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Based on a parallel scalable library for Coulomb interactions in particle systems, a comparison between the
fast multipole method (FMM), multigrid-based methods, fast Fourier transform (FFT)-based methods, and a
Maxwell solver is provided for the case of three-dimensional periodic boundary conditions. These methods are
directly compared with respect to complexity, scalability, performance, and accuracy. To ensure comparable
conditions for all methods and to cover typical applications, we tested all methods on the same set of computers
using identical benchmark systems. Our findings suggest that, depending on system size and desired accuracy,
the FMM- and FFT-based methods are most efficient in performance and stability.
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I. INTRODUCTION

Particle simulation methods, like molecular dynamics or
Monte Carlo sampling, are well-established numerical tools
to understand the dynamics and structure of many-particle
systems. Long-range interactions such as electrostatic or
gravitational interactions pose a particular challenge to such
simulations, since their computation is very time consuming.
Simple truncation schemes for electrostatic interactions have
been shown to produce artifacts [1]. Therefore, one has to take
into account all pair interactions, leading to an unfavorable
complexity of O(N2) (where N is the number of particles). A
number of efficient algorithms, in particular for electrostatic
interactions, have been devised to reduce this computational
effort. Although these algorithms compute the same quantities,
namely electrostatic forces and energies, they differ largely in
their properties.

The problem is complicated even more by the fact that it
is common to apply periodic boundary conditions in order to
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reduce boundary effects (especially in systems with only a
few particles) and to mimic an infinite system. This creates
the problem of an infinite number of system replicas, in
which the Coulomb sum converges very poorly due to its
long-range nature. When bulk systems are considered, one
usually employs periodic boundary conditions in all three
spatial dimensions, while simulations of thin films and surfaces
or nanotubes require three-dimensional systems with only two
or one periodic dimensions, respectively.

A traditional way to sum up the infinite terms under periodic
boundary conditions is the Ewald summation method [2],
which splits the total contribution into a short-range part and a
long-range part. Summing up the short-range part in real space
and the long-range part in Fourier space leads to a summation
of two rapidly converging sums. Although this representation
is exact, it contains infinite sums and therefore calls for
error controlled approximations in order to be applicable in
computer simulations. The parameters entering the Ewald sum,
i.e., the range of the short-range part, the number of Fourier
modes in the long-range part, and the splitting parameter which
controls the relative weight of both terms, can be optimized
in such a way that the overall performance of the Ewald
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summation is reduced to O(N3/2). Taking into account the
upper limits in the sums of short- and long-range contributions,
approximations can be obtained with a controllable upper error
threshold [3,4]. Other methods, like the Lekner-sum [5,6], the
Ladd-sum [7,8], or the Sperb-sum [9,10], are based on similar
principles. Note that Ewald-like methods also exist for systems
with only one or two periodic boundary conditions [11–14].

Although the Ewald sum removes the quadratic complexity,
the numerical effort is still too large for systems extending to
several million particles or long time simulations. For this
reason, alternative methods were developed with a strongly
reduced complexity of O(N log N ) or even optimal complexity
of O(N ). They can be classified into splitting methods (SMs)
and hierarchical methods (HMs). SMs have the same under-
lying idea as the Ewald summation method; i.e., they split the
total electrostatic interaction into a short-range part and a long-
range part by introducing a differentiable, localized function
ϕ(r) which splits the Coulomb term into overlapping short-
and long-range contributions, 1/r = ϕ(r)/r + [1 − ϕ(r)]/r .
This corresponds to introducing a modified charge distribution,
leading to a smooth potential energy surface in the long-range
part and a singular term plus a smooth term in the short-range
part, which, in total, reproduces the Coulomb potential.

Examples for fast methods of the SM type are extensions
of the Ewald sum which evaluate the long-range Fourier space
contribution on the basis of a fast Fourier transform (FFT),
thereby providing an O(N log N ) complexity. The drawback is
the necessity of introducing an FFT mesh, onto which particle
properties are mapped. Methods like the particle-particle-
particle mesh (P3M) [15], particle-mesh Ewald (PME) [16],
or the smooth particle-mesh Ewald (SPME) [17] mainly differ
in the way the particle properties are evaluated on the grid
and transferred back to the particles [18]. For example, the
popular SPME can easily be converted into the most accurate
and versatile P3M algorithm by changing the precomputed
influence function [19]. Using a grid obviously introduces a
spatial discretization, which causes an error, that can, however,
be controlled and minimized using accurate error estimates
[15,20].

Instead of relying on an FFT, multigrid methods discretize
the Laplace operator and thereby recast this partial differential
equation (PDE) into a linear system of equations that can
be solved iteratively. Although the method’s complexity is
optimal, O(N ), the accuracy depends on the operator’s dis-
cretization order. Furthermore, to obtain a mesh-independent
convergence, a hierarchy of nested grids is employed. Interpo-
lation of particle properties onto the grid and back therefrom
is handled in the same spirit as for the FFT-based methods.

In contrast, HMs do not rely on modified charge distri-
butions but evaluate the short-range part of the Coulomb
energy by the direct particle-particle sum, while the long-range
part is expanded into a multipole series, therefore effectively
introducing pseudoparticles, located at the expansion centers.
The transition from the short- to long-range description in
HMs usually exhibits a discontinuity in the potential, which
originates from the transition of the electrostatic sources from
(point) charges to multipoles. This discontinuity is often con-
sidered to be responsible for a drift in energy and momentum
of the system. However, the size of the discontinuity can
be reduced to machine precision by controlling the number

of multipoles in the expansion, thereby lifting the associated
problems in momentum and energy conservation.

Examples for HMs are the Barnes-Hut tree method [21]
and the fast multipole method [22]. One of the advantages of
these algorithms is the mesh-free approach, which does not
couple the accuracy of the approximation to an underlying
grid resolution. The number of multipoles in the potential
expansion as well as the depth of the hierarchical subdivision
of space determines the accuracy. These characteristics could
render such methods preferable in simulations of inhomoge-
neous systems, where mesh-based approaches, like FFT- or
multigrid-based methods, that use the same mesh spacing
everywhere, become very memory-intensive and slow. In
recent years, HMs have been extended to simulations under
periodic boundary conditions [23].

Another approach for computing Coulomb interactions
efficiently has been proposed by Maggs [24] and adapted
for molecular dynamics (MD) simulations by Pasichnyk [25].
In this algorithm, a simplified version of electrodynamics
is simulated on a discretized lattice. This method, called
Maxwell equations molecular dynamics (MEMD), is not
widely adopted, but offers the important advantage of intrinsic
data locality that originates from a grid-based solver for
electrodynamics. This does not only provide a good base for
parallelization but offers the possibility for spatially varying
dielectric properties in the system and—for a constant particle
density—scales as O(N ).

Although various methods for long-range interactions in
periodic boundary conditions exist (see also several reviews
or textbook material [26–31]), only a certain subset of them
has entered into widely used molecular dynamics codes for
scientific computing, e.g., P3M and SPME in GROMACS [32],
P3M in LAMMPS [33], SPME in NAMD [34], and P3M in
ESPRESSO [35]. This fact might be related either to long
standing and continuously improved implementations of se-
lected methods and also the large effort needed to implement
a new optimized method. The last two arguments certainly
apply to the fast multipole method. One argument against
adopting the FMM into molecular dynamics codes was based
on the observation that, depending on the implementation, the
method does not necessarily conserve momentum and energy
in dynamical simulations due to the asymmetry in evaluating
pair interactions between particles. However, it is also well
known that mesh-based methods suffer from not conserving
momentum or energy. These objections are considered in the
present article.

Since the evaluation of the long-range interactions is the
most time consuming part in the force loop of typical MD
simulations, the most important requirement is efficiency.
The parallelization of Coulomb solvers requires both a
good single-core optimization and an efficient and scalable
parallel implementation. The present article compares imple-
mentations of the fast multipole method, fast Fourier-based
Ewald summations in the version of P3M and P2NFFT,
multigrid-based methods, and a Maxwell local solver, all
of which solve the interaction between charged particles
in three-dimensional periodic boundary conditions. All of
these methods are provided within a scalable parallel library,
SCAFACOS (scalable fast Coulomb solvers) [30,36], which
can be easily linked to existing particle programs. In addition to
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three-dimensional periodic methods, it also offers methods for
other types of boundary conditions (open, one-dimensional-,
two-dimensional-periodic), as well as a tree code specialized
for strongly inhomogeneous systems.

In the scope of this article the different methods are
compared in terms of efficiency, complexity, accuracy, and
scalability. Common features and differences are outlined,
which might help programmers and users to decide which
method would be optimal for their specific problem. Although
comparisons between different grid-based Ewald methods
[18,37,38] as well as P3M and FMM [39] or standard Ewald
techniques and FMM [40] have been presented in the past, a de-
tailed numerical comparison of an extended class of methods is
still missing. To be informative it is vital for such a comparison
that all methods are benchmarked for the same test systems,
containing extreme and common particle distributions, as well
as on the same set of hardware architectures. The present
article not only compares the methods in terms of numerical
complexity and efficiency but also considers scalability on
parallel architectures.

Since all methods presented here are included in the
SCAFACOS library, our results may directly, and without
great effort, be used in the simulation programs of the users.
Our discussion of scalability on large parallel architectures
gives a good overview on which methods should be con-
sidered as viable candidates for large scale simulations. It
is understood that such a comparison must be based on the
actual implementations of the different methods, which were
carried out by different programmers. Further developments
and optimizations may change the relative performance of the
different methods in the future.

The remainder of the paper is organized as follows.
Section II provides a short description of the different meth-
ods. Section III describes the benchmark setup. Section IV
discusses the stability of the methods in an MD simulation.
Section V gives a performance comparison of the methods and
in Section VI we summarize our findings and comparisons.

II. METHODS

Assume N ∈ N charged particles with charge ql ∈ R at
position xl ∈ [0,1]3, l = 1, . . . ,N . We are interested in the
fast evaluation of the potential

"(x) =
∑

n∈Z3

N∑

l = 1
x0

l ̸= x

ql

1∥∥x − xn
l

∥∥
2

, (1)

and field

E(x) = −∇"(x) =
∑

n∈Z3

N∑

l = 1
x0

l ̸= x

ql

x − xn
l∥∥x − xn
l

∥∥3
2

. (2)

Here, xn
l := xl + n, n ∈ Z3 are the periodic particle images

and ∥x∥2 denotes the Euclidean norm in R3. The absence of
prefactors in (1) and (2) corresponds to Gaussian units, i.e.,

1
4πϵ0

:= 1.
Note that the summation over n ∈ Z3 is only condition-

ally convergent, so that its value depends on the order of

summation. Typically, one assumes summation in spherically
ascending shells. Most puzzling is the fact that, in general, the
summation result is not periodic in the particle coordinates
despite the regular image grid. However, it can be shown
[41,42] that the electrostatic potential can be written as the sum
of a contribution that is periodic in the particle coordinates
and a shape-dependent term that depends only on the total
dipole moment of the innermost image n = 0. The periodic
contribution is often called the intrinsic contribution, since it
can be seen as the solution of the Poisson equation under strict
periodic boundary conditions. This is equivalent to so-called
metallic boundary conditions, when one assumes a metallic
medium that surrounds the growing summation sphere [43].
All results presented in the following are for the intrinsic
solution.

