
Supporting Efficient Execution in Heterogeneous
Distributed Computing Environments with Cactus

and Globus

Gabrielle Allen∗

Thomas Dramlitsch∗ Ian Foster†‡ Nicholas T. Karonis§†

Matei Ripeanu‡ Edward Seidel∗ Brian Toonen†

Abstract
Improvements in the performance of processors and networks make it both

feasible and interesting to treat collections of workstations, servers, clusters,
and supercomputers as integrated computational resources, or Grids. How-
ever, the highly heterogeneous and dynamic nature of such Grids can make
application development difficult. Here we describe an architecture and pro-
totype implementation for a Grid-enabled computational framework based on
Cactus, the MPICH-G2 Grid-enabled message-passing library, and a variety
of specialized features to support efficient execution in Grid environments. We
have used this framework to perform record-setting computations in numer-
ical relativity, running across four supercomputers and achieving scaling of
88% (1140 CPU’s) and 63% (1500 CPUs). The problem size we were able to
compute was about five times larger than any other previous run. Further, we
introduce and demonstrate adaptive methods that automatically adjust com-
putational parameters during run time, to increase dramatically the efficiency
of a distributed Grid simulation, without modification of the application and
without any knowledge of the underlying network connecting the distributed
computers.

1

* Max Planck Institute for Gravitational Physics, Golm, Germany
† Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL
‡ Department of Computer Science, The University of Chicago, Chicago, IL
§ Department of Computer Science, Northern Illinois University, DeKalb, IL
© 2001 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-
authored by a contractor or affiliate of the U.S. Government. As such, the Goverrnment retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.
SC2001 November 2001, Denver © 2001 ACM 1-58113-293-X/01/0011 $5.00

1 Introduction

A continued rapid evolution in both the sophistication of numerical simulation tech-
niques and the acceptance of these techniques by scientists and engineers fostered
rapid increase in demand for computing cycles. Particularly at the high end of the
scale, the supercomputer centers capable of supporting the most realistic simulation
studies are all grossly oversubscribed. And while commodity clusters are emerg-
ing as a promising lower-cost alternative to tightly integrated supercomputers, they
seem only to be spurring further demand.

Simultaneously, capabilities of both “low-end” computers and commodity net-
works are increasing rapidly, to the point where a typical research or engineering
institution will soon include large numbers of gigaflop/s workstations connected
by gigabit/s networks, in addition to the usual collection of high-end servers and
clusters. It thus becomes feasible and indeed interesting to think of the high-end
computing environment as an integrated “computational Grid” [11] rather than a
set of disjoint point sources. For this Grid to be widely useful, one must be able to
design applications that are flexible enough to exploit various ensembles of worksta-
tions, servers, commodity clusters, and true supercomputers, matching application
requirements and characteristics with Grid resources.

The need for such distributed techniques should be clear: the effective exploita-
tion of Grid computing environments could increase dramatically the accessibility
and scale of large-scale simulation. Simulations designed to include enough detailed
knowledge of the physics, chemistry, engineering, and so forth, that aim to accu-
rately represent some natural or manmade process, (e.g., collisions of neutron stars
or airflow around a space shuttle) are usually both memory and throughput bound.
Many fields in science and engineering (e.g., relativity, astrophysics, cosmology, tur-
bulence, heart modeling, rocket engine design) have computational needs ultimately
orders of magnitude beyond the capabilities of present machines. Indeed, the largest
supercomputers typically have too little memory to carry out realistic simulations in
such areas, or even if the memory are large enough for some problems, the computers
are rarely available to be dedicated to a single simulation. If one had applications
that could effectively harness computers at multiple sites, however, one could both
attack larger problems than currently can be tackled on the largest machines and
could dramatically speed throughput by enabling simulations that might saturate a
large existing machine to be carried out immediately on multiple machines.

The development of such Grid-enabled applications presents a significant chal-
lenge, however, because of the high degree of heterogeneity and dynamic behavior
(in architecture, mechanisms, and performance) encountered in Grid environments.

2

While techniques for dealing with some of these difficulties are known and have
been applied successfully in some situations [3, 17, 18, 4, 19, 25], their use remains
difficult, particularly for complex applications.

A promising approach to application development in such environments is to
develop Grid-enabled computational frameworks that implement the advanced tech-
niques referred to above, hide irrelevant complexities, and present application de-
velopers with familiar abstractions.

In the rest of this paper we present such a framework, building on two major soft-
ware systems, namely, the Cactus simulation framework [2, 1] and the Globus-based
MPICH-G2 implementation of MPI. By integrating these two systems and extending
them to incorporate various advanced techniques for Grid execution, we have created
a general framework that helps different applications become Grid enabled. We call
this framework Cactus-G. Cactus-G uses standard Cactus infrastructure routines
(thorns) that have been made Grid aware and uses the MPICH-G2 message-passing
layer for communications. The particular scientific application we use to test this
environment is, contrary to many distributed computing experiments, a production
simulation code, used regularly to study gravitational waves from colliding black
holes, that has itself not been specially modified for the Grid. The simulations are
tightly coupled, requiring many communications on each time step. We demonstrate
that even for such a demanding application, the environment and techniques we
developed are quite effective. We stress that Cactus-G could be used for a large
class of other applications as well.

2 The Computational Grid Environment

The computational Grid environment that we seek to harness in this work differs in
many respects from “standard” parallel computing environments:

• A parallel computer is usually fairly homogeneous. In contrast, a Grid may
incorporate nodes with different processor types, memory sizes, and so forth.

• A parallel computer typically has a dedicated, optimized, high bisection band-
width communications network with a generally fixed topology. In contrast,
a Grid may have a highly heterogeneous and unbalanced communication net-
work, comprising a mix of different intramachine networks and a variety of
Internet connections whose bandwidth and latency characteristics may vary
greatly in time and space.

