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Abstract—Data movement in high-performance computing systems accelerated by graphics processing units (GPUs) remains a

challenging problem. Data communication in popular parallel programming models, such as the Message Passing Interface (MPI), is

currently limited to the data stored in the CPU memory space. Auxiliary memory systems, such as GPU memory, are not integrated into

such data movement standards, thus providing applications with no direct mechanism to perform end-to-end data movement. We

introduce MPI-ACC, an integrated and extensible framework that allows end-to-end data movement in accelerator-based systems.

MPI-ACC provides productivity and performance benefits by integrating support for auxiliary memory spaces into MPI. MPI-ACC

supports data transfer among CUDA, OpenCL and CPU memory spaces and is extensible to other offload models as well. MPI-ACC’s

runtime system enables several key optimizations, including pipelining of data transfers, scalable memory management techniques,

and balancing of communication based on accelerator and node architecture. MPI-ACC is designed to work concurrently with other

GPU workloads with minimum contention. We describe how MPI-ACC can be used to design new communication-computation

patterns in scientific applications from domains such as epidemiology simulation and seismology modeling, and we discuss the lessons

learned. We present experimental results on a state-of-the-art cluster with hundreds of GPUs; and we compare the performance and

productivity of MPI-ACC with MVAPICH, a popular CUDA-aware MPI solution. MPI-ACC encourages programmers to explore novel

application-specific optimizations for improved overall cluster utilization.

Index Terms—Heterogeneous (hybrid) systems, parallel systems, distributed architectures, concurrent programming
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1 INTRODUCTION

GRAPHICS processing units (GPUs) have gained
widespread use as general-purpose computational

accelerators and have been studied extensively across a
broad range of scientific applications [1], [2], [3]. The pres-
ence of general-purpose accelerators in high-performance
computing (HPC) clusters has also steadily increased, and
15 percent of today’s top 500 fastest supercomputers (as of
November 2014) employ general-purpose accelerators [4].

Nevertheless, despite the growing prominence of acceler-
ators in HPC, data movement on systems with GPU acceler-
ators remains a significant problem. Hybrid programming
with the Message Passing Interface (MPI) [5] and the Com-
pute Unified Device Architecture (CUDA) [6] or Open Com-
puting Language (OpenCL) [7] is the dominant means of

utilizing GPU clusters; however, data movement between
processes is currently limited to data residing in the host
memory. The ability to interact with auxiliary memory sys-
tems, such as GPU memory, has not been integrated into
such data movement standards, thus leaving applications
with no direct mechanism to perform end-to-end data
movement. Currently, transmission of data from accelerator
memory must be done by explicitly copying data to host
memory before performing any communication operations.
This process impacts productivity and can lead to a severe
loss in performance. Significant programmer effort would
be required to recover this performance through vendor-
and system-specific optimizations, including GPUDirect [8]
and node and I/O topology awareness.

We introduce MPI-ACC, an integrated and extensible
framework that provides end-to-end data movement in
accelerator-based clusters. MPI-ACC significantly improves
productivity by providing a unified programming interface,
compatible with both CUDA and OpenCL, that can allow
end-to-end data movement irrespective of whether data
resides in host or accelerator memory. In addition, MPI-
ACC allows applications to easily and portably leverage
vendor- and platform-specific capabilities in order to opti-
mize data movement performance. Our specific contribu-
tions in this paper are as follows.

� An extensible interface for integrating auxiliary
memory systems (e.g., GPU memory) with MPI

� An efficient runtime system, which is heavily opti-
mized for a variety of vendors and platforms
(CUDA and OpenCL) and carefully designed to min-
imize contention with existing workloads
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� An in-depth study of high-performance simulation
codes from two scientific application domains
(computational epidemiology [9], [10] and seismol-
ogy modeling [11])

We evaluate our findings on HokieSpeed, a state-of-the-art
hybrid CPU-GPU cluster housed at Virginia Tech. Microbe-
nchmark results indicate that MPI-ACC can provide up to
48 percent improvement in two-sided GPU-to-GPU com-
munication latency. We show that MPI-ACC’s design does
not oversubscribe the GPU, thereby minimizing contention
with other concurrent GPU workloads. We demonstrate
how MPI-ACC can be used in epidemiology and seismol-
ogy modeling applications to easily explore and evaluate
new optimizations at the application level. In particular, we
overlap MPI-ACC CPU-GPU communication calls with
computation on the CPU as well as the GPU, thus resulting
in better overall cluster utilization. Results indicate that the
MPI-ACC–driven communication-computation patterns
can help improve the performance of the epidemiology sim-
ulation by up to 13.3 percent and the seismology modeling
application by up to 44 percent over the traditional hybrid
MPI+GPU models. Moreover, MPI-ACC decouples the low-
level memory optimizations from the applications, thereby
making them scalable and portable across several architec-
ture generations. MPI-ACC enables the programmer to
seamlessly choose between CPU, GPU, or any accelerator
device as the communication target, thus enhancing pro-
grammer productivity.

This paper is organized as follows. Section 2 introduces
the current MPI and GPU programming models and
describes the current hybrid application programming
approaches for CPU-GPU clusters. We discuss related work
in Section 3. In Section 4, we present MPI-ACC’s design and
its optimized runtime system. Section 5 explains the execu-
tion profiles of the epidemiology and seismology modeling
applications, their inefficient default MPI+GPU designs,
and the way GPU-integrated MPI can be used to optimize
their performances while improving productivity. In
Section 6, we evaluate the communication and application-
level performance of MPI-ACC. Section 7 evaluates the con-
tention impact of MPI-ACC on concurrent GPU workloads.
Section 8 summarizes our conclusions.

2 MOTIVATION

In this section, we describe the issues in the traditional CPU-
GPU application design and illustrate how GPU-integrated
MPI can help alleviate them.

2.1 Designing MPI+GPU Applications

Graphics processing units have become more amenable to
general-purpose computations over the past few years,
largely as a result of the more programmable GPU hard-
ware and increasingly mature GPU programming models,
such as CUDA [6] and OpenCL [7]. Today’s discrete GPUs
reside on PCIe and are equipped with very high-throughput
GDDR5 device memory on the GPU cards. To fully utilize
the benefits of the ultra-fast memory subsystem, however,
current GPU programmers must explicitly transfer data
between the main memory and the device memory across
PCIe, by issuing direct memory access (DMA) calls such as
cudaMemcpy or clEnqueueWriteBuffer.

The Message Passing Interface is one of the most widely
adopted parallel programming models for developing scal-
able, distributed-memory applications. MPI-based applica-
tions are typically designed by identifying parallel tasks
and assigning them to multiple processes. In the default
hybrid MPI+GPU programming model, the compute-inten-
sive portions of each process are offloaded to the local GPU.
Data is transferred between processes by explicit messages
in MPI. However, the current MPI standard assumes a
CPU-centric single-memory model for communication. The
default MPI+GPU programming model employs a hybrid
two-staged data movement model, where data copies are
performed between main memory and the local GPU’s
device memory that are preceded and/or followed by MPI
communication between the host CPUs (Figs. 1a and 1b).
This is the norm seen in most GPU-accelerated MPI applica-
tions today [10], [12], [13]. The basic approach (Fig. 1a) has
less complex code, but the blocking and staged data move-
ment severely reduce performance because of the inefficient
utilization of the communication channels. On the other
hand, overlapped communication via pipelining efficiently
utilizes all the communication channels but requires signifi-
cant programmer effort, in other words, low productivity.
Moreover, this approach leads to tight coupling between
the high-level application logic and low-level data move-
ment optimizations; hence, the application developer has
to maintain several code variants for different GPU

Fig. 1. Designing hybridCPU-GPUapplications. For themanualMPI+GPU
model with OpenCL, clEnqueueReadBuffer and clEnqueueWriteBuffer
would be used in place of cudaMemcpy. For MPI-ACC, the code remains
the same for all platforms (CUDAor OpenCL) and supported devices.
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architectures and vendors. In addition, construction of such
a sophisticated data movement scheme above the MPI run-
time system incurs repeated protocol overheads and elimi-
nates opportunities for low-level optimizations. Moreover,
users who need high performance are faced with the com-
plexity of leveraging a multitude of platform-specific opti-
mizations that continue to evolve with the underlying
technology (e.g, GPUDirect [8]).

