
1 

Transverse-Field Ising Model 
 

We will perform quantum dynamics (QD) simulation on a quantum computer for the 
transverse-field Ising model (TFIM) Hamiltonian for two spins, 

𝐻 = −𝐽𝜎!"𝜎#" − 𝐵∑ 𝜎$%#
$&! , (1) 

where 𝜎$" and 𝜎$% are Pauli Z and X matrices acting on the j-th spin, J is the exchange coupling, 
and B is the magnetic field along the x axis. 

Time evolution of a two-spin wave function, |𝛹(𝑡)⟩ = |𝜓!(𝑡)⟩|𝜓#(𝑡)⟩ (|𝜓$(𝑡)/ is the wave 
function of the j-th spin at time t), for small time step ∆𝑡  is governed by (cf. 
https://aiichironakano.github.io/phys516/03QD.pdf) 

|𝛹(𝑡 + ∆𝑡)⟩ = exp(−𝑖𝐻∆𝑡)|𝛹(𝑡)⟩ (2) 

in the atomic unit. Using Trotter expansion, the time-propagation operator is approximated as 

exp(−𝑖𝐻∆𝑡) = exp(𝑖∆𝑡𝐽𝜎!"𝜎#")exp(𝑖∆𝑡𝐵𝜎!%)exp(𝑖∆𝑡𝐵𝜎#%) + 𝑂(∆𝑡'). (3) 

Let us first consider the transverse-field propagator exp7𝑖∆𝑡𝐵𝜎$%8  acting on the j-th spin 
independent of the other spin. We use the eigendecomposition (see Appendix) of Pauli X matrix, 

𝜎% = 𝑋 = :0 1
1 0=. (4) 

Note that 

𝜎%𝐻 = :0 1
1 0=

#
√'
:1 1
1 −1= =

#
√'
:1 1
1 −1= :

1 0
0 −1= = 𝐻𝜎", (5) 

where H is the Hadamard gate (which is column-aligned eigenvectors (1/√2,±1/√2))  of 𝜎% 
with respective eigenvalues ±1), or equivalently 

𝜎% = 𝐻𝜎"𝐻, (6) 

where we have used the fact H is a symmetric orthogonal matrix, i.e., 𝐻*# = 𝐻) = 𝐻 and thus 

𝐻' = 𝐼 (7) 

(I is the identity matrix). 
Using Taylor expansion of the time propagator and Eqs. (6) and (7) (the procedure is called 
telescoping), 

exp	(𝑖∆𝑡𝐵𝜎%) = ∑ (,∆./)!

1!
𝜎%13

1&! = ∑ (,∆./)!

1!
(𝐻𝜎"𝐻)13

1&! =

∑ (,∆./)!

1!
𝐻𝜎"𝐻𝐻𝜎"𝐻⋯𝐻𝜎"𝐻FGGGGGGHGGGGGGI
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1&! 	(every	internal	HH	product	becomes	𝐼) =

𝐻∑ (,∆./)!

1!
𝜎"13

1&! 𝐻 = 𝐻∑ (,∆./)!

1!
:1 0
0 −1=

1
3
1&! 𝐻 = 𝐻Z

∑ (,∆./)!

1!
3
1&! 0

0 ∑ (*,∆./)!

1!
3
1&!

[𝐻 =

𝐻 \𝑒
,∆./ 0
0 𝑒*,∆./

^𝐻 = 𝐻𝑅"(−2∆𝑡𝐵)𝐻 = #
'
\𝑒

,∆./ + 𝑒*,∆./ 𝑒,∆./ − 𝑒*,∆./
𝑒,∆./ − 𝑒*,∆./ 𝑒,∆./ + 𝑒*,∆./

^ =

\cos	(∆𝑡𝐵) 𝑖sin(∆𝑡𝐵)
𝑖sin(∆𝑡𝐵) cos	(∆𝑡𝐵)^ = 𝑅%(−2∆𝑡𝐵). (8) 
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In terms of the native gates on IBM Q computers, Eq. (8) can be implemented using either rotation 
around the z axis, 𝑅"(𝜃), along with Hadamard gate H, or solely using rotation around the x axis, 
𝑅%(𝜃). Here, 𝑅" and 𝑅% gates are defined as 

𝑅"(𝜃) = \𝑒
*,:/' 0
0 𝑒,:/'

^, (9) 

𝑅%(𝜃) = \ cos	(𝜃/2) −𝑖sin(𝜃/2)
−𝑖sin(𝜃/2) cos	(𝜃/2) ^. (10) 

(see https://github.com/Qiskit/qiskit-tutorials/blob/master/tutorials/circuits/3_summary_of_quantum_operations.ipynb). 