3

• A parallel computer typically has a stable configuration. In contrast, resource
availability in a Grid can vary over time and space.

• A parallel computer typically runs a single operating system and provides basic
utilities such as file system and resource manager. In contrast, a Grid envi-
ronment, being a collection of single vendor machines, integrates potentially
radically different operating systems and utilities.

A conventional parallel program will not run efficiently—if at all—in such a
Grid environment. Even assuming that appropriate resources can be selected and
reserved, and that we can reduce sheer complexity by using advanced Grid ser-
vices [10, 12, 16, 26], the cited characteristics of the Grid lead to high communica-
tion latencies, low bandwidths, and unequal processor powers, which together mean
that overall performance tends to be poor. Many specialized techniques can be used
to overcome these problems, including the following:

1. Irregular data distributions. We can avoid load imbalances by using irregu-
lar data distributions that optimize overall performance. In computing these
data distributions, we need information about the application itself, the target
computers, and the networks that connect these computers [22, 20].

2. Grid-aware communication schedules. We can schedule communication (and
computation) so as to maximize overlap between computation and communi-
cation, for example, by computing on the interior of a region while exchanging
boundary data; we can group communications so as to increase message sizes;
or we can organize data distributions or use dedicated communication proces-
sors so as to manage the number of processors that engage in intermachine
communication.

3. Redundant computation. We can perform redundant computation to reduce
communication costs. For example, increasing the size of the “ghostzone” re-
gion in a finite difference code allows us to increase communication granularity
significantly, at the cost of otherwise unnecessary computation.

4. Protocol tuning. We can tune a particular protocol based on known charac-
teristics of the application and environment, for example, by selecting TCP
window sizes [24]; we can use specialized protocols for wide area communica-
tion taking into account application-specific knowledge; or we can compress
messages prior to transmission over slow links.

4

3 The Grid-Enabled Cactus Toolkit

Each of the techniques listed in the preceding section is difficult to apply in an
application program. Applying a collection of these techniques in a coordinated
fashion, or ultimately dynamically adapting these techniques on the fly to respond
to poor performance, can be extremely challenging. The Grid-enabled Cactus-G
toolkit represents an attempt to solve these problems. We first describe the Cactus
and MPICH-G2 systems, then describe how together they can be used for efficient
computing in a Grid environment.

3.1 Cactus and MPICH-G2

Originally developed as a framework for the numerical solution of Einstein’s equa-
tions [23], Cactus [5, 2, 1] has evolved into a general-purpose, open source problem
solving environment that provides a unified modular and parallel computational
framework for scientists and engineers. Cactus is widely used in the numerical rel-
ativity community and is becoming increasingly adopted by other fields, including
astrophysics, chemical engineering, crack propagation, and climate modeling.

The name Cactus comes from its design, which features a central core (or flesh)
that connects to application modules (or thorns) through an extensible interface.
Thorns can implement custom-developed scientific or engineering applications, such
as computational fluid dynamics, as well as a range of computational capabilities,
such as data distribution and checkpointing. An expanding set of Cactus toolkit
thorns provides access to many software technologies being developed in the aca-
demic research community, such as the Globus Toolkit, as described below; HDF5
parallel file I/O; the PETSc scientific computing library; adaptive mesh refinement;
Web interfaces; and advanced visualization tools.

Cactus runs on many architectures, including uniprocessors, clusters, and su-
percomputers. Parallelism and portability are achieved by hiding features such as
the MPI parallel driver layer, I/O system, and calling interface under a simple
abstraction API. These layers are themselves implemented as thorns that can be
interchanged and called as desired. For example, the abstraction of parallelism al-
lows one to plug in different thorns that implement an MPI-based unigrid domain
decomposition, with general ghostzone capabilities, or an adaptive mesh domain
decomposer. A properly prepared scientific application thorn will work, without
changes, with any of these parallel domain decomposition thorns or with others
developed to take advantage of new software or hardware technologies.

The second system that contributes to our framework is MPICH-G2, an MPI im-

5

plementation designed to exploit heterogeneous collections of computers. MPICH-
G2 is a second-generation version of the earlier MPICH-G [9]. Like MPICH-G,
MPICH-G2 exploits Globus services [10] for resource discovery, authentication, re-
source allocation, executable staging, startup, management, and control; it extends
MPICH-G by incorporating faster communications and quality of service, among
other new features.

What distinguishes MPICH-G2 from other efforts concerned with message pass-
ing in heterogeneous environments (PACX [13], MetaMPI, STAMPI [15], IMPI [6],
MPIconnect [8]) are its tight integration with the popular MPICH implementation
of MPI and its use of Globus mechanisms for resource allocation and security.

3.2 The Grid-Enabled Cactus Application Architecture

The Cactus system defines a set of appropriately layered abstractions and associated
libraries, such that irrelevant (from a performance viewpoint) complexities are hid-
den from higher layers, while performance-critical features are revealed. The design
of such a system must inevitably evolve over time as a result of empirical study.
However, our experiences to date persuade us that the architecture illustrated in
Figure 1 has some attractive properties, as we describe in the following.

At the highest level, we have a Grid-aware application. For the user, the ab-
straction presented is a high-performance numerical simulation. The user controls
the behavior of the simulation by specifying initial conditions, resolution, and the
like. All details of how this simulation is performed on a heterogeneous collection
of computers are encapsulated within the application.

