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Inferring topological transitions in pattern-forming processes
with self-supervised learning
Marcin Abram1,2✉, Keith Burghardt2✉, Greg Ver Steeg 2, Aram Galstyan2 and Remi Dingreville 3✉

The identification of transitions in pattern-forming processes are critical to understand and fabricate microstructurally precise
materials in many application domains. While supervised methods can be useful to identify transition regimes, they need labels,
which require prior knowledge of order parameters or relevant microstructures describing these transitions. Instead, we develop a
self-supervised, neural-network-based approach that does not require predefined labels about microstructure classes to predict
process parameters from observed microstructures. We show that assessing the difficulty of solving this inverse problem can be
used to uncover microstructural transitions. We demonstrate our approach by automatically discovering microstructural transitions
in two distinct pattern-forming processes: the spinodal decomposition of a two-phase mixture and the formation of binary-alloy
microstructures during physical vapor deposition of thin films. This approach opens a path forward for discovering unseen or hard-
to-discern transitions and ultimately controlling complex pattern-forming processes.
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INTRODUCTION
Identifying and characterizing transitions in pattern-forming
processes are key to our understanding and control of many
systems in physical, chemical, material, and biological sciences.
These tasks can be particularly challenging when the transition
from one type of microstructural pattern to another is continuous
or ambiguous as may be the case in dynamic and second-order
phase transition processes. The reason is the state of the material
system may exhibit subtle, hard-to-discern changes in the
microstructure when the process parameters controlling the
formation of patterns vary. For example, in cellular dynamics,
cytoskeletal protein actin filaments undergo a continuous
isotropic to nematic liquid crystalline phase transition when
polymerized1. In chemical systems undergoing a precipitation
reaction (Liesegang systems), one can control the transition from
one precipitation pattern to another by regulating solid hydrogel
and reactant concentrations2–5. When heated up, block copoly-
mers thin films experience a smooth, thermally induced morphol-
ogy transition from cylindrical to lamellar microdomains6,7.
Similarly, the co-sputter deposition of immiscible elements results
in a variety of self-organized microstructural patterns depending
on processing conditions8–11.
The theory describing these types of transitions was first

proposed by Landau12 and later improved using renormalization
group theory13. In such models, the determination of a pattern
transition relies on (i) the identification of a local order parameter
that sharply changes from one value to another (i.e., the order
parameter changes discontinuously as in first-order transitions)
and (ii) straightforward symmetry-breaking considerations of that
order parameter. However, in many cases, topological (structural)
transitions14–17 are gradual and elusive, making it more difficult to
identify the appropriate indicators of microstructural topology
transitions. Supervised learning techniques18–22, that use prede-
termined labelling of distinct types of patterns for given process
parameters, are commonly used to classify and predict transitions.

However, generating these labels requires prior knowledge of the
regimes in the process parameter space where the transition may
occur, limiting the scope of this class of methods primarily to
already known and at least partially and previously explored
transition cases. In contrast, unsupervised learning techniques23–30

do not require hand labelling or other time-consuming manual
and potentially subjective interventions. Many of these unsuper-
vised approaches use dimensionality reduction and clustering to
classify topological phases in latent space and detect the
topological transitions.
Like unsupervised methods, self-supervised learning does not

require predefined labels for the target task of classification.
Instead of directly solving a clustering problem, self-supervised
learning focuses on solving an auxiliary prediction problem which
is easy to measure and closely related and ‘semantically’
connected to the target task. Often the auxiliary problem requires
predicting structure of the training data instead of some external
labels, hence the “self-supervised” name. The promise of this
method is that, while learning to solve the auxiliary task, for which
labels can be easy to generate and do not require human
supervision, we can learn the structure of the original problem for
which the true labels are unknown. In the present case, we aim at
learning the structure of the data in pattern-forming processes
and use this knowledge to identify the transitions between
different classes of patterns for which we do not have labels. Self-
learning approaches can lead to models achieving comparable
performance as when trained in a traditional supervised fashion,
while reducing reliance on predefined labeled data31,32. In
computer vision for instance, learning to predict whether two
images are modified versions of the same original image, allows to
construct a high-quality latent representation of the data, that can
subsequently be used for solving an object recognition task33.
With all its advantages, it can be challenging to define an

appropriate task to use for the self-supervised training. In the
context of the present work, our target task is the identification

1Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA. 2Information Sciences Institute, University of Southern California, Marina
del Rey, CA 90292, USA. 3Center for Integrated Nanotechnologies, Nanostructure Physics Department, Sandia National Laboratories, Albuquerque, NM 87185, USA.
✉email: mjabram@usc.edu; keithab@isi.edu; rdingre@sandia.gov

www.nature.com/npjcompumats

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00889-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00889-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00889-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00889-2&domain=pdf
http://orcid.org/0000-0002-0793-141X
http://orcid.org/0000-0002-0793-141X
http://orcid.org/0000-0002-0793-141X
http://orcid.org/0000-0002-0793-141X
http://orcid.org/0000-0002-0793-141X
http://orcid.org/0000-0003-1613-695X
http://orcid.org/0000-0003-1613-695X
http://orcid.org/0000-0003-1613-695X
http://orcid.org/0000-0003-1613-695X
http://orcid.org/0000-0003-1613-695X
https://doi.org/10.1038/s41524-022-00889-2
mailto:mjabram@usc.edu
mailto:keithab@isi.edu
mailto:rdingre@sandia.gov
www.nature.com/npjcompumats


and characterization of microstructure transitions when the
process parameters controlling the pattern formation vary. We
propose that a relevant auxiliary task is to solve the inverse
problem of predicting input process parameters from observed
microstructures. The theoretical motivation behind this inverse
problem stems from the fact that in material systems that
experience a topological transition (or critical point), the sensitivity
of forming specific patterns varies depending on the input process
parameter. This sensitivity can sometimes increase, as it would be
the case if a given process parameter acts as an order parameter,
uniquely characterizing a regime for which a specific pattern
exists. Or the sensitivity can decrease, as it would be the case for
systems that exhibit universality (i.e., the closer the parameter is to
its critical value, the less sensitively the order parameter depends
on the dynamical details of the system). Through our study, we
found the inverse problem to be strongly related to our target task
of identifying microstructure transitions. Interestingly, the most
relevant signature for identifying microstructure transition
regimes emerged from looking at changes in the neural network’s
uncertainty in solving the inverse problem. Our approach is akin
to, but distinct from, confusion-based techniques25,34 which
attempt to learn a model that directly predicts phase transitions
but side-steps the requirement for ground truth labels by training
with pseudo-labels.
Figure 1 illustrates the steps of our approach. In the first step