Next, we consider the exchange-coupling propagator exp(𝑖∆𝑡𝐽𝜎!"𝜎#"). We first consider a 
tensor product of operators multiplied by a scalar constant, 

𝑖∆𝑡𝐽𝜎!" ⊗𝜎#" = 𝑖∆𝑡𝐽 Z
1 ∙ :1 0

0 −1= 0 ∙ :1 0
0 −1=

0 ∙ :1 0
0 −1= −1 ∙ :1 0

0 −1=
[ = c

𝑖∆𝑡𝐽 0
0 −𝑖∆𝑡𝐽

0 0
0 0

0 0
0 0

−𝑖∆𝑡𝐽 0
0 𝑖∆𝑡𝐽

d. (11) 

Since this is a diagonal matrix, it can be exponentiated element by element as 

exp(𝑖∆𝑡𝐽𝜎!"𝜎#") =

⎝

⎛

exp(𝑖∆𝑡𝐽) 0
0 exp(−𝑖∆𝑡𝐽)

0 0
0 0

0 0
0 0

exp(−𝑖∆𝑡𝐽) 0
0 exp(𝑖∆𝑡𝐽)⎠

⎞ =

\𝑅"
(−2∆𝑡𝐽) 0
0 𝑅"(2∆𝑡𝐽)

^. (12) 

Now consider the following sequence of quantum gates operating on two qubits, 𝑞! and 𝑞#, 

𝐺 = 𝐶𝑋(𝑞!, 𝑞#) ∙ 𝑅#"(−2∆𝑡𝐽) ∙ 𝐶𝑋(𝑞!, 𝑞#), (13) 
where 

𝐶𝑋(𝑞!, 𝑞#) = :𝐼 0
0 𝑋= (14) 

is the controlled X (CNOT) gate, with 𝑞! and 𝑞# being the control and target bits, and 𝑅#" is the 𝑅"  
gate acting on 𝑞#. When operating on two qubits, 𝑅#" signifies a tensor product, 

𝐼 ⊗ 𝑅" (−2∆𝑡𝐽) = l
1 ∙ 𝑅" (−2∆𝑡𝐽) 0 ∙ 𝑅" (−2∆𝑡𝐽)
0 ∙ 𝑅" (−2∆𝑡𝐽) 1 ∙ 𝑅" (−2∆𝑡𝐽)m = l

𝑅" (−2∆𝑡𝐽) 0
0 𝑅" (−2∆𝑡𝐽)m. (15) 

Substituting Eqs. (14) and (15) in Eq. (13), we obtain 

𝐺 = :𝐼 0
0 𝑋= l

𝑅" (−2∆𝑡𝐽) 0
0 𝑅" (−2∆𝑡𝐽)m :

𝐼 0
0 𝑋= = l

𝑅" (−2∆𝑡𝐽) 0
0 𝑋𝑅" (−2∆𝑡𝐽)𝑋m. (16) 

Here, 

𝑋𝑅" (−2∆𝑡𝐽)𝑋 = :0 1
1 0= \

exp(𝑖∆𝑡𝐽) 0
0 exp(−𝑖∆𝑡𝐽)^ :

0 1
1 0= =

\ 0 exp(−𝑖∆𝑡𝐽)
exp(𝑖∆𝑡𝐽) 0 ^ :0 1

1 0= = \exp
(−𝑖∆𝑡𝐽) 0
0 exp(𝑖∆𝑡𝐽)^ = 𝑅" (2∆𝑡𝐽). (17) 
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Substituting Eq. (17) in Eq. (16) and compare the result with Eq. (12), we arrive at the identity, 

𝐺 = 𝐶𝑋(𝑞!, 𝑞#)𝑅#"(−2∆𝑡𝐽)𝐶𝑋(𝑞!, 𝑞#) = l
𝑅" (−2∆𝑡𝐽) 0

0 𝑅" (2∆𝑡𝐽)m = exp(𝑖∆𝑡𝐽𝜎!"𝜎#"). (18) 

where the last equality results from Eq. (12). Namely, 𝐺 = 𝐶𝑋(𝑞!, 𝑞#) ∙ 𝑅#"(−2∆𝑡𝐽) ∙ 𝐶𝑋(𝑞!, 𝑞#) 
is a quantum-gate implementation of the exchange-coupling propagator exp(𝑖∆𝑡𝐽𝜎!"𝜎#"). 