2.2 Application Design Using GPU-Integrated MPI
Frameworks

To bridge the gap between the disjointed MPI and GPU pro-
gramming models, researchers have recently developed
GPU-integrated MPI solutions such as our MPI-ACC [14]
framework and MVAPICH-GPU [15] by Wang et al. These
frameworks provide a unified MPI data transmission inter-
face for both host and GPU memories; in other words, the
programmer can use either the CPU buffer or the GPU buffer
directly as the communication parameter in MPI routines.
The goal of such GPU-integrated MPI platforms is to decou-
ple the complex, low-level, GPU-specific data movement
optimizations from the application logic, thus providing the
following benefits: (1) portability—the application can be
more portable across multiple accelerator platforms; and
(2) forward compatibility—with the same code, the applica-
tion can automatically achieve performance improvements
from new GPU technologies (e.g., GPUDirect RDMA) if
applicable and supported by the MPI implementation. In
addition to enhanced programmability, transparent architec-
ture-specific and vendor-specific performance optimizations
can be providedwithin theMPI layer.

Using GPU-integrated MPI, programmers need only to
write GPU kernels and regular host CPU codes for compu-
tation and invoke the standard MPI functions for CPU-GPU
data communication, without worrying about the complex
data movement optimizations of the diverse accelerator
technologies (Fig. 1c).

3 RELATED WORK

MVAPICH [16] is an implementation of MPI based on
MPICH [17] and is optimized for RDMA networks such as
InfiniBand. From v1.8 onward, MVAPICH has included
support for transferring CUDA memory regions across the
network (point-to-point, collective, and one-sided commu-
nications), but its design relies heavily on CUDA’s Unified
Virtual Addressing (UVA) feature. On the other hand, MPI-
ACC takes a more portable approach: we support data
transfers among CUDA, OpenCL, and CPU memory
regions; and our design is independent of library version or
device family. By including OpenCL support in MPI-ACC,
we automatically enable data movement between a variety
of devices, including GPUs from NVIDIA and AMD, IBM
and Intel CPUs, Intel MICs, AMD Fusion, and IBM’s Cell
Broadband Engine. Also, we make no assumptions about
the availability of key hardware features (e.g., UVA) in our
interface design, thus making MPI-ACC a truly generic
framework for heterogeneous CPU-GPU systems.

CudaMPI [18] and GMH [19] are new libraries that are
designed to improve programmer productivity when man-
aging data and compute among GPUs across the network.

Both these approaches are host-centric programming mod-
els and provide new programming abstractions on top of
existing MPI and CUDA calls. CaravelaMPI [20] is another
MPI-style library solution for data management across
GPUs, but the solution is limited to the custom Caravela
API and not applicable to general MPI programs. In con-
trast, MPI-ACC completely conforms to the MPI standard
itself, and our implementation removes the overhead of
communication setup time, while maintaining productivity.

DCGN [21] is a device-centric programming model that
moves away from the GPU-as-a-worker programming
model. DCGN assigns ranks to GPU threads in the system
and allows them to communicate among each other by
using MPI-like library calls, and a CPU-based polling run-
time handles GPU control and data transfers. MPI-ACC is
orthogonal to DCGN in that we retain the host-centric MPI
communication and execution model while hiding the
details of third-party CPU-GPU communication libraries
from the end user.

Partitioned Global Address Space (PGAS) models, such
as Chapel, Global Arrays, and OpenSHMEM, provide a
globally shared memory abstraction to distributed-memory
systems. Researchers have explored extending PGAS mod-
els to include GPUs as part of the shared-memory abstrac-
tion [22], [23]. PGAS models can use MPI itself as the
underlying runtime layer [24], [25] and can be considered as
complementary efforts to MPI.

4 MPI-ACC: DESIGN AND OPTIMIZATIONS

In this section, we describe the design, implementation, and
optimizations of MPI-ACC, the first interface that integrates
CUDA, OpenCL, and other models within an MPI-compli-
ant interface.

4.1 API Design

We discuss MPI-ACC’s API design considerations and com-
pare the tradeoffs of our solution with the the API design of
MVAPICH. In an MPI communication call, the user passes
a void pointer that indicates the location of the data on
which the user wishes to operate. To the MPI library, a
pointer to host memory is indistinguishable from a pointer
to GPU memory. The MPI implementation needs a mecha-
nism to determine whether the given pointer can be derefer-
enced directly or whether data must be explicitly copied
from the device by invoking GPU library functions. More-
over, memory is referenced differently in different GPU
programming models. For example, CUDAmemory buffers
are void pointers, but they cannot be dereferenced by the
host unless Unified Virtual Addressing is enabled. On the
other hand, OpenCL memory buffers are represented as
opaque cl mem handles that internally translate to the phys-
ical device memory location but cannot be dereferenced by
the host unless the buffer is mapped into the host’s address
space or explicitly copied to the host.

MVAPICH’s Automatic Detection Approach. MVAPICH
allows MPI to deal with accelerator buffers by leveraging
the UVA feature of CUDA to automatically detect device
buffers. This method requires no modifications to the MPI
interface. Also, we have shown previously that while their
approach works well for standalone point-to-point
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communication, programmers have to explicitly synchronize
between interleaved and dependent MPI and CUDA opera-
tions, thereby requiring significant programmer effort to
achieve ideal performance [26]. Moreover, as shown in
Fig. 2, the penalty for runtime checking can be significant
and is incurred by all operations, including those that
require no GPU data movement at all. Furthermore, the
automatic detection approach is not extensible for other
accelerator models such as OpenCL that do not map GPU
buffers into the host virtual address space.

MPI-ACC’s Datatype Attributes Approach. MPI datatypes
are used to specify the type and layout of buffers passed to
the MPI library. The MPI standard defines an interface for
attaching metadata to MPI datatypes through datatype
attributes. In MPI-ACC, we use these MPI datatype attributes
to indicate buffer type (e.g., CPU, CUDA, or OpenCL),
buffer locality (e.g., which GPU), the stream or the event to
synchronize upon, or just any other information to the MPI
library. With the datatype attributes, there is no restriction
on the amount of information that the user can pass to the
MPI implementation. With our design, one can simply
implicitly denote ordering of MPI and GPU operations by
associating GPU events or streams with MPI calls, and the
MPI-ACC implementation applies different heuristics to
synchronize and make efficient communication progress.
We have shown in our prior work [26] that this approach
improves productivity and performance, while being com-
patible with the MPI standard. Moreover, our approach
introduces a lightweight runtime attribute check to each
MPI operation, but the overhead is much less than with
automatic detection, as shown in Fig. 2. Since MPI-ACC
supports both CUDA and OpenCL and since OpenCL is
compatible with several platforms and vendors, we con-
sider MPI-ACC to be a more portable solution than MVA-
PICH. Table 1 summarizes the above differences.

