A cluster has a sequential ID, ip, and is characterized by its size (= the number of member vertices) 
and whether it percolates or not.  Furthermore, its member vertices are stored as a linked list, the header 
of which is lsp[ip]. 
#define NPMAX  10000 /* Maximally accommodated clusters */ 
int np; /* Number of clusters */ 
struct cluster { /* Cluster data structure */ 
  int size;             /* Number of member vertices */ 
  int percolates;       /* Is the cluster percolates? */ 
}; 
struct cluster por[NPMAX];   /* Cluster array */ 
struct node *lsp[NPMAX];     /* Cluster-member-list headers */ 
 
Algorithm 
 The breadth-first search algorithm uses a queue, or a FIFO (first-in first-out) list, to store vertices 
while traversing a graph.  Initially all the vertices are marked untouched, denoted by image index, 0.  
Then all the vertices are sequentially tested if it has already touched; if not, the vertex is “visited” to 
traverse all the connected vertices starting from it. 
 
/*--------------------------------------------------------------------*/ 
void bfs() { 
/*---------------------------------------------------------------------- 
Breadth-fist search to visit all the vertices to construct clusters as 
each represented by a linked list whose headers are stored in lsp[]. 
----------------------------------------------------------------------*/ 
  int iv; 
  /* Initialize a queue */ 
  queueinit(); 
  /* All the vertices are initialized to be untouched */ 
  for (iv=1; iv<=nv; iv++) vcl[iv].image = 0; 
  /* Loop over vertices, visit if disconnected from previous trees */ 
  for (iv=1; iv<=nv; iv++) 
    if (vcl[iv].image == 0) 
      /* Traverse all the vertices connected to it if untouched */ 
      visit(iv); 
      /* When exited from visit(), queue is emptied */ 
} 
 
 Each visit function adds a new cluster using the starting vertex as a seed; therefore np is incremented 
by one.  The seed vertex is first enqueued in a queue.  A main while loop, which continues until the 
queue becomes empty, dequeues a vertex and enqueus all its untouched neighbors.  Each dequeued 
vertex is inserted into the current cluster.  The percolation (conflicting image assignments) is checked in 
the while loop. 
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/*--------------------------------------------------------------------*/ 
void visit(int iv0) { 
/*---------------------------------------------------------------------- 
Starting from vertex iv0, traverses all the vertices connected to it  
by the breadth-first search.  Each call to visit() constructs a linked 
list of all the member vertices of one cluster.  During the search,  
whether the cluster percolates or not is determined.   
----------------------------------------------------------------------*/ 
  struct node *t; 
  int ix,iy,id,iv,jx,jy,jd,jv; 
  int kx,ky,k,mx,my,m; 
  /* Cluster initialization */ 
  /* Artificial header node for a "new" cluster is grounded */ 
  if (++np > NPMAX) printf("Number of pores overflowed\n"); 
  lsp[np] = zz; 
  por[np].size = 0; /* Initialize the pore(cluster) size */   
  por[np].percolates = 0; /* Initially, cluster doesn't percolate */ 
  /* Enqueue the seed vertex */ 
  put(iv0); 
  /* The seed is chosen to be in the central image */ 
  vcl[iv0].image = 2*5 + 2 + 1; 
  /* Continue until all the connected vertices are traversed */ 
  while (!queueempty()) { 
    /* Extract the first vertex from the queue */ 
    id = vcl[iv = get()].id; /* Scalar relative(periodic) site ID */ 
    ix = id/NY;              /* Vector cell ID */ 
    iy = id%NY; 
    /* Image index of vertex iv */ 
    kx = ((k = vcl[iv].image)-1)/25-2; 
    ky = ((k-1)/5)%5-2; 
    kz = (k-1)%5-2; 
    /* Insert vertex iv at the top of the member list of cluster np */ 
    t = (struct node *) malloc(sizeof *t); 
    t->v = iv; 
    t->next = lsp[np]; 
    lsp[np] = t; 
    /* Increment the cluster size */ 
    ++(por[np].size); 
    /* Enqueue all the untouched adjacents jv of vertex iv */ 
    for (t=adj[iv]; t!=zz; t=t->next) { 
      jv = t->v; 
      jd = vcl[jv].id; /* Relative(periodic) scalar cell address */ 
      jx = jd/NY;      /* Vector cell address */ 
      jy = jd%NY; 
      /* Image index of the neighbor void-cell(vertex) j */ 
      mx = kx; 
      if (ix==0 && jx==NX-1)  
        --mx; 
      else if (ix==NX-1 && jx==0) 
        ++mx; 
      my = ky; 
      if (iy==0 && jy==NY-1)  
        --my; 
      else if (iy==NY-1 && jy==0) 
        ++my; 
      m = (mx+2)*5+(my+2)+1; /* Scalar image index */ 
      /* If untouched, enqueue this neighbor */ 
      if (vcl[jv].image == 0) { 
        put(jv); 
        vcl[jv].image = m; /* Image has been assinged by propagation */ 
      } 
      /* If already touched, check the percolation conflict */ 
      else if (vcl[jv].image != m) 
        por[np].percolates = 1; 
    } /* Endfor neighbor vertices */ 
  } /* Endwhile !queueempty */ 
} 
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Basic queue operations 
#define NQ 1000              /* Maximum queue size */ 
int queue[NQ];               /* Queue */ 
int head, tail;              /* Head & tail indices for the queue */ 
void put(int v) { /* Enqueue function */ 
  queue[tail++] = v; 
  if (tail >= NQ) tail = 0; 
} 
int get() { /* Dequeue function */ 
  int temp = queue[head++]; 
  if (head >= NQ) head = 0; 
  return temp; 
} 
void queueinit() {head = 0; tail = 0;} /* Queue initialization */ 
int queueempty() {return head == tail;} /* Queue inquiry */ 
 
DUAL REPRESENTATION 
 Let us prove that the Swendsen-Wang algorithm converges to the Boltzmann distribution, 
exp[−H (σ ) / k

B
T ] / Z , at the asymptotic limit.  To do so, the partition function of the two-state Potts 

model is rewritten as a summation over all possible bond configurations.  Let us start from the 
representation of the partition function as a summation over spin configurations, 

Z = exp −H (σ ) / k
B
T( )

σ

∑ . 

