Qubits and Quantum Gates

Basis set of a two-dimensional vector space

$|0\rangle=\left[\begin{array}{l}1 \\ 0\end{array}\right] ;|1\rangle=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
Qubit $=$ vector
$|\psi(\theta, \phi)\rangle=\cos \left(\frac{\theta}{2}\right)|0\rangle+\sin \left(\frac{\theta}{2}\right) e^{i \phi}|1\rangle ; \theta \in[0, \pi], \phi \in[0,2 \pi]$

Fig. 1: Bloch sphere representation of a qubit.
(Example)
Classical bits: $|\psi(0,0)\rangle=|0\rangle ;|\psi(\pi, 0)\rangle=|1\rangle$
Superposed states: $\left|\psi\left(\frac{\pi}{2}, 0\right)\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) ;\left|\psi\left(\frac{\pi}{2}, \pi\right)\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$
Quantum gate $=$ matrix
Pauli X (NOT) gate
$X=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$,
thus
$X|0\rangle=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]=|1\rangle ; X|1\rangle=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]=|0\rangle$.
Hadamard (H) gate
$H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$
thus
$H|0\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right] ; H|1\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -1\end{array}\right]$.

Two-qubit state $=$ tensor product

$|x\rangle \otimes|y\rangle=|x\rangle|y\rangle=|x y\rangle=$
$(x=a|0\rangle+b|1\rangle)(y=c|0\rangle+d|1\rangle)=a c|00\rangle+a d|01\rangle+b c|10\rangle+b d|11\rangle$.
Flat vector representation of tensor product uses the following basis set
$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]=|00\rangle ;\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]=|01\rangle ;\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]=|10\rangle ;\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]=|11\rangle$
and thus
$\left.\left[\begin{array}{l}a \\ b\end{array}\right]{ }_{|10\rangle}^{|0\rangle} \otimes\left[\begin{array}{l}c \\ d\end{array}\right]|0\rangle=\left[\begin{array}{l}a c \\ a d \\ b c \\ b c \\ b d\end{array}\right] \right\rvert\, \begin{aligned} & |00=0\rangle \\ & |10=2\rangle \\ & |11=3\rangle\end{aligned}$.
Both binary and decimal indices are shown for the flat vector representation of the tensor-product state in Eq. (9).
Two-qubit gate: Controlled NOT (CNOT or controlled X)

where \oplus is the logical exclusive OR operator (defined by the truth table, in which \neg is the logical negation operator), or more specifically
$\operatorname{CNOT}(|00\rangle)=|00\rangle ; \operatorname{CNOT}(|01\rangle)=|01\rangle ; \operatorname{CNOT}(|10\rangle)=|11\rangle ; \operatorname{CNOT}(|11\rangle)=|10\rangle ;$
Matrix notation of CNOT
$U_{\text {CNOT }}=\left[\begin{array}{llll}00 & 01 & 10 & 11 \\ {\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right] \quad \begin{array}{l}00 \\ 01 \\ 10 \\ 11\end{array}=\left[\begin{array}{ll}I & 0 \\ 0 & X\end{array}\right], ~}\end{array}\right.$
where I is the 2×2 identity matrix. The last notation represents the 4×4 matrix as 2×2 blocks, with each block being a 2×2 matrix.

Fig. 2: Operation of CNOT gate.
In Eq. (12), the most|least significant bit in a binary matrix row or column index (i.e., 00, 01, 10, 11) specifies inter|intra-block index for the first|second qubit.

Circuit example (try it at https://quantum-computing.ibm.com using Composer)

This circuit generates a correlated 2-qubit state, $(|00\rangle+|11\rangle) / \sqrt{2}$, called Bell state.

Fig. 3: Hadamard and CNOT gates example.
Composer_get_started Saved
Visualizations seed 9981 *

Fig. 4: Hadamard and CNOT gates example using IBM Q Composer.
Q-sphere (it's not the 1-qubit Bloch sphere) visually represents a state of $n(\leq 5)$ qubits. The north|south pole signifies the state where all qubits are $0 \mid 1$ (e.g., $|000\rangle \||111\rangle$), and the latitude is the Hamming distance from the all-zero state (i.e., how many qubits are not zero).