A. Splitting methods

The computation of the electrostatic potential features two
problems. On the one hand, 1

∥x−xl∥2
is decaying very slowly,

making direct summation very inefficient. On the other hand,
it has a singularity, which makes it hard to apply many of the
convergence accelerating theorems.

To overcome this, the electrostatic potential (1) at x can be
split into a short-range contribution "sr and a smooth long-
range contribution "sm by

"(x) =
∑

n∈Z3

N∑

l=1
x0

l ̸=x

ql

∫

R3

δ
(

y − xn
l

)
− ϕn

l ( y)
∥x − y∥2︸ ︷︷ ︸
short-range

+ ϕn
l ( y)

∥x − y∥2︸ ︷︷ ︸
smooth

d y,

(3)

where the index n distinguishes positions among the periodic
images, δ(xn

l − y) is the δ distribution for the point charge
at xn

l , and ϕn
l ( y) is a splitting function for the charge at

xn
l , as illustrated in Fig. 1. The splitting function is chosen

conveniently such that it decays fast enough in both real
space and reciprocal space, which makes it possible to derive
fast converging expressions both for the short-range and the
long-range parts of (3).

The smooth long-range part is described by the charge
distribution resulting from the splitting function as

ρsm(x) =
∑

n∈Z3

N∑

l=1

qlϕ
n
l (x) (4)

in the domain [0,1]3 with periodic boundary conditions. Unlike
the original charge distribution, a sum of δ distributions, ρsm

is a smooth function, so that Fourier transforms or grid-based
solvers can be applied to it in order to evaluate "sm(x).

FIG. 1. (Color online) The charge distribution consisting of point
charges (black bars) is split into a smooth part only (dashed blue
lines) and the rest; compare with (3), taken from [44].
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Note that the original sum (3) for the potential excludes the
self-interaction x = xl , while the charge distribution (4) sums
over all charges, including possibly x = xj , if we evaluate the
potential or field at the position of a charge. Therefore, one
has to subtract this self-contribution

"self(xj ) = qj

∫

R3

ϕ0
j ( y + xj )

∥ y∥2
d y. (5)

If the splitting function is radially symmetric around xj , this
correction is only necessary for the potential, since the field
contribution exactly cancels. If ϕn

j ( y + xj ) = ϕn( y), i.e., the
splitting function arises by translation from a generic splitting
function ϕ, then the self-contribution is equal for all charges
and can be precomputed, often even analytically.

After some transformations, the short-range part results in

"sr(x) =
∑

n∈Z3

N∑

l = 1
x0

l ̸= x

ql

[
1∥∥xn

l − x
∥∥

2

−
∫

R3

ϕn
l ( y)

∥ y − x∥2
d y

]

,

(6)

consisting of a direct summation part between the position x
and all charges at xn

l in periodic images n and a correction
term that removes the interaction with the charge distribution
ρsm. If point-symmetric charge distributions qlϕ

n
l with limited

support are chosen, the induced potential outside of this
support is the same as that of a point charge beyond the support
of the distribution. Therefore, the summands in (6) decay fast
or vanish for particles that are far enough apart from each
other that it can be evaluated by taking into account only the
interactions up to a given cutoff distance rcut. The rate of the
decay depends on the splitting function.

The computation of the short-range component of the
potential adheres to the same scheme as the computation of
nonbonded short-range interactions in molecular dynamics.
Various efficient algorithms and implementations with ideal
scaling O(N ) exist. In this work, the short-range component
was computed using a linked cell algorithm [28] that is
implemented within the SCAFACOS library. In this algorithm,
all particles are sorted into cells that are larger or equal
to the short-range cutoff radius rcut. To find all interaction
partners of a particle in the short-range component, it is
sufficient to compute the interactions with all particles in the
neighboring cells, which yields the desired linear complexity.
The parallel implementation employs a domain decomposition
that distributes the particles uniformly among a Cartesian
process grid. Particles at subdomain boundaries that are needed
by more than one process are duplicated automatically during
the particle redistribution step.

Note that in a molecular dynamics program, the short-range
part of the SMs would typically be computed within the
(possibly highly optimized) core of an MD program that
computes other nonbonded short-range forces, so that the
short-range computation of the library would not be used. This
is expected to have a positive effect on the performance of the
SMs when used in conjunction with an MD program; however,
the actual gain depends on the employed MD program.

The remaining difficulty is to evaluate the long-range
contribution by solving the Poisson equation

− '"sm = 4πρsm (7)

subject to periodic boundary conditions on [0,1]3. This
solution can be obtained efficiently in a number of ways. In
the set of presented methods we use either multigrid methods
for the solution of the PDE- or Fourier-based methods.

1. PDE-based: Multigrid

The Poisson equation (7) is a prototypical elliptic PDE. All
of its terms are discretized on a Cartesian grid of constant mesh
size Gh of points

Gh = {x|x = h j for j ∈ Z3},

with a formal discretization parameter h ∈ R. Hence, the
number of grid points per axis is M = 1

h
. Thereby, (7) becomes

a linear system of equations,

Ahuh = fh, (8)

which is solved for the long-range potential "sm, represented
on the grid as uh. A variety of discretizations Ah for the Laplace
operator in (7) exist, each taking into account a specific number
of neighboring grid points with appropriate coefficients used
for evaluation, giving rise to a certain discretization order. For
reasons of locality in implementations with emphasis on strong
parallel scalability, a compact 27-point stencil of fourth order
is typically used [45,46].

The smooth charge distribution ρsm, represented as fh, is
sampled at the grid points Gh to obtain the right-hand side. As
splitting function, ϕ(r), cardinal B splines are employed,

ϕl(x) = ϕ(∥x − xj∥2),

that are radially symmetric. As an alternative, e.g., tensorized
polynomials defined over intervals or Gaussians may be used.

Then, the solution of (8) can be obtained via an iterative
relaxation scheme that minimizes the error em

h = uh − um
h of

the discrete solution at iteration step m,

um+1
h = um

h + Ch

(
fh − Ahu

m
h

)
︸ ︷︷ ︸

dm
h

, (9)

where Ch is an approximate inverse and dm
h is the defect at

iteration step m. Relaxation schemes differ on the choice of the
approximate inverse Ch made clear when Ah = Lh + Dh +
Uh is split into a lower triangular matrix Lh, diagonal matrix
Dh, and upper triangular matrix Uh. For Ch := D−1

h we obtain
the Jacobi method, for Ch := (Lh + Dh)−1 we have the Gauss-
Seidel method. By introducing a weight ω in (9) that makes it
possible to control the contribution of the defect to the update,
relaxation methods are obtained.

It is well known that the spectral radius of the iteration
matrix of both methods is bounded by 1. Furthermore, if the
discretized operator Ah is represented by a compact stencil,
then the component of the error em

h whose frequency is similar
to the inverse length given by the discretization parameter h is
decreased stronger than lower-frequency components. Hence,
the iteration scheme converges more slowly the finer the grid
is resolved.
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FIG. 2. (Color online) Depiction of typical V cycle.

However, if high-frequency components have been re-
moved, the remaining error can be well described on a coarser
grid. To this end, starting with a fine grid Gh we add a coarser
grid GH with commonly h = H

2 . We define a restriction
operator IH

h : Gh → GH and a prolongation operator Ih
H :

GH → Gh, e.g., by trilinear interpolation. Then, the central
idea of the multigrid method is to eliminate the high-frequency
components of the defect, so-called smoothing, restrict the
remaining error to a coarser grid, and solve the defect equation

AH em
H = dm

H , (10)

where dm
H = IH

h dm
h , on the coarser grid. The exact solution of

(10) is the error em
H on the coarser grid that is prolongated back

as a coarse-grid correction to the finer grid,

um+1
h = um

h − Ih
H A−1

H IH
h

(
Ahu

m
h − fh

)
. (11)

This is commonly known as a two-grid cycle.
Although the defect equation (10) has to be solved exactly

on the coarser grid, the resulting correction (11) is interpolated
to the finer grid which allows for an approximate solution to
suffice. Therefore, we may use again a two-grid cycle: This
time we use the former coarse grid as the new fine grid, remove
the high-frequency error, and apply a coarse-grid correction.
This is especially favorable if the number of grid points is a
power of 2. This nesting of multiple grids can be continued
until the evaluation of the exact solution is efficient or trivial
on the coarsest grid; see Fig. 2.

The proceeding of the multigrid-based methods can be
subsumed as follows.

Charge assignment. The right-hand side of the Poisson
equation (7) is constructed by sampling (4) with the respective
splitting function on the finest grid.

Solving the Poisson equation. Using a multigrid method
the approximate solution "sm is computed. The accuracy is
directly related to discretization parameter h on the finest grid
and hence to the number of nested levels l.

Evaluation of the potentials. The calculated approximation
"sm is interpolated to the particle positions using Newton
interpolation of sufficient degree, e.g., using a third-order
polynomial for a fourth-order accurate solution. The potential
is then corrected by subtracting the self-contribution "self

given by (5) and by adding the short-range part "sr given
by (6). As mentioned above, efficient methods for short-range
interactions are used here.

Evaluation of the fields. The polynomials of the previous
step are analytically differentiated to obtain the fields due to
the calculated potential surface.

Parameters. The multigrid methods are influenced by
the following parameters: size of the finest grid h = 2l

determined by the number of nested levels l, diameter of the
splitting function’s compact support, the degree of the Newton
interpolation, the discretization order for the Laplace operator,
the specific cycle type, the fixed number of iteration steps
used for smoothing, and the iteration threshold for the global
defect. The grid size and the diameter of the support are the
parameters that have by far the strongest impact on precision:
For a given extent of the support, the obtained accuracy is
strongly depending on h (in case of a fourth-order scheme the
error is reduced by a factor of 16, if h is reduced by a factor of
2). Usually, the principal precision of the method is set with the
size of the finest grid with respect to the discretization order
and can be further tuned by increasing the diameter of the
compact support of the charge distribution. Other parameters
such as discretization order and interpolation degree also affect
precision but the difference in speed is negligible.

The influence of the parameters on the computational work
is described in the following. Initially, we have O(m3N )
work for the interpolation of the spline functions, where
m is the number of grid points per axis of the compact
support of the splitting function. Moreover, the computational
work Wk per multigrid cycle for k levels is completely
determined by its finest grid; see [47], Chap. 2.4.3]. Hence,
assuming Wl−1

l = O(M3
l ), where Ml is the number of grid

points per dimension of level l, we obtain O(M3
k ) + W0

computational work. The work on the coarsest grid W0 is
essentially constant, as the convergence of the multigrid is
M-independent [47], Chap. 2.9.3]. The interpolation of the
potential and the derivation of the interpolation polynomials
for the calculation of the fields results in O(l3N ) work, where
l is the interpolation degree. The necessary correction of the
potential and the fields due to the short-range part is of order
O(N ), if the particles’ distribution is close to uniform. Hence,
the method yields optimal complexity with the scaling constant
depending critically on the desired accuracy determined by the
discretization order of the stencil.