Combining Eqs. (8) and (18) for the transverse-field and exchange-coupling time propagators, 
respectively, quantum-circuit implementation for a single time step of time evolution for the TFIM 
model, Eq. (1), is given by 

exp(−𝑖𝐻∆𝑡) = exp(𝑖∆𝑡𝐽𝜎!"𝜎#")exp(𝑖∆𝑡𝐵𝜎!%)exp(𝑖∆𝑡𝐵𝜎#%) =
𝐶𝑋(𝑞!, 𝑞#)𝑅#"(−2∆𝑡𝐽)𝐶𝑋(𝑞!, 𝑞#)𝑅!%(−2∆𝑡𝐵)𝑅#%(−2∆𝑡𝐵). (18) 

 
Fig. 1: Quantum circuit for time evolution of TFIM in IBM Quantum Lab. 

Hands-on Exercise (try it at https://quantum-computing.ibm.com using IBM Quantum Lab) 
Execute the following Qiskit program to perform a single time step of QD simulation. Here, 

we have used model parameters, 𝐽 = 1, 𝐵 = 0.5	and ∆𝑡 = 0.01, in atomic units. 
##### Single step of Trotter propagation in transverse-field Ising model ##### 
 

import numpy as np 
 

# Import standard Qiskit libraries 
from qiskit import QuantumCircuit, transpile, Aer, IBMQ 
from qiskit.tools.jupyter import * 
from qiskit.visualization import * 
from ibm_quantum_widgets import * 
from qiskit.providers.aer import QasmSimulator 
 

# Load your IBM Quantum account 
provider = IBMQ.load_account() 
 

### Physical parameters (atomic units) ### 
J = 1.0    # Exchange coupling 
B = 0.5    # Transverse magnetic field 
dt = 0.01  # Time-discretization unit 
 

### Build a circuit ### 
 

circ = QuantumCircuit(2, 2)  # 2 quantum & 2 classical registers 
 

circ.rx(-2*dt*B, 0)  # Transverse-field propagation of spin 0 
circ.rx(-2*dt*B, 1)  # Transverse-field propagation of spin 1 
circ.cx(0, 1)        # Exchange-coupling time propagation (1) 
circ.rz(-2*dt*J, 1)  #                                    (2) 
circ.cx(0, 1)        #                                    (3) 
circ.measure(range(2), range(2))  # Measure both spins 
circ.draw('mpl') 

This will build a circuit and draw it, which should then be transpiled and run on a simulator as follows. 
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### Simulate on OpenQASM backend ### 
 

# Use Aer's Qasm simulator 
from qiskit.providers.aer import QasmSimulator 
backend = QasmSimulator() 
# Transpile the quantum circuit to low-level QASM instructions 
from qiskit import transpile 
circ_compiled = transpile(circ, backend) 
# Execute the circuit on the Qasm simulator, repeating 1024 times 
job_sim = backend.run(circ_compiled, shots=1024) 
# Grab the results from the job 
result_sim = job_sim.result() 
# Get the result 
counts = result_sim.get_counts(circ_compiled) 
# Plot histogram 
from qiskit.visualization import plot_histogram 
plot_histogram(counts) 

Table I: Qiskit program for single-time-step QD simulation of TFIM: tfim-1step.qiskit. 

After opening a Qiskit (ipykernel) notebook, you can copy and paste the above code into a cell 
in the Python notebook. Here, we have used QASM simulator as a backend. Try increasing the 
value of dt and re-running the program to see how the result changes (though the Trotter expansion, 
Eq. (3), will no longer be valid and hence an incorrect result). For Python programming underlying 
Qiskit, see A. Scopatz and K. D. Huff, Effective Computation in Physics at Safari Online 
(https://libraries.usc.edu/databases/safari-books). 
Extension (try it at https://quantum-computing.ibm.com using IBM Quantum Lab) 

You can perform quantum dynamics simulation in a correct way by time stepping. Extend the 
Qiskit program for single-time-step QD simulation of TFIM model (tfim-1step.qiskit) to simulate 
the same model for 𝑡5<5 = 5∆𝑡 (∆𝑡 = 0.01). 
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Appendix: Eigendecomposition 

For a 2 × 2 Hermitian matrix, 

𝐀 = % 𝑎 𝑏
𝑏∗ 𝑎(, (A1) 

where a and b are real and complex numbers, respectively, consider an eigenvalue problem, 

% 𝑎 𝑏
𝑏∗ 𝑎( %

𝑢
𝑣( = 𝜀 %𝑢𝑣(. (A2) 

or equivalently 

%𝜀 − 𝑎 −𝑏
−𝑏∗ 𝜀 − 𝑎( %

𝑢
𝑣( = %00(. (A3) 

For nontrivial solutions (i.e., other than 𝑢 = 𝑣 = 0), the determinant of the matrix in Eq. (A3) 
should be zero. (Otherwise, one can invert Eq. (A3) to get 𝑢 = 𝑣 = 0.) Hence, 

.𝜀 − 𝑎 −𝑏
−𝑏∗ 𝜀 − 𝑎. = (𝜀 − 𝑎)" − |𝑏|" = 0, Secular (characteristic) equation (A4) 

which has two solutions, 

𝜀± = 𝑎 ± |𝑏|. Eigenvalues (A5) 