This Grid-aware application is built from several layers. At the top of these
layers lie the various Cactus application thorns, which are used to perform the
actual scientific calculation (e.g., solve differential equations from various branches
of physics). These thorns can be written in Fortran, C, or C++, but they do not
have to be Grid aware. The application programmer only needs to take care to
use correct algorithms, differencing schemes, equations, and so forth. Some of these
schemes will be better than others in a Grid environment, and hence a Grid-aware
set of application thorns will be useful but, in principle, not required. All details
of how data is distributed across processors and how communication is done is still
hidden from the programmer at this level.

Next are the Grid-aware infrastructure thorns, providing all features, layers, and
drivers that the application thorns need, namely, parallelism, I/O, Web interfaces,
visualization, and many more. These thorns contain all details about communica-
tion, data mapping, parallel I/O, and the like. Application thorn writers simply

6

MPICH-G2: Grid-enabled MPI

MPI function calls, attributes to
control operation/query properties

DUROC: Co-allocation service

Grid Services: Security, resource discovery, resource
management, communication, instrumentation, etc.

Grid Fabric: A heterogeneous mix of computers,
networks, storage systems etc.

Cactus-G applications in astrophysics, CFD, etc, etc.

Grid-aware data decomposer, comm
scheduler, etc., etc.

Info on
structure, costs

Decompositions,
comm schedules, etc.

Grid-enabled Cactus flesh and thorns

Specify where to create
processes; upcalls signal failure

Application-oriented
performance feedback

Negotiate security, allocation,
startup, monitoring, termination

Obtain information
on structure, state
of Grid resources

Figure 1: The Cactus architecture for the Grid, showing the information and control flows
between the different layers.

7

include those thorns into their code (without having to modify any application
thorn) depending on their needs (e.g., running single, parallel or multihost jobs).
An important thorn in our case is the default Cactus driver thorn (PUGH), which
provides MPI-based parallelism. This thorn has been improved and optimized for a
heterogeneous Grid environment, containing features for Grid-oriented data distri-
butions, communication schedules, and so forth.

Below this we have a Grid-enabled communication library: in our case, MPICH-
G2. The abstraction presented is the MPI programming model; the programmer
queries structure and state and controls behavior of the underlying implementation
via getting and setting, respectively, attribute values associated with MPI commu-
nicators. All details of how the MPI programming model is implemented across
different resources are encapsulated, including startup, monitoring, and control.

The Grid-enabled MPI implementation makes use of functions provided by a
co-allocation library, in our case, the Dynamically Updated Resource Online Co-
Allocator (DUROC) [7]. This library abstracts away details relating to how a set of
processes are created, monitored, and managed in a coordinated fashion across dif-
ferent computers. The programmer can specify a set of machines on which processes
are to be started; the DUROC library manages the acquisition of those resources
and the creation of those processes.

Finally, a set of Grid services abstract away the myriad complexities of het-
erogeneous environments. These services provide uniform protocols and APIs for
discovering, authenticating with, reserving, starting computation on, and in general
managing computational, network, storage, and other resources.

3.3 Present Implementation

We have implemented substantial components of the architecture just described.
In particular, we have Grid-aware thorns for Cactus that support flexible data dis-
tributions, hence enabling (for example) grid points to be mapped to processors
in a heterogeneous system according to their speed and the amount of off-machine
communication they have to do. We have incorporated support for message com-
pression, hence trading off compression costs; for reduced communication costs, for
variable-sized ghostzone regions, allowing message size to be increased at the cost
of some redundant computation; and for a grid-aware communication schedule that
allows overlapping of communication and computation. Furthermore, these tech-
niques have been shown to work with MPICH-G2, which supports external manage-
ment of TCP protocol parameters, the simultaneous use of multiple communication
methods, and efficient and secure startup across multiple computers.

8

We have built a model to evaluate the expected performance in a Grid environ-
ment [21]. The model is parameterized with execution environment data (number
and performance of processors, network performance) and application data (problem
size, ghostzone size, etc.), allowing us to quantify the sensitivity of overall perfor-
mance to these parameters.

As described in Section 6, we have also recently implemented a prototype adap-
tive mechanism that is capable of varying the compressions and ghostzone parame-
ters during run time, monitoring the effect they have on performance. In this way,
performance can be automatically optimized, without needing to know the network
characteristics, and without the application itself needing to be modified in any way.

4 Experimental Results:
Distributed Terascale Computing

To evaluate real-world applications using Cactus-G on a Grid, we performed a dis-
tributed run of a scientific Fortran application across four supercomputers. We
emphasize that the application code itself remained unchanged: all adaptations and
improvements were carried out within the Cactus infrastructure. In this test, we
chose parameters that allowed dramatically improved performance over the standard
implementation, but these remained fixed during the test. In Section 6 we introduce
adaptive mechanisms that seek optimal communication parameters while the code
is running, and we demonstrate their effectiveness in test simulations.

4.1 Code Characteristics

Our application is a standard code for solving problems in numerical relativity: the
model used here solves Einstein’s equations for the evolution of a gravitational wave
spacetimes. The techniques we have developed can be used with any application,
however, from black holes to chemical engineering. This application exemplifies
many large scale computing problems: in three-dimensional Einstein’s theory con-
tains dozens of coupled, nonlinear hyperbolic and elliptic PDEs, with thousands of
terms, and is both memory and compute bound.

The code uses finite differencing techniques and functions discretized on a reg-
ular grid. In the specific case under consideration, there are 57 three-dimensional
variables, with approximately 780 floating-point operations per grid point at each
iteration. The finite difference method uses a computational stencil of width one to
calculate partial derivatives, and normally a ghostzone size of one is used, with six

9

variables needing to be synchronized in each direction at each iteration. The default
data type is eight bytes, so that a local processor grid size of N3 implies sending
N2× 6 variables × ghostzone size × 8 bytes in each direction.