Multigrid is usually parallelized by a suitable decomposi-
tion of the domain and distribution of particles over many pro-
cesses. Each process samples its local share of particles on the
grid and performs operations on its local grid only, where some
communication is required with direct neighboring processes
during the restriction, prolongation, and smoothing. There is
also one global communication in every multigrid iteration
where the local defects are summed up globally. Eventually,
each process interpolates back its particle potential.

2. Fourier-based: Ewald and particle-mesh Ewald

The fundamental idea of the Fourier-based methods is to
compute the smooth long-range contribution "sm in Fourier
space. This leads to the well-known Ewald formula [2,48] for
the computation of (1), which splits the electrostatic potential
at position xj into the parts "(xj ) ≈ "sr(xj ) + "sm(xj ) +
"self(xj ), where

"sr(xj ) =
∑

n∈Z3

N∑

l = 1
x0

l ̸= xj

ql

erfc
(
α
∥∥xj − xn

l

∥∥
2

)
∥∥xj − xn

l

∥∥
2

, (12)
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"sm(xj ) =
∑

k∈IM\{0}

e−π2∥k∥2
2/α

2

π∥k∥2
2

Ske−2π ik·xj ,

(13)
"self(xj ) = −2qj

α√
π

.

Hereby, the complementary error function is defined by
erfc(z) = 2√

π

∫ ∞
z

e−t2
dt and the structure factors Sk are given

by

Sk =
N∑

l=1

qle+2π ik·xl ,

where M is the number of grid points per dimension and
the multi-index set IM := {−M

2 , . . . ,M
2 − 1}3 collects all the

grid points. The short-range part (12) as well as the Fourier
coefficients in (13) decay exponentially fast, so that the
potentials "(xj ), j = 1, . . . ,N , can be computed in O(N3/2)
when choosing optimal parameters [49].

The evaluation of the smooth component "sm can be further
sped up using FFTs, which leads to the family of PME
algorithms that includes P3M [15], PME [16], SPME [17],
and P2NFFT [50]. If the charge positions xj are “sufficiently
uniformly distributed,” these algorithms end up with an
arithmetical complexity of O(N log N ).

During the end of the 1990s, it became clear that P3M,
PME, and SPME can be considered as a single method with
different components. These are mostly interchangeable, and
their choice has a significant impact on the performance of the
method [18,51]. The original P3M algorithm by Hockney and
Eastwood has the advantage that it replaces the continuum
Green’s function by what is called the optimal influence
function, which can be derived analytically by minimizing the
functional that yields an average root mean square error for the
force. The optimal influence function can be derived for many
other variants that minimize the error in energy, or for dipolar
forces, or for the interlacing technique described further below
[15,52–54]. The method P3M in the present article refers
to the best known combination of these components, which
means that it differs from the original method by Hockney and
Eastwood [15] in several details.

The approximate computation of the long-range compo-
nents consists of the following steps.

Charge assignment. The charges are smeared out onto the
P nearest grid points of a discrete grid ρmesh of size M3,

ρmesh( p) = 1
h3

N∑

l=1

qlϕ(h p − xl),

for p ∈ IM , where h = 1/M is the grid spacing. In P3M, the
window function ϕ is chosen as a three-dimensional tensor
product of cardinal B splines of order P .

Forward Fourier transform. The charge grid ρmesh is Fourier
transformed using the FFT to yield the reciprocal charge
distribution ρ̂mesh.

Solving for the potential. Next, the reciprocal potential "̂sm

is computed from ρ̂mesh using an appropriate Green’s function
Ĝopt (which is often called influence function in this context):

"̂sm = Ĝoptρ̂mesh.

Note that Ĝopt is, in fact, the product of the Coulomb Green’s
function and the Fourier transform of the Gaussians used for
the Ewald splitting. In continuum, this function is given by

Ĝ(k) = 1
π∥k∥2

2

e−π2∥k∥2
2/α

2
.

However, since the charge density is discrete, this continuum
Green’s function is not the best choice, even if it has been used
by some other methods. To minimize the overall relative error
in the potential, for example, the optimal influence function is
given by [52]

Ĝopt(k) =
∑

m∈Z3 ϕ̂2(k + m)Ĝ(k + m)
[∑

m∈Z3 ϕ̂2(k + m)
]2 ,

where the sum over m is known as the aliasing sum and serves
to minimize the discretization errors.

Backward Fourier transform. Using the FFT, the reciprocal
potential is Fourier transformed backward to yield the long-
range potential "sm

mesh at the grid points.
Evaluation of the potentials. The potentials at the original

particle positions are approximated from the potential grid.
This step employs the same window function as the charge
assignment,

"sm(x) =
∑

p∈IM

"sm
mesh( p)ϕ(x − h p).

Evaluation of the fields. For the P3M method in the present
paper, the fields are derived with an analytical differentiation
scheme if not otherwise stated. This method is identical to the
approach used in the SPME method [17]. Since the gradient
of the charge assignment function is known analytically, the
gradient at the original particles positions can be directly
interpolated from the values of the potential grid,

Esm(x) =
∑

p∈IM

"sm
mesh( p)∇xϕ(x − h p).

A second approach, which was, for example, employed by
Darden et al. in their PME variant [16], is the ik differentiation.
Here, one makes use of the fact that in reciprocal space, the spa-
tial derivative turns into a simple multiplication by ik, where
k denotes the wave vector. This makes it computationally very
cheap to compute the reciprocal electric field Ê = ik"̂sm.
However, transforming this field back to real space requires
three backward FFTs instead of only one that is sufficient for
the scalar potential.

Interlacing. In addition, the P3M algorithm in this work
uses an extension to the algorithm sketched above that is called
interlacing [54], and that was already suggested by Hockney
and Eastwood [15]. A second grid shifted by half a grid spacing
is introduced and all the steps above are applied to both grids.
Afterward, the potentials and fields obtained for both grids
are averaged. This results in about an order of magnitude
higher accuracy compared to the single grid method, while the
computational effort for using interlacing is roughly twice the
effort of using a single grid. The gain in accuracy is sufficient
to make it possible to reduce the mesh size by factor of two
in all three spatial dimensions while maintaining the accuracy,
so that interlacing yields a significant performance gain.
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Throughout the rest of this work, we use the term P3M to
denote the variant of the algorithm with the best combination
of components known to date, namely the optimal influence
function, interlacing, and analytical differentiation [51].

Parameters. The parameters of the method are the Ewald
splitting parameter α, the short-range cutoff radius rcut, the
order of the charge assignment function P , and the grid spacing
h. The choice of these parameters does have a strong influence
on the accuracy and performance of the algorithm. Fortunately,
good analytical error estimates exist [20] that help to make a
good choice. The Ewald splitting parameter α does not have a
direct influence on the computational performance; however, it
does have a strong influence on the accuracy of the algorithm.
There is an “optimal” value of α where the best accuracy is
reached. Using a value that is off this optimum by as little as
10% can result in an accuracy that is two orders of magnitude
worse. Using the analytical error estimates, the optimal α
can be determined easily. The short-range cutoff radius rcut
determines the accuracy of the short-range part, while the
charge assignment order P and grid spacing h determine the
accuracy of the long-range part. Increasing the first two and
decreasing the latter will improve the accuracy of the methods
at the expense of the performance. Determining the optimal
combination of these parameters to reach a given accuracy is
an optimization problem.

The largest part of the parallelization of the algorithm is
straightforward. The most complex part is the parallelization
of the three-dimensional FFT, which was parallelized using
two-dimensional stencils [55].

The particle-particle NFFT (P2NFFT) is a general frame-
work for particle mesh algorithms based on non-equispaced
fast Fourier transforms (NFFTs) [56,57]. By appropriate
choice of parameters, this framework includes the PME meth-
ods for periodic boundary conditions and the fast summation
algorithm [58,59] for nonperiodic boundary conditions.

In the case of periodic boundary conditions, the P2NFFT
follows the approach of [60,61], e.g., the NFFT is applied
for the fast calculation of the long-range parts "sm

j . The
structure factors Sk in (13) can be computed by an adjoint,
three-dimensional NFFT of total grid size M3 with O(N +
M3 log M) arithmetic operations. This is followed by M3

multiplications in Fourier space and completed by a three-
dimensional NFFT of total grid size M3 to compute the outer
sums. The relation between N and M is determined by the
approximation error of the algorithm and is discussed in detail
in [18,20,57]. Choosing the total grid size M3 proportional to
the number of particles N yields the typical overall complexity
of O(N log N ).

The modularized structure of the P2NFFT allows a straight-
forward parallelization based on the parallel NFFT algorithms
presented in [50], which are implemented within the publicly
available PNFFT software library [62]. A regular blockwise
domain decomposition is induced by the underlying parallel
FFT algorithms [63] that are publicly available within the
PFFT software library [64].

Although different in spirit, the steps of P3M and P2NFFT
are very similar, and in fact, it can be shown that these two
methods are equivalent for periodic boundary conditions [65].
The optimal influence function of P3M, which is the result of
a functional optimization, in the light of the NFFT algorithm

is nothing but the continuum Green’s function decorated by
the convolution and deconvolution steps of the NFFT and its
adjoint. This analogy makes it possible to employ interlacing
also to the NFFT-based algorithm and gives deeper insight
into the origin of P3M’s optimal influence function. Also,
the computation of the gradients is handled similarly by both
methods.

Both methods P3M and P2NFFT use an equal distribution
of the particle system among a Cartesian process grid, thus
requiring a redistribution of the particle data. If particles are
already located on their corresponding process of the grid, then
the amount of communication required for the redistribution
decreases automatically. This helps to improve the scalability
of the parallel implementations, especially when the number
of particles per process becomes very low.

B. Hierarchical methods

In comparison to Fourier-based methods, HMs like the
Barnes-Hut tree method [21] or the fast multipole method
(FMM) [66] do not carry out any computations in reciprocal
space. Instead, the fast evaluation of the potentials "(xj ) is
achieved by splitting up contributions in real space into a
near-field part and a far-field part. The reduction of numerical
complexity is accomplished by factorization of the inverse
distance ∥xj − xl∥−1

2 into parts which only depend on xj

and parts which only depend on xl . The expansion can be
performed either in Cartesian or, more efficiently, spherical co-
ordinates [67]. Interactions in tree codes consider contributions
between particles and a whole hierarchy of pseudoparticles,
consisting of multipoles located at expansion centers, and
therefore result in a complexity of O(N log N ). Often a
geometric criterion is considered to decide about the size of
a pseudoparticle, i.e., the spatial volume in which explicit
particles are grouped together into a multipole expansion,
interacting with a single particle in a distance. On the other
hand, FMM makes use of hierarchically transferring multipole
information down a tree, so that individual particles interact
with effective far-field and explicit near-field particles, which
gives rise to an O(N ) complexity. In the following the FMM
is described on a more detailed level.

1. Fast multipole method

With the help of the associated Legendre polynomials Plm

and a transformation of the particle coordinates into a spherical
representation xl = a = (a,α,β), xj = r = (r,θ,φ) a single
particle-particle interaction can be factorized for ∥a∥2 < ∥r∥2
via

1
∥r − a∥2

=
∞∑

l=0

l∑

m=−l

(l − m)!
(l + m)!

al

rl+1

×Plm(cos α)Plm(cos θ )e−im(β−φ)

=
∞∑

l=0

l∑

m=−l

ωlm(a)µlm(r).