Tensor product of one-qubit quantum gates (matrices)

Consider quantum gates A and B independently operating on the first and second qubits:
$A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right] ; B=\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right]$
$\Rightarrow A \otimes B=\left[\begin{array}{ll}a_{11} B & a_{12} B \\ a_{21} B & a_{22} B\end{array}\right]=\left[\begin{array}{llll}a_{11} b_{11} & a_{11} b_{12} & a_{12} b_{11} & a_{12} b_{12} \\ a_{11} b_{21} & a_{11} b_{22} & a_{12} b_{21} & a_{12} b_{22} \\ a_{21} b_{11} & a_{21} b_{12} & a_{22} b_{11} & a_{22} b_{12} \\ a_{21} b_{21} & a_{21} b_{22} & a_{22} b_{21} & a_{22} b_{22}\end{array}\right]$.
See Appendix for detailed explanation of Eq. (13).
(Example) $H \otimes H$ where $H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$
$H \otimes H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}H & H \\ H & -H\end{array}\right]=\frac{1}{2}\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right]$
This circuit transforms a pure state to a superposition of all possible states, which is a way to achieve quantum parallelism, e.g., $H \otimes H|00\rangle=\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle+|11\rangle)$.

Fig. 5: An example tensor product of quantum operators.
(Application for quantum circuit reduction)
$\Lambda=\frac{1}{2}\left[\begin{array}{cc}H & H \\ H & -H\end{array}\right]\left[\begin{array}{cc}I & 0 \\ 0 & X\end{array}\right]\left[\begin{array}{cc}H & H \\ H & -H\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}H & H X \\ H & -H X\end{array}\right]\left[\begin{array}{cc}H & H \\ H & -H\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}I+H X H & I-H X H \\ I-H X H & I+H X H\end{array}\right]$

Fig. 6: Quantum circuit Λ in Eq. (15).
Here, we have used the identity,
$H^{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]=\frac{1}{2}\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$,
i.e., H is a symmetric orthogonal matrix $\left(H=H^{T}\right.$ and $\left.H^{T} H=H H^{T}=I\right)$.

In Eq. (15),
$H X H=\frac{1}{2}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}2 & 0 \\ 0 & -2\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]=Z$,
where Z denotes Pauli Z gate.

Substituting Eq. (17) to (15), we obtain
$\Lambda=\frac{1}{2}\left[\begin{array}{cc}H & H \\ H & -H\end{array}\right]\left[\begin{array}{cc}I & 0 \\ 0 & X\end{array}\right]\left[\begin{array}{cc}H & H \\ H & -H\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}I+Z & I-Z \\ I-Z & I+Z\end{array}\right]=\left[\begin{array}{cccc}00 & 01 & 10 & 11 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0\end{array}\right] \begin{aligned} & 00 \\ & 01, \\ & 10 \\ & 11\end{aligned}$
where we have used the relation
$\frac{1}{2}(I \pm Z)=\frac{1}{2}\left[\begin{array}{cc}1 \pm 1 & 0 \\ 0 & 1 \mp 1\end{array}\right]=\left\{\begin{array}{l}{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]} \\ {\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]}\end{array}\right.$.
Equation (18) states that
$\Lambda|00\rangle=|00\rangle ; \Lambda|10\rangle=|10\rangle ; \Lambda|01\rangle=|11\rangle ; \Lambda|11\rangle=|01\rangle$
or
$\Lambda(x, y)=x \oplus y, y$
which is CNOT gate, where the second qubit acts as the conditional qubit. Graphically, thus

Fig. 7: Quantum-circuit equivalence.

Measurement gate

Measurement operator M projects a qubit $|\psi\rangle$ to the Z basis, i.e., eigenvectors $|0\rangle$ and $|1\rangle$ with corresponding eigenvalues 1 and -1 .
$M|\psi\rangle=|z\rangle\langle z \mid \psi\rangle=\psi(z)|z\rangle$
Each measurement gate irreversibly returns the measured value, $z=0$ or 1 , with the probability
$\langle\psi| M|\psi\rangle=\langle\psi \mid z\rangle\langle z \mid \psi\rangle=|\psi(z)|^{2}=P(z)$.