Consider now the interaction between spin sites l and m, and remove it from the energy function: 

H
(l,m) = −J δσ (i),σ ( j ) −1( )

(i, j )≠(l,m)

∑ . 

Noting that 

H = H
l,m
+

0 σ (l) =σ (m)( )
J σ (l) ≠σ (m)( )





, 

we can rewrite Z as 

Z = exp −H(l,m) / kBT( )δσ (l ),σ (m) + exp − H(l,m) + J( ) / kBT



 1−δσ (l ),σ (m)( ){ }

σ

∑

= exp −H(l,m) / kBT( ) δσ (l ),σ (m) + exp −J / kBT( ) 1−δσ (l ),σ (m)( )





σ

∑

= exp −H(l,m) / kBT( ) δσ (l ),σ (m) 1− exp −J / kBT( ) + exp −J / kBT( ){ }
σ

∑

= 1− exp −J / kBT( )  exp −H(l,m) / kBT( )δσ (l ),σ (m)
σ

∑ + exp −J / kBT( ) exp −H(l,m) / kBT( )
σ

∑

= pZ(l,m)
same

+ (1− p)Z(l,m)
ind
,

 

where 

Z(l,m)
same

= exp −H(l,m) / kBT( )δσ (l ),σ (m)
σ

∑ ,

Z(l,m)
ind

= exp −H(l,m) / kBT( )
σ

∑ ,
 

and 
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0 ≤ p =1− exp −J / kBT( ) ≤1 . 

 Now consider another pair, (k,n).  By applying a similar procedure, we obtain 

Z = p
2
Z
(l,m),(k,n)

same,same
+ p(1− p)Z

(l,m),(k,n)

same,ind
+ (1− p)pZ

(l,m),(k,n)

ind,same
+ (1− p)

2
Z
(l,m),(k,n)

ind,ind , 

where 

Z(l,m),(k,n)
same,same = exp −H(l,m),(k,n) / kBT( )δσ (l ),σ (m)

σ

∑ δσ (k ),σ (n) , 

etc.  Recursively applying this procedure for the rest of the pairs, we end up with a binomial expression 
in which each term is a product of p’s and (1-p)’s and a restricted sum of Z.  The restricted Z sum now 
has no exponential factor (no pair left to retain in H) but only a product of delta functions. 

 To determine what the value of the restricted Z sum is, let us consider a specific term in a 3×3 lattice 
without periodic boundary conditions: 

 
 In this example, the total number of pairs, NP = 12, and NB = 5 of them are restricted to be the same 
spin (denoted by thick lines) and the rest 7 pairs are unrestricted.  Let us define the restricted pairs to be 
bonds.  Each bond contributes factor p and each nonbond contributes 1−p. It is important to note that the 
delta functions in the restricted Z sum define clusters.  This particular bond configuration defines NC = 4 
clusters (two of them are individual-spin cluster).  For each cluster, there are two possible spin 
configurations in the 2-state Potts model.  Therefore the value of the restricted Z sum is 

p
NB 1− p( )

NP−NB
2
NC = 4p

5
1− p( )

7 . 

 Let Γ denote a bond configuration which specifies each of NP pairs is either bonded or nonbonded.  
The partition function is then a summation over all the bond configurations, 

Z = p
NB (Γ) 1− p( )

NP−NB (Γ)
2
NC (Γ)

Γ

∑ . 

Accordingly the probability for a particular bond configuration to occur in the equilibrium is 

P Γ( ) =
1

Z
p
NB (Γ) 1− p( )

NP−NB (Γ)
2
NC (Γ) . 

 
DETAILED BALANCE 
 Let us consider the transition probability defined by the Swendsen-Wang algorithm.  In the first 
phase, parallel pairs (the number of which is NPP(σ)) in a spin configuration, σ, becomes a bond with 

1-p

p

p

p

p 1-p

1-p

1-p p

1-p

1-p

1

1 1

1

2

2 2

3

4
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probability p and a nonbond with probability 1−p.  The transition probability from the spin configuration 
σ to a particular bond configuration Γ is thus 

P(Γ |σ ) = ΔΓ,σ p
NB (Γ) 1− p( )

NPP (σ )−NB (Γ) , 

where ΔΓ,σ  is 1 if the bond configuration is compatible with the spin configuration, and is 0 otherwise.  
Summing the transition probability over all compatible bond configurations is equivalent to enumerating 
all combinations of the states—bond or nonbond—of all the parallel pairs.  The resulting sum is just 

P(Γ |σ ) =
Γ

∑ p+ 1− p( ) 
NPP (σ )

=1 , 

i.e., P(Γ |σ )  defined above is a stochastic matrix. 

 To apply this transition probability matrix to the Boltzmann probability density for a spin 
configuration, note that 

1

Z
exp −H (σ ) / kBT( ) =

1

Z
1− p( )

NP−NPP (σ ) . 

This is because an antiparallel spin pair contributes a factor, exp(−J / kBT ) =1− p , and a parallel spin 
contributes 1 to the Boltzmann probability.  By using this relation, we can derive 

P(Γ |σ )P(σ )
σ

∑ = ΔΓ,σ p
NB (Γ) 1− p( )

NPP (σ )−NB (Γ) 1

Z
exp −H (σ ) / kBT( )

σ

∑

= ΔΓ,σ p
NB (Γ) 1− p( )

NPP (σ )−NB (Γ) 1

Z
1− p( )

NP−NPP (σ )

σ

∑

=
1

Z
ΔΓ,σ p

NB (Γ) 1− p( )
NP−NB (Γ)

σ

∑ .