For numerical reasons it is sufficient to truncate the infinite
series at a certain finite term p for the computation. Besides
the truncation at multipole p, the FMM has two additional
parameters. To establish a spatial grouping of particles and to
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apply the factorization scheme, HMs employ a decomposition
of space into a set of boxes eventually forming an octree.
The subdivision is repeated until a certain tree depth dmax
is reached. The last parameter, the “well separatedness” (s),
controls the convergence rate of the aforementioned expansion.
The minimum separation of two boxes interacting via multi-
poles is s = 1. Higher separation yields better convergence,
thus lowering the number of poles p for a given accuracy, but
increases the size of the interaction set in both near and far
field. To compute the potentials "(xj ) and fields E(xj ), the
following steps have to be implemented.

Expansion into multipoles. First, all particles need to be
sorted into their corresponding boxes of the octree at depth
dmax. This step is performed via a Radix sort method [68]. The
sorting is followed by an expansion of all Mk particles around
their box center into spherical multipoles ωk

lm on the lowest
level dmax of the tree via

ωk
lm =

Mk∑

j=1

qja
l
jPlm(cos αj )e−imβj .

Since all Mk particles inside each box k are expanded around
the same center, the coefficients of the particles can be summed
up into a unique expansion ωk

lm per box. This step takes
O(p2N ) time.

Shifting multipoles. Now the multipole information is
shifted from the lowest level upwards to the root node of the
tree via the multipole-to-multipole operator (OM→M )

ωlm =
l∑

j=0

j∑

k=−j

OM→M (b)ωjk(−b) .

The OM→M operator combines multipole coefficients from up
to eight boxes on depth d and transforms these coefficients
into a single multipole expansion ωlm around the center of the
parent box b at depth d − 1. This step is repeated for each level
in the tree until the root node is reached. For a homogeneous
particle distribution the shift can be performed in O(p4N )
time.

Far-field interactions. After the octree has the full multipole
information available in each box on each level, the far-field
interactions can be performed. To obtain a reduced complexity,
only a fixed number of close-by interactions per level are taken
into account. Omitted interactions are carried out on a higher
level of the tree. In a tree code Mk remote particles of a box k are
transformed into local coefficients µlm around the center of the
box under consideration with the help of the particle-to-local
operator (P2L) via

µlm =
Mk∑

j=1

qj

1

rl+1
j

Plm(cos θj )eimφj .

Since each particle on each level has to be taken into account
this step costs O(p2N log N ) time.

The complexity can be reduced to O(p4N ) in the FMM by
applying the multipole-to-local operator (OM→L) given by

µlm =
p∑

j=0

j∑

k=−j

OM→L(−b)ωjk(b) .

The reduced complexity originates from the possibility to
transform multipoles of a certain box directly into a local
expansion without the need to incorporate the particles itself.
The number of interactions for the FMM is limited to
7(2s + 1)3, since only boxes of s neighboring parent boxes
on level l − 1 are considered. For s = 1 the maximum number
of interactions for each box on each level is 189. A higher
separation criterion increases the interaction list substantially
and is not favorable for the accuracy range discussed in this
article.

Shifting local coefficients. Now the far-field information
is available as local coefficients µlm inside the tree. To
compute the far-field properties (e.g., potentials, fields) these
coefficients are shifted towards the leaves of the tree. This step
uses the local-to-local operator (OL→L) given by

µlm =
p∑

j=0

j∑

k=−j

OL→L(b)µjk(−b).

This step can be performed in O(p4N ) time.
Compute far field. The far-field contributions now can

be computed for each particle in each box. The far-field
approximation of the potential "(a) can be obtained by

"(a) ≈
p∑

l=0

l∑

m=−l

µlm

1
(l + m)!

alPlm(cos α)e−imβ .

This step can be performed in O(p2N ) time.
Compute near field. Due to the convergence requirement

∥a∥2 < ∥r∥2 some interactions may not have been accounted
for. These remaining near-field interactions are carried out
separately with a classical direct summation scheme. Since
the number of particles in the near field is bounded, this step
also scales linearly.

To allow faster high-precision calculations, the operator
complexity of the current FMM implementation uses a
rotation-based approach [69], reducing the complexity from
O(p4N ) to O(p3N ) without inflicting the error bounds. The
presented implementation also eliminates the need to seek
for the optimal set of FMM parameters by utilizing an error
control and run time minimization scheme [70] based on
a user-provided energy error threshold 'E. The algorithm
can also handle (mixed) periodic boundary conditions [23,30]
efficiently in O(N ) time.

Parameters. The parameters which determine the accuracy
and performance of the FMM are, as mentioned above, the
well-separated criterion s, the depth of the FMM tree d, and
the length of the multipole expansion p. All three parameters
are determined by an error prediction model, for which an
optimization problem is solved,

∂t

∂d
= 0,

∂t

∂p
= 0,

∂t

∂s
= 0,

subject to 'E(d,p,s) ! ϵ,

which determines the parameters according to the threshold
and a minimum run time. Therefore, the only parameter, which
has to be specified externally is the error threshold ϵ.

The FMM implementation uses parallel sorting to insert
particles into their corresponding boxes of the octree and to
distribute these boxes among parallel processes. The resulting
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FIG. 3. (Color online) Schematic of the MEMD lattice interpola-
tion. The electric fields D are placed on lattice sites and the magnetic
fields B in rotated dual space on the plaquettes. The current j is
interpolated from the moving charges.

distribution of particles among processes corresponds to a Z-
order space filling curve. If particles are already provided with
this kind of distribution, then the amount of communication
required for the parallel sorting decreases automatically, thus
improving the scalability of the parallel implementation.

C. Local method: MEMD

While the majority of electrostatics algorithms calculate
Coulomb interactions by computing the global potential, for
example by solving the Poisson equation, and differentiating
the resulting potential, the MEMD algorithm follows a
different approach. It is based on the full electrodynamics
of the system, discretized on a lattice as shown in Fig. 3.

Initial solution and temporal updates. The method consists
of two different combined methods. Initially, an exact solution
of the Gauss equation

∇ · D = ρ

for the system is computed with a numerical relaxation scheme.
The charges are interpolated onto the lattice via the linear
cloud-in-cell algorithm. They are then added up shellwise to
perfectly obey Gauss’ law, and the field energies are minimized
numerically. This initial scheme scales with O(N2), but has
to be applied only once in the beginning and still retains the
locality of the algorithm. A possible improvement methods
with better scaling behavior shall be discussed elsewhere.

Subsequently, the correct solution can be obtained by only
applying temporal updates of the fields. The time derivative
and some physical arguments, as laid out in [25], lead to the
following constraint that is then applied to the propagation of
the system

∂

∂t
D + j − 1

c2
∇ × B = 0,

with the electric field D(x) = ε(x)E(x) [with the assumption
of a local ε(x)], the electric current j and a magnetic field
component B. This results in temporal updates for the electric
field without ever calculating the corresponding potential
"(x). The equations are purely local; hence, the permittivity
ε(x) is not necessarily constant but may vary in space.

Thermodynamic limit. Because of the algorithm’s local-
ity, we consider the Lagrange density function for this

constraint

L =
∑

i

mi

2
v2

i − U + 1
2c2

∫
ε(x)!̇

2
dx − 1

2

∫
D2

ε(x)
dx

+
∫

A( Ḋ − ∇ × !̇ + j )dx,

where mi and vi are the particle masses and velocities, ! is
an additional degree of freedom in form of a vector field that
relates to the magnetic field, A is a Lagrange multiplier, and
1/c2 is merely a prefactor that can be expressed by the physical
wave propagation speed c.

Equations of motion. From this, the equations of motion for
the particles and the fields are obtained via variational calculus.
For the particles, this yields the known formula for the Lorentz
force, and the artificial B field shows the wavelike propagation

mi ẍi = − ∂U

∂xi

− qi E + qivi × B, B = 1
c2

!̇,

(14)
Ḋ = c2 ∇ × (∇ × B) − j

ε
, Ḃ = −∇ × D.

Note that the magnetic part of the Lorentz force can and
should be omitted since the B field is artificial and only used to
propagate changes in the D field. To preserve time reversibility
of the external integrator, the magnetic fields are propagated
twice by half a time step, before and after the force calculation,
respectively.

The intrinsic locality of the algorithm leads to an O(N )
scaling and a way to treat periodic box geometries by matching
the box boundaries onto a torus.

Implementation. For parallel execution, the system is split
into cubic spatial domains and distributed on the available
cores. Each domain contains a regular lattice that carries all
currents and fields. Since the algorithm is purely local, com-
munication only occurs on the lattice cubes directly attached
to a neighbor domain. These surface patches are exchanged
asynchronously while the B fields are propagated for all inner
cells during parallel communication. The communication cost
can be reduced if the charges are presorted in cubic domain
decomposition. Especially for small numbers of particles per
core, where the percentage of computing time for the sorting
step is significant.

Parameters. The algorithm features one central parameter,
the lattice size, to tune speed and accuracy. All other pa-
rameters are either given by the external integration routine
or are constrained by the stability criterion. They can thus
be set optimally by the implementation. Optimal accuracy is
achieved in an error minimum for an appropriate mesh. The
accuracy reacts sensitively to coarser mesh sizes, with a scaling
of a3 with the lattice spacing a. Finer meshes, scaling with
1/a2, do not influence the accuracy as strongly but increase
the computational effort proportional to 1/a3 [71]. The choice
of this parameter can therefore influence the behavior of the
algorithm significantly.

III. BENCHMARK SETUP

A. Systems

In order to calculate the electric field E = −∇" for a
1/r potential, all methods presented here split the long-range

063308-9



AXEL ARNOLD et al. PHYSICAL REVIEW E 88, 063308 (2013)

FIG. 4. The cloud-wall system (300 charges): two oppositely
charged walls in the center of the box and a surrounding diffuse cloud.
The system was artificially created to contain a strong long-range field
component.

part of the potential from the divergence at r → 0. Since the
performance relevant part of the calculations is the treatment
of the long-range components, all benchmarks presented
here were carried out for two systems, consisting of different
charge distributions, both of which feature a significant
long-range contribution which challenges the achievable
accuracy of the methods.

The cloud-wall model system, shown in Fig. 4, consists of
300 particles, which represent two oppositely charged walls
centered in a cubic box together with a diffuse cloud of charges.
This ensures a strong long-range contribution in the potential.
The periodic box was replicated 3, 7, 15, 32, and 70 times in
every direction to yield cubic boxes filled with 8100, 102 900,
1 012 500, 9 830 400, and 102 900 000 particles, respectively.

The cloud-wall systems were used for both the performance
measurements as function of accuracy in Sec. V A as well as
for the scalability benchmarks in Sec. V C. Since these test
cases represent periodically replicated systems, the reference
values for potentials and forces can be obtained even for very
large numbers of particles.