4.2 Experimental Configuration: Machines and Network

Our testbed included four supercomputers at two sites: the National Center for
Supercomputing Applications (NCSA) in Champaign-Urbana, Illinois, and the San
Diego Supercomputing Center (SDSC) in California. This set already includes all
major challenges and problems: heterogeneity, unstable and/or slow network, load
balancing, multiple sites, multiple authentication schemes, multiple schedulers, and
the like.

The machines involved in this run were a 1024-CPU IBM Power-SP at SDSC
(Blue Horizon) and a 256-CPU (Balder) SGI Origin2000 and two 128-CPU (Forseti1
and Aegir) SGI Origin2000 systems at NCSA. The Origins each have two 250 MHz
R10000 CPUs per node, and Blue Horizon has eight 350 MHz Power-3 CPUs per
node. The machines could allocate 512 MB of memory per CPU. Single-processor
performance of our application on the two platforms was measured (using perfex on
Irix and hpmcount on AIX) to be 306 MFlop/s on the SDSC SP2 and 168 MFlops/s
on the NCSA Origins.

All machines had a high-speed interprocessor interconnection switch providing
O(200 MB/s) intramachine communication bandwidth. Intermachine communica-
tion performance varied. Machines at NCSA were locally connected using (almost
dedicated, no competing traffic) Gigabit Ethernets achieving up to 100 MB/s—
comparable to intramachine communication performance.

Between SDSC and NCSA, we achieved a measured application-level bandwidth
of at most 3 MB/s, as measured by the mpptest program [14], over what is actually
an OC12 (622 Mb/s) network. We have not yet determined the reason for this low
performance. Even with such poor performance, the various techniques described
below allowed us achieve efficiency of up to 88% on runs across the two sites for this
tightly coupled simulation.

4.3 Processor Topology and Load Balancing

We used a total of 120+120+240=480 CPUs on the NCSA machines and 1020
CPUs at SDSC, giving a total of 1500 CPUs. These processors were organized in a
5 × 12 × 25 three-dimensional logical mesh, which was decomposed over machines
in the z (long) dimension such that all x- and y-directional communication occurred

10

Figure 2: Processor topology across machines: Aegir [5× 12× 2 = 120], Forseti [5× 12×
2=120], Balder [5 × 12 × 4=240], and Blue Horizon [5 × 12 × 17=1020].

entirely within a single machine. With this organization, the number of processors
communicating over the WAN is 2 × 5 × 12 = 120.

The total number of gridpoints used for the calculation was about 7.2 × 108

(360 × 720 × 3345 gridpoints). This provided a simulation over five times larger
than we have been able to perform previously. Distributing gridpoints across the
processors, we account for the fact that the Power-3 processor provides almost twice
the performance of the R10000 processor for our application, leading us to choose
a load-balanced local grid of approximately 70 × 60 × 95 on each Origin CPU and
70×60×155 on each SP processor. With this distribution, a single iteration on any
processor took around 1.7 seconds.

4.4 Communication Optimizations

In this section we briefly introduce techniques we used to improve application’s
performance. In particular, we overlapped communications with computation to re-
move communication bottlenecks; added extra ghostzones to reduce latency effects;
and compressed data before transferring it across the WAN to solve bandwidth
constraints. In Section 5 we present a detailed costs/benefits analysis of these tech-

11

niques.

Computation/Communication Overlap. Because of the relatively slow WAN
link the 120 “boundary” processors at SDSC and NCSA performing WAN communi-
cation will run slower than the others. We addressed this problem by redistributing
gridpoints so that the WAN communicating processors had fewer grid points and
could overlap communication with computation on the other processors. In this
experiment, the internal NCSA processors were given 20% more, and at SDSC 23%
more gridpoints than the WAN communicating processors.

Compression. We incorporated into Cactus a thorn that compresses messages
prior to transmission. Since our simulation data are smooth, as they should be for
well-resolved physics simulation, high compression rates (sometimes as high as 99%)
are achieved. With compression in place, the amount of data to be sent is greatly
reduced, and latency becomes the bottleneck.

Ghostzones. Larger ghostzones lead to an increase in communication granularity
at the cost of replicated computation and increased memory usage. This reduces the
number of messages (and hence the costs related to communication latency) while
the total amount of data exchanged remains constant.

4.5 Observed Performance

We gauge achieved performance using two metrics: Flop/s rate and efficiency. We
compute these based on three factors:

• Total execution time ttot. The elapsed wallclock time the code needs to be
executed, measured by simply calling MPI Wtime to get the elapsed time as
the code executes. To get a more fine-grained idea, we measure elapsed time
every 10 iterations (i.e., after every sync) and take the maximum across all
processors.

• Expected computation time tcomp. Defined as the ideal time needed for
the processors to actually do calculations (i.e., floating-point operations), com-
puted from measurements on a single, dedicated processor.

• Flop count F . For the optimized code we measured, using hardware counters
on various machines, 780 Flops per gridpoint per iteration.

12

We define Flop/s rate and efficiency as

Flop/s rate =
F ∗ number of gridpoints ∗ number of iter

ttot
(1)

E =
tcomp

ttot
. (2)

First we executed a distributed computation across the four supercomputers
without the benefit of the compression and ghostzone techniques we developed. We
achieved only 42 GFlop/s and a scaling efficiency of only 14%. This is less than can
be achieved on Blue Horizon alone. The only gain in this case is problem size, which
is five times larger than has ever been run, but the efficiency is poor.

We ran the same simulation but with compression to compensate for bandwidth
limitations and with 10 ghostzones to compensate for the latency. We found dra-
matic improvements, increasing our total Flop/s rate to 249 GFlop/s. As mentioned
above, in single-processor runs, our application achieves 168 and 306 MFlop/s on
R10000 and 306 Power-3, respectively.