(Fig. 1a top left panel), we performed high-fidelity phase-field
simulations of pattern-forming processes in binary microstruc-
tures. The intent of this first step is to generate a large and diverse
set of microstructural patterns as a function of the process
parameters (e.g., phase fraction, phase mobility, deposition rate)
and therefore generate a database of transition regimes where the
microstructural patterns switch from one class of patterns to
another when the process parameters change. As prototypical
examples, we chose two pattern-forming processes, namely the
spinodal decomposition of a two-phase mixture and the formation
of various self-organized microstructural patterns of binary alloys
during the physical vapor deposition of thin films. The first
problem is chosen due to its simplicity in identifying different
pattern-formation regimes as a function of the concentration and
mobility of the two phases. The second problem is used to test the

generalizability of our approach, as it displays hard-to-discern
transitions from one class of patterns to another when the
deposition process parameters change. The difficulty in this
second problem lies in the identification of clear transitions in
microstructural patterns which appear to have seemingly con-
tinuous and non-trivial changes of classes of patterns when the
input process parameters vary. In the second step of our
approach, we represent these microstructural patterns in a latent
space using a pre-trained convolutional neural network (CNN),
namely ResNet-50 v235. The goal of this step is to obtain a low-
dimensional representation of these patterns (Fig. 1a right panel)
in order to learn the structure of the data. While the ResNet model
was trained on image data not similar to our simulations, it is still
able to discern complex shapes and motifs, which allows different
microstructural patterns to be distinguishable. Such performance
shows the robustness of this step. As described in the
Supplementary Information (Supplementary Notes 1 and 2), we
can obtain similar results using different pre-trained models. In
this work, we settled for ResNet-50 v2 as a prototypical CNN
model due to its wide accessibility and popularity. The latent
dimensions obtained from the ResNet model are subsequently
regressed with a dense, feedforward, deep neural network to
predict the original input process parameters that led to specific
microstructural patterns. This last step (Fig. 1a bottom left panel)
can be seen as solving our inverse problem (i.e., predicting the
initial input process parameters from the output microstructural
pattern). The error between the prediction and ground truth
process parameter is then compared on a validation set.
Transitions between specific classes of microstructural patterns
are identified by evaluating the sensitivity of the model prediction
error (Fig. 1b) as a function of the input process parameters.

RESULTS
Ambiguity of identifying microstructural transitions
We first explore the ambiguity of fingerprinting nontrivial
transitions in pattern formation when those patterns are
represented in latent space. We compare different dimensionality
reduction techniques to represent the broad range of pattern

Fig. 1 Workflow to identify transition regimes in pattern-forming processes via self-supervised learning. a We simulate the dynamical
evolution of the physical system for a broad range of process parameters. Next, we project the final state of the microstructural pattern into a
latent space (using a pre-trained ResNet-50 v235). We regress on these latent dimensions to estimate the original process parameters. b To
detect specific classes of microstructural patterns, we evaluate the model error by predicting the corresponding initial process parameters. By
measuring the change in sensitivity of forming specific patterns for various input process parameters, we learn where the transition regime(s)
might occur.
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configurations. Details on the phase-field models and latent
embedding approach are provided in Methods.
Figure 2 illustrates how difficult and equivocal it is to identify

transitions between different patterns as a function of the input
process parameters. When taking the naive approach of perform-
ing principal component analysis36 (PCA) directly on the original
microstructure images for both problems (see panels a and b), we
note that this projection technique is incapable of identifying or
explaining transition regimes via distinct clusters. This assertion is
especially true when trying to distinguish the different micro-
structural patterns forming in the case of the physical vapor
deposition model when the principal components are colored as a
function of the normalized deposition rate vN (defined as the
deposition rate normalized by the average bulk phase mobility of
the system, see exact definition in Methods).
To further illustrate this point, we present the results for two

additional alternative projection techniques for both exemplar
problems in Fig. 2c–f. In this case, even though the pre-trained

ResNet-50 v235 model accurately learns a compact representation
of the microstructural patterns (i.e., from a 256 × 256 pixelated
microstructure representation to a 2048 latent vector), the
dimension of the latent space is still too large to obtain any
visual and interpretable classification of the different types of
patterns forming in the two processes investigated in this study.
We used linear (PCA) and non-linear (uniform manifold approx-
imation and projection37,38 or UMAP) embedding unsupervised
algorithms to further reduce the ResNet latent vectors into lower
dimensions. Figure 3 shows the difference in explained variance
when PCA is performed (i) directly on the actual high-dimensional
microstructure images (denoted as ambient space) or (ii) on the
already compact representation of the microstructures obtained
from the ResNet model (denoted as latent space). We note that
combining PCA and ResNet requires fewer principal components
to capture most of the variance in our datasets, making the
dimensionality reduction procedure (PCA/UMAP+ResNet) appeal-
ing and useful.

Fig. 2 Latent representations of various microstructural patterns. Spinodal decomposition of a two-phase mixture representations are
displayed in left panels, physical vapor deposition of a binary alloy thin film representations in right panels. a, b These panels show the
projection using a linear embedding technique (PCA) directly on the microstructure images (defined as dimensionality reduction on the
ambient space). c–f Second and third rows show the projection of the ResNet-50 v2 latent vector using PCA (panels c and d) and UMAP
(panels e and f). Latent vectors are colored according to relevant input process parameters for both problems, namely the phase fraction (f) for
spinodal decomposition and the normalized deposition rate (vN) for physical vapor deposition. Definition of the normalized deposition rate is
provided in Methods. For the microstructure insets across both spinodal and physical vapor deposition problems, yellow denotes the A phase,
and purple the B phase.
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Unfortunately, even with this improvement in the latent
representation of the microstructural patterns, regardless of the
embedding technique used in combination with ResNet, we
observe that there is no intuitive, distinct clustering of data points
about where exactly the transitions are. This statement is apparent
even in the simple case of the spinodal decomposition problem
(Fig. 2c, e), where the transition is expected to occur for a 50%
phase fraction. When colored as a function of the phase fraction, f,
the latent representation of the microstructural patterns con-
tinuously changes from one structure type to another (i.e., from
B-rich spherical-precipitate patterns when f= 0.3 to A-rich
spherical-precipitate patterns when f= 0.7). This latent represen-
tation does not clearly disentangle the different classes of patterns
and cannot provide a priori any information on where the
transition occurs when the phase fraction changes. The identifica-
tion of topological transitions is doubly more difficult in the case
of the physical vapor deposition problem (Fig. 2d, f). In this case,
neither PCA nor UMAP embedding shows any obvious way to
distinguish transitions between vertical-oriented to horizontal-
oriented patterns, aside from noticing that nearby points will have
similar microstructural patterns (as PCA and UMAP methods are
designed to preserve similarities in feature space). Here, in both
examples, we used PCA/UMAP and the ResNet model for
illustrative purposes only. The results in Fig. 2 demonstrate that
identifying dynamic and second-order transitions using classical
dimensionality reduction techniques does not enable us to
unequivocally separate different pattern-formation regimes in
latent space. To further illustrate this point, as described in the
Supplementary Information (Supplementary Note 1), we tested
other projection methods (simple convolutional neural network,
ResNet-34, t-SNE) to show that the results are not specific to the
particular choice of a pre-trained model or dimensionality
reduction technique. These supplementary results show that we
can obtain similar results using different pre-trained models.