 

Counting the number of all compatible spin configurations to a given bond configuration gives a factor 
2
NC (Γ)  (each cluster can be spin up or down).  Consequently the spin-configuration sum above gives the 

relation,  

P(Γ |σ )P(σ )
σ

∑ =
1

Z
p
NB (Γ) 1− p( )

NP−NB (Γ)
2
NC (Γ) = P Γ( ) , 

i.e., the phase 1 of the Swendsen-Wang algorithm indeed generates the equilibrium probability density 
for bond configuration. 
 In the second phase of the Swendsen-Wang algorithm, each cluster is independently assigned either 
spin up or down.  Therefore, the resulting probability density is 

P( ′σ ) = P( ′σ |Γ)P(Γ)
Γ

∑ , 

where the transition probability matrix chooses any of such spin assignments with equal probability, 

P( ′σ |Γ) = Δ ′σ ,Γ

1

2










NC (Γ)

. 

By substituting the analytic expressions, we obtain 
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P( ′σ ) = P( ′σ |Γ)P(Γ)
Γ

∑

= Δ ′σ ,Γ

1

2










NC (Γ)
1

Z
p
NB (Γ) 1− p( )

NP−NB (Γ)
2
NC (Γ)

Γ

∑ =
1

Z
Δ ′σ ,Γp

NB (Γ) 1− p( )
NP−NB (Γ)

Γ

∑ .

 

For a given spin configuration, σ’, the above sum over all compatible bond configurations gives 

1

Z
Δ ′σ ,Γp

NB (Γ) 1− p( )
NP−NB (Γ)

Γ

∑ = Δ ′σ ,Γp
NB (Γ) 1− p( )

NPP ( ′σ )−NB (Γ) 1

Z
1− p( )

NP−NPP ( ′σ )

Γ

∑

= Δ ′σ ,Γp
NB (Γ) 1− p( )

NPP ( ′σ )−NB (Γ)

Γ

∑









1

Z
exp −

H ( ′σ )

kBT











=
1

Z
exp −

H ( ′σ )

kBT









= P ′σ( ).

 

 In summary for the Boltzmann probability, P(σ),we have shown that 

P( ′σ ) =
Γ

∑ P( ′σ |Γ)P(Γ |σ )
σ

∑ P σ( ) . 

Therefore, the Boltzmann distribution is the eigenvalue of the dual transition matrix, 

P σ | !σ( ) = P( !σ |Γ)P(Γ |σ )
Γ

∑ , 

which describes the transition probability from σ to σʹ. 
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§3  Cluster MC Algorithm—Wolff16 
 
Another cluster algorithm for lattice models has been developed by Ulli Wolff.  The basic idea is again 
to look for clusters of similarly oriented spins and then flip them in entirety.  We can start from a seed 
spin and look at its neighbor spins to see if any of them are pointing the same direction.  Then we can 
look at the neighbors of those neighbors, and so on.  This procedure can be implemented by using a last 
in first out (LIFO) stack.   

How many of the spins that point to the same direction as the seed spin depends on the temperature.  
At high temperatures, the spins tend to be uncorrelated with their neighbors and accordingly the 
neighbor spins are added to the cluster with a low probability.  To satisfy the detailed balance, the 
sticking probability, Padd, is shown to be 1 − exp(−2J/kBT) for the Ising model without external magnetic 
field (see below). 
Algorithm: one step of Wolff’s cluster-flip17 
1. Choose a seed spin at random from the lattice. 
2. Look in turn at each of the neighbors of that spin.  If they are pointing in the same direction as the 

seed spin, add them to the cluster with probability Padd = 1 − exp(−2J/kBT). 
3. For each spin that was added in the last step, examine each of its neighbors to find the ones that are 

pointing in the same direction and add each of them to the same probability Padd.  (If some of the 
neighbors are already cluster members, they do not need to be added again.  For spins that have been 
considered for addition but rejected before, they get another chance to be added to the cluster at this 
step.)  Repeat this step as many times as necessary until there are no spins left in the cluster whose 
neighbors have not been considered for inclusion in the cluster. 

4. Flip the cluster. 

SAMPLE PROGRAM: wolff.c 
Data structures 
#define N (L*L) /* Total number of spins */ 
double JdivT;   /* Ising model parameters */ 
int s[L][L];    /* Lattice of spins */ 
double padd;    /* 1 - exp(-2*J/T) */ 
int stack[N];   /* LIFO stack */ 
int sp;         /* Stack pointer */ 

One cluster-flip step 
/* Put a random seed spin site onto a stack */ 
  i = rand()%L; j = rand()%L; 
  stack[0] = i*L + j; 
  sp =1; 
 

                                                
16U. Wolff, “Collective Monte Carlo updating for spin systems,” Physical Review Letters 62, 361 (1989). 
17M.E.J. Newman and G.T. Barkema, Monte Carlo Methods in Statistical Physics (Clarendon Press, Oxford, 1999). 
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  /* Flip the seed and remember the old & new spins */ 
  oldspin = s[i][j]; newspin = -s[i][j]; 
  s[i][j] = newspin; 
   
  while (sp) { 
    /* Pop a site off the stack */ 
    current = stack[--sp]; 
    i = current/L; 
    j = current%L; 
 
    /* Check the neighbors */ 
    if ((nn=i+1) >= L) nn -= L; /* South neighbor */ 
    if (s[nn][j] == oldspin) 
      if (rand()/(double)RAND_MAX < padd) { 
        stack[sp++] = nn*L + j;  
        s[nn][j] = newspin; 
      } 
       
    if ((nn=i-1) < 0) nn += L; /* North neighbor */ 
    if (s[nn][j] == oldspin) 
      if (rand()/(double)RAND_MAX < padd) { 
        stack[sp++] = nn*L + j; 
        s[nn][j] = newspin; 
      } 
 
    if ((nn=j+1) >= L) nn -= L; /* East neighbor */ 
    if (s[i][nn] == oldspin) 
      if (rand()/(double)RAND_MAX < padd) { 
        stack[sp++] = i*L + nn; 
        s[i][nn] = newspin; 
      } 
 
    if ((nn=j-1) < 0) nn += L; /* West neighbor */ 
    if (s[i][nn] == oldspin) 
      if (rand()/(double)RAND_MAX < padd) { 
        stack[sp++] = i*L + nn; 
        s[i][nn] = newspin; 
      } 
  } /* End while stack is not empty */ 

Sample run 
 The following graph compares the conventional lattice MC algorithm in §1 and the Wolff algorithm 
for a 20 × 20 Ising lattice under zero magnetic field.  The inverse temperature is, J/kBT = 0.5. 