To compute efficiency, we first measured the theoretical “peak speed” of 480 ∗
168 + 1020 ∗ 306 MFlop/s = 393 GFlop/s. The actual performance of 249 GFlop/s,
divided by the theoretical peak performance of 393 GFlop/s, gives us an efficiency
of 63.3%. (An alternative computation, which uses the average rather than the
maximum time measured across all processors, gives a higher efficiency of 73.8%.)
Note that computing efficiency as tcomp

ttot
leads to the same value for efficiency.

We also performed a smaller run including only 120+1020=1140 processors,
which achieved 292 GFlop/s, with an efficiency of 88%. In this case, it was not
clear why the efficiency was better, as the experiments could not be systematically
repeated. However, small changes in the domain decomposition, processor topol-
ogy, and network characteristics at the time of the experiments could easily account
for this. The number of CPUs communicating over the WAN remains the same
(120). In Section 6 we present dynamic techniques to optimize, or at least improve,
performance under such conditions.

Note that the performance numbers quoted here include the redundant calcu-
lations performed in the ten ghostzones used for communications, especially in the
z-directions for the non-WAN adjacent processors. Although the effective phys-
ical problem size was smaller because of these ghostzones, later revisions of the
framework will not use them, and the ghostzones will correspond directly to “real”
gridpoints. Also, during the first few iterations the observed performance was poor
as a result of a slow distributed MPI Init, and this effect was not included in these

13

results. After all processors left the barrier, the peak performance was achieved.
After these experiments were performed, this MPI Init issue was solved.

5 Ghostzones and Compression

In the preceding section we presented experimental results we obtained from a large
distributed calculation. Although those results are good in terms of performance and
efficiency, most of the decisions about various parameters, mainly compression and
ghostzone size, were done with rough estimates under “battleground” conditions. In
this section, completed after the big run described above, we investigate more closely
the effect of ghostzone size and compression on performance. Such information will
help us know more precisely when, for example, compression makes sense and what
is the “optimal ghostzone size”.

5.1 Ghostzones

Message transfer costs have two components: bandwidth and latency-related costs.
Supercomputers have negligible interprocessor latencies of a few microseconds. For
communications across the WANs, however, latencies go up to tens of milliseconds.
Since we are using TCP for wide area communication, latency effects are exacerbated
by TCP’s slow start: TCP might need up to a dozen RTTs to start sending at full
speed. As discussed above, to reduce latency-related overhead, we increase the
ghostzone size. This reduces the number of messages sent across the network while
keeping the total amount of data transferred.

In Figure 3 we illustrate the performance tradeoffs of applying multiple ghost-
zones to reduce latency costs. Since it is not possible to “steer” the latency of a
network connection, we simulated it on a single machine. In a two-processor run
on a single Origin we placed a loop before every MPI Send, which waited a defined
time, simulating communication latency. Since the bandwidth was around 90MB/s
(intramachine bandwidth on a SGI Origin), we are certain to exclude bandwidth
effects.

Figure 3 (left) shows that latency-associated costs can have a significant im-
pact on overall efficiency (when no extra ghostzones are used). In the experiment
described above we determine empirically the number of ghostzones that maximize
efficiency (Figure 3, right). Increasing the number of ghostzones further does not
give any benefit; it only wastes memory resources. For the same latency and ap-
plication as in the our large-scale run, we found that a ghostzone size of 4 results

14

0 50 100 150 200
latency [ms]

40

60

80

100

Ef
fic

ie
nc

y
[%

]

0 50 100 150 200
latency [ms]

1

2

3

4

5

6

7

nu
m

be
r o

f g
ho

st
zo

ne
s

Figure 3: The left graph shows latency effects on efficiency. For our application we
simulate different latencies (see text). Efficiency goes rapidly down as latency increases.
The values around 75 ms represent approximately the situation between SDSC and NCSA.
At that point the efficiency drops to 65%. The right graph shows the “optimal” number
of ghostzones plotted against the latency. As expected the number of ghostzones goes up
with the latency. According to this figure, the optimal size for a latency of 75 ms is 4.

in maximum efficiency of about 92% (from 65% when using a single ghostzone). In
our big run we used a ghostzone size of 10. Although the conditions were differ-
ent (additional bandwidth problems, compression, etc.) this result indicates that
our ghostzone size has been larger than needed. In any case, we stress that ideally
one would like to adjust parameters phenomenologically, adapting to the current
application problem and network (as shown in Section 6).

5.2 Compression

As mentioned above, one of the major hindrances for achieving a decent perfor-
mance of a tightly coupled scientific code in a metacomputing environment is low
throughput for data transfers over WANs. Since data sent over the WAN has a “reg-
ular” structure (numerical floating-point data of smooth functions) we suspected a
big benefit in terms of overall efficiency when compressing messages before sending
them across the network. In this section we investigate compression rates and speed,
and we emphasize the benefits of this technique.

We have studied this issue extensively, by applying a standard Unix compres-
sion routine (compress() routine of libz library) to a vast array of floating-point
data coming from simulations of black holes, gravitational waves, and other Cactus

15

applications. We measured compression characteristics for different resolutions and
domain sizes.

For the simulations performed in the big run, we found compression ratios of
more than 95%. In nearly all cases studied, we found compression to be surprisingly
effective, usually much better than 50%. We attribute this to the fact that data
being simulated should be smooth. If a sufficiently fine grid is used to resolve the
data, neighboring data values will differ little from each other. This is normally the
case; and even with shocks common in CFD, we expect large changes in the data
fields to limited to the shock itself. In any case, we have seen favorable compression
ratios achieved for nearly all systems tested.