4.2 Optimizations

Once MPI-ACC has identified a device buffer, it leverages
PCIe and network link parallelism to optimize the data
transfer via pipelining. Pipelined data transfer parameters
are dynamically selected based on NUMA and PCIe affinity
to further improve communication performance.

4.2.1 Data Pipelining

We hide the PCIe latency between the CPU and GPU by
dividing the data into smaller chunks and performing pipe-
lined data transfers between the GPU, the CPU, and the net-
work. To orchestrate the pipelined data movement, we

create a temporary pool of host-side buffers that are regis-
tered with the GPU driver (CUDA or OpenCL) for faster
DMA transfers. The buffer pool is created at MPI Init time
and destroyed during MPI Finalize. The system administra-
tor can choose to enable CUDA and/or OpenCL when con-
figuring the MPICH installation. Depending on the choice
of the GPU library, the buffer pool is created by calling
either cudaMallocHost for CUDA or clCreateBuffer (with
the CL MEM ALLOC HOST PTR flag) for OpenCL.

To calculate the ideal pipeline packet size, we first indi-
vidually measure the network and PCIe bandwidths at dif-
ferent data sizes (Fig. 3), then choose the packet size at the
intersection point of the above channel rates, 64 KB for our
experimental cluster (Section 6). If the performance at the
intersection point is still latency bound for both data chan-
nels (network and PCIe), then we pick the pipeline packet
size to be the size of the smallest packet at which the slower
data channel reaches peak bandwidth. The end-to-end data
transfer will then also work at the net peak bandwidth
of the slower data channel. Also, only two packets are
needed to do pipelining by double buffering: one channel
receives the GPU packet to the host, while the other sends
the previous GPU packet over the network. We therefore
use two CUDA streams and two OpenCL command queues
per device per MPI request to facilitate pipelining.

The basic pipeline loop for a “send” operation is as follows
(“receive”works the sameway, but the direction of the opera-
tions is reversed). Every time we prepare to send a packet
over the network, we check for the completion of the previous
GPU-to-CPU transfer by calling cudaStreamSynchronize or a
loop of cudaStreamQuery for CUDA (or the corresponding
OpenCL calls). However, we found that the GPU synchroni-
zation/query calls on already completed CPU-GPU copies
caused a significant overhead in our experimental cluster,
which hurt the effective network bandwidth and forced us to

Fig. 2. Overhead of runtime checks incurred by intranode CPU-CPU
communication operations. The slowdown due to automatic detection
(via cuPointerGetAttribute) can be up to 205 percent (average: 127:8 per-
cent), while the slowdown for the datatype attribute check is at most 6:3
percent (average: 2:6 percent).

TABLE 1
Comparison of MPI-ACC with MVAPICH

MPI-ACC MVAPICH

GPU Buffer

Identification

MPI Datatype attributes void*

(UVA–based)

MPI+GPU Synch. Implicit Explicit

Method

Performance/Progress

for MPI+GPU Ops.

Automatic (through the

MPI implementation)

Manual (through the

programmer)

Software

Platforms

CUDA and OpenCL

(any version)

CUDA v4.0 and

newer only

Hardware

Platforms

AMD (CPU, GPU and APU),

NVIDIA GPU, Intel (CPU

and Xeon Phi), FPGA, etc

NVIDIA GPU only

Fig. 3. Choosing the pipeline parameters: network—InfiniBand, transfer
protocol – R3.
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choose a different pipeline packet size. For example, we mea-
sured the cost of stream query/synchronization operations as
approximately 20 ms, even though the data transfer had been
completed. Moreover, this overhead occurs every time a
packet is sent over the network, as shown in Fig. 3 by the
“Effective Network Bandwidth” line. We observed that the
impact of the synchronization overhead is huge for smaller
packet sizes but becomes negligible for larger packet sizes
(2 MB). Also, we found no overlap between the PCIe band-
width and the effective network bandwidth rates, and the
PCIe was always faster for all packet sizes. Thus, we picked
the smallest packet size that could achieve the peak effective
network bandwidth (in our case, 256 KB) as the pipeline
transfer size for MPI-ACC. Smaller packet sizes (< 256 KB)
caused the effective network bandwidth to be latency bound
and were thus not chosen as the pipeline parameters. In MPI-
ACC, we use the pipelining approach to transfer large mes-
sages—namely, messages that are at least as large as the cho-
sen packet size—and fall back to the nonpipelined approach
when transferring smallermessages.

4.2.2 OpenCL Issues and Optimizations

In OpenCL, device data is encapsulated as a cl mem object
that is created by using a valid cl context object. To transfer
the data to/from the host, the programmer needs valid
cl device id and cl command queue objects, which are all
created by using the same context as the device data. At a
minimum, the MPI interface for OpenCL communication
requires the target OpenCL memory object, context, and
device ID objects as parameters. The command queue
parameter is optional and can be created by using the above
parameters. Within the MPICH implementation, we either
use the user-provided command queue or create several
internal command queues for device-host data transfers.
Within MPICH, we also create a temporary OpenCL buffer
pool of pinned host-side memory for pipelining. However,
OpenCL requires that the internal command queues and
the pipeline buffers also be created by using the same con-
text as the device data. Moreover, in theory, the OpenCL
context could change for every MPI communication call,
and so the internal OpenCL objects cannot be created at
MPI Init time. Instead, they must be created at the beginning
of every MPI call and destroyed at the end of it.

The initialization of these temporary OpenCL objects is
expensive, and their repeated usage severely hurts perfor-
mance. We cache the command queue and pipeline buffer
objects after the first communication call and reuse them if
the same OpenCL context and device ID are used for the
subsequent calls, which is a plausible scenario. If any future
call involves a different context or device ID, we clear and
replace our cache with the most recently used OpenCL
objects. In this way, we can amortize the high OpenCL ini-
tialization cost across multiple calls and significantly
improve performance. We use a caching window of one,
which we consider to be sufficient in practice.

5 APPLICATION CASE STUDIES

In this section, we perform an in-depth analysis of the default
MPI+GPU application design in scientific applications from
computational epidemiology and seismology modeling. We

identify the inherent data movement inefficiencies and show
how MPI-ACC can be used to explore new design spaces
and create novel application-specific optimizations.

5.1 EpiSimdemics

GPU-EpiSimdemics [9], [10] is a high-performance, agent-
based simulation program for studying the spread of epidem-
ics through large-scale social contact networks and the coevo-
lution of disease, human behavior, and the social contact
network. The participating entities in GPU-EpiSimdemics are
persons and locations, which are represented as a bipartite
graph (Fig. 4a) and interact with one another iteratively over
a predetermined number of iterations (or simulation days).
The output of the simulation is the relevant disease statistics
of the contagion diffusion, such as the total number of
infected persons or an infection graph showing who infected
whom and the time and location of the infection.

5.1.1 Phases

Each iteration of GPU-EpiSimdemics consists of two phases:
computeVisits and computeInteractions. During the computeVi-
sits phase, all the person objects of every processing element
(or PE) first determine the schedules for the current day,
namely, the locations to be visited and the duration of each
visit. These visitmessages are sent to the destination location’s
host PE (Fig. 4a). Computation of the schedules is overlapped
with communication of the corresponding visit messages.