Measurement example (try it at https://quantum-computing.ibm.com using Composer)

Consider a two-qubit circuit, where both qubits (named q_{0} and q_{1}) are initialized to $|0\rangle$ by default. This is simply the equivalent circuit in Fig. 7, after q_{1} was flipped to $|1\rangle$. The CNOT gate conditional to q_{1} then flips q_{1} to $|1\rangle$. The measurements thus show both qubits are 100% in $|1\rangle$, as $\Lambda|01\rangle=|11\rangle$ shown in Eq. (20).

Fig. 8: (Left) Operation of the equivalent quantum circuit in Fig. 7 to qubits. (Right) Resulting probability distribution produced by IBM Q Composer.

Fig. 9: Symbols for Pauli X (NOT), Pauli Z, Hadamard (H), conditional not (CNOT) and measurement gates used in IBM Q Composer.
OpenQASM and Qiskit programs (see the code panel in Composer)

```OPENQASM 2.0; include "qelib1.inc"; qreg q[2]; creg c[2]; h q[0]; x q[1]; h q[1]; cx q[0],q[1]; h q[0]; h q[1]; measure q[0] -> c[0]; measure q[1] -> c[1];```	from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from numpy import pi ```qreg_q = QuantumRegister(2, 'q') creg_c = ClassicalRegister(2, 'c') circuit = QuantumCircuit(qreg_q, creg_c) circuit.h(qreg_q[0]) circuit.x(qreg_q[1]) circuit.h(qreg_q[1]) circuit.cx(qreg_q[0], qreg_q[1]) circuit.h(qreg_q[0]) circuit.h(qreg_q[1]) circuit.measure(qreg_q[0], creg_c[0]) circuit.measure(qreg_q[1], creg_c[1])```
OpenQASM	Qiskit

Table I: OpenQASM and Qiskit programs for the quantum circuit in Fig. 8.
In Qiskit programming language, $h()$ and $x()$ are the one-qubit Hadamard and Pauli $X(N O T)$ operators acting on the specified qubit, cx() is the two-qubit CNOT gate acting on the specified two qubits, and measure() measures the state of the specified qubit (first argument) and stores the measured value $(\in\{0,1\})$ to the specified classical bit (second argument). QuantumRegister|ClassicalRegister() creates a quantum|classical register with the specified number of bits and optional label. QuantumCircuit() creates a quantum circuit consisting of those registers.

Let the states of two qubits be
$|x\rangle=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] ;|y\rangle=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$
and one-qubit gates acting on respective qubits be
$A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right] ; \quad B=\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right]$.
Tensor product of the input two-qubit state is
$|x\rangle \otimes|y\rangle=\left[\begin{array}{l}x_{1} y_{1} \\ x_{1} y_{2} \\ x_{2} y_{1} \\ x_{2} y_{2}\end{array}\right]=\left[\begin{array}{l}x_{1} y \\ x_{2} y\end{array}\right]$,
where boldface font was used to indicate a two-element column vector nested inside a vector. Similarly, tensor product of the output two-qubit state, after operation of both one-qubit gates on respective qubits, is

$$
A|x\rangle \otimes B|y\rangle=\left[\begin{array}{l}
(\mathbf{A x})_{1} \mathbf{B y}  \tag{A4}\\
(\mathbf{A x})_{2} \mathbf{B y}
\end{array}\right]=\left[\begin{array}{l}
\left(a_{11} x_{1}+a_{12} x_{2}\right) \mathbf{B} \mathbf{y} \\
\left(a_{21} x_{1}+a_{22} x_{2}\right) \mathbf{B y}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} \mathbf{B} & a_{12} \mathbf{B} \\
a_{21} \mathbf{B} & a_{22} \mathbf{B}
\end{array}\right]\left[\begin{array}{l}
x_{1} \mathbf{y} \\
x_{2} \mathbf{y}
\end{array}\right],
$$

where we have used boldface font to indicate a $2 \times 2$ matrix nested inside a vector or matrix and $(\mathbf{A x})_{1}$ denotes the first element of the $\mathbf{A x}$ vector. Equation (A4) demonstrates the nested nature of one-qubit gates operating separably on two qubits. Namely, operators on the first and second qubits act on inter- and intra- $2 \times 2$ blocks within $4 \times 4$ matrix.