We stress that the compression achieved will change during the evolution of the
system being simulated. During an evolution, smoothness of data will change, and
the effect of compression will change. Hence, we would like to have adaptive algo-
rithms that adjust compression parameters on the fly. In Section 6 we demonstrate
a crude but effective example of such an algorithm.

Although the compression ratios we have seen so far give rise to the speculation
that compression is always helpful, we must also consider the compression time.

We define total communication time as

ttotal = tcompr +
msg size × compr factor

bandwidth

to reflect its two components the compression time tcmpr and the (reduced) message
transfer time. For a given message size of 200 KB (as in the big run) in Figure 4 we
plot the communication times against the bandwidth. The thick solid line represents
the communication times without compression. For a specific Einstein equation
application under study, a network bandwidth of 2 MB/s is already good enough
not to need compression for a single black hole simulation, while for a wave pulse
evolved by the same application it still makes sense even with bandwidth of 10 MB/s.
This analysis shows that the results are problem dependent, even within a single
application that can evolve different initial data sets. Hence, adaptive algorithms
that can adjust to local network and application characteristics are valuable. We
treat this subject in the next section.

6 Adaptive Strategies

As discussed in the preceding section an adequate choice of the number of ghostzones
as well as the decision about whether to compress data substantially influences over-
all performance. Furthermore, as real network latency and bandwidth characteristics

16

0.1 5.1 10.1
bandwidth [MByte/s]

0

0.1

0.2

0.3

0.4

co
m

m
un

ica
tio

n
tim

e
[s

]

two black holes
no compression
wave pulse
single black hole

Figure 4: Communication time depending on bandwidth and compression. The
solid line represents the communication time when no compression occurs. The intersec-
tions of this line with the other lines mark the point where compression does not make
sense anymore since the time to compress is higher than one saves due to reduced message
size.

may change dramatically over time, a good choice of compression/ghostzone param-
eters at one instant may become a poor choice at a later time. Even sophisticated
models to predict optimal parameters, given detailed knowledge of network char-
acteristics, would have to be rerun every time the network characteristics change.
Hence, we need a phenomenological, adaptive mechanism that can adjust ghost-
zone, compression, and other communication parameters on the fly to optimize code
performance without any knowledge of theoretical bandwidth and latency character-
istics of a given network. Such knowledge is usually going to be poorly correlated
with actual network performance at any given time.

In this section we introduce a simple set of methods, which we have implemented
and tested in Cactus, that can improve the performance of a distributed simulation
without any a priori knowledge of either the application or the type or performance
of the underlying network characteristics. Furthermore, the application running in
Cactus does not need to have any knowledge of these methods or network charac-
teristics, and hence neither does the scientist or engineer running the code. The
distributed application begins with a certain set of default communication parame-
ters (e.g., in this case, the number of ghostzones and compression state), and these
are adjusted automatically until the code becomes “optimally” efficient. In what

17

follows, we give examples where the efficiency of a distributed Einstein equation
simulation improved from about 68% to 85%, without any hand tuning, user inter-
vention, and any assumptions about or knowledge of the underlying network being
used.

In our big experiment described earlier, we chose a ghostzone size of 10, and we
applied compression in the z-direction. This decision was based on a few preliminary
tests and a bit of guesswork at the time of the experiment. As we further develop
our adaptive algorithms, we will test them on such large-scale simulations. In the
rest of this section we present an encouraging initial assessment of these algorithms,
using only two processors to prove the concepts.

6.1 Adaptive Compression

We implement runtime-adaptive compression as follows. Every processor decides
independently whether it wants to send compressed messages in a certain direction.
The peer processor assumes that if the sizes of arriving messages are smaller than
expected, they are compressed. To decide whether to compress, each processor uses
a local estimate of efficiency. Our first attempt to provide an adaptive algorithm
for compression is crude but effective: after a number of iterations the Cactus code
changes the compression state (for now, this means simply switching on/off) and
monitors the efficiency. If the efficiency improves, this choice remains; otherwise the
old choice is used. To get to a reliable decision, the efficiency is always monitored and
averaged over N iterations. In test cases where the compression rate and network
bandwidth took extreme values (intramachine network, cross-Atlantic network, etc.),
the code always made the “right” decision. This routine can be called every 500
timesteps, since network quality in a wide area Internet can change rapidly and
numerical data can get noisy (uncompressible). Figure 5 shows an example of the
improvement in performance after compression was automatically turned on.

6.2 Adaptive Selection of Ghostzone Sizes

Unlike compression, implementing an adaptive algorithm to dynamically modify
ghostzone sizes is rather difficult and complex to code for several reasons. First,
ghostzone sizes cannot be chosen independently. If a processor decides to change
its ghostsize in one direction, then it at least has to inform its neighbor in that
direction, which has to modify its ghostzone size in turn. Changing the ghostzone
size also requires a memory reallocation of all involved gridfunctions and data. If
the ghostzone size increases, it has to be filled with valid data, which has to be sent

18

0 10 20 30 40
iteration

40

50

60

70

80

Ef
fic

ie
nc

y

0 50 100
iteration

40

50

60

70

80

90

Ef
fic

ie
nc

y
[%

]

Figure 5: Adaptive Techniques. On the left we show the effect of compression on mes-
sage sizes for the same code we ran in our big experiment, but on just two workstations
connected by a fast Ethernet LAN and with a problem size of 803 per machine. On the
right, we show how the adaptive ghostzone technique increases efficiency for a test latency
of 75 ms. The code starts with a ghostsize of 1, resulting in less than 50% efficiency. After
the third iteration the ghostsize changes to 2, improving the performance. The process
continues until maximum efficiency is achieved. Changing the ghostzone number can be
time consuming and has been excluded in the analysis.