In the computeInteractions phase, each PE first groups the
received visit messages by their target locations. Next, each
PE computes the probability of infection transmission
between every pair of spatially and temporally colocated
people in its local location objects (Fig. 4b), which deter-
mines the overall disease spread information of that loca-
tion. The infection transmission function depends on the
current health states (e.g., susceptible, infectious, latent) of
the people involved in the interaction (Fig. 4c) and the trans-
missibility factor of the disease. These infectionmessages are
sent back to the “home” PEs of the infected persons. Each
PE, upon receiving its infection messages, updates the
health states of the infected individuals, which will influ-
ence their schedules for the following simulation day. Thus,
the messages that are computed as the output of one phase

Fig. 4. Computational epidemiology simulation model (figure adapted
from [9]).
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are transferred to the appropriate PEs as inputs of the next
phase of the simulation. The system is synchronized by bar-
riers after each simulation phase.

5.1.2 Computation-Communication Patterns and MPI-

ACC-Driven Optimizations

In GPU-EpiSimdemics, each PE in the simulation is imple-
mented as a separate MPI process. Also, the computeInterac-
tions phase of GPU-EpiSimdemics is offloaded and
accelerated on the GPU while the rest of the computations
are executed on the CPU [10]. The current implementation of
GPU-EpiSimdemics assumes one-to-one mapping of GPUs
to MPI processes. In accordance with the GPU-EpiSimdem-
ics algorithm, the output data elements from the computeVi-
sits phase (i.e., visit messages) are first received over the
network, then merged, grouped, and preprocessed before
the GPU can begin the computeInteractions phase of GPU-
EpiSimdemics. Moreover, there are two GPU computation
modes depending on how the visit messages are processed
on the GPUs. In this paper, we discuss the exclusive GPU
computation mode, but discussion of the cooperative CPU-
GPU computationmode can be found in our prior work [27].

Preprocessing phase on the GPU. As a preprocessing step in
the computeInteractions phase, we modify the data layout of
the visit messages to be more amenable to the massive paral-
lel architecture of the GPU [10]. Specifically, we unpack the
visit message structures to a 2D time-bin matrix, where each
row of the matrix represents a person-location pair and the
cells in the row represents fixed time slots of the day: that is,
each visit message corresponds to a single row in the person-
timeline matrix. Depending on the start time and duration of
a person’s visit to a location, the corresponding row cells are
marked as visited. The preprocessing logic of data unpacking
is implemented as a separate GPU kernel at the beginning of
the computeInteractions phase. Thematrix data representation
enables a much better SIMDization of the computeInteractions
code execution, which significantly improves the GPU per-
formance. However, we achieve the benefits at the cost of a
larger memory footprint for the person-timeline matrix, as
well as a computational overhead for the data unpacking.

Basic MPI+GPU communication-computation pipeline. In
the na€ıve data movement approach, in each PE, we receive
the visit messages in the main memory during the compute-
Visits phase, transfer the aggregate data to the local GPU
(device) memory across the PCIe bus, and then begin the

preprocessing step of the computeInteractions phase (Fig. 5).
While all PEs communicate the visit messages with every
other PE, the number of pairwise visit message exchanges is
not known beforehand; in other words, it is not a typical col-
lective all-to-all or a scatter/gather operation. On the other
hand, each PE preallocates CPU buffer fragments and regis-
ters them as persistent receive requests with the MPI library
by using the MPI_Recv_init call to enable persistent
point-to-point communication among the PEs. Moreover,
each PE has to create persistent CPU receive buffers corre-
sponding to every other participating PE in the simulation;
that is, receive buffers increase with number of PEs and can-
not be reused from a constant buffer pool.

Whenever a buffer fragment is received into the corre-
sponding receive buffer, it is copied into a contiguous visit
vector in the CPU’s main memory. The computeInteractions
phase of the simulation then copies the aggregated visit vec-
tor to the GPU memory for preprocessing. While the CPU-
CPU communication of visit messages is somewhat over-
lapped with their computation on the source CPUs, the
GPU and the PCIe bus will remain idle until the visit mes-
sages are completely received, merged, and ready to be
transferred to the GPU.

Advanced MPI+GPU communication-computation pipeline.
In this optimization, we still preallocate persistent receive
buffers on the CPU in each PE and register them with the
MPI library as the communication endpoints by calling
MPI_Recv_init. But, we create the contiguous visit vector
in GPU memory, so that whenever a PE receives a visit
buffer fragment on the CPU, we immediately enqueue an
asynchronous CPU-GPU data transfer to the contiguous
visit vector and also enqueue the associated GPU prepro-
cessing kernels, thereby manually creating the communica-
tion-computation pipeline (Fig. 5).

In order to enable asynchronous CPU-GPU data trans-
fers, however, the persistent receive buffers must be nonp-
ageable (pinned) memory. Also, since the number of receive
buffers increases with the number of PEs, the pinned mem-
ory footprint also increases with the number of PEs. This
design reduces the available pageable CPU memory, a situ-
ation that could lead to poor CPU performance [6].

The pinned memory management logic can be imple-
mented at the application level in a couple of ways. In the
first approach, the pinned memory pool is created before
the computeVisits phase begins and is destroyed once
the phase finishes, but the memory management routines
are invoked every simulation iteration. While this approach
is relatively simple to implement, repeated memory man-
agement leads to significant performance overhead. In the
second approach, the pinned memory pool is created once,
before the main simulation loop, and is destroyed after the
loop ends, thus avoiding the performance overhead of
repeated memory management. However, this design
reduces the available pageable CPU memory, not only for
the computeVisits phase, but also for the other phases of the
simulation, including computeInteractions. We discuss the
performance tradeoffs of these two memory management
techniques in Section 6.2.

MPI-ACC–enabled communication-computation pipeline.
Since MPI-ACC handles both CPU and GPU buffers, in
each PE we preallocate persistent buffer fragments on the

Fig. 5. Exclusive GPU computation mode of GPU-EpiSimdemics. Left:
manual MPI+CUDA design. Right: MPI-ACC–enabled design, where the
visit messages are transferred and preprocessed on the device in a
pipelined manner.
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GPU and register them with the MPI library by using
MPI_Recv_init. Without MPI-ACC’s GPU support, one
cannot create persistent buffers on the GPU as MPI commu-
nication endpoints. In this approach, the receive buffers on
the GPU increase with number of PEs, and the approach
does not require a growing pinned memory pool on the
host. Furthermore, MPI-ACC internally creates a constant
pool of pinned memory during MPI_Init and automati-
cally reuses it for all pipelined data communication, thereby
providing better programmability and application scalabil-
ity. Internally, MPI-ACC may either pipeline the internode
CPU-GPU data transfers via the host CPU’s memory or use
direct GPU transfer techniques (e.g., GPUDirect RDMA), if
possible; but these details are hidden from the programmer.

Along with the preallocated persistent GPU buffer frag-
ments, the contiguous visit vector is created in the GPU
memory itself. As soon as a PE receives the visit buffer
fragments on the GPU, we enqueue kernels to copy data
within the device to the contiguous visit vector and also
enqueue the associated GPU preprocessing kernels, thereby
creating the end-to-end communication-computation pipe-
line. Thus, we completely overlap the visit data generation
on the CPU with internode CPU-GPU data transfers and
GPU preprocessing. In this way, the preprocessing over-
head is completely hidden and removed from the compu-
teInteractions phase. Moreover, the CPU, GPU, and the
interconnection networks are all kept busy, performing
either data transfers or the preprocessing execution.