The corresponding eigenvectors can be obtained by solving Eq. (A3) for these eigenvalues 

2
|𝑏| −𝑏
−𝑏∗ |𝑏|3 %

𝑢#
𝑣#( = %00( ;	2

−|𝑏| −𝑏
−𝑏∗ −|𝑏|3 %

𝑢$
𝑣$( = %00( (A6) 

with the answers (note the degeneracy of the two linear equations for each eigenvalue, e.g., 
|𝑏|𝑢+ − 𝑏𝑣+ = 0 ⟹ :× −𝑏∗

|𝑏|
=	−𝑏∗𝑢+ + |𝑏|𝑣+ = 0) 

𝐰± = %
𝑢±
𝑣±( =

)
√"|,|

2 𝑏
±|𝑏|3. Eigenvectors (A7) 

In Eq. (A7), we have normalized each eigenvector so that 

𝐰±
-𝐰± = [𝑢±∗ 𝑣±∗ ] %

𝑢±
𝑣±( =

,∗,.
|#|$

#|,|$

"|,|$
= 1, (A8) 

where 𝐰±
-  denotes the Hermitian conjugate (or conjugate transpose) of 𝐰± . Also, the two eigenvectors are 

orthogonal: 

𝐰∓
-𝐰± = [𝑢∓

∗ 𝑣∓
∗ ] %

𝑢±
𝑣±( =

,∗,.
|#|$

$|,|$

"|,|$
= 0. (A9) 

Now, define a 2 × 2 matrix composed of column aligned eivenvectors, 

𝐔 = [𝐰# 𝐰$] = %
𝑢# 𝑢$
𝑣# 𝑣$( =

)
√"|,|

2 𝑏 𝑏
|𝑏| −|𝑏|3, (A10) 

then 

𝐔-𝐔 = >𝐰#
-

𝐰$
-? [𝐰# 𝐰$] = %1 0

0 1( = 𝐈, (A11) 
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where I is the 2 × 2 identity matrix and we have used the orthonormalization relations, Eqs. (A8) and (A9). 
Using the explicit formula for U in Eq. (A10), we can also verify that 𝐔𝐔- = 𝐈 and hence 𝐔 is a unitary 
matrix: 

𝐔-𝐔 = 𝐔𝐔- = 𝐈. Unitary (A12) 

The two solutions of Eq. (A2) can now be combined into a matrix form as 

u
v𝑎 𝑏
𝑏∗ 𝑎w v

𝑢?
𝑣?w = 𝜀? v

𝑢?
𝑣?w

v𝑎 𝑏
𝑏∗ 𝑎w v

𝑢*
𝑣*w = 𝜀* v

𝑢*
𝑣*w

	⟺	 v𝑎 𝑏
𝑏∗ 𝑎wyz{z|

𝐀

v
𝑢? 𝑢*
𝑣? 𝑣*wyzz{zz|

𝐔

= v
𝑢? 𝑢*
𝑣? 𝑣*wyzz{zz|

𝐔

}𝜀? 0
0 𝜀*

~yzz{zz|
𝐃

, (A13) 

i.e., 

𝐀𝐔 = 𝐔𝐃, (A14) 

where we have defined a diagonal matrix, 

𝐃 = }𝜀? 0
0 𝜀*

~. (A15) 

∵ v
𝑢? 𝑢*
𝑣? 𝑣*w v

𝜆?
0 w = 𝜆? v

𝑢?
𝑣?w 	and	 v

𝑢? 𝑢*
𝑣? 𝑣*w }

0
𝜆*
~ = 𝜆* v

𝑢*
𝑣*w  1

st & 2nd-column pickers 

Multiplying both sides of Eq. (A14) by 𝐔† from the right hand and using the unitary, Eq. (A12), 
we obtain 

𝐀 = 𝐔𝐃𝐔C. Eigendecomposition (A16) 
or more explicitly 

v 𝑎 𝑏
𝑏∗ 𝑎w =

#
√'|E|

} 𝑏 𝑏
|𝑏| −|𝑏|~ }

𝑎 + |𝑏| 0
0 𝑎 − |𝑏|~

#
√'|E|

} 𝑏 𝑏
|𝑏| −|𝑏|~. (A17) 

(Example) Pauli X matrix, i.e., 𝑎 = 0 and 𝑏 = 1 

𝐗 = v0 1
1 0w =

#
√'
v1 1
1 −1w v

1 0
0 −1w

#
√'
v1 1
1 −1w = 𝐇𝐙𝐇. (A18) 

where H and Z are matrix representations of Hadamard and Pauli Z gates. 