 
Figure: Magnetization as a function of MC steps for the conventional algorithm in §1 and Wolff’s algorithm. 
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With the conventional algorithm, the magnetization is nearly unchanged from the initial value.  (The 
system is stuck in a local minimum.)  On the other hand, the Wolff algorithm explores both positive and 
negative magnetizations equally.  If we wait long enough, however, even the conventional algorithm 
finds the negative magnetization; it just takes too many MC steps. 

 
Figure: The same as above for 10,000 MC steps. 

DETAILED BALANCE CONDITION 

 Let us prove that to satisfy the detailed balance condition Padd must be 1 − exp(−2J/kBT).  Consider 
two states of the system, µ and ν, that differ from one another by the flipping of a single cluster of 
similarly oriented spins.  In each of the two states, some of the spins just outside the cluster are pointing 
the same way as the spins in the cluster.  The bonds between these spins and the ones in the cluster have 
to be broken when the cluster is flipped. 

Consider now a move from µ to ν.  Suppose that, for a forward move from µ to ν, there are m bonds 
that have to be broken.  These broken bonds represent pairs of similarly oriented spins that were not 
added to the cluster by the algorithm.  The probability of not adding such a spin is 1 − Padd and the 
probability of not adding all of them, which is proportional to the selection probability for the forward 
move, is (1 − Padd)m.  If there are n bonds that need to be broken in the reverse move, ν to µ, then the 
probability of doing it will be (1 − Padd)n.  The detailed balance condition is stated as 

(1 − Padd)m P(µ)  =  (1 − Padd)n P(ν), 

where P(µ) and P(ν) are the equilibrium probabilities of states µ and ν, respectively.  Equivalently, 

(1 − Padd)m−n  =  P(ν)/P(µ). 

Now let us consider the energetics.  For each of m bonds that are broken in going from µ to ν, the 
energy changes by +2J.  For each of n bonds that are made in the same transition is −2J.  The energy 
difference between the two states is thus Eν − Eµ = 2J(m − n).  The equilibrium probability of the two 
states thus satisfy P(ν)/P(µ) = exp(−[Eν − Eµ]/kBT) = exp(−2J[m−n]/kBT), which is the right-hand side of 
the equality.  With Padd = 1 − exp(-2J/kBT), the left-hand side is (1 − Padd)m/n = exp(−2J[m−n]/kBT) so that 
the detailed balance condition is satisfied. 
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§4.  Hybrid MC Algorithm18 
 
 We will look at another advanced MC sampling technique to 
explore a wide search space with reasonable computing time. 
 When we perform an MC simulation on particles (e.g., 
Lennard-Jones atoms), “suggested” moves are usually those in 
which only a single particle is randomly displaced at a time.  This 
excludes “collective” movements, an example of which is that two blocking particles give a way to a 
third particle to let it pass. 
 Molecular dynamics (MD) simulation, on the other hand, deals with the dynamics of an entire 
particle system by integrating the Newton’s second law of motion.  Here all the particles move 
simultaneously, so that collective motions are included.  However, if significant events occur only 
infrequently, MD simulation cannot sample them.  For example, a crack in your car’s windshield may 
propagate at a rate of 1 meter/year (~ 108 atomic bonds are broken per 3×1022 femtoseconds, or using a 
typical discretization time unit of 1 femtosecond, in 3×1022 MD iterations.)  That is one bond-breakage 
event occurs at every 300 trillion MD steps!  In MC simulation, we at least have leverage on sampling 
methods to tackle such long-time phenomena. 
 Hybrid MC simulation combines the merits of both: MC’s ability to generate infrequent events; and 
MD’s ability to incorporate collective particle movements. 
 
MOLECULAR DYNAMICS19 
 In MD simulation, the state of an N-particle system in two spatial dimension is specified by a point 
in the 4N-dimensional space: {(ri,


p
i
) = (x

i
, y

i
, p

xi
, p

yi
) | i =1,...,N} , where r

i
 and p

i
 are the position and 

momentum of the i-th particle.  The time evolution of the system is governed by 

d

ri

dt
=


pi

mi

d

pi

dt
=

Fi










 

where mi is the mass of the i-th particle and 

F
i
= −

∂V

∂

r
i

 

is the interatomic force acting on the i-th particle.  Here V is the interatomic potential energy as defined 
before.  The velocity of the i-th particle is related to its momentum via a relation, v

i
=

p
i
/m

i
.  The above 

equations are combined to produce Newton’s second law of motion, 

m
i

d
2
r
i

dt
2
=

F
i
. 

Let me emphasize that a MD program must have 4N variables to keep track of its state instead of 2N, as 
is the case in an MC program.  

                                                
18 B. Mehlig, D. W. Heermann, and B. M. Forrest, “Hybrid Monte Carlo method for condensed-matter systems,” Physical 
Review B 45, 679 (1992). 
19 M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Univ. Press, Oxford, 1987) p. 71. 
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 In MD simulation, the time variable must be discretized so that the physical system is sampled at 
times tn = n Δt (n = 1, 2, 3, ...).  The most common discretized form is 

m
i


r
i
(t
n+1)− 2


r
i
(t
n
)+

r
i
(t
n−1)

Δt
2

=

F
i


r
N
(t
n
)( ) . 