Solving the inverse mapping problem to identify transition
regimes
Because the seemingly obvious breakdown of automatically
clustering and classifying microstructural patterns for the exam-
ples shown in Fig. 2, and inspired by the universality principle for
dynamical systems (i.e., near a phase transition the properties of a
system become nearly independent of some dynamical details of
that system), we instead develop a method that aims at measuring
the difficulty of solving an inverse problem: mapping the
microstructural patterns back to the original input process
parameters. If this task is accurate, then the input process
parameters uniquely map to a given microstructural pattern.
Conversely, if this mapping is difficult or ambiguous, then there is
a broad range of possible microstructural patterns that can be

obtained with similar input process parameters, possibly indicat-
ing a topological transition (similar to the changes in sensitivity to
some parameters when reaching the critical universality classes in
second-order phase transitions39,40). This inverse-mapping solu-
tion is outlined in Fig. 1. Details on the inverse mapping workflow
are provided in Methods. Details on the quality of the training of
the neural network are also provided in Methods and in the
Supplementary Information, Supplementary Note 5.
We first illustrate how intuitively this workflow works for the

spinodal decomposition problem, because in this simple case,
based on symmetry considerations of the free energy functional,
we expect the transition to occur at the 50% phase fraction.
Examples of predictions of input process parameters with high
and low errors are listed in Table 1. We present results for the full
range of parameters in Fig. 4. To obtain those results, we
calculated the average mean absolute error (MAE) of our
predictions in intervals (f− 0.025, f+ 0.025) where f denotes the
phase fraction. The sensitivity score per instance “i” is defined as
the inverse of the MAE for each value of phase fraction,
Si ¼ 1=jŷi � yi j, where ŷ is the prediction and y the true value.
The mean sensitivity score of the entire dataset in a given interval
is defined as S ¼ N=

PN
i jŷi � yij. A high sensitivity score indicates

that we are able to predict the input process parameters
accurately and this parameter acts as an indicator for a given
class microstructural pattern. Conversely, a low sensitivity score
indicates that the relation between the initial value of the process
parameter and the microstructural pattern is weak, and this
process parameter has little influence on the formation of that
specific pattern. When the sensitivity score changes from high to
low or vice versa, this indicates that we are near a transition with
respect to that input process parameter. In other words, the task
of evaluating the change in sensitivity score is analogous to a
mutual information analysis41 from the field of information theory,
which consists of evaluating the information gain to feature
selection. In this context, here the underlying assumption is that,
for a given set of process parameters, the microstructural pattern
formation is a stochastic process, and each microstructure
realization is a realization of this stochastic process. Mutual
information here is calculated between the microstructural
patterns and the process parameters and measures the change
in uncertainty for the process parameters given a known observed
microstructure.
We observe from the results listed in Table 1 that for high

phase fractions (i.e., when A is the majority phase, f > 0.5) the
outcome is highly sensitive to the choice of initial value of the
phase A mobility. Conversely, the outcome does not change in
any meaningful way if we vary the value of phase B mobility (as
indicated by low values of the sensitivity score calculated with
respect to the phase B mobility). An interesting observation is

Fig. 3 Cumulative explained variance versus ranked principal components when using PCA directly on actual microstructure images
(ambient space) or on latent representation (latent space). a Explained variance for the spinodal decomposition problem. b Explained
variance for the physical vapor deposition problem. Ambient space denotes dimensionality reduction when PCA is performed directly on the
high-dimensional microstructure images, while latent space denotes the projection when PCA is performed on the already compact
representation of the microstructures obtained from the ResNet model.
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that looking at the highest sensitivity scores, we can distinguish
three groups of patterns. Instances 1042, 2106, and 4157 display
high sensitivity scores for the phase B mobility. Similarly,
instances 814, 1543, and 4753 display high sensitivity scores
for the phase A mobility. However, instances 2868, 4496, and
4545 show mixed results with sometimes high sensitivity scores

for phase A or phase B mobilities. While individual sensitivity
scores may already be good predictors of when the topological
transition may occur, we observe a large variability in those
scores. For example, comparing individual sensitivity scores for
similar microstructural patterns in Table 1, the sensitivity score
varies from 1 (instance 1042) to 14 (instance 4157). Therefore, to

Table 1. Prediction of mobility parameters in the case of the spinodal decomposition problem.

Phase A Phase B

Instance index Phase
fraction

Predicted
mobility

Target
mobility

Prediction
error (Δi)

Sensitivity
score (Si )

Predicted
mobility

Target
mobility

Prediction
error (Δi)

Sensitivity
score (Si )

1042 0.34766 0.3758 0.9408 0.5650 1.7700 0.4418 0.5062 0.0644 15.5344

2106 0.34964 0.3671 0.1338 0.2332 4.2874 0.2488 0.3725 0.1237 8.0867

4157 0.35344 0.4290 0.3608 0.0682 14.6568 0.1188 0.0979 0.0209 47.8391

2868 0.49802 0.3062 0.8484 0.5422 1.8443 0.3434 0.2021 0.1413 7.0785

4496 0.50287 0.2445 0.0432 0.2013 4.9672 0.3609 0.7487 0.3878 2.5784

4545 0.50289 0.1002 0.0464 0.0538 18.6006 0.2371 0.2705 0.0333 29.9854

814 0.64599 0.4386 0.3852 0.0533 18.7477 0.4604 0.3713 0.0891 11.2179

1543 0.64969 0.2343 0.2529 0.0186 53.6827 0.4152 0.3636 0.0516 19.3968

4751 0.65144 0.4143 0.5127 0.0984 10.1611 0.4619 0.8399 0.3780 2.6454

An example of instances with high and low sensitivity scores. For the microstructure insets, yellow denotes the A phase and purple the B phase. The error Δi is
defined as Δi ¼ jŷ � yj, where ŷ is the prediction and y the true value. The sensitivity score is defined as Si ¼ Δ�1

i . Instances 1042, 2106, 4157 belong to regime
A as identified in Fig. 4b. Instances 2868, 4496, 4545 belong to regime B as identified in Fig. 4b. Instances 814, 1543, 4751 belong to regime C as identified in
Fig. 4b. Note that the high sensitivity scores (in bold) correspond to different input process parameters depending on the regime of importance. Each regime
is separated by horizontal lines.