The second test system consists of a cubic box filled with
12 960 particles of a silica melt shown in Fig. 5. It was
taken from an MD simulation of a melting silica crystal
using the Beest–Kramer–van Santen (BKS) force field [72].
The overall charge neutral system consists of positively and
negatively charged ions which are sufficiently homogeneously
distributed, while the electrostatic potential still has a signif-
icant long-range contribution. For the scaling and benchmark
runs the original silica melt system was replicated 2, 4, 8,
16, and 32 times in every direction to yield cubic boxes filled
with 103 680, 829 440, 6 635 520, 53 084 160, and 424 673 280
particles, respectively.

The silica melt test systems were used for both the stability
benchmarks in Sec. IV and the complexity benchmarks in
Sec. V B.

B. Error measure

In order to compare the accuracy of the different methods,
the following error measure is defined. Let "FCS(xj ) denote

FIG. 5. Silica melt (12 960 charges): a system that is sufficiently
homogeneous while retaining a significant long-range contribution.

the potential which is calculated by one of the presented fast
Coulomb solvers and "REF(xj ) the highly accurate reference
potential computed by the Ewald summation method for which
the parameters were chosen to yield an accuracy close to
machine precision. In the following, we compare the different
solvers with respect to the relative rms potential error given by

εpot :=
(∑N

j=1 |"REF(xj ) − "FCS(xj )|2
∑N

j=1 |"REF(xj )|2

)1/2

.

Since all methods differ in their definition of relative short-
and long-range contribution, only the total potential can be
used as common reference point.

C. Architectures

The benchmark tests were performed on two different
hardware architectures at Jülich Supercomputing Centre. In
the meantime, the JUGENE architecture has been shut down
and replaced by the JUQUEEN system [73].

1. Blue Gene/P (JUGENE) [74]. One node of a Blue
Gene/P consists of four IBM PowerPC 450 cores that run
at 850 MHz. These four cores share 2 GB of main memory.
Therefore, we have 0.5 GB RAM per core, whenever all the
cores per node are used. The nodes are connected by a 3d-torus
network with 425 MB/s bandwidth per link. In total JUGENE
consists of 73 728 nodes, i.e., 294 912 cores. The software has
been built with the IBM XL compilers (Advanced Edition for
Blue Gene/P, V9.0).

In this work, we consider this architecture as prototypical
for a well interconnected HPC machine.

2. Jülich research on Petaflop architectures (JUROPA)
[75]. One node of JUROPA consists of 2 Intel Xeon X5570
(Nehalem-EP) quad-core processors that run at 2.93 GHz.
These eight cores share 24 GB DDR3 main memory. There-
fore, we have 3 GB RAM per core, whenever all the cores per
node are used. The nodes are connected by a QDR InfiniBand
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network with nonblocking fat tree topology. In total, JUROPA
consists of 2208 nodes, i.e., 17 664 cores. The software has
been built with the Intel Compilers (version 11.1).

In this work, we consider this architecture as prototypical
for a convenience cluster.

D. Implementations

Whenever the performance and, in particular, the scalability
of an algorithm is examined, it strongly depends on the actual
implementation of the algorithm. Therefore, in some cases
different implementations of the same algorithm are employed,
as provided within the scalable parallel library SCAFACOS
[30,36], which is used for the comparison of methods.

In the following some implementation features are provided
for each method. A more in-depth discussion about parallel
implementations is given in the library manual [76] and in a
follow-up publication that is still in preparation.

Two implementations of the multigrid method were used in
the benchmarks. PP3MG [77] is implemented in C, featuring
as splitting function either cardinal B splines or polynomials
defined over an interval. Finite difference or finite volume
operators are available as fourth-order compact schemes
or extended higher-order schemes. Newton interpolation is
applied to map grid values to particles. Versatile multigrid
(VMG) is a multigrid-based method implemented in C++ with
strong emphasis on modularity in terms of employed iterative
solver, domain decomposition, and interpolation schemes.
Note that both multigrid-based methods have converged to
employing cardinal B splines or polynomials, a fourth-order
compact stencil, and Newton interpolation in most of the
following benchmarks and hence differences in performance
can be recast to specific implementations and differences
in the compilers. For the very low- and high-accuracy
benchmarks lower or higher-order schemes are used.

In the case of the Fourier-based methods, two implementa-
tions were used which were originally developed in different
communities. The P3M algorithm or one of its variants is
a widely used method in condensed matter simulations to
compute Coulomb interactions. The implementation of the
algorithm used in this work was originally adopted from the
simulation software ESPRESSO [35] and is implemented in
C. In fact, two variants of the algorithm were used for the
benchmarks. In the first benchmarks, the algorithms did not yet
employ interlacing, and the ik-differentiation scheme was used
for computing forces onto particles. During the time of writing
the implementation has been extended to use both analytical
differentiation and interlacing, as it was determined that this is
the fastest combination of components [51]. Since JUGENE
was replaced with a new architecture before these changes
were implemented, it was not possible to rerun all benchmarks
with the modified algorithm. In the graphs, whenever the
noninterlaced method with ik differentiation was used, it
is denoted as “P3M (ik).” The second implementation of a
Fourier-based method is P2NFFT; see [50]. Starting from the
fast summation method [58], it was shown in [61] that the
method is based mainly on a “convolution at nonequispaced
nodes.” This conclusion leads to great simplicity: The P2NFFT
implementation mainly consists of only two building blocks

required to compute this convolution, namely, the FFT [63]
and the NFFT [50].

As noted in Sec. II A2, the implementations of P3M and
P2NFFT are mathematically equivalent for periodic boundary
conditions. Whenever there are differences found in the
performance between these two, they originate only in part
from the implementation itself, but mainly from differences
in the way in which the parameters, which enter into the
algorithms, were determined. For all timings of P2NFFT, all
parameters were chosen based on the comparison of several
runs, whereas for P3M, an estimate for the near-field cutoff rcut
and an automatic tuning of all other parameters is used.

The core of the FMM is implemented in FORTRAN 90.
Sorting is done externally via a call to a C library function.
The parallel version of the FMM does make use of the message
passing interface (MPI) for collectives and ARMCI and OSPRI
(Blue Gene/P only) for the one-sided, nonblocking point-to-
point communication. To simplify the use of the algorithm for
the user, an additional run time and error control scheme was
implemented to automatically tune the parameter set.

The implementation of MEMD is written in C and was
ported from the Molecular Dynamics software ESPRESSO [35].
It is based on the B field wave propagation version proposed by
Dünweg and Pasichnyk [25] rather than the original diffusive
Monte Carlo propagation [24]. The interpolation scheme for
the electric currents is based on a linear charge interpolation.
The simulation box is divided into subdomains, and each
subdomain is mapped onto a grid of equally spaced lattice sites
in each dimension and across all domains, which facilitates
the applicability of a finite differences curl operator (∇×).
The parallel communication is merely done on next neighbor
boundaries. The algorithm includes dynamics (propagation of
fields) and, to set the time scale of the system, requires—in
contrast to the other algorithms—the specification of a time
step to correctly map the motion of charges to the electric
current.

IV. STABILITY

The long-term stability of an MD simulation is a good
test for the accuracy of the computed forces. If a symplectic
integrator is used, the time discretization error does not
lead to a long-term energy drift, so that any remaining drift
must be due to systematic errors in the forces. A symplectic
integrator has the property that the discretized solution for
the original Hamiltonian H is equal to the exact solution
for a nearby Hamiltonian H ′ [78]. Since the energy for H ′

is exactly conserved, its deviation from the energy for H
remains bounded. Likewise, a time-reversal symmetry of the
integrator guarantees the conservation of total momentum. If
total momentum is not conserved, there must be systematic
errors in the forces.

To evaluate the long-term stability, we have run MD
simulations of the silica melt system described in Sec. III A
using the BKS force field [72], the Coulomb component
of which is computed with the different methods from the
SCAFACOS library. The simulations were performed with the
MD code IMD [79], using a symplectic leap-frog integrator
in the NVE ensemble. The system consisted of 12 960 atoms
and was first equilibrated at 2950 ◦C. The simulations were
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FIG. 6. (Color online) Kinetic energy per particle of the center-
of-mass motion of the system according to different methods and
accuracies: εpot = 10−3 (top); εpot = 10−5 (bottom). Note that the
P3M method used here uses an ik differentiation for the forces
instead of analytical differentiation and does not apply interlacing.
With MEMD, only an accuracy of εpot = 10−3 could be reached.

run over 100 000 time steps of 0.2 fs each. This time step
is a rather small, conservative choice, so that remaining time
discretization errors should be negligible.

A. Conservation of momentum

The results for the conservation of momentum are shown
in Fig. 6, for two different required accuracies. At the
beginning of the simulation, the total momentum was set to
zero. The development of the specific kinetic energy of the
center-of-mass motion, calculated in energy per particle, is a
good measure to monitor the momentum conservation in the
system.

As can be seen from Fig. 6, for the methods FMM, P3M,
and VMG the center-of-mass momentum remains zero for
all practical purposes, whereas with the methods P2NFFT,
PP3MG, and MEMD, a small but noticeable increase of
the center-of-mass momentum is visible. The reason for the
difference between P3M and P2NFFT is the use of different
differentiation schemes. The ik-differentiation scheme used

FIG. 7. (Color online) Total energy per particle according to
different methods at accuracies εpot = 10−3 (top) and εpot = 10−5

(bottom). The initial energy has been subtracted in order to make the
fluctuations and the drift better visible. Note the different scales of the
two figures (units of 10−3 and 10−5 eV). Note that the P3M method
used here uses an ik differentiation for the forces instead of analytical
differentiation and does not apply interlacing. With MEMD, only an
accuracy of εpot = 10−3 could be reached.

in P3M conserves the momentum exactly, but is somewhat
slower, whereas the analytical differentiation scheme used in
P2NFFT conserves the momentum only approximately but is
faster. Both methods can use either of these differentiation
schemes. There is a trade-off between higher accuracy and
higher performance involved when one selects the differentia-
tion scheme. Note that VMG artificially enforces conservation
of momentum while PP3MG does not.

B. Conservation of energy

The conservation of total energy is shown in Fig. 7, for the
same required accuracies as for the momentum. For the higher
accuracy, the drift of the energy is negligible for all practical
purposes, even though the multigrid methods seem to have
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slightly higher energy fluctuations. The situation is different
for the lower required accuracy, where the multigrid methods
VMG and PP3MG show a very clear drift. This means that
the forces contain a systematic error, which adds up during the
simulation. The other methods, especially the Fourier-based
ones (P3M and P2NFFT ), behave much better in this respect.
They show no energy drift (or a much smaller one) even at
low accuracy. This must be taken into account in the Methods
selection. If a drift must be avoided, the multigrid methods
have to be run at higher accuracy, which costs performance,
whereas the other methods can be used at lower accuracy
without having to deal with a drift.

It is apparent that MEMD is not capable of achieving an
accuracy of ϵ < 10−5, which was found to provide long-term
stability for the other methods. The lack of accuracy of MEMD
is due to a low near-field resolution in directly adjacent cells,
where no explicit particle interactions are considered. The
application of a thermostat could possibly circumvent the
numerical drift at lower accuracy but cannot guarantee the
correct description of the dynamics of the system. However, if
the main focus is on the configuration of a system and not on
dynamics, e.g., in Monte Carlo simulations, MEMD might be
considered as a fast method.