 In order to write a simulation program, solutions to discretized algebraic models must be translated 
to a sequence of computer instructions based on some numerical algorithms.  For example, the velocity-
Verlet algorithm translates the above equation into iterated operations of the following time-stepping 
procedures: 

 Velocity-Verlet Algorithm 
 Compute the initial forces, 


F
i
t
0( ) , as a function of the initial particle positions, r N (t0 )  

 for n = 1 to Max_step 
  Update the velocities, v

i
←

v
i
(t
n−1)+


F
i
t
n−1( )Δt / 2mi

, of the particles 

  Obtain the new particle positions, r
i
(t
n
)←

r
i
(t
n−1)+


v
i
Δt  

  Compute the new forces, 

F
i
t
n( ) , as a function of r N (t

n
)  

  Obtain the new velocities, v
i
t
n( )←


v
i
+

F
i
t
n( )Δt / 2mi

 

 endfor 
 

 The velocity-Verlet integrator possesses several crucial properties, which are required to implement 
hybrid MD simulation. 
1. Phase-Space Volume Conservation 
 Assume that we have a set of initial configuration points (say 100 slightly different initial 
configurations) around (r N , pN )  in the 4N-dimensional space in a small region of 4N-dimensional 
volume, dr NdpN .  Let apply the above Velocity-Verlet algorithm for each initial configuration for, say, 
1,000 MD steps.  Each configuration point is mapped to a new configurational point according to  

(

r
N
,

p
N
)→ g(


r
N
,

p
N
) = (

′r
N
,

′p
N
)  

where g is a mapping from 4N to 4N defined by the above algorithm.  The question is: What is the 4N-
dimensional volume enclosing the mapped 100 points?   

    
Figure:  Volume conservation.          Figure:  Time reversibility. 
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Δt → -Δt
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The answer is: It is the same as the initial volume, dr NdpN .  The volume element may deform as time 
progresses, but the volume is invariant.  This volume conservation is a property satisfied by the original 
differential equation, but fails for many discretization algorithms.  The velocity-Verlet algorithm is one 
of many discretization algorithms that satisfy this property. 
2. Time Reversibility 
 Let’s consider the final configuration after 1,000 MD steps in the above example.  Now modify the 
velocity-Verlet algorithm by replacing every occurrence of Δt by -Δt (time reversal—we will play back 
the simulation backwards).  After 1,000 steps of this time-reversed run, does the system come back to 
the original point?  For the velocity-Verlet algorithm, the answer is yes, i.e., the algorithm is time 
reversible. 
3. Energy “Non”-conservation 
 The original Newton’s equation further conserves the total energy (K and V below are called the 
kinetic and potential energies, respectively), 

H = K +V =
m
i

2
i=1

N

∑

v
i

2

+V

r
N( ) . 

Unfortunately, this energy conservation is not satisfied by the velocity-Verlet algorithm.  In fact, any 
commonly used discretization scheme does not conserve the total energy.  This “violation of the energy 
conservation” actually does GOOD when we implement a hybrid MC.  Generally, a larger discrete time 
unit, Δt, results in a larger variation of the total energy. 

Project 1 (Easy but important) 
Consider one particle in the 1-dimensional system, 

H =
m

2
v
2
+
K

2
x
2 , 

which represents the motion of a particle of mass m connected to a spring of the spring constant of K.  
The particle position x is a real number in the range, [-∞,∞].  The force, F = -dV/dx = -Kx. 

 
Let’s choose m = K = 1.   
1. Generate 100 random points (x,p) in the 2-dimensional space around (1,0) (stretched spring) and 

within the square of edge length 0.1.  Make a 2D plot showing all the initial points. 

x

m

F = -kx
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2. Run an MD simulation for 5,000 MD steps for each of the above set of 100 initial configurations, 
using the velocity-Verlet algorithm with Δt = 0.01.  Plot the distribution of the final configurations.  
Would you say the area that these points occupy is conserved? 

3. For the final configuration corresponding to the initial configuration, (1, 0), perform a time-reversal 
simulation for 5,000 steps.  Does it come back to the original configuration? 

4. For the initial configuration, (1, 0), plot the total energy as a function of time.  Use Δt = 0.0001, 
0.001, 0.01, 0.1, and 1.  In each case, the maximum time, Max_step × Δt must be 50.0. 

5. Answer the above questions, 1-4, by replacing the velocity-Verlet algorithm by the explicit Euler 
algorithm shown below. 

Explicit Euler Algorithm 
 Set up an initial configuration (x(t0), v(t0)) 
 for n = 1 to Max_step 

  Compute the force, F t
n−1( ) = −Kxn−1  

  Update the position, x(t
n
)← x(t

n−1)+ v(tn−1)Δt  
  Update the velocity, v(t

n
)← v(t

n−1)+F(tn−1)Δt /m  
 endfor 
 
HYBRID MC ALGORITHM 

 Let us consider a mapping, gt,δt : (r N , v N )→ (

′r
N
,

′v
N
) , which is defined in the velocity-Verlet MD 

integration for a fixed time t with discretization time unit of Δt.  This mapping can be used to generate 
attempts (or suggested moves) in a Markov chain for particle positions.  Due to discretization error, the 
total energy, H, changes during the MD integration, and therefore we can apply the Metropolis 
rejection/acceptance algorithm to achieve the desired equilibrium probability density as the asymptotic 
limit.  At the beginning of the MD integration, velocities are initialized with the Maxwell-Boltzmann (or 
normal) distribution with temperature T (this is used later to prove the detailed balance condition).  The 

x

p

1

-1

1

-1
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major difference of the current scheme from the standard MC is that each attempt is global since it 
affects the entire system. 

Hybrid MC Algorithm 
for step_MC = 1 to Max_step_MC 
  Generate normal velocity distributions with temperature, T 
  Compute the total energy, Hinit, and forces, for the initial state 
  for step_MD = 1 ro Max_step_MD 
    Velocity-Verlet update of coordinates and velocities for δt 
  endfor 
  Compute the final energy, Hfinal 
  if ΔH = Hfinal - Hinit < 0 then 
    Accept the state change, xinit ← xfinal  
  else if rand()/RAND_MAX < exp(-ΔH/kBT) then 
    Accept the state change, xinit ← xfinal  
  endif 
endfor 

 As an application of the hybrid MC algorithm, let us consider charged particles on a circular disk of 
radius R.  In order to make the force calculation easier, we modify the problem slightly: The interatomic 
potential is extended to have a confinement term in the radial direction; particle positions are not 
confined within radius R any more. 