Fig. 4 Predicting the process parameters for spinodal deposition of a two-phase mixture. a Mean sensitivity score for predicting mobilities
as a function of phase fraction. When changing the phase fraction from low to high, the dominant role of the phase mobility switches from B
to A. The dashed line indicated the expected transition from a A-rich patterns regime to a B-rich patterns regime. Insets depict example
realizations for particular values of the phase fraction order parameter. For the microstructure insets, yellow denotes phase A, and purple
phase B. b Variation (derivative) of the sensitivity score as a function of phase fraction. c, d Scatterplots of the variability on the number of
phase domains A as a function of the phase A and B mobilities respectively.
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detect the transitions we will look at the averaged value of the
sensitivity score, as discussed next.
Comparing individual scores to identify microstructural transi-

tions could be deceiving (Si with respect to phase A mobility for
example 4157 is larger than Si with respect to phase B mobility
for example 2106). We can mitigate this issue by evaluating the
mean sensitivity scores on the predicted mobilities. The mean
sensitivity scores S on the predicted mobilities for phases A and B
are presented in Fig. 4a. Variations (i.e., derivative) of the
sensitivity scores with respect to the phase fraction are presented
in Fig. 4b. To see whether or not we can identify the transition
regime at the 50% phase fraction, we can first look at the left part
of Fig. 4a. First, we would expect a strong correlation between the
value of the phase B mobility and the size or shape of the phase A
domains when B is the majority phase. This correlation translates
into a high value of the sensitivity score with respect to phase B
mobility. Conversely, we would also expect a weak relation
between the value of the phase B mobility and the dynamics of
the A domain when A is the majority phase, i.e. in this case the
sensitivity score will be low. Indeed, if we look at the data and
plot the number of phase A domains (i.e., the number of small
spherical domains) as a function of mobility (see Fig. 4c, d), we
see that the relation to phase B mobility is very strong (especially
for low values of phase fraction), while relation to phase A
mobility is almost non-existent (it does not matter what the value
of phase A mobility is, the number of domains might be very
different). As such, we note that when predicting the mobilities
for phases A and B respectively in Fig. 4a, the sensitivity of those
predictions switches to a relatively low sensitivity score at the
50% phase fraction. This is further evidenced if we look at the
variation of the sensitivity score as a function of the phase
fraction in Fig. 4b. We observe a transition from (i) a regime with a
monomodal microstructure of A-rich spherical precipitates
entrapped in a B matrix (denoted as encircled A in Fig. 4b) to
(ii) an intermediate microstructural configuration (denoted as
encircled B) which consists of interconnected A or B domains to
(iii) finally another regime (denoted as encircled C) with a
monomodal microstructure of B-rich spherical precipitates
entrapped in a A matrix. This intermediate regime corresponds

to the gradual transition in pattern formation between the two
other distinct regimes.

Generalization to more complex pattern-forming processes:
physical vapor deposition of binary alloy thin films
We now turn to the physical vapor deposition problem which
presents multiple transition regimes when the deposition rate and
bulk mobility change. At low normalized deposition rates
(corresponding in the present case to values of logðvNÞ � �4),
vertical-oriented microstructural patterns form, while higher
normalized deposition rates (corresponding in the present case
to values of logðvNÞ � �1) yield horizontal layer patterns. At very
high normalized deposition rates (corresponding in the present
case to values of logðvNÞ � �0:5) random microstructural patterns
can form. Similarly to the spinodal decomposition problem above,
we list in Table 2 examples of predictions with high and low
sensitivity scores as a function of the deposition rate (∣v∣).
Predictions of the deposition rate, ∣v∣, for vertical-oriented patterns
are highly sensitive (i.e., Si is high) at low normalized deposition
rates (logðvNÞ � �4:0), while predictions for the average bulk
mobility, MBulk, are relatively insensitive. We observe a different
behavior for the normalized deposition rates that result in
horizontal layer patterns for which in this case predictions for
the deposition rate exhibit a low sensitivity score (see instance
444) and a high sensitivity score for the average bulk mobility.
We show in Fig. 5 how solving the inverse mapping problem for

predicting the deposition rate, ∣v∣ (Fig. 5 panels a, c), and average
bulk mobility, MBulk (Fig. 5 panels b, d), helps us identify the
transition regime(s) between vertical- and horizontal-oriented
microstructural patterns as a function of the normalized deposi-
tion rate vN. First, we notice in Fig. 5 panels a and b that when the
orientation of the microstructural patterns changes from vertically
oriented (denoted as regime A) to horizontally oriented (denoted
as regime C), the sensitivity score for the deposition rate gradually
changes from high to low accordingly and from low to high for
the average bulk mobility. We can interpret it as a change in the
importance of the input process parameter based on the resulting
microstructural pattern considered (horizontal vs. vertical).

Table 2. Prediction of mobility parameters in the case of the physical vapor deposition problem.