V. PERFORMANCE OF THE METHODS

In the following we assess the performance of each method
in terms of accuracy, complexity, and parallel scalability. For
the accuracy measurement, we inspect how much longer a
method runs for a specific increase in desired accuracy of
the relative potential error. The complexity tests check on the
theoretically expected complexity with respect to the experi-
mentally measured dependency of run time on the number of
particles. Finally, parallel scalability extends the benchmarks
to very large systems of charges and examines parallel
efficiency of the methods up to very large numbers of cores.

A. Accuracy

For the following benchmarks, the parameters of the fast
Coulomb solvers were tuned in order to achieve different
potential errors εpot. Figure 8 shows the run time per particle for
the cloud-wall system with 102 900 particles on JUROPA. We
discuss each method’s source of error individually to explain
the details of Fig. 8.

The error introduced by the multigrid-based methods
(VMG and PP3MG) is composed of a discretization error,
an algebraic error, and an interpolation error. The first is
due to the discretization of (7) and depends on the chosen
discretization scheme. It scales typically like O(h2), O(h4),
or O(h6). Further, an appropriate splitting function has to be
chosen that, in order to be represented adequately on the grid,
has to be smooth enough and must have a large enough support.
As a consequence the choice of a higher-order scheme leads to
a larger number of grid points a charge is sampled onto. The
order of the interpolation scheme is also chosen according to
the order of the discretization scheme, this results in a run time
behavior similar to the sampling part. The algebraic error due
to the iterative solution of the linear system is controlled to be
on the same order.

FIG. 8. (Color online) Required wall clock time per particle for
102 900 charges versus the relative rms potential error εpot on one
core of JUROPA.

Putting this information together explains Fig. 8: The grid
sizes, inversely proportional to the discretization parameter
h, can only be increased by a factor of 23 or powers thereof
and the resulting error decreases then like the order of the
discretization scheme, e.g., O(h4). However, as the accuracy
was measured in powers of 10, not only are the grid sizes
changed and the support of the splitting function adjusted
accordingly, but also the optimal discretization scheme, in-
terpolation degree, and type of splitting function are chosen
individually.

Regarding the Fourier-based methods, the error of the
truncated Ewald sum splits into the errors caused by the
truncation of the near-field sum (12) at a given near-field
cutoff range rcut and the error caused by the truncation of
the Fourier series (13) after M mesh points in every direction
of space. Note that both errors depend on the Ewald splitting
parameter α in the opposite direction; e.g., for every given
rcut and M there exists an optimal choice of α for which
both errors are balanced. In addition, P3M and P2NFFT
spread the charges qj with a B-spline function on the grid in
order to make the problem suitable for FFTs. This introduces
another approximation error that decreases exponentially for
increasing order P of the B spline. The P3M method seems to
be significantly worse than P2NFFT; however, it was noticed
that this seems to be caused mostly by problems in the
automatic parameter tuning procedure. As the P3M method
is equivalent to the P2NFFT method, it can be expected that
the method can be improved to perform on the same level as
P2NFFT.

The FMM has two distinct error sources contributing to the
overall error. Both error sources emerge in the far field only.
The FMM near field is free of errors except for numerical
rounding off visible in all methods. The first algorithmic error
source, the limited number of poles, introduces a truncation
error. The second error source occurs whenever the translation
operator OM→L is applied. Both errors can be controlled
in the current implementation such that the results do not
show any errors compared to the direct summation or even
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FIG. 9. (Color online) Required wall clock time per particle at
relative rms potential error εpot < 10−3 on one core of JUROPA.

exceed the precision due to fewer terms in the summation.
One cannot state any accuracy scaling properties for systems
with arbitrary particle distribution. However, for well behaved,
almost homogeneously distributed systems like the ones used
in this comparison, the FMM shows the following scaling
behavior. First, up until 'Erel = 10−4 the run time of the
FMM is constant. Second, the run time increases linearly until
'Erel = 10−8. Finally, the FMM shows a quadratic scaling
behavior until machine precision. The theoretical O(p3)
scaling, with p being the number of poles in the expansion,
is not visible when increasing the requested accuracy up
to machine precision, since the FMM does tune the near-
and far-field contributions automatically which improves the
accuracy scaling.

The discretization of the MEMD method introduces two
numerical errors, both of which can be expressed using the
inverse lattice spacing 1/a. The first is a charge discretization
error that originates in the linear interpolation on next neigh-
bors for the electric current. As expected, it scales with 1/a3

and can theoretically be reduced by extending the short-range
cutoff of the algorithm to several cells. This, however, implies
a high increase in computational effort and does not allow
for spatially varying dielectric properties, one of the main
advantages of MEMD. The second error is related to the use
of retarded solutions of the Maxwell equations with an adjusted
speed of light. This in turn can be directly expressed via the
lattice spacing, since this dictates the propagation speed of the
magnetic fields. From (14) it is apparent that this error scales
with a2. This error formulation yields a minimum error of
about 10−4 for the relative force error, where realistically 10−3

is achievable in most systems. The method provides a tuning
function to find the parameters for a minimal error. In Fig. 8,
MEMD performs acceptably but can only cope to a maximum
precision of 10−4 in the relative potential error.

B. Complexity

In this section we compare the theoretical complexity of
each method with the measured run time complexity. Figure 9
shows the run time per particle as a function of the number

of particles for the various methods on a single core of the
JUROPA system with the silica melt test system duplicated
as described in Sec. III A. All the methods are required to
maintain the relative rms potential error of εpot < 10−3. Note
that not all the implementations are intended to run such large
problem sizes on a single core. Therefore, a lack of memory
or other implementation depended limitations lead to some
missing data points in Fig. 9.

We observe an almost linear increase of run time with
increasing number of particles for all compared methods,
which agrees perfectly with the theoretical O(N ) complexities
of the MEMD, PP3MG, VMG, and FMM methods. The
time per particle varies between 5.2 × 10−6 and 1.4 × 10−4.
Although P3M and P2NFFT yield a theoretical O(N log N )
complexity, this is not visible in the compared range of particle
numbers. This does not emerge as the run time share of the FFT,
which is responsible for the asymptotic O(N log N ) scaling,
ranges only between 3% and 10% of the total run time. Further
note that there is no crossover point of the FMM and P3M run
time up to 5 × 107 particles. However, the run time difference
between FMM, P3M, and P2NFFT are rather marginal for all
compared system sizes.

C. Scalability

Our last benchmark is focused on parallel scalability.
Although each method presented here shows linear scal-
ing behavior for a small number of cores, at some point
implementation-dependent restrictions will cause a deviation
from the O(N/P ) behavior at large problem sizes N and
large numbers of cores P and thus a decrease in efficiency
for highly parallel execution, as expected for strong scaling.
The timings presented in this section were performed on
the two different architectures described in Sec. III C. All
algorithms are tested for parallel scalability using the cloud-
wall test case from Sec. III A on the JUGENE system, which
has a large number of slowly clocked cores, and on the
JUROPA system, an architecture more similar to common
compute clusters. Results of the wall clock measurements for
1 012 500 charges on the JUROPA system are presented in
Fig. 10.

The gray dotted lines drawn in Fig. 10 each denote a factor
of 10 in the run times with respect to the fastest method on one
core. A graph starting out on the lower line therefore is reduced
to a relative efficiency of 0.01 when crossing the upper line,
providing the best visible resolution in a region of very low
efficiency. All methods in Fig. 10 show very similar efficiency
and their scaling behavior at low core numbers appears linear.

To provide a better resolved and easier to read comparison,
the scaling plots presented from here on will feature the relative
parallel efficiency in dependence on the number of cores. Let
Pmin denote the minimal number of cores that was included in
the measurements and tbest the run time of the fastest method
at this level of parallelism. We then plot the relative parallel
efficiency e(P ), which we define by

e(P ) = tbest

t(P )
Pmin

P
. (15)

The same scaling measurements as in Fig. 10 are shown in
Fig. 11(c) using Eq. (15). In direct comparison, the nonlinearity
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FIG. 10. (Color online) Required wall clock time of the cloud-
wall test case with 1 012 500 charges versus the number of cores on
JUROPA at relative rms potential error εpot < 10−3.

even at small numbers of cores can be seen, and the scaling
trend of each algorithm in the most interesting scope above
10% efficiency of the fastest method is more apparent on
the nonlogarithmic scale. The only disadvantage of plotting
the parallel scaling like this is that it is not possible to read
off the actual timing of an algorithm from these plots. To
allow for this, we give the best timing tbest at the minimal
number of cores Pmin in the caption of the scaling graphs. The
actual timing can then be calculated as t(P ) = tbest

e(P )
Pmin
P

. Where
Pmin ̸= 1, we give it explicitly.

We now discuss the scalability of each method individually.

1. VMG and PP3MG

On both architectures multigrid methods show a very good
scaling behavior. Both methods use a fourth compact order
discretization scheme that maximizes parallel efficiency at
moderate accuracy. The efficiency plots on both architectures
are smooth and the methods behave like expected; cf., Fig. 11
and Fig. 12. On JUROPA (see Fig. 11) the performance of
VMG overall is a little bit better than the behavior of PP3MG;
nevertheless, both methods show a loss of efficiency for small,
i.e., less than 1000, numbers of particles per core. This effect
seems to be less pronounced for PP3MG. The factor between
VMG and PP3MG can be explained by examining the param-
eters chosen for VMG, that seem to be chosen more favorable
for this implementation. On JUGENE (cf. Fig. 12), both
methods perform equally for smaller processor number, for
larger processor numbers PP3MG suffers less from scalability
issues. Note that both methods were tuned manually.

2. P2NFFT and P3M

On the JUROPA architecture, P2NFFT and P3M outperform
the other methods (see Fig. 11). Mathematically, the two
methods are identical [65], and for these scalings both use
interlacing and the analytic differentiation scheme. Therefore,
the significant difference in performance and scaling seen
in Fig. 11 stems solely from the different choice in the

FIG. 11. (Color online) Relative efficiencies e(P ) [see (15)] of
the cloud-wall test case at different sizes versus the number of cores
on JUROPA at relative rms potential error εpot < 10−3. (a) Cloud-wall
test case with 8100 charges. tbest = 6.35 × 10−2 s. (b) Cloud-wall test
case with 102 900 charges. tbest = 6.60 × 10−1 s. (c) Cloud-wall test
case with 1 012 500 charges. tbest = 7.25 s.

algorithms’ specific parameters. In these simulations, P3M
uses an automatic parameter tuning method, whereas P2NFFT
timings were done with manually tuned parameters. The
automatic tuning method makes use of the error estimate
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FIG. 12. (Color online) Relative efficiency [see (15)] of the
cloud-wall test case with relative rms potential error εpot < 10−3

on the JUGENE architecture. Note that the P3M method used
here uses an ik differentiation for the forces instead of analytical
differentiation and does not apply interlacing. (a) Cloud wall test
case with 1 012 500 charges. tbest = 106.7 s. (b) Cloud wall test case
with 9 830 400 charges. tbest = 454.8 s; Pmin = 2. (c) Cloud wall test
case with 102 900 000 charges. tbest = 753.1 s; Pmin = 16.

from [52] and times several test runs with different sets of
real-space cutoffs and lattice sizes to determine the optimal
parameters. This works reasonably well within a full MD
software but may give flawed results in a library, where the ratio
of computational effort between short-range and long-range
interactions is not as obvious.