V (

r
N
) =

i=1

N−1

∑
j=i+1

N

∑
q
2


ri −

rj
+

K

2


ri − R( )

2

i=1

N

∑ Θ(

ri − R) . 

Here the step function Θ(x) is 1 if x ≥ 0, and 1 otherwise.  The force acting on the k-th particle is 
evaluated as 


Fk = −

∂

∂

rk
V

=
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∑
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2
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
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
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
ri −

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
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In deriving the analytical expression for the force, we have used the following relation, where r = (x, y) : 

∂

∂

r
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r

r

df
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. 

 
Figure:  Radial confinement potential. 
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Project 2 
Implement the hybrid MC algorithm for the charged particles on a disk. 
 
DETAILED BALANCE CONDITION 
 In order to generate a correct probability density as its asymptotic limit, the Markov chain must 
satisfy the detailed balance condition.  This condition is satisfied if the MD integrator is time reversible 
and volume conserving as in the case of the velocity-Verlet integrator.  To show this, let us start from 
the transition probability in the coordinate space, 

pM (x→ ′x ) = dp∫ d ′p∫ pG (p)δ ( ′x , ′p )− gt,δt (x, p) pA (x, p)→ ( ′x , ′p )( ) . 

In this expression, the initial momenta are drawn from a Gaussian distribution, 

pG (p)∝ exp −


pi

2

2mikBTi=1

N

∑












 , 

and the acceptance probability is 

pA (x, p)→ ( ′x , ′p )( ) =min 1, exp(−δH / kBT ){ } , 

where 
δH = H ( ′x , ′p )−H (x, p)  

is nonzero due to the discretization error in energy.  The delta function, δ[( ′x , ′p )− g
t,δt
(x, p)] , tells us 

that the transition occurs only to (xʹ,pʹ) which is connected to the initial phase space point, (x, p), 
through the velocity-Verlet mapping, gt,

δ
t.  Note that momenta are used only as a mean to define a 

transition probability in the coordinate space. 
 Now let us consider the probability, 

exp −V (x) / kBT( ) pM (x→ ′x )dxd ′x , 

that the system is initially within a volume element, dx, around the position x, according to the 
equilibrium probability density, and that a transition occurs to a volume element, dxʹ, around xʹ.  By 
substituting the definition of the transition probability, we get 

exp −V (x) / k
B
T( ) pM (x→ ′x )dxd ′x

= exp −V (x) / kBT( )dx dp∫ d ′p d ′x∫ pG (p)δ ( ′x , ′p )− gt,δt (x, p) pA (x, p)→ ( ′x , ′p )( ).
 

Due to the delta function, the integral is nonzero only when ( ′x , ′p ) = g
t,δt
(x, p) .  In other words, due to 

the deterministic, one-to-one mapping, (xʹ,pʹ) and (x,p) are uniquely related to each other.  By evaluating 
the xʹ and pʹ integration, we get  

exp −V (x) / kBT( ) pM (x→ ′x )dxd ′x

= exp −V (x) / kBT( )dx dp∫ pG (p)pA (x, p)→ ( ′x , ′p )( ),
 

where (x’,p’) and (x,p) are not independent and are related via ( ′x , ′p ) = g
t,δt
(x, p) . 

 Substituting the definition of the acceptance probability, pA((x,p)→(xʹ,pʹ)), 
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exp −V (x) / kBT( ) pM (x→ ′x )dxd ′x

= dp∫ pG (p)exp −V (x) / kBT( )min 1, exp(−δH / kBT ){ }dx

= dp∫ exp −H (x, p) / kBT( )min 1, exp(−δH / kBT ){ }dx,

 

where we have used the relation, H(x,p) = K(p) + V(x).  Noting the identity, 

exp −H (x, p) / kBT( )min 1, exp(−δH / kBT ){ }
=min exp −H (x, p) / kBT( ), exp −H ( ′x , ′p ) / kBT( ){ }
= exp −H ( ′x , ′p ) / kBT( )min 1, exp(δH / kBT ){ },

 

we can derive that 

exp −V (x) / kBT( ) pM (x→ ′x )dxd ′x

= dp∫ exp −H ( ′x , ′p ) / kBT( )min 1, exp(δH / kBT ){ }dx

= dp∫ pG ( ′p )exp −V ( ′x ) / kBT( )min 1, exp(δH / kBT ){ }dx.

 

 If the MD integrator is phase-space volume conserving, we can change the integration variables 
from (x,p) to (xʹ,pʹ) with the unit volume scaling factor, i.e., dxdp =|∂(x, p) /∂( ′x , ′p ) | d ′x d ′p = d ′x d ′p .  
Therefore, 

exp −V (x) / kBT( ) pM (x→ ′x )dxd ′x

= d ′p∫ pG ( ′p )exp −V ( ′x ) / kBT( )min 1, exp(δH / kBT ){ }d ′x .
 

 Note that now the roles of (xʹ,pʹ) and (x,p) are interchanged:  The right-hand side is the probability 
that the system is initially at x’ with the initial momenta p’ are drawn from a normal distribution, pG(p’), 
at temperature T.  The acceptance probability, min{1, exp(δH / k

B
T )} , is a standard Metropolis one for a 

transition, (xʹ,pʹ) → (x,p).  (Note that δH = H(x,p) − H(xʹ,pʹ).)  Now if the MD integrator is time 
reversible, (xʹ,pʹ) comes back to (x, p) = g−t,−δt ( ′x , ′p )  by reversing time.  Therefore the above expression 
is equivalent to 

exp −V ( ′x ) / k
B
T( )d ′x d ′p∫ pG ( ′p )pA ( ′x , ′p )→ (x, p)( ) , 

which in turn is 

exp −V ( ′x ) / kBT( ) pM ( ′x → x)d ′x dx . 