Deposition Rate Average Bulk Mobility

Instance Index Deposition
log(vN)

Deposition Angle Avg. Surface
Mobility

Predicted
Deposition

Target
Deposition

Sensitivity
Score (Si)

Predicted
Mobility

Target
Mobility

Sensitivity
Score (Si)

18444 −4.049 59.776 38.060 0.204 0.118 11.665 4.853 5.852 1.001

6316 −4.014 45.214 32.311 0.214 0.190 41.314 5.430 7.467 0.491

15812 −3.006 61.088 15.890 0.316 0.264 19.311 4.087 4.680 1.686

7304 −2.993 62.599 6.886 0.286 0.173 8.865 4.794 3.070 0.580

1492 −2.026 47.498 19.885 0.773 0.967 5.150 3.514 5.406 0.529

444 −1.990 78.487 18.747 0.581 0.737 6.406 3.857 5.282 0.702

1752 −1.032 82.301 19.825 0.748 0.797 20.576 1.965 2.215 4.011

3772 −0.993 79.439 12.418 0.838 0.980 7.018 2.460 2.601 7.063

An example of instances with high and low sensitivity scores. Instances 1844 and 6316 belong to regime A as identified in Fig. 5c. Instances 15812 and 7304
belong to regime B as identified in Fig. 5c. Instances 1492 and 444 belong to regime C as identified in Fig. 5c. Instances 1752 and 3772 belong to regime D as
identified in Fig. 5c. Each regime is separated by horizontal lines.
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The piecewise linear fits in Fig. 5 panels a and b provide a visual
guide as to when a transition occurs, while the thin blue lines
show individual instances and the resulting variability around
the averaged sensitivity scores. While the sensitivity scores on the
deposition rate and average bulk mobility enable us to detect the
major change in the overall orientation of the microstructural
patterns, the variations in the level of the sensitivity scores (cf.
Fig. 5c) reveal much more subtle changes. Our self-supervised
approach detects a second transition and the existence of an
intermediate regime (denoted by encircled B) that corresponds to
a regime with a class of microstructures that are neither vertical
nor horizontal. We also note a third transition at log vN � �1:5
which corresponds to a horizontal-to-multimodal (or horizontal-
to-random) transition. When we compare the variation of the
sensitivity scores between the two input process parameters in
Fig. 5 panels c and d, we confirm the identification of those four
regimes. The marginal differences as to when the transitions occur
in terms of the normalized deposition rate illustrate the relative
importance of the specific predicted input process parameters on
those regimes. Second, our results reveal the range of each
transition and existence of a specific pattern regime. Indeed, we
observe for instance that the horizontal-oriented pattern regime
only exists for a specific range of normalized deposition rates,
namely for log vN 2 ½�2:5;�1:5�.
When plotting the number of horizontal- and vertical-oriented

microstructural domains as a function of the normalized deposi-
tion rate in Fig. 5c, we confirm that indeed the microstructure
topology switches from one type of pattern to another for the
detected transitions via our self-supervised approach. When
plotting these regimes as a function of the connectivity of the

pattern in Fig. 5d, we note that the first transition (from A to B) can
be associated with a transition from ordered vertical-oriented
patterns to more complex, disjointed vertical patterns. The second
transition (from B to C) then corresponds to a clear change from
disjointed vertical patterns to horizontal layer patterns. The last
transition (from C to D) corresponds to a transition from
monomodal horizontal microstructure to a multimodal patterned
structure. These results contrast with those obtained via a human-
annotated method to map two-phase patterned morphologies8

for a similar problem, although it is unclear if this previous work
fully captures the nuanced morphology classes.

DISCUSSION
We have demonstrated above that solving the inverse problem of
mapping microstructural patterns back to the corresponding input
process parameters is a powerful approach to infer and
characterize transitions in pattern-forming processes, without
any a priori knowledge of where these transitions occur in the
input space. This approach therefore allows microstructures to be
objectively determined rather than relying on human perception
and predefined labelling. In contrast to using clustering as a mean
to identify transitions, this approach relies on the ability to relate
transitions in microstructural patterns to changes in the error of
predicting the inverse problem of mapping microstructure to
input process parameters. This self-supervised approach relaxes
the assumption in confusion-based techniques25 which requires
two distinctive phases to exist in the considered transition regime.
Instead, if there are multiple, intermediate, or hard-to-discern
transitions present in the data (including transitions not

Fig. 5 Identifying microstructural topological transitions for the physical vapor deposition of thin films. a Sensitivity score for predicting
the deposition rate (∣v∣) as a function of the normalized deposition rate. b Sensitivity score for predicting the bulk mobility (MBulk) as a function
of the normalized deposition rate. c Variation (derivative) of the sensitivity score for the deposition rate as a function of the normalized
deposition rate. d Variation (derivative) of the sensitivity score for predicting the bulk mobility as a function of the normalized deposition rate.
e Number of horizontal and vertical phase domains as a function of the normalized deposition rate. f Topology connectivity (defined as the
number of irregular elements of morphologies e.g., kinks, terminated subdomains, etc.) as a function of the normalized deposition rate. Thin
blue lines in (a) and (b) illustrates particular runs of our procedure and indicate the variability around the averaged sensitivity score.
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characterized as first- or second-order transitions, cf. Fig. 5), we
can still detect and identify where these transitions occur and
establish a hierarchy of transitions via our approach. As seen in the
physical vapor deposition example, transitions can happen at
different levels of complexity (i.e., monomodal vs. multimodal
patterns as seen in panels c and d of Fig. 5). Therefore, we can use
this approach to provide a hierarchy of transitions from the most
pronounced (such as pattern orientation) to more subtle (such as
complexity). The CNN model used in this work can detect both
simple geometric shapes (such as the orientation and width of the
domains, size of the subdomains, etc.) as well as more complex
patterns (bifurcation of different subdomains). This ability is
possible due to the way information is organized in large CNN
models, such as the ResNet model used in the present work. Even
if the model is initially trained on images from different scientific
domains (animals, plants, and various natural objects such as cars
and buildings), the neural network learns to recognize basic
patterns such as the orientation of lines, curvatures of edges, etc.
Those simple patterns are encoded in the lower part of the
network and are easily transferable between domains. This
remarkable property of CNNs to generalize42 from one visual
domain to another allowed us to efficiently apply a model that
was pre-trained on the ImageNet database to our pattern-forming
process datasets. One possible improvement to provide even
more granularity and generality in detecting and categorizing
transition sub-regimes within these pattern-forming processes
would be to look at cross-correlations between sensitivity scores
or consider the sensitivity scores directly as a multi-dimensional
surface response of the input process parameter space. Local and
global minima within this surface response could be identified as
the different transitions.
In this study, we passed microstructure images to an existing,