19

by the neighboring processor. Further, although at present there are only two states
of compression (on/off), there is more than one possible ghostzone size.

We have tested an implementation of our adaptive ghostzone technique. Initially,
the code starts with a ghostzone size of 1, as would be the norm in most codes. After
some iterations it increases to 2 and compares efficiency. If efficiency improves, the
ghostzone size keeps increasing. If the performance goes down or stays about the
same (this means here ±20%) the ghostsize decrements by one and (for now) sticks
to that value. Another possibility is that if the neighboring processor measures that
the installation of an extra ghostzone does not significantly improve efficiency, it
sends a message to its neighbor, and both finish increasing the ghostzone size.

In Fig. 5 we illustrate the effect of adaptive ghostzones for a test with a fixed
latency of 75 ms, simulated on a single Origin2000, by placing a time loop before
every MPI Send in the code as described above. The application again involves
solving Einstein’s equations but with an iterative Crank-Nicholson evolution scheme
used in black hole calculations, which performs 9 syncs per time step and is hence
more sensitive to latency effects. (We stress that Einstein application and adaptive
techniques have no knowledge of each other.) At the beginning the efficiency starts
with a poor value of under 50%. Our algorithm increases successively the ghostzone
size to a value of 4, achieving an efficiency of more than 80%.

Next, we examine the effect of varying latencies in a controlled environment. We
again use a grid-unaware numerical relativity application code similar to that used
above, and run our tests on two R10000 processors located on the same machine
but communicating over a 100 Mbit Fast Ethernet interface. The bandwidth of
this interface was determined to be about 30 MB/s (measured by mpptest), and
the latency was below 1 ms, much lower than the latencies we simulate in these
experiments.

Figure 6 shows two curves. The dotted line, similar to the one in Fig. 3, shows
that efficiency goes down with latency almost linearly when no adaptive mechanisms
are used. The solid line shows achieved efficiency when using adaptive strategies
applied. Although this curve also tends to go down with increasing latency, the
difference from the original one is remarkable. Note that the efficiency is higher
in the adpative ghostzone case than the fixed one even at “zero latency”. This
is because, even with the internal latency of an Origin2000, “two ghostzones are
better than one” for this application, an unexpected result. Figure 6 (right) shows
the ghostsize our algorithm picked for the appropriate latency. Naturally, it gets
higher as latency increases.

Finally, we move from test cases to a real numerical relativity simulation run
across two machines, with both adaptive compression and ghostzones enabled. The

20

0 50 100 150 200
latency [ms]

20

30

40

50

60

70

80

90

ef
fic

ie
nc

y
[%

] adopted ghostzones
fixed ghostzonesize (1)

0 50 100 150 200
latency [ms]

1

2

3

4

5

6

7

nu
m

be
r o

f g
ho

st
zo

ne
s

Figure 6: Adaptive ghostzones. Left: efficiency achieved using fixed ghostsizes (dotted
line) and with adaptive ghostsizes (solid line). While the former drops relatively fast the
latter achieves an efficiency of more than 80% even at high latencies. (right) The ghostzone
size chosen by our algorithm, which increases with increasing latency.

code initially starts with one ghostzone and no compression. After a hundred it-
erations it increases the ghostsize to two and therefore communicates only every
second iteration. As we shown in Fig. 7, since this code sends many small mes-
sages per iteration, it gives an improvement. After another 200 iterations the code
increases the size to 3, then to 4 and 5. At the ghostsize of 5 it decides that the
improvement is not significant and switches back to 4, where it settles down. Some
100 iterations later compression is switched on, which boosts the performance to
almost 85%. Without those adaptations the efficiency would stay where it was at
the beginning, below 70%.

7 Summary and Future Plans

The heterogeneous, dynamic, and unreliable nature of Grid environments has major
implications for application development. In this paper, we describe the architecture
and current prototype status of a Grid-enabling computational framework, Cactus,
designed both to hide irrelevant Grid-related complexities and to present application
developers with familiar abstractions. As a first step we have developed Grid-aware
infrastructure routines implementing advanced techniques that are completely trans-
parent to the user. These routines will be part of the standard Cactus distribution,
making Grid computing trivially available to any Cactus application and user.

We also present the results of large-scale experiments (using 1500 processors

21

0 1000 2000
iteration

60

65

70

75

80

85

90

Ef
fic

ie
nc

y

Figure 7: Automatic performance improvement. Ghostzones start to increase as the
evolution of the code goes along. At a later stage, compression is automatically switched
on. This gives us an performance gain of more than 15% in this case. Note that on a
single supercomputer the efficiency of this code would be 99%.

across four separate machines) in numerical relativity that demonstrate convincingly
that the Cactus framework is able to support efficient execution in a heterogeneous
Grid. Introducing special communication and latency reducing techniques, we were
able to increase the efficiency of a transcontinental distributed simulation between
NCSA and SDSC more than fivefold, from a low of 14% without techniques, to over
80% with them. These techniques were independent of the application code itself,
and many application codes could immediately take advantage of these techniques.

We then introduced and demonstrated on-the-fly runtime adaptive techniques
and showed that under many conditions these can increase dramatically the ef-
ficiency of distributed simulations by hiding latencies and reducing bandwidth re-
quirements. In a simple implementation, we showed that the algorithms can increase
efficiency for different applications that have no knowledge of the fact they are run-
ning in a distributed environment. Further, the adaptive techniques themselves are
phenonmenological and assume no knowledge of the underlying networks connecting
the distributed resources.

A future goal is to improve and fully implement the adaptive algorithms pre-
sented here for large scale distributed applications, such as the record-breaking nu-
merical relativity simulations we demonstrated. Our tests indicate that our adaptive
techniques should automatically find communication parameters that optimize per-

22

formance, such as those that were found by hand to increase the efficiency of the
“big run” from 14% to over 80%. We also plan to extend this work to include load
balancing, which also needs to become dynamic. Here we hope to exploit tech-
niques being developed by other participants in the Grid Application Development
Software (GrADS) project.