MPI-ACC’s internal pipelined CPU-GPU data transfer
largely hides the PCIe transfer latency during the compute-
Visits phase. However, it still adds a non-negligible cost to
the overall communication time when compared with the
CPU-CPU data transfers of the default MPI+GPU imple-
mentation. Nevertheless, our experimental results show
that the gains achieved in the computeInteractions phase due
to the preprocessing overlap outweigh the communication
overheads of the computeVisits phase for all system configu-
rations and input data sizes.

In summary, MPI-ACC helps the programmer focus on
the high-level application logic by enabling automatic and
efficient low-level memory management techniques. More-
over, MPI-ACC exposes a natural interface to communicate
with the target device (CPU or GPU), without treating
CPUs as explicit communication relays.

5.2 FDM-Seismology

FDM-Seismology is ourMPI+GPU hybrid implementation of
an application that models the propagation of seismological
waves using the finite-difference (FD) method by taking the
Earth’s velocity structures and seismic source models as
input [11]. The application implements a parallel velocity-
stress, staggered-grid finite-difference method for propaga-
tion of waves in a layered medium. In this method, the
domain is divided into a three-dimensional grid, and a one-
point-integration scheme is used for each grid cell. Since the
computational domain is truncated in order to keep the com-
putation tractable, absorbing boundary conditions (ABCs)
are placed around the region of interest so as to keep the
reflections minimal when boundaries are impinged by the
outgoing waves. This strategy helps simulate unbounded
domains. In our application, PML (perfectly matched layers)

absorbers [28] are being used as ABCs for their superior effi-
ciency and minimal reflection coefficient. The use of a one-
point integration scheme leads to an easy and efficient imple-
mentation of the PML absorbing boundaries and allows the
use of irregular elements in the PML region [11].

5.2.1 Computation-Communication Patterns

The simulation operates on the input finite-difference model
and generates a three-dimensional grid as a first step. Our
MPI-based parallel version of the application divides the
input FD model into submodels along different axes such
that each submodel can be computed on different CPUs (or
nodes). This domain decomposition technique helps the
application scale to a large number of nodes. Each processor
computes the velocity and stress wavefields in its own sub-
domain and then exchanges the wavefields with the nodes
operating on neighbor subdomains, after each set of velocity
or stress computation (Fig. 6). Each processor updates its
own wavefields after receiving all its neighbors’ wavefields.

These computations are run multiple times for better
accuracy and convergence of results. In every iteration, each
node computes the velocity components followed by the
stress components of the seismic wave propagation. The
wavefield exchanges with neighbors take place after each
set of velocity and stress computations. This MPI communi-
cation takes place in multiple stages wherein each commu-
nication is followed by an update of local wavefields and a
small postcommunication computation on local wavefields.
At the end of each iteration, the updated local wavefields
are written to a file.

The velocity and stress wavefields are stored as large
multidimensional arrays on each node. In order to optimize
the MPI computation between neighbors of the FD domain
grid, only a few elements of the wavefields, those needed
by the neighboring node for its own local update, are com-
municated to the neighbor, rather than whole arrays. Hence,
each MPI communication is surrounded by data-marshaling
steps, where the required elements are packed into a
smaller array at the source, communicated, and then
unpacked at the receiver in order to update its local data.

5.2.2 GPU Acceleration of FDM-Seismology

We describe a couple of GPU execution modes of FDM-
Seismology.

Fig. 6. Communication-computation pattern in the FDM-Seismology
application. Left: basic MPI+GPU execution mode with data marshaling
on CPU. Right: execution modes with data marshaling on GPU. MPI-
ACC automatically communicates the GPU data; the MPI+GPU Adv
case explicitly stages the communication via the CPU.
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MPI+GPU with data marshaling on CPU (MPI+GPU). Our
GPU-accelerated version of FDM-Seismology performs the
velocity and stress computations as GPU kernels. In order to
transfer the wavefields to other nodes, it first copies the bulk
data from the GPU buffers to CPU memory over the PCIe
bus and then transfers the individual wavefields over MPI to
the neighboring nodes (Fig. 6). All the data-marshaling oper-
ations and small postcommunication computations are
performed on the CPU itself. The newly updated local wave-
fields that are received over MPI are then bulk transferred
back to the GPU before the start of the next stress or velocity
computation on the GPU.

MPI+GPU with data marshaling on GPU (MPI+GPU Adv).
In this execution mode, the data-marshaling operations are
moved to the GPU to leverage the faster GDDR5 memory
module and the massively parallel GPU architecture. Con-
sequently, the CPU-GPU bulk data transfers before and
after each velocity-stress computation kernel are completely
avoided. The need to explicitly bulk transfer data from the
GPU to the CPU arises only at the end of the iteration, when
the results are transferred to the CPU to be written to a file
(Fig. 6).

5.2.3 MPI-ACC-Enabled Optimizations

GPU-based data marshaling suffers from the following dis-
advantage in the absence of GPU-integrated MPI. All data-
marshaling steps are separated by MPI communication, and
each data-marshaling step depends on the previously mar-
shaled data and the received MPI data from the neighbors.
In other words, after each data-marshaling step, data has to
be explicitly moved from the GPU to the CPU only for MPI
communication. Similarly, the received MPI data has to be
explicitly moved back to the GPU before the next marshal-
ing step. In this scenario, the application uses the CPU only
as a communication relay. If the GPU communication tech-
nology changes (e.g., GPUDirect RDMA), we will have to
largely rewrite the FDM-Seismology communication code
to achieve the expected performance.

With MPI-ACC as the communication library, we still
perform data marshaling on the GPU, but we communicate
the marshaled data directly to and from the GPU without
explicitly using the CPU for data staging. Also, the bulk
transfer of data still happens only once at the end of each
iteration, in order to write the results to a file. But, the data-
marshaling step happens multiple times during a single
iteration; and consequently the application launches a series
of GPU kernels. While consecutive kernels entail launch
and synchronization overhead per kernel invocation, the
benefits of faster data marshaling on the GPU and opti-
mized MPI communication outweigh the kernel overheads.

Other than the benefits resulting from GPU-driven data
marshaling, a GPU-integrated MPI library benefits the
FDM-Seismology application in the following ways: (1) it
significantly enhances the productivity of the programmer,
who is no longer constrained by the fixed CPU-only MPI
communication and can easily choose the appropriate
device as the communication target end-point; (2) the pipe-
lined data transfers within MPI-ACC further improve the
communication performance over the network; and
(3) regardless of the GPU communication technology that

may become available in the future, our MPI-ACC–driven
FDM-Seismology code will not change and will automati-
cally benefit from the performance upgrades that are made
available by the subsequent GPU-integrated MPI imple-
mentations (e.g., support for GPU-Direct RDMA).

6 EVALUATION

In this section, we describe our experimental setup followed
by the performance evaluation of MPI-ACC via latency
microbenchmarks. Next, we demonstrate the efficacy of the
MPI-ACC–enabled optimizations in GPU-EpiSimdemics
and FDM-Seismology. Using both microbenchmarks and
GPU-EpiSimdemics, we discuss the impact of shared
resource (hardware and software) contention on MPI-
ACC’s communication performance.

We conducted our experiments on HokieSpeed, a state-of-
the-art, 212-teraflop hybrid CPU-GPU supercomputer
housed at Virginia Tech. Each HokieSpeed node contains
two hex-core Intel Xeon E5645 CPUs running at 2.40 GHz
and two NVIDIA Tesla M2050 GPUs. The host memory
capacity is 24 GB, and each GPU has a 3 GB device memory.
The internode interconnect is QDR InfiniBand. We used up
to 128 HokieSpeed nodes and both GPUs per node for our
experiments. We used the GCC v4.4.7 compiler and
CUDA v5.0 with driver version 310.19.