pre-trained ResNet model. We did not have to fine-tune the
ResNet model. We kept this model as is to show how well the
framework generalizes from one domain to another (in other
words, how robust the framework is to the choice of the raw data
embedding method). To further support this claim, we trained
several dedicated models tasked to extract important features
from the raw input data as detailed in the Supplementary
Information, Supplementary Notes 1 and 2. We show that all those
different embedding methods produce very similar results (see
Supplementary Figs. 1 and 2). This means that the methodology
presented here is robust to the particular choice of the
embedding method to predict topological transitions. While we
used ResNet-50 v2 to demonstrate that an out-of-the-shelf
method works well here, other models could have been used
instead as discussed in the Supplementary Information. Indeed,
there is a variety of other models (such as ResNet-15235, VGG-1643,
AlexNet44, and EfficientNetV245 to name a few) that have been
trained on the same ImageNet dataset46 as the ResNet model
used in this study. These models may prove to increase the
sensitivity and accuracy of our results by enabling further
clustering and disentangling of complex datasets in latent space.
As an alternative to neural network models, statistical and
spectral-density functions47–50 could be used for example as
cost-effective, representative approaches to characterize micro-
structural patterns via a finite set of characteristic functions and/or
features. As pointed out by Aggarwal et al.51, besides the
improvements on these latent embedding approaches, the choice
of a particular distance metric may significantly improve the
results of these standard algorithms. If the (microstructure) data
lies on some smooth manifold and we are interested in preserving
the local geometry of the microstructure data on that manifold,
then using different distance metrics (i.e., non Euclidean) when
applying ResNet+ PCA/UMAP to our data can shed alternative
light on the same data and potentially further improve our
classification of hierarchy of transition regimes.

In addition to the self-taught labelling of topological transitions,
compared to other methods that focus solely on detecting
transitions, our self-supervised approach can also provide addi-
tional insights into the role of the different input process
parameters on the process-microstructure linkage. By interpreting
changes in sensitivity scores, we reveal the role of different input
process parameters in controlling different pattern-formation
regimes. This includes which process parameters are responsible
for the largest portion of the variation in microstructural patterns,
and therefore which parameter(s) triggers specific classes of
microstructural patterns. For instance, our results reveal that the
bulk mobility plays a role in controlling the complexity of the
pattern seen in the physical vapor deposition problem. Such
linkage is important in the context of unraveling the mechanisms
needed to fabricate multi-scale, microstructurally precise materials.
In the results presented above, we show that predicting error is

not only useful to determine pattern class transitions, but also for
sensitivity analysis. Namely, when the microstructure morphology
changes slowly as a function of a given input process parameter,
there will be a high error when mapping the final microstructural
pattern back to that process parameter. In contrast, when the
morphology changes significantly, there is a narrow range where a
process parameter produces a particular microstructural pattern,
and therefore error will be low. This observation provides insight
into the process parameters that need low or high tolerance. In
addition, some input process parameters may yield a class of
microstructural consistently, while others may be affected by
stochasticity in their initial values (see variability in sensitivity
scores in Fig. 5a for instance). This consistency metric will be
inferred by the error when mapping control parameters to the
microstructure morphology; in other words, much like a typical
surrogate model, one can find the final microstructural pattern
from initial conditions; error in this task will give insight into input
process parameters that consistently, or inconsistently, yield a
given microstructure of interest.
Going forward, we note that our framework could be extended

to other, more complex pattern-forming processes. In the current
work, we assessed topological transition in binary phase systems,
but the same methods could also be applied to, for example,
complex multi-component ternary or quaternary phase-separating
processes52,53. Further, our self-supervised-learning model did not
have to be built exclusively on simulation-based data. We chose to
illustrate our concept via simulation to establish comprehensive
datasets to serve as ground truths for model evaluation. However,
experimental microscopy data could have been used and
combined with our simulation data to explore nuanced effects54,55

on actual synthesis processes. Another direction would be to
increase the efficiency of our approach. As discussed above,
interpreting individual sensitivity score can be misleading. Instead,
one must average the individual scores on a previously prepared
validation set. However, it might be possible to directly measure
the uncertainty of the network in solving the inverse problem. This
could be done using e.g., the concrete dropout56. Consequently, it
would allow us to measure the score on the individual sample-
label, eliminating the need of averaging over a large number of
samples. Although the approach used in this study could be
improved both to enhance sensitivity and accuracy, this work is a
step towards automatically detecting critical transitions during
evolutionary systems and opens new ways for discovering and
understanding unseen or hard-to-discern transition regimes in
these systems.

METHODS
Spinodal decomposition of a two-phase mixture
Spinodal decomposition of a two-phase mixture is one of the
oldest and simplest phase-field problems57. This model looks into
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the diffusion of solutes within a matrix and serves as the basis for
a large number of phase-field models. In this model, a single
compositional order parameter c(x, t) is used to describe the
atomic fraction of solute in space (x) and time (t).
The evolution of c is described via the Cahn-Hilliard equation57

such that,

∂c
∂t

¼ ∇ � McðcÞ∇ ωcðc3 � cÞ þ κc∇2c
� �� �

; (1)

where ωc is the energy-barrier height between the equilibrium
phases and κc is the archetypal curvature-energy penalty term.
The concentration-dependent Cahn-Hilliard mobility is taken to be
Mc= s(c)MA+ (1− s(c))MB, where Mi denotes the mobility of each
phase. The switching function sðcÞ ¼ 1

4 ð2� cÞð1þ cÞ2 is a smooth
interpolation function between the mobilities. The values of the
energy barrier height between the equilibrium phases and the
gradient energy coefficients were assumed to be constant with
ωc= κc= 1. The choice of the initial concentrations of phase A and
B (cA and cB) as well as the choice of mobilities for each phase (MA

and MB) constitute the input process parameter space and dictate
the resulting microstructures.

Physical vapor deposition of binary-alloy thin films
The phase-field model used to simulate physical vapor deposition
(PVD) is described in detail elsewhere17. This model uses
conserved order-parameters, ϕ and c to describe the structural
and compositional ordering of the system as the thin film grows.
The field variable ϕ is meant to distinguishes between the vapor
and solid phases and is used to track the growing thin film. The
compositional field variable c distinguishes between the two
phases of the growing binary alloy thin film. The composition
evolution is described via the Cahn-Hilliard equation such that,

∂c
∂t

¼ ∇ � Mcðϕ; cÞ∇ ∂F
∂t

� �
; (2)

where Mc is the structurally and compositionally dependent
mobility function and F is the total free energy of the system. The
mobility functional Mc is constructed to describe both bulk and
surface mobilities for each phase, MBulk

i and MSurf
i respectively. The

complete expression for F is the same as in Stewart and
Dingreville17 without the elasticity contributions. The expression
for Mc is provided in Eqs. (8) and (9) in Stewart and Dingreville17.
To describe thin-film growth, a source term is incorporated in the
Cahn-Hilliard equation, such that the evolution of the vapor-solid
field variable, ϕ, is given by,