Acknowledgments

It is a pleasure to acknowledge the support of the staff at NCSA and SDSC, who
made these experiments possible, especially Jon Dugan, Wayne Louis Hoyenga, Doru
Marcusiu, Tony Rimovsky, John Towns at NCSA, and Phil Andrews, Giri Chukka-
pali, Larry Diegel, Eva Hocks, Keith Thompson at SDSC. Also, we would like to
thank Tom Goodale, Gerd Lanfermann, and Thomas Radke from the Cactus Team.

This material is based in part upon work supported by the National Science
Foundation under Grant No. 9975020.

References

[1] G. Allen, W. Benger, C. Hege, J. Massó, A. Merzky, T. Radke, E. Seidel, and
J. Shalf. Solving einstein’s equations on supercomputers. IEEE Computer,
32(12), 1999.

[2] G. Allen, T. Goodale, and E. Seidel. The cactus computational collaboratory:
Enabling technologies for relativistic astrophysics, and a toolkit for solving pdes
by communities in science and engineering. In 7th Symposium on the Frontiers
of Massively Parallel Computation-Frontiers 99, New York, 1999. IEEE.

[3] F. Berman. High-performance schedulers. In [11], pages 279–309.

[4] S. Brunett, D. Davis, T. Gottschalk, P. Messina, and C. Kesselman. Implement-
ing distributed synthetic forces simulations in metacomputing environments.
In Proceedings of the Heterogeneous Computing Workshop, pages 29–42. IEEE
Computer Society Press, 1998.

[5] http://www.cactuscode.org.

[6] IMPI Steering Committee. IMPI - interoperable message-passing interface,
1998. http://impi.nist.gov/IMPI/.

23

[7] K. Czajkowski, I. Foster, and C. Kesselman. Co-allocation services for com-
putational grids. In Proc. 8th IEEE Symp. on High Performance Distributed
Computing. IEEE Computer Society Press, 1999.

[8] G. E. Fagg, K. S. London, and J. J. Dongarra. MPI Connect managing hetero-
geneous MPI applications inter operation and process control. In V. Alexan-
drov and J. Dongarra, editors, Recent advances in Parallel Virtual Machine and
Message Passing Interface, volume 1497 of Lecture Notes in Computer Science,
pages 93–96. Springer, 1998. 5th European PVM/MPI Users’ Group Meeting.

[9] I. Foster and N. Karonis. A grid-enabled MPI: Message passing in heterogeneous
distributed computing systems. In Proceedings of SC’98. ACM Press, 1998.

[10] I. Foster and C. Kesselman. Globus: A toolkit-based grid architecture. In [11],
pages 259–278.

[11] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a Future Com-
puting Infrastructure. Morgan Kaufmann Publishers, 1999.

[12] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture for
computational grids. In ACM Conference on Computers and Security, pages
83–91. ACM Press, 1998.

[13] E. Gabriel, M. Resch, T. Beisel, and R. Keller. Distributed computing in a
heterogenous computing environment. In Proc. EuroPVMMPI’98. 1998.

[14] W. Gropp and E. Lusk. Reproducible measurements of mpi performance char-
acteristics. http://www-unix.mcs.anl.gov/~gropp/papers.htm.

[15] T. Kimura and H. Takemiya. Local area metacomputing for multidisciplinary
problems: A case study for fluid/structure coupled simulation. In Proc. Intl.
Conf. on Supercomputing, pages 145–156. 1998.

[16] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle workstations.
In Proc. 8th Intl Conf. on Distributed Computing Systems, pages 104–111, 1988.

[17] Paul Messina. Distributed supercomputing applications. In [11], pages 55–73.

[18] J. Nieplocha and R. Harrison. Shared memory NUMA programming on the I-
WAY. In Proc. 5th IEEE Symp. on High Performance Distributed Computing,
pages 432–441. IEEE Computer Society Press, 1996.

24

[19] P. M. Papadopoulos and G. A. Geist. Wide-area ATM networking for large-scale
MPPS. In SIAM conference on Parallel Processing and Scientific Computing,
1997.

[20] R. Ponnusamy, J. Saltz, and A. Choudhary. Runtime-compilation techniques
for data partitioning and communication schedule reuse. Technical Report CS-
TR-3055, Department of Computer Science, University of Maryland, 1993.

[21] M. Ripeanu, A. Iamnitchi, and I. Foster. Cactus application: Performance
predictions in grid environments. In proceedings of EuroPar 2001 Conference,
LNCS 2150, 2001.

[22] J. Saltz and M. Chen. Automated problem mapping: The crystal runtime
system. In Proceedings of the Second Hypercube Microprocessors Conference,
Knoxville, TN, September 1986.

[23] E. Seidel and W. Suen. Numerical relativity as a tool for computational astro-
physics. J. Comp. Appl. Math., 109(1-2):493–525, 1999.

[24] J. Semke, J. Mahdavi, and M. Mathis. Automatic TCP buffer tuning. Computer
Communication Review, 28(4), 1998.

[25] T. Sheehan, W. Shelton, T. Pratt, P. Papadopoulos, P. LoCascio, and T. Duni-
gan. Locally self consistent multiple scattering method in a geographically
distributed linked MPP environment. Parallel Computing, 24, 1998.

[26] R. Wolski. Forecasting network performance to support dynamic scheduling us-
ing the network weather service. In Proc. 6th IEEE Symp. on High Performance
Distributed Computing, Portland, Oregon, 1997. IEEE Press.

25