6.1 Microbenchmark Analysis

Impact of Pipelined Data Transfer: In Fig. 7, we compare the
performance of MPI-ACC with the manual blocking and
manual pipelined implementations. Our internode GPU-to-
GPU latency tests show that MPI-ACC is better than the
manual blocking approach by up to 48:3 percent and is up
to 18:2 percent better than the manual pipelined implemen-
tation, especially for larger data transfers. The manual pipe-
lined implementation repeatedly invokes MPI calls, causing
multiple handshake messages to be sent back and forth
across the network and thus hurting performance. On the
other hand, we perform the handshake only once in MPI-
ACC to establish the send-receiver identities, followed by
low-overhead pipelining. We perform pipelining in MPI-
ACC only for messages that are larger than the pipeline
packet size, and we fall back to the default blocking
approach for smaller data sizes. Hence, we see that the per-
formance of MPI-ACC is comparable to the manual block-
ing approach for smaller message sizes.

Fig. 7. Internode communication latency for GPU-to-GPU (CUDA) data
transfers, InfiniBand transfer protocol: R3. Similar performance is
observed for OpenCL data transfers. The chosen pipeline packet size
for MPI-ACC is 256 KB.
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Impact of OpenCL Object Caching. Our OpenCL caching
optimization improves the internode GPU-to-GPU commu-
nication latency from 3 percent for larger data sizes (64 MB)
to 88.7 percent for smaller data sizes (< 256 KB). Evenwhere
the programmers provide their custom command queue, the
pipeline buffers still have to be created for every MPI com-
munication call; hence, caching improves performance.

6.2 Case Study Analysis: EpiSimdemics

We compare the combined performance of all the phases of
GPU-EpiSimdemics (computeVisits and computeInteractions),
with and without the MPI-ACC–driven optimizations dis-
cussed in Section 5.1.2. We choose different-sized input
datasets of synthetic populations from two U.S. states:
Washington (WA), with a population of 5.7 million, and
California (CA), with a population of 33.1 million. In this
paper, we present results and detailed analysis of WA; anal-
ysis of CA is described in our prior work [27]. We also vary
the number of compute nodes from 8 to 128 and the number
of GPU devices between 1 and 2. We begin from the small-
est node-GPU configuration that can fit the entire problem
in the available GPUmemory. We also compare the applica-
tion performance when MVAPICH (v2.0a) is used as the
GPU-aware MPI implementation of choice.

Our results in Fig. 8 indicate that our MPI-ACC–driven
optimizations perform better than the basic blocking MPI
+GPU implementations by an average of 9.2 percent and by
up to 13.3 percent for WA. The performance of the MPI-
ACC–driven solution is similar to the performance of the
MVAPICH-based and the manual MPI+GPU (advanced)
implementations. Since the CPU-GPU transfer is not a bottle-
neck in GPU-EpiSimdemics, the specific data pipelining
logic of either MPI-ACC or MVAPICH does not directly
affect the performance gains. On the other hand, the prepro-
cessing step (data unpacking) of the computeInteractions
phase is completely overlapped with the asynchronous
CPU-to-remote-GPU communication, for all node configura-
tions. Note that the advanced MPI+GPU implementation
uses the manual pinned memory management techniques
that we implemented at the application level, which achieves
better performance but with amuchmore complex code.

For larger node configurations, the local operating dataset
in the computeInteractions phase becomes smaller, and hence
that the basic MPI+GPU solution takes less time to execute
the preprocessing stage; in other words, the absolute gains
achieved by hiding the preprocessing step get diminished
for GPU-EpiSimdemics. However, we have shown that

MPI-ACC can enable the developer to create newer optimi-
zations for better latency hiding and resource utilization.

Data management complexity versus performance tradeoffs.
While the advanced MPI+GPU implementation achieved
comparable performance to the MPI-ACC–based solution, it
put the burden of explicit data management on the applica-
tion programmer. We discussed in Section 5.1.2 that, on the
other hand, the user can write simpler code and avoid
explicit data management but has to repeatedly create and
destroy the receive buffers for every simulation iteration,
thereby losing performance. Fig. 9 shows the performance
tradeoffs of the two approaches. We observe that explicit
data management is better for all node configurations and
can achieve up to 4:5� performance improvement. Without
data management, the pinned memory footprint of the
receive buffers increases with the number of MPI processes,
thereby entailing bigger performance losses for larger
nodes. To quantify the degree of performance loss, we mea-
sured the individual memory allocation costs using simple
microbenchmarks and found that CUDA’s pinned memory
allocator (cudaMallocHost) was about 26 percent slower
than the vanilla CPU memory allocator (malloc) for single
CUDA contexts. We also observed that the pinned memory
allocation cost increased linearly with the number of GPUs
or CUDA contexts, whereas memory management in multi-
ple processes and CUDA contexts should ideally be han-
dled independently in parallel. Consequently, in Fig. 9, we
see that for the same number of MPI processes, the node
configuration with two MPI processes (or GPUs) per node
performs worse than the node with a single MPI process;
for example, the 64� 2 configuration is slower than the
128� 1 one. Thus, efficient pinned memory management is
essential for superior performance, and MPI-ACC provides
that automatically to the programmers.

Discussion. The basic MPI+GPU solution has preprocess-
ing overhead but does not have significant memorymanage-
ment issues. While the advancedMPI+GPU implementation
gains from hiding the preprocessing overhead, it loses from
either nonscalable pinned memory management or poor
programmer productivity. On the other hand, MPI-ACC
provides a more scalable solution by (1) automatically man-
aging a fixed-size pinned buffer pool for pipelining and
(2) creating buffer pools just once at MPI_Init and destroy-
ing them at MPI_Finalize. MPI-ACC thus gains from both
hiding the preprocessing overhead and efficient pinned
memory management. MPI-ACC decouples the lower-level

Fig. 8. Execution profile of GPU-EpiSimdemics over various node
configurations.

Fig. 9. Analysis of the data management complexity versus performance
tradeoffs. Manual data management achieves better performance at the
cost of high code complexity. The case with no explicit data manage-
ment has simpler code but performs poorly.
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memory management logic from the high-level simulation
implementation, thereby enabling both performance and
productivity.

6.3 Case Study Analysis: FDM-Seismology

In this section, we analyze the performance of the different
phases of the FDM-Seismology application and evaluate the
effect of MPI-ACC and MVAPICH on the application. FDM-
Seismology is implemented with both CUDA and OpenCL,
and while MPI-ACC is evaluated using both CUDA and
OpenCL, MVAPICH can be evaluated only with the CUDA-
based code. We vary the nodes from 2 to 128 with 1 GPU per
node and use small and large datasets as input. Our scalabil-
ity experiments begin from the smallest number of nodes
required to fit the given data in the device memory. For the
larger input data (i.e., Dataset-2), the size of theMPI transfers
increases by 2�, while the size of data to be marshaled
increases by 4�when comparedwith the smaller Dataset-1.

Fig. 10 shows the performance of the FDM-Seismology
application, with and without the GPU-based data marshal-
ing. We report the average wall-clock time across all the
processes because the computation-communication costs
vary depending on the virtual location of the process in
the application’s structured grid representation. The
application’s running time is composed mainly of velocity
and stress computations (> 60 percent) and does not change
for the three application designs.