We have therefore proven the detailed balance condition, 

exp −V (x) / kBT( ) pM (x→ ′x )dxd ′x = exp −V ( ′x ) / kBT( ) pM ( ′x → x)d ′x dx . 
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§5  Other Advanced MC Algorithms 
 
In this section, we will survey several advanced MC algorithms which feature enhanced sampling of the 
solution space.  
 
MULTIGRID MC20 
 As we have learned in the previous sections, the cluster algorithm does not completely remove the 
critical slowing down: the dynamical critical exponent is z = 0.35 for the two-dimensional Ising model, 
i.e., the computation still scales superlinearly with the system size. 
 The essence of the Swendsen-Wang and Wolff algorithms is “clustering” many parallel spins to 
allow for their simultaneous flips.  The multigrid MC algorithm developed by Kandel, Domany, and 
Brandt in 1988 introduces a hierarchy of coarsening levels to generate successive problems with few 
degrees of freedom.  Each coarsening procedure is based on stochastic “freezing” (keeping relative spin 
orientations during the next Markov transition) of interaction with probability p and “deleting” (no 
restriction on the transition) it with probability 1 − p (similar to a procedure used in the Swendsen-Wang 
algorithm). 
 Coarsening 
 In the multigrid MC algorithm, a coarsening procedure is 
applied to a spin lattice recursively.  Each coarsening procedure, 
applied to a lattice with L2 spins, produces a coarser lattice with 
(L/2)2 spins.  This is achieved by decimating each other rows and 
columns.  The figure below shows a typical spin configuration at a 
fine level.  The boxed spins constitute the coarse lattice at the next 
level. 
 A coarsening procedure starts by applying a modified 
Swendsen-Wang stochastic blocking procedure: 
for all the bonds (i,j) (visit them “sequentially”) 
  if both i and j have been already frozen to different coarse spins then 
    Leave the bond (i,j) “alive” (i.e., don’t freeze or delete) 
  else if at least one of the 2 sites has not been frozen to a coarse spin 
    if si ≠ sj then /* antiparallel spins */ 
      delete the bond (i.e., no interaction will be considered for this pair) 
    else /* parallel spins */ 
      if rand()/RAND_MAX < p=1-exp(-Jij(1+sisj)/kBT) then /* freezing */ 
        freeze the bond (relative spin orientation will be fixed) 
      else /* deleting */ 
        delete the bond 
      endif 
    endif 
  else (both i and j have been frozen to the same coarse spin) 
    the bond is frozen 
  endif 
endfor 

 The following figure shows a typical outcome from this procedure.  In the figure, a double line 
denotes frozen spins and a single line denotes a live interaction.  (Note that periodic boundary conditions 
are applied.) 

                                                
20 D. Kandel, E. Domany, and A. Brandt, “Simulations without critical slowing down: Ising and three-state Potts models,” 
Physical Review B 40, 330 (1989); D. Kandel, E. Domany, D. Ron, A. Brandt, and E. Loh, “Simulations without critical 
slowing down,” Physical Review Letters 60, 1591 (1988). 
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 As in the Swendsen-Wang algorithm, spins connected by frozen bonds are regarded as a cluster that 
flips together.  The figure below shows the cluster configuration with live interactions for the above 
figure.  (That is, the double bonds are eliminated and replaced by connected clusters that are denoted by 
boxes.)   

 
 This clustering procedure is similar to that in the Swendsen-Wang algorithm, but it avoids any 
cluster to contain more than one coarse spins.  We now consider each cluster containing a squared spin 
site to be a coarse spin.  (We will forget clusters that do not contain any squared spin site until we 
describe the “uncoarsening” procedure.)  Interaction between any two coarse spins is the sum over all 
the bond strengths connecting the two clusters, and this defines a coarse energy function.   
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 The coarse problem now has some non-nearest-neighbor bonds.  However the above coarsening 
procedure can be applied recursively to this coarse lattice. 
 Uncoarsening 
 To “uncoarsen” the system, every decoupled block is set to some arbitrary value of spin, and all 
finer-lattice spins take the value of the block spin to which they were frozen.  Finally the couplings that 
were present at this finer level are restored. 
 Multigrid cycling 
 At each coarsening level, the energy function at the level is used to perform the standard Metropolis 
procedures.  The multigrid MC algorithm “cycles” all length scales, starting from the finest.  Each level 
is coarsened twice before it is uncoarsened (see the figure below). 

 
 
MULTICANONICAL MC21 
 The magnetic phase transition we have studied in our lattice MC simulation is called a second-order 
phase transition, meaning that the mean magnetization changes continuously as a function of 
temperature.  Another type of phase transition, first-order phase transition, is even more problematic 
computationally.  An example is the melting of a material, where the volume of the solid phase changes 
discontinuously to that of the liquid phase at the melting temperature.  For first-order phase transitions, 
the correlation time scales exponentially with the system size, L, 

τ ~ exp F
S
L
d−1( ) , 

for d-dimensional systems, where FS is called the interfacial free energy.  Thus the computation for the 
MC simulation of a first-order phase transition scales exponentially with the system size!  
 The multicanonical MC algorithm proposed by Berg and Neuhaus in 1992 reduces the correlation 
time to 

τ ~ Ldα , 

where α ~ 1, i.e., the algorithm reduces the computational complexity from exponential to nearly linear! 
 Multicanonical ensemble 
 The origin of the exponential correlation time is the Boltzmann weight, 

P
B
E,T( ) ~ exp −E / k

B
T( ) , 

which suppresses the occurrence of high-energy states.  Suppose two states in the configuration space 
form double minima of the energy function (see the figure below).  The corresponding Boltzmann 
                                                
21 B. A. Berg and T. Neuhaus, “Multicanonical ensemble: a new approach to simulate first-order phase transitions,” Physical 
Review Letters 68, 9 (1992). 
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weight exhibits double peaks.  The energy barrier separating the two minima makes the transition from 
one minimum to the other so rare that we cannot observe it within our MC simulation. 
 For example, in a gallium arsenide crystal a defect called dislocation can move from one lattice site 
to a neighboring site with a barrier of a few electron volt (E ~ 2 eV or E/kBT ~ 20,000 K).  At room 
temperature (T ~ 300 K), the Boltzmann factor is exp(−E/kBT) ~ 10−29.  A defect in this system moves 
after 1029 attempts! 