∂ϕ

∂t
¼ ∇ � MϕðϕÞ∇ ∂F

∂ϕ

� �
þ ∇ϕ � ðρvÞ; (3)

where Mϕ is the Cahn-Hilliard mobility. The second term couples
the thin-film evolution to the incident vapor flux (via a vapor
density field ρ and deposition rate v) and acts as the source term
for interfacial growth and surface roughening. We defined a
normalized deposition rate8 vN ¼ 2 sin αð Þjvj=ðMBulk

A þMBulk
B Þ

(where α is the deposition angle) which is meant to account for
the competition between film growth and phase separation in the
growing film. In this problem, the choice of the initial concentra-
tions of phase A and B (cA and cB), the choice of bulk and surface
mobilities for each phases (Mi

A and Mi
B, with i being either Bulk or

Surf), and the deposition rate v constitute the input process
parameter space and dictate the resulting microstructures.

Data preparation
These two phase-field models have been implemented in Sandia’s
in-house multiphysics phase-field modeling code: Mesoscale Multi-
physics Phase-Field Simulator17,58 (MEMPHIS). Examples of simula-
tion results for these two models are provided as supplementary
information in Supplementary Note 3. The two-dimensional (2D),

spatio-temporal evolution of the microstructural patterns (as
captured through the c compositional field variable in both models)
were numerically solved using a finite-difference scheme with
second-order central difference stencils for all spatial derivatives.
Numerical temporal integration of the equations was performed
using the explicit Euler method. All 2D simulations were performed
on a uniform numerical grid of 512 × 512 for the spinodal
decomposition model and 256 × 256 for the PVD model, a spatial
discretization of Δx= Δy= 1, and a temporal discretization of
Δt= 10−4 for the spinodal decomposition model and a variable
Δt∈ [10−3, 10−2] for the PVD model. The composition field within
the simulation domain was initially randomly populated by sampling
a truncated Gaussian distribution between− 1 and 1 with a
standard deviation of 0.35. Each spinodal decomposition simulation
was run for 50,000,000 time steps with periodic boundary conditions
applied to all sides of the domain. The run time for the PVD
simulations varied depending on the deposition rate to achieve a
given film height.
We used a Latin Hypercube Sampling (LHS) approach to

generate our training and testing datasets. For the spinodal
decomposition model, we varied the phase concentrations and
phase mobilities parameters. For the phase concentration para-
meter, we varied the concentration of phase A, cA∈ [0.15, 0.85].
Note that the phase concentration of B is simply cB= 1− cA. For
the mobility parameters, we independently varied the mobility
values over four orders of magnitude such that Mi ∈ [0.01, 100],
i= A or B. For the PVD model, we keep the phase fraction at 50%
and sampled the bulk and surface mobilities MBulk

i 2 ½0:1; 10�,
MSurf

i 2 ½0:1; 100�, as well as the deposition rate conditions
∣v∣ ∈ [0.1, 1]. For the spinodal decomposition model, this resulted
in total in 4998 simulations, 80% of which was used to train the
model (3998 instances) and the remaining 20% of data (1000
instances) was used for testing. For the PVD model, we selected
the final microstructure pattern at the time step that corre-
sponded to a film height of 224 pixels, resulting in a 224 × 224
image. For this model, our dataset had 11775 simulations. We
used 60% of the data instances for training and 40% for testing
purposes.

Selection of neural network architecture
The outcome of detecting transitions is determined by both the
initial condition (e.g., value of a random seed) and values of the
process parameters (phase mobility, deposition rate in case of
PVD, etc.). While the local details of microstructural patterns
depend on the specific initial conditions, the overall characteristics
of those patterns are determined mostly by the values of the input
process parameters. When solving the inverse problem, we wish
to measure and gauge the role of the process parameters, not the
random initialization of the simulations. We achieved this by first
transforming the input using a CNN. This type of network is
equivariant to translations of the input and therefore insensitive to
relative shifts of the overall characteristics of the microstructural
patterns that could be incurred by random initialization values of
the simulations. We can use CNNs to extract features from the raw
data, that are related to the overall shape of the patterns, not the
specific position of those. See an extended discussion of that topic
in Supplementary Information, Supplementary Note 3.
While there are many different possible convolutional archi-

tectures, one natural choice is to use a CNN from the ResNet
family59. ResNet networks are built with what are known as
residual blocks. CNNs are those with convolution layers, in which a
small batch of an image is scanned, and features, such as colors
and shades, of that small image are fed through a node. There are
multiple ways to weigh features in a batch, which are known as
filters. Residual blocks take features from earlier convolution layers
and feed them wholesale into a layer that could be many levels
away from the initial layer. This allows for features to not get “lost
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in translation” when moving from one layer to the next. This
network can therefore achieve respectable predictive accuracy
with comparatively more layers, thus capturing long-range and
non-linear correlations between far-away parts of an image, or in
this case, a microstructure evolution simulation. In effect, ResNet
models can take advantage of deeper architectures reducing the
impact of the infamous vanishing gradient problem60. We further
elaborated on this topic in Supplementary Information, Supple-
mentary Note 4.

Latent embedding
We embedded microstructural pattern images using ResNet-50
v235, a popular model that has been used to automatically classify
a variety of images. ResNet-50 v2 is a fifty-layer-deep CNN. In
particular, the ResNet-50 v2 model used in this work was trained
on images from the ImageNet46 database but not on the phase-
field data. Training of the ResNet-50 v2 model was first done by He
et al.35. The model trained on ImageNet learns to extract a
hierarchy of features, from simple geometric shapes (vertical,
horizontal, or skew lines, shapes of different sizes, lines of different
curvatures, etc.) to more complex, composed patterns. Images
present in the ImageNet database depict 1000 classes such as
different types of animals, everyday objects, and various building
structures. While most of the training examples represent colorful
(3-channel) images, there is also a small proportion (about ~2%) of
monochromatic images. To make the phase-field simulation data
input compatible with our model, we copied each image three
times (created 3 identical pseudo-color channels). While it creates
some redundancy (the network might detect “red”, “green” and
“blue” edges of the same orientation), it did not affect the ability
to produce a consistent embedding for the collection of our data.
Examples and details of the data used for training the ResNet-50
v2 model are presented in the Supplementary Information,
Supplementary Note 4. We took all but the classification layer of
this pre-trained model to embed simulation images into several
hundred dimensional latent feature space. The size of this feature
space is small enough to reduce the feature dimension from
65536 (256 × 256 pixels where we treat each pixel as a feature) to
something that is far more manageable, 2048 latent dimensions
(i.e., 1% of this), but this space is large enough to capture nuances
in microstructural patterns from subtle variations in control
parameters or initial conditions. Parameter predictions are then
made by applying a few dense all-to-all connection neural
network layers to this set of latent features.