In the basic MPI+GPU case, we perform both data-
marshaling operations and MPI communication from the
CPU. Thus, the application has to move large wavefield
data between the CPU and the GPU for data marshaling
and MPI communication after every stress and velocity
computation phase over every iteration. In the MPI+GPU
Adv, MVAPICH, and MPI-ACC–driven scenarios, we per-
form data marshaling on the GPU itself; hence, smaller-
sized wavefield data is transferred from the GPU to the
CPU only once per iteration for output generation. By per-
forming data marshaling on the GPU, we avoid the large
bulk CPU-GPU data transfers and improve the overall per-
formance over the basic MPI+GPU design with data
marshaling on the CPU. Data marshaling on the GPU pro-
vides performance gains while MPI-ACC improves pro-
grammer productivity by directly communicating the GPU
buffers (CUDA/OpenCL) in the application.

Scalability analysis. Fig. 11 shows the performance
improvement due to the MPI-ACC–enabled GPU data
marshaling strategy over the basic MPI+GPU implementa-
tion with CPU data marshaling. We see that the perfor-
mance benefits due to the GPU data marshaling decrease
with increasing number of nodes, because of the following
reasons. For a given dataset, the per-node data size
decreases with increasing number of nodes. Thus, the costly
CPU-GPU bulk data transfers are reduced (Fig. 10), and the
overall benefits of GPU-based data marshaling itself are
minimized. Also, for a larger number of nodes, the
application’s MPI communication cost becomes significant
when compared with the computation and data marshaling
costs. In such a scenario, the CPU-to-CPU MPI communica-
tion of the MPI+GPU and MPI+GPU Adv implementations
will have less overhead than does the pipelined GPU-to-
GPU MPI communication of the MPI-ACC–enabled design.
If newer technologies such as GPUDirect-RDMA are inte-
grated into MPI, we can expect the GPU-to-GPU communi-
cation overhead to be reduced, but the overall benefits of
GPU data marshaling itself will still be limited because of
the reduced per-process working set.

7 ANALYSIS OF CONTENTION

In this section, we provide some insights into the scalable
design of MPI-ACC. Specifically, we show that MPI-ACC is
designed to work concurrently with other existing GPU
workloads with minimum contention; that is, one should be
able to perform MPI-ACC GPU-GPU communication and
other user-specified GPU tasks (kernel or data transfers)
simultaneously with minimum performance degradation
for both tasks. We analyze the contention effects of MPI-
ACC, MVAPICH and manual MPI+GPU on concurrent
GPU and PCIe workloads.

Sources of contention. NVIDIA Fermi GPUs have one
hardware queue each for enqueueing GPU kernels, D2H
data transfers, and H2D data transfers. Operations on dif-
ferent hardware queues can potentially overlap. For exam-
ple, a GPU kernel can overlap with H2D and D2H transfers
simultaneously. However, operations enqueued to the same
hardware queue will be processed serially. If a GPU task
oversubscribes a hardware queue by aggressively enqueue-
ing multiple operations of the same type, then it can
severely slow other GPU tasks contending to use the same
hardware queue.

GPU streams are software workflow abstractions for a
sequence of operations that execute in issue-order on the
GPU. Stream operations are directed to the appropriate
hardware queue depending on the operation type. Opera-
tions from different streams can execute concurrently and

Fig. 10. Analyzing the FDM-Seismology application with the larger input
data (Dataset-2). Note that MPI Communication refers to CPU-CPU
data transfers for the MPI+GPU and MPI+GPU Adv cases and GPU-
GPU (pipelined) data transfers for MPI-ACC and MVAPICH. The perfor-
mance difference between MPI-ACC(CUDA) and MPI-ACC(OpenCL) is
negligible and only the MPI-ACC(CUDA) result is shown in this figure.

Fig. 11. Scalability analysis of FDM-Seismology application with
two datasets of different sizes. The baseline for speedup is the na€ıve
MPI+GPU programming model with CPU data marshaling.
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may be interleaved, whereas operations within the same
stream are processed serially, leading to software contention.

In summary, contention among GPU operations can be of
two types: hardware contention, where one or more hard-
ware queues of the GPU are oversubscribed by the same
type of operation, or software contention, where different
types of operations may be issued but to the same GPU
stream. In MPI-ACC, we have carefully minimized both
types of contention by staggered enqueueing of H2D and
D2H operations to different GPU streams, thereby enabling
maximum concurrency.

Microbenchmark design. We extended the SHOC bench-
mark suite’s contention-mt application for the microbe-
nchmark study. The benchmark creates two MPI processes,
each on a separate node and controlling the two local GPUs.
Each MPI process is also dual-threaded and concurrently
runs one task per thread, where task-0 by thread-0 does
point-to-point GPU-to-GPU MPI communication with the
other process and task-1 by thread-1 executes local non-MPI
GPU tasks, such as compute kernels or H2D and D2H data
transfer loops. CUDA allows the same GPU context to be
shared among all the threads (tasks) in the process. We share
the local GPU between both tasks. Tomeasure the contention
impact, we first execute tasks 0 and 1 independently without
contention and then execute them concurrently to induce
contention. Each task is run for 100 loop iterations for both
the independent and concurrent runs. We measure and
report the performance difference between the tasks’ inde-
pendent and concurrent runs as the incurred contention.

7.1 Discussion of Software Contention

CUDA’s stream-0 (default stream) is unique in that it is
completely ordered with all operations issued on any
stream of the device. That is, issuing operations on stream-0
would be functionally equivalent to synchronizing the
entire device before and after each operation. Although
MPI-ACC privately creates and uses custom streams to min-
imize software contention with other streams, a concurrent
user operation to stream-0 can inadvertently stall any MPI-
ACC operation on that GPU until stream-0 has completed.
On the other hand, OpenCL does not have special queues
and does not incur software contention.

Contention due to stream-0 can be seen even in GPU-
EpiSimdemics, and we analyze its effect as follows. In GPU-
EpiSimdemics, the internode CPU-GPU communication of
the visit messages is overlapped with a preprocessing kernel
that performs data layout transformation (Section 5.1).While

we use non-0 streams within MPI-ACC for the internode
communication of visit messages, the preprocessing kernel
may be launched with the user’s chosen CUDA stream.
Fig. 12 shows that the performance of GPU-EpiSimdemics is
about 6.6 percent slower when the preprocessing kernels use
stream-0 instead of a non-0 stream, and the slowdown can be
up to 16.3 percent for some node configurations. While MPI-
ACC’s streams are designed to scale, a poor application
design using stream-0 can cause an apparent slowdown in
MPI-ACC’s data transfer performance.

7.2 Minimizing the Hardware Contention

MPI-ACC uses the D2H and H2D hardware queues of the
GPU for send and receive, respectively. In theory, MPI-
ACC communication can overlap with kernel invocations
or other data transfer operations in the opposite direction,
that is, using the other data transfer queue. However, MPI-
ACC can cause contention with another data transfer opera-
tion in the same direction. For example, MPI_Send can con-
tend with a concurrent D2H data transfer. MPI-ACC
operations can also potentially contend with the on-device
memory controller. For example, MPI_Send or MPI_Recv

can slow a global-memory-intensive kernel that is accessing
the same memory module. In this section, we quantify and
evaluate the global memory and PCIe contention effects.