 
Figure.  Double minimum energy well and the corresponding Boltzmann factor. 

 In order to explain the multicanonical ensemble, we need to introduce the density of states, D(E):  
The number of states in the energy range, [E, E+ΔE], is given by D(E)ΔE.  The probability to find the 
state in the energy range, [E, E+ΔE], is then given by 

ρ
B
E,T( ) = D E( )PB E,T( ) , 

for the Boltzmann distribution.  In the multicanonical ensemble, instead, the probability density is 
defined to be constant: 

ρ
M
E( ) = D E( )PM E( ) = constant . 

That is, the multicanonical weight is given by 

P
M
E( ) =1 D E( ) . 

 With the uniform probability distribution in the multicanonical ensemble, MC simulation leads to a 
1-dimensional random walk in the energy space, allowing itself to escape from any energy barrier to 
explore a wide range of energy space. 
 In principle, a long random sampling should give us the information on PM(E).  Berg and Neuhaus 
have developed an efficient algorithm to estimate it.  Using this weight factor, a standard Metropolis MC 
simulation produces a population proportional to ρM(E) (which is roughly constant).  Finally, the 
physical probability density at temperature T is obtained by re-weighting, 

ρ
B
E,T( ) ~ ρM E( )PM

−1
E( )exp −E / k

B
T( ) . 
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GENETIC ALGORITHM22 
 Genetic algorithm is another type of stochastic algorithms.  It also generates a Markov chain, but in a 
way different from Metropolis’ algorithm. 
 To be specific, let us consider a one-dimensional Ising spin model.  The system is represented by an 
array of spins, S = (S1, S2, ..., SN+1), where each spin is either up (spin variable with 1) or down (-1). 

 
The energy of the system is given by 

E S( ) = − J
i
S
i

i=1

N

∑ S
i+1

, 

where the coupling strength, Ji, between spins varies from site to site. 
 Population in the solution space 
 A system state can be encoded by a binary string of length N+1, by assigning 1 to an up spin and 0 to 
a down spin.  A genetic algorithm starts by randomly generating M binary strings each of length N+1.  
These strings constitute an initial “population” in the solution space. 
 Selection 
 Associated with each string is an energy value, and we can rank all the strings in the population 
according to this value.  A new “elite” population is generated by keeping low-energy strings with high 
probability.  We can use the Boltzmann probability proportional to exp(-E/kBT) for this purpose.   
 Crossover 
 Next a crossover operation is applied to the new population:  A pair of strings are chosen randomly 
from the population and their substrings after a randomly chosen lattice site are swapped (see the figure 
below). 

 
 A GA simulation repeatedly apply the selection and crossover 
operations to a population: 

ρ
t
E( ) selection → ρ

t

S
E( ) crossover → ρ

t

SC
E( ) = ρt+1 E( ) , 

where ρt(E) is the probability density function after t GA steps.  
The selection step narrows the distribution and lowers the mean 
energy (it is a greedy step).  The crossover step adds diversity to 
the population so that the population in total can explorer a wider 
solution space efficiently.  Crossover also allows global spin 
updates.  Prügel-Bennett and Shapiro used a statistical mechanics 

                                                
22 A. Prügel-Bennett and J. L. Shapiro, “Analysis of genetic algorithms using statistical mechanics,” Physical Review Letters 
72, 1305 (1994). 
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approach to analyze how the selection and crossover operations change the probability density function 
for the 1D Ising model. 
 
REPLICA EXCHANGE MONTE CARLO23 
Instead of the single thread of states in the Markov chain, the replica exchange Monte Carlo algorithm 
keeps a population of Markov chains at different temperatures.  High-temperature chains explore wide 
volumes of the phase space, whereas low-temperature chains find local minima efficiently.  By 
periodically swapping the temperatures of two threads, we can combine the broad/refined search 
strategies. 

 
 
OTHER DEVELOPMENTS 
Recently, low-complexity cluster MC algorithms for lattice spin models with long-range interactions24 
have attracted much attention in the light of experimentally realized vortex states in nanomagnets.25 
Also, an extension of the cluster MC algorithm (named geometric cluster algorithm) has been applied to 
non-lattice systems such as a particle model of complex fluids.26 
 
APPENDIX: INTERFACIAL ENERGY 
The first-order phase transition needs to go through an intermediate state, in which an interface separates 
the two phases.  The interface has a higher (interfacial) energy, and is characterized as a “barrier” state.  
The barrier energy is obtained by multiplying the positive interfacial energy density, FS, and the 
interfacial area, Ld-1, where L is the linear system size and d is the spatial dimension. 

 

                                                
23 A. Mitsutake, Y. Sugita, and Y. Okamoto, “Replica-exchange multicanonical and multicanonical replica-exchange Monte 
Carlo simulations of peptides. I. Formulation and benchmark test,” Journal of Chemical Physics 118, 6664 (2003). 
24 E. Luijten and H. W. J. Blöte, “Monte Carlo method for spin models with long-range interactions,” Int’l J. Mod. Phys. 6, 
359 (1995). 
25 S.-B. Choe, et al., “Vortex core-driven magnetization dynamics,” Science 304, 420 (2004); T. Shinjo, et al., “Magnetic 
vortex core observation in circular dots of permalloy,” Science 289, 930 (2000). 
26 J. Liu and E. Luijten, “Rejection-free geometric cluster algorithm for complex fluids,” Phys. Rev. Lett. 92, 035504 (2004). 
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