Inverse mapping workflow
Spinodal decomposition. The original simulations were saved as
4998 × 101 × 512 × 512 (simulation number, time frame, X posi-
tion, Y position) dimensional numpy arrays, with float16
numbers that range from around−1 to+1. We reduced the
dimensions of each frame from 512 × 512 to 256 × 256 (replacing
every block of 2 × 2 pixels by the mean value). From the 4998
original simulations, we randomly selected 1000 of them (20%) to
form a validation set. We used the remaining 3998 simulations to
construct the training set. The input images are expected to have
color values in the range [0, 1] and the expected size of the input
images is 224 × 224 pixels by default, but other input sizes are
possible. Because the ResNet-50 v2 model requires a 3-channel
input, we just tripled our output (each channel has the same
pictures). The inverse problem was solved by training a neural
network, a simple feedforward neural network with two hidden
layers (with 512 and 1024 neurons, respectively). The output of the
network was a dense layer with two neurons with linear activation –
one neuron to predict mobility of the phase A, and another to
predict mobility of the phase B. We used dropout layers and ReLU
activation functions. Schematically, the network architecture was
DenseReLU

512 ´Dropout0:25 ´Dense
ReLU
1024 ´Dropout0:25 ´Dense

linear
2 .

We trained the model to predict the correct values of mobility, with
the mean squared error (MSE) loss function. We applied early
stopping with the patience 4 and tolerance of 0.0001.

Physical vapor deposition. The original simulations were saved as
11775 × 51 × 256 × 256 (simulation number, time frame, X posi-
tion, Y position) dimensional numpy arrays. For each simulation,
we selected the time step that corresponds to a thin film height of
224 pixels to avoid capturing any surface roughness effects. We
rejected simulations that had heights smaller than 224 (this
simulation corresponded to extremely slow deposition rates; only
5 simulations were rejected in the process). We cut four
224 × 224 squares from each original frame, translating the cut
origin by 64 pixels each time (we apply horizontal periodic
boundary conditions). This gave us 11770 × 4= 47080 individual
data points. We truncated values larger than 1, and smaller than
−1, and then we scaled everything from 0 to 1 (we applied
transformation x→ (x+ 1)/2). To speed-up the next step, we
reduced the dimension of each square by two, from 224 × 224 to
112 × 112 pixels. We used the pre-trained ResNet-50 v2 model to
produce 2048-dimension latent embeddings of each square (to do
this, we had to emulate the 3 channel colors by copied the one-
channel input three times, just as we did for spinodal
decomposition). Since original simulations were repeated 5 times
for each unique set of parameters, the 47080 data points
correspond to 2354 unique sets of initial parameters. We reserved
40% of the data for the validation set (18840 input examples,
corresponding to 942 unique sets of initial parameters). The
remaining 60% was used for training (28240 input examples,
corresponding to 1412 unique sets of initial parameters). The
inverse problem was solved by training a neural network, a
simple feed-forward neural network with two hidden layer (similar
to the architecture used for spinodal decomposition), namely
DenseReLU

512 ´Dropout0:25 ´Dense
ReLU
1024 ´Dropout0:25 ´Denselinear

1 .
The only modification with respect to the previous setup was, that
we used here only a single output neuron. The motivation for this
was that was that the predicted parameters had different physical
units. When predicting multiple values at once, the MSE loss
function would be sensitive to the particular choice of the units for
each parameter. To address this issue, we decided to train
separate network for each control parameter – thus, the single
output unit in the architecture above. We trained the network
with early stopping with the patience 4 and tolerance of 0.001.

Model training setup for the inverse problem
What matters when solving the inverse problem is the relative
performance. This situation is similar to that described in the
“Learning phase transitions by confusion” paper by van Nieuwen-
burg et al.25. In that work, the proposition was to use a small
feedforward neural network, with one hidden layer and 80
neurons. There are two possible regimes where neural networks
generalize well. One is when the number of training examples is
larger than the number of trainable parameters. Second, when the
number of trainable parameters is much larger than the number
of training examples (an overparameterized region)61. Keeping in
mind that in practical applications the number of training
examples can be limited, we decided to explore the second
regime. As discussed in the next section, to solve the inverse
problem we used a network with two hidden layers, having 512
and 1024 neurons, respectively. We further elaborated on this
topic in Supplementary Information, Supplementary Note 5.

Training and validation of the inverse problem network
To minimize any potential overfitting, we followed best practices
during the training. Namely, we used a validation set to track the
generalization error, we used dropout to combat the overfitting,
we used data augmentation (we used the advantage of the
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periodic boundaries conditions and we prepared several cropped
versions of the input from each sample), and when training we
used an early stop. We visualize the training and validation error in
case of spinodal decomposition data in Fig. 6. In case of the
spinodal decomposition, we can easily determine the theoretical
minimum for the mean squared error. The outcome of the process
is determined by the value of mobility of the majority phase. Thus,
assuming uniform distribution of samples and normalization of
the target values to [0, 1], the best we can hope is to have zero
error, ΔB, when predicting mobility of the majority phase and an
error of ΔA ¼ R 1

0 ðx � 0:5Þ2 dx ¼ 1=12 when predicting the mobi-
lity value of the minority phase. Consequently, the lower bound
for the cumulative mean square error is Δ ¼ ðΔA þ ΔBÞ=2 ¼
1=12þ 0ð Þ=2 � 0:0416ð6Þ. Looking at Fig. 6, we see that the
validation set approaches the theoretical limit of the irreducible/
intrinsic error, indicating a relatively good generalization capability
and good quality of training. Additional details on the training
performance of the ResNet-50 model and comparison with other
pre-trained models are provided in the Supplementary Informa-
tion in Supplementary Note 5.

DATA AVAILABILITY
Samples of our datasets are available at https://github.com/marcinabram/
topological_transitions/tree/main/data_sample. The full training datasets as well as
all validation and test cases are available from the corresponding author upon
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