The nonoptimal tuning routine of P3M results in a consid-
erably larger near-field cutoff range than the manually chosen
parameters of P2NFFT, which were optimized for an ideal
single core performance. Hence, the P2NFFT calculations are
mostly done in Fourier space via the FFTs, which is advanta-
geous on small numbers of cores. On a large number of cores,
this situation is reversed and P3M as well as also other methods
perform better for the same reason: More Fourier space
calculations demand more global communication, whereas in
the case of P3M more interactions are calculated in real space
with a near-field solver requiring less global communication.

With both implementations, it is possible to switch param-
eters at the point of crossover, making the resulting algorithm
the fastest on the JUROPA architecture.

On the JUGENE architecture (see Fig. 12), both algorithms
used an older implementation. Neither of which featured
interlacing, and in the case of P2NFFT this included the
analytic differentiation scheme, whereas P3M used the ik
differentiation. The automatic tuning routine was used for
all timings. P2NFFT, in contrast to scalings on the JUROPA
architecture, did not tune the near-field cutoff range. At the
time of the scaling measurements, it was not yet possible to
run P3M for the setups in plots in Figs. 12(b) and 12(c) be-
cause of parallelization issues with uneven automatic domain
decomposition of the MPI library. This problem is fixed in the
current version of SCAFACOS.

The good scaling behavior (at the expense of slower
single core performance because of the large near-field cutoff)
observed on the JUROPA architecture is still visible and both
implementations surpass the FMM performance for very high
numbers of cores.

3. FMM

As can be seen in Fig. 12, the FMM implementation
performs very well on the JUGENE architecture, showing
not only the best single core performance of the compared
methods but also excellent scaling behavior, making it the
fastest method down to 103 particles per core. The OSPRI
library is used for point-to-point communication. At large
scales, a global communication scheme could still improve
the scaling behavior, but point-to-point communication was
chosen to optimize the method for a small memory footprint.

On the JUROPA architecture (see Fig. 11), FMM shows
good results at small numbers of cores and good scaling
behavior, but is outperformed by the Fourier-based methods.
Comparison of the two architectures suggests that the ratio
of computing time to communication is not optimal since the
implementation performs very well on JUGENE with slowly
clocked cores. This is partly due to the ARMCI message
passing layer not scaling as expected, the communication
being one-sided (blocking or nonblocking), and the lack of
thread-based parallelism. Overall, it is mostly due to the
optimization on small memory footprints.
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Of all methods presented here, the implementation of
FMM has the lowest memory requirement. Several additional
communication steps are required to achieve this. The number
of global synchronizations can be reduced if this low mem-
ory requirement is lifted. The Morton-ordering and sorting
algorithm is restricted to a small memory requirement. This
ordering also introduces imbalance; hence the scaling limit.
Additional load balancing would be needed to even out the
reordering effects.

4. MEMD

The MEMD algorithm performs acceptably on the JUROPA
system. The absolute timings do not reach those of the fastest
methods but are situated in the midrange compared to all
alternatives. The parallel scaling is not as strong as expected
from a purely local method, which is due to the large amount of
data sent between cells at the node boundaries. In addition to
interpolated charges as in other methods, currents and electric
and magnetic fields have to be exchanged, which leads to a
communication overhead on clusters with good single CPU
performance.

On a system with slower clocked cores like JUGENE,
MEMD performs quite competitively, as can be seen in Fig. 12.
A comparison between the two architectures reveals room for
improvement within the communication structures.

The timings shown here are all measurements of the
dynamic solution of the algorithm and do not include the
first time step, which is calculated via the initial numerical
relaxation scheme. Since MEMD does not provide a tuning
method for a given error estimate, manually tuned parameters
were used for all simulations to obtain the required accuracy at
the coarsest possible mesh. On the JUGENE architecture, due
to memory consumption, the simulations had to be restricted
to higher numbers of cores.

D. Performance comparison

As a general remark we emphasize that the comparison
was made between methods included in the parallel library
SCAFACOS. Due to the common interfaces, positions, and
charges are copied into the library and resorted internally.
Although there are various kinds of optimizations already
done, a performance gain could be obtained by transferring
sorted arrays of charges and positions of particles in, e.g.,
block structures or along space filling curves to the library
for an improved cache usage. Furthermore, the evaluation of
the short-range part of interactions within the force loop of
the MD code has the potential to increase performance due
to the combined calculation with empirical potentials such as
Lennard-Jones, which avoids a double calculation of mutual
distances between near-field particles in the MD code and in
the library. For the present comparison the implementation of
the near-field contribution was calculated consistently with
the methods offered by SCAFACOS in order to put all
methods on a common ground. Finally, changes to particle
position in an MD simulation are usually small such that
especially the PDE-based methods may benefit from starting
at solutions gained from the previous time step. However, such
optimizations have not been explored for this comparison for
the sake of a common ground.

The systems chosen for the benchmarks fulfill the re-
quirements to exhibit a sufficient contribution from long-
range contributions to the electrostatic potential, whereas
the distribution of particles is relatively homogeneous. It
has to be pointed out that for systems which show strong
inhomogeneous particle distributions, mesh-free methods like
FMM will most likely gain in relative performance with
respect to mesh-based methods, like P2NFFT and P3M, since
a sufficient resolution of the particle distribution will call for
large meshes.

It is apparent that for architectures consisting of powerful
single cores, the FFT-based methods P2NFFT and P3M
show the best performance of all methods included in the
SCAFACOS library. It can be seen that the chosen parameters
are crucial for accuracy and speed. For example, the real-space
cutoff radius might be set small when a small number of
processors is used, since the far-field part can then be very
efficiently calculated by a well scaling FFT. However, when
the number of cores is increased and the efficiency of the FFT
is degraded due to communication, more work is transferred
to the short-range part by finding a balance between far-field
and near-field calculations by a larger near-field cutoff radius.

For architectures with a smaller ratio of communication to
computation time, i.e., a fast network structure together with
slow single cores, the fastest algorithm is the FMM. It also
features the smallest memory requirements, allowing for very
large systems even on small numbers of cores. The implemen-
tation has been optimized for a small memory footprint, and
it is most likely that the timings can even be further improved
by use of a less memory efficient sorting and communication
schemes. For a small error threshold (ε < 10−5), controlling
the approximation, the given implementation of the FMM
is sufficiently energy and momentum conserving for long
trajectory calculations. A further advantage of the FMM, that
was not explored in the present article, is its ability to deal
with partially periodic systems.

The multigrid methods perform acceptably and show a
very good scaling behavior. The only global communication
which is required is the reduction of the defect over all cores,
which is necessary for controlling the overall convergence of
the method. Further optimization could reduce the workload
of local computations, i.e., charge assignment and near-field
correction. Although the method shows a moderate perfor-
mance compared with other methods at the same accuracy, the
underlying multigrid solvers are flexible enough to allow for
many variations, e.g., spatially varying dielectric properties
of the Poisson equation, which makes them attractive for a
broader class of applications.

MEMD is a recently developed method that, especially on
architectures with a favorable ratio of single core performance
and communication performance, can compete with the more
established algorithms presented in this article. The perfor-
mance at higher accuracies remains an open question but is, in
principle, achievable. Methodically, MEMD is highly scalable
and, with an improved and optimized implementation of the
communication structures, could be an interesting option for
applications including spatially varying dielectric properties.
Nevertheless, MEMD in its current state shows some limits in
applicability. First, for algorithmic reasons, it does not perform
well for inhomogeneous systems or systems with vast changes
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between consecutive configurations. Second, for physical
reasons it cannot deal with systems that feature spatially fixed
particles or external driving fields that would result in a net
electric current. In its present implementation and development
state it cannot be tuned to very high precision, mainly because
of its limited resolution of short-range interactions.

VI. SUMMARY AND CONCLUSIONS

The present article focused on a comparison of algorithms
for the calculation of long-range (electrostatic) interactions
in many-particle systems with periodic boundary conditions
in terms of stability, accuracy, complexity, and parallel
scalability.

Stability. As expected for a symplectic integrator, the center-
of-mass momentum is conserved for FMM-based as well as
FFT-based methods (when applying differentiation in Fourier
space) within the applied error bounds. Small deviations from
momentum conservation are observed for FFT - and multigrid-
based methods, which apply an analytic differentiation scheme
(unless the momentum is artificially removed, as is the case
for VMG).

The total energy of the system is conserved very well for
simulations with a relative rms potential error of εpot ! 10−5

for all methods except MEMD, which does not reach the
accuracy level. At a lower relative precision of 10−3, the
FFT-based methods P3M and P2NFFT conserve the total
energy of the system perfectly for methodical reasons. The
FMM shows a slight systematic deviation, and both multigrid
methods exhibit a clear energy drift that needs to be corrected
for.

Complexity. All implementations behave as expected from a
theoretical analysis of the algorithms. The log(N ) contribution
of the FFT-based methods is not visible for common system
sizes, as the work spent in the FFT is negligible compared with
other tasks.

Accuracy. The relative increase in run time as a function
of reduced approximation error of the methods is smallest for
FMM and P2NFFT, which makes them favorable for high-
precision calculations. All other methods show a significant
increase in computational effort for high-precision force
calculations. Differences found here between P2NFFT and
P3M can be recast to a different way of determining the
parameters, relevant for the accuracy of the methods.

Multigrid methods, which discretize the Laplace operator
by high-order finite difference stencils, suffer from a rela-
tively large discretization error compared with Fourier-based
methods, which compensate the discretization error by a
nonlocal correction via the influence function. Since multigrid
methods perform local operations, nonlocal corrections cannot
be considered in a natural way.

As mentioned, MEMD is a rather recent method which
still awaits maturity. Accuracy of this method at its present
stage is moderate and precision requirements of εpot < 10−5

could not be reached within the present scope. This can be
recast to a rather coarse treatment of short-range interactions,
where nearby particles in different cells interact via their
discretizations on grid points. In the future this restriction
might be lifted to bring also MEMD closer to other methods.

Scalability. A comparison shows very good parallel scaling
behavior for both multigrid methods and the automatically
tuned P3M. The FMM and MEMD scale very well on
architectures with slowly clocked CPUs, but are outperformed
on other systems.

On architectures with slowly clocked CPUs, like the
JUGENE architecture, the FMM performs fastest among
all compared methods. On systems with better single core
performance, the FFT-based methods P2NFFT and P3M are
the fastest, for a small and large real-space cutoff radius,
respectively. The overall best scaling behavior is seen from
the multigrid-based methods although they are not the fastest
methods.

Although part of the presented algorithms exist in various
implementations in the scientific community and are widely
used in different simulation packages, a concise comparison
has been awaited and results presented here have revealed
some common aspects and differences. Though the FMM is
currently not widely adopted, it performed very competitively
in our implementation. Also the Fourier-based methods scale
unexpectedly well to large numbers of charges and cores.
In addition, it is apparent that the choice of parameters
for each method, while being highly complex, has a sig-
nificant influence on the accuracy and performance of the
algorithms.