Global memory contention analysis. We study the impact of
global memory contention by executing MPI-ACC opera-
tions in task-0 and global memory read/write benchmarks
in task-1 with custom CUDA streams. Our experiments
indicate that the performance drop due to contention in the
MPI-ACC communication is about 4 percent, whereas the
global memory kernels slow by about 8 percent. The aver-
age MPI-ACC call runs longer than an average global mem-
ory access, so MPI-ACC has less relative performance
reduction. On the other hand, the performance impact of
MPI-ACC on on-chip (local) memory accesses and simple
computational kernels using custom CUDA streams is less,
where the performance degradation in the MPI-ACC com-
munication is about 3 percent and the GPU workloads do
not have any noticeable slowdown. Because of space con-
straints, we omit explicit performance graphs.

PCIe contention analysis with data transfers in the opposite
direction. We study the impact of PCIe contention by having
task-0 perform MPI_Send or MPI_Recv communication
operations with GPU-0, while task-1 executes H2D or D2H
calls. This approach gives four different task combinations,
of which two combinations perform bidirectional data
transfers and two combinations transfer data in the same
direction. In this paper, we report the results by running
MPI_Send (task-0) concurrently with H2D and D2H trans-
fers on the same GPU (task-1). The contention analysis of
MPI_Recv with H2D and D2H transfers is identical, and
we exclude it because of space constraints. If task-0 and
task-1 perform bidirectional data transfers and use custom
CUDA streams, then we find that the average slowdown of
task-0 is 6 percent and the H2D task (task-1) has a negligible
slowdown. Ideally, if the bidirectional bandwidth were to
be twice the unidirectional bandwidth, then both the con-
current tasks would have no slowdown. In our experimen-
tal platform, however, the bidirectional bandwidth is only
about 19.3 percent more than the unidirectional bandwidth

Fig. 12. Characterizing the contention impact of CUDA’s stream-0 in
GPU-EpiSimdemics.
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according to the simpleMultiCopy CUDA SDK bench-
mark. Thus, task-0’s slowdown is due to slower bidirec-
tional bandwidth and not due to any possible MPI-ACC–
related contention effects.

PCIe contention analysis with data transfers in the same
direction. For this study, we analyze contention effects when
MPI_Send (task-0) is invoked concurrently with standalone
D2H transfers on the same GPU (task-1). We analyze the
contention impacts of three MPI_Send implementations:
MPI-ACC, MVAPICH, and manual pipelining using asyn-
chronous MPI and CUDA. Since the Fermi GPUs have a sin-
gle data transfer hardware queue in each direction, a task
that oversubscribes the GPU can significantly slow any
other task that uses the same queue. In fact, we show that
MPI-ACC induces less contention than MVAPICH and the
manual asynchronous MPI+GPU approaches of GPU data
communication. We show that MPI-ACC enqueues com-
mands to the GPU hardware queue in a balanced manner,
thereby minimizing the apparent performance slowdown in
the D2H task (task-1) while incurring a modest slowdown
to the MPI communication (task-0) itself.

Fig. 13a shows the relative increase in the MPI latency
due to contention from the D2H task. For this experiment,
the D2H task consistently transfers 16 MB between the
device and the host, whereas the data size for the MPI task
is varied. MPI-ACC shows a maximum slowdown of about
5 percent for relatively small MPI data transfers, and the
slowdown for larger MPI data transfers is negligible, on
average. The other implementations demonstrate less to
negligible slowdown for all data sizes.

Fig. 13b shows the normalized bandwidth of the D2H
task when run concurrently with MPI. For this experiment,
the MPI task consistently performs 16 MB GPU-GPU data
transfers across the network, whereas the data size for the
local D2H task is varied. We see that MPI-ACC causes a
maximum performance slowdown of 3:8 percent to the
D2H task for relatively small data, and the performance
slowdown for larger D2H data sizes is negligible. However,
MVAPICH and the manual asynchronous MPI+GPU imple-
mentation causes a slowdown of about 18 percent for

smaller D2H data transfers. This result indicates that MPI-
ACC enqueues GPU tasks to the hardware queues in a
more balanced manner, whereas MVAPICH may oversub-
scribe the hardware queues thereby causing significant per-
formance variations to the other GPU tasks.

HPCToolkit analysis. HPCTOOLKIT [29], [30] is a sampling-
based performance analysis toolkit capable of quantifying
scalability bottlenecks in parallel programs. We use
HPCTOOLKIT’s Hpctraceviewer interface to understand
why MPI-ACC causes less contention than the manual MPI
+GPU implementations do. Hpctraceviewer renders
hierarchical, timeline-based visualizations of parallel hybrid
CPU-GPU programs. Fig. 14 presents screenshots of the
detailed execution profile of our contention benchmark. The
hpctraceviewer tool presents the timeline information of
all CPU processes, threads, and their corresponding CUDA
streams. However, we zoom in and show only the timelines
of the relevant CUDA streams associated with both tasks of
the 0th process. The other process exhibits identical behav-
ior and is excluded from the figure.

Fig. 14a shows the effect of MPI-ACC’s send operation
interacting with the D2H data transfers of task-1. Since both
tasks issue D2H commands and there is only one D2H
queue on Fermi, we can see that only one of the CUDA
streams is active at any given point in time. Moreover, the
MPI-ACC’s pipelining logic has been designed to issue
GPU commands only when the next pipeline stage is ready.
This design does not oversubscribe the GPU and leads to
balanced execution, which can be seen by the interleaved
bars in the MPI-related timeline. Fig. 14b depicts the conten-
tion effect of the manual pipelined MPI+GPU implementa-
tion. In this example implementation, we enqueue all the
pipeline stages upfront, which is an acceptable design for
standalone point-to-point communication. This design
oversubscribes the GPU, however, and can be seen as clus-
ters of bars in the MPI-related timeline. Of course, if one
designs the manual MPI+GPU implementation similar to
our MPI-ACC design, then the associated timeline figure
will look like Fig. 14a. Since the manual MPI+GPU imple-
mentation is more aggressive in enqueuing GPU operations,

Fig. 13. Impact of contention due to concurrent MPI_Send and local
D2H GPU operations. MPI-ACC is evaluated against MVAPICH and the
manual MPI+GPU implementations.

Fig. 14. Using HPCTOOLKIT to understand the contention impacts of MPI-
ACC and local GPU data transfer operations.

1412 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 5, MAY 2016



the D2H operations of task-1 tend to wait more. That is why,
on average, MPI-ACC causes the least performance pertur-
bation to the D2H task (Fig. 13b).

7.3 Summary

In this section, we provided insights into the scalable design
of MPI-ACC and compared its performance with MVA-
PICH and manual MPI+GPU implementations. Specifically,
we showed that MPI-ACC delivers maximum concurrency
by carefully ordering multiple GPU streams and efficiently
balancing the H2D and D2H hardware queues for data
pipelining, without oversubscribing the GPU resource.

8 CONCLUSION

In this paper, we introduced MPI-ACC, an integrated and
extensible framework that allows end-to-end data move-
ment in accelerator-connected systems. We discussed
MPI-ACC’s API design choices and a comprehensive set
of optimizations including data pipelining and buffer
management. We studied the efficacy of MPI-ACC for sci-
entific applications from the domains of epidemiology
(GPU-EpiSimdemics) and seismology (FDM -Seismology),
and we presented the lessons learned and tradeoffs. We
found that MPI-ACC’s internal pipeline optimization not
only helps improve the end-to-end communication perfor-
mance but also enables novel optimization opportunities
at the application level, which significantly enhance the
CPU-GPU and network utilization. With MPI-ACC, one
can naturally express the communication target without
explicitly treating the CPUs as communication relays.
MPI-ACC decouples the application logic from the low-
level GPU communication optimizations, thereby signifi-
cantly improving scalability and application portability
across multiple GPU platforms and generations.
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