All algorithms featured in the present article were compared
within the publicly available open source library SCAFA-
COS [36]. This not only makes it possible to perform a
fair comparison between implementations within the same
framework but gives the scientific community the possibility
to link the library to other software, thereby extending either
the functionality or achieving a better scalability. The library
is still under development and further optimizations and
adaptations to future architectures are planned. Furthermore, it
is expected that new approaches to the problem of long-range
interactions, exhibiting advantages in various respects (e.g.,
accuracy, scalability, functionality) can be included into the
open source library, which might allow for an even wider
comparison in future.

ACKNOWLEDGMENTS

This work was supported by the German Ministry of
Science and Education (BMBF) under Grant No. 01IH08001.
Additionally, A.A., F.F., and C.H. thank the German Science
Foundation (DFG) for support via the SFB 716 program. We
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APPENDIX: SCALING PARAMETERS

1. Scaling, tuning, parameters, compilers, versions

The results presented in this paper were timed with a generic
example program that is included within the SCAFACOS
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library and requires a specific set of parameters per method
as command-line input. All simulations were done with the
SCAFACOS library version 0.1, published on June 11, 2013, or
prior versions (scalings on JUGENE ). The method parameters
that lead to the timings presented in Sec. III are listed in
the following tables. For information on precise names and

functions of the set of parameters within each method, we
refer to the library manual [76].

Some parameters remain constant through all scaling
experiments of one method. For better visibility of the actual
changes, these parameters will only be spelled out for the first
value and afterward be referred to as “...”.

2. JUGENE scaling parameters

The parameters used for the scaling of SCAFACOS on JUGENE with the cloud-wall system were

Method No. of charges Parameters

MEMD 1 012 500 mesh = 128, light speed = 0.7, time step = 0.01
9 830 400 mesh = 256, light speed = 0.25, . . .

102 900 000 mesh = 512, light speed = 0.1, . . .

P2NFFT 1 012 500 M = 256, r_cut = 4.481, P = 4, α = 0.573
9 830 400 M = 512, . . .

102 900 000 M = 1024, . . .

P3M 1 012 500 r_cut = 4.481 387, grid = 256, cao = 4, α = 0.573 076

VMG 1 012 500 max_level = 7, near_field_cells = 5, discretization_order = 4, interpolation_order = 5,
precision = 1.0e-4, smoothing_steps = 3

9 830 400 max_level = 8, . . .

102 900 000 max_level = 9, . . .

PP3MG 1 012 500 cells_x = cells_y = cells_z = 256, ghosts = 6, degree = 5
9 830 400 cells_x = cells_y = cells_z = 512, . . .

102 900 000 cells_x = cells_y = cells_z = 1024, . . .

FMM 1 012 500 tolerance_energy = 0.001
9 830 400 tolerance_energy = 0.003

102 900 000 tolerance_energy = 0.001

3. JUROPA scaling parameters

The parameters used for the scaling of SCAFACOS on JUROPA with the cloud-wall system were

Method No. of charges Parameters

MEMD 8100 mesh = 16, light speed = 3.0, time step = 0.01
102 900 mesh = 32, light speed = 2.0, . . .

1 012 500 mesh = 128, light speed = 0.7, . . .

P2NFFT 8100 M = 32, r_cut = 2.3, α = 0.995, P = 4
102 900 M = 64, r_cut = 3.0, α = 0.811, . . .

1 012 500 M = 128, r_cut = 3.5, α = 0.711, . . .

P3M 8100 grid = 32, cao = 3, α = 0.489 078, r_cut = 4.48139
102 900 grid = 64, cao = 4, α = 0.573 076, . . .

1 012 500 grid = 256, cao = 4, α = 0.611 589, . . .

VMG 8100 max_level = 5, near_field_cells = 5, discretization_order = 4, interpolation_order = 5,
precision = 1.0e-4, smoothing_steps = 3

102 900 max_level = 6, . . .

1 012 500 max_level = 7, . . .

PP3MG 8100 cells_x = cells_y = cells_z = 32, ghosts = 5, degree = 5, tol = 1e-4, max_iterations = 50,
discretization = 1, distribution = 1

102 900 cells_x = cells_y = cells_z = 64, ghosts = 6, . . .

1 012 500 cells_x = cells_y = cells_z = 128, ghosts = 5, . . .

FMM 8100 tolerance_energy = 0.003
102 900 tolerance_energy = 0.0005

1 012 500 tolerance_energy = 0.001
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4. Accuracy parameters

The parameters used for the accuracy scaling of SCAFACOS with the cloud-wall system were

Method Accuracy Parameters

MEMD 10−1 mesh = 16, light speed = 3.0, time step = 0.01
10−2 mesh = 24, light speed = 2.0, . . .

10−3 mesh = 32, light speed = 1.5, . . .

P2NFFT 10−1 M = 32, r_cut = 2.0, P = 4, α = 0.580
10−2 M = 64, r_cut = 2.0, P = 4, α = 0.812
10−3 M = 64, r_cut = 3.0, P = 4, α = 0.817
10−4 M = 64, r_cut = 4.0, P = 6, α = 0.645
10−5 M = 128, r_cut = 3.1, P = 6, α = 0.942
10−6 M = 128, r_cut = 3.3, P = 8, α = 1.079
10−7 M = 128, r_cut = 3.7, P = 10, α = 0.963
10−8 M = 128, r_cut = 5.3, P = 10, α = 0.738
10−9 M = 128, r_cut = 6.2, P = 10, α = 0.676
10−10 M = 128, r_cut = 7.2, P = 10, α = 0.626
10−11 M = 256, r_cut = 4.0, P = 10, α = 1.166
10−12 M = 256, r_cut = 4.8, P = 10, α = 1.032
10−13 M = 256, r_cut = 6.4, P = 10, α = 0.818

P3M 10−2 grid = 64, cao = 3, α = 0.489 078, r_cut = 4.481 39
10−3 grid = 64, cao = 4, α = 0.573 076, . . .

10−4 grid = 128, cao = 5, α = 0.639 184, . . .

10−5 grid = 256, cao = 5, α = 0.746 81, . . .

VMG 10−1 near_field_cells = 2, max_level = 5, discretization_order = 2, interpolation_order = 3,
precision = 1.0e-1, smoothing_steps = 2

10−2 near_field_cells = 3, max_level = 6, discretization_order = 4, interpolation_order = 5,
precision = 1.0e-4, smoothing_steps = 3

10−3 near_field_cells = 5, max_level = 6, discretization_order = 4, interpolation_order = 5,
precision = 1.0e-4, smoothing_steps = 3

10−4 near_field_cells = 10, max_level = 7, discretization_order = 4, interpolation_order = 5,
precision = 1.0e-4, smoothing_steps = 2

10−5 near_field_cells = 18, max_level = 8, discretization_order = 4, interpolation_order = 4,
precision = 1.0e-5, smoothing_steps = 2

PP3MG 10−1 cells_x = cells_y = cells_z = 64, ghosts = 3, tol = 1e-2, discretization = distribution = 0,
degree = 1, max_iterations = 50

10−2 . . . , ghosts = 5, tol = 1e-3, discretization = distribution = 1, degree = 3, . . .

10−3 . . . , ghosts = 6, tol = 1e-4, discretization = distribution = 2, degree = 5, . . .

10−4 cells_x = cells_y = cells_z = 128, ghosts = 9, tol = 1e-5, . . .

10−5 . . . , ghosts = 14, tol = 1e-6, . . .

10−6 . . . , ghosts = 19, tol = 1e-7, . . .

10−7 cells_x = cells_y = cells_z = 256, ghosts = 29, tol = 1e-8, . . .

FMM 10−1 tolerance_energy = 0.05
10−2 tolerance_energy = 0.005
10−3 tolerance_energy = 0.0005
10−4 tolerance_energy = 0.0001
10−5 tolerance_energy = 0.000 01
10−6 tolerance_energy = 0.000 001
10−7 tolerance_energy = 0.000 000 06
10−8 tolerance_energy = 0.000 000 005
10−9 tolerance_energy = 0.000 000 001
10−10 tolerance_energy = 0.000 000 000 02
10−11 tolerance_energy = 0.000 000 000 002
10−12 tolerance_energy = 0.000 000 000 000 3
10−13 tolerance_energy = 0.000 000 000 000 01
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5. Complexity scaling parameters

The parameters used for the complexity scaling of SCAFACOS with the silica melt system were

Method No. of charges Parameters

MEMD 12 960 mesh = 24, light speed = 2.0, time step = 0.01
103 680 mesh = 48, light speed = 1.0, . . .

829 440 mesh = 96, light speed = 0.5, . . .

6 635 520 mesh = 192, light speed = 0.25, . . .

P2NFFT 12 960 M = 32, r_cut = 4.8, P = 4, α = 0.47
103 680 M = 64, . . .

829 440 M = 128, . . .

6 635 520 M = 256, . . .

53 084 160 M = 512, . . .

P3M 12 960 grid = 32, r_cut = 5.400 000, cao = 4, α = 0.418 014
103 680 grid = 64, . . .

829 440 grid = 128, . . .

6 635 520 grid = 256, . . .

VMG 12 960 near_field_cells = 4, max_level = 5, discretization_order = 4, interpolation_order = 4,
precision = 1.0e-4, smoothing_steps = 2

103 680 . . . , max_level = 6, . . .

829 440 . . . , max_level = 7, . . .

6 635 520 . . . , max_level = 8, . . . , interpolation_order = 3, . . .

53 084 160 . . . , max_level = 9, . . .

424 673 280 . . . , max_level = 10, . . .

PP3MG 12 960 cells_x = cells_y = cells_z = 32, ghosts = 4, degree = 3, tol = 1e-4, max_iterations = 50,
discretization = 1, distribution = 1

103 680 cells_x = cells_y = cells_z = 64, . . .

829 440 cells_x = cells_y = cells_z = 128, . . .

6 635 520 cells_x = cells_y = cells_z = 256, . . .

FMM 12 960 tolerance_energy = 0.008
103 680 . . .

829 440 . . .

6 635 520 . . .

53 084 160 . . .

424 673 280 . . .

[1] P. H. Hünenberger and J. A. McCammon, J. Chem. Phys. 110,
1856 (1999).

[2] P. P. Ewald, Ann. Phys. 369, 253 (1921).
[3] D. Fincham, Mol. Simul. 13, 1 (1994).
[4] J. W. Perram, H. G. Petersen, and S. W. de Leeuw, Mol. Phys.

65, 875 (1988).
[5] J. Lekner, Physica A 176, 485 (1991).
[6] R. Sperb, Mol. Simul. 13, 189 (1994).
[7] F. Dehez, M. Martins-Costa, D. Rinaldi, and C. Millot, J. Chem.

Phys. 122, 234503 (2005).
[8] A. J. C. Ladd, Mol. Phys. 36, 463 (1978).
[9] R. Sperb, Mol. Simul. 20, 179 (1998).

[10] R. Sperb, Mol. Simul. 22, 199 (1999).
[11] A. Arnold and C. Holm, Comput. Phys. Commun. 148, 327

(2002).
[12] A. Arnold and C. Holm, J. Chem. Phys. 123, 144103 (2005).
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