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the nanohelix perpendicular to its axial direc-

tion, has been measured by AFM with use of

the force-displacement (F-Z) curve (17).

Through the static compression of a nanohelix

lying on a silicon substrate with an AFM tip

(Fig. 4B) (fig. S5) and careful calibration of

the sensitivity, S, of the photodetector (11, 18),

which is the inverse of the slope of the F-Z

curve (fig. S6), the transverse spring constant

of the nanohelix, K
Helix

, was found to be (11)

3.9, 4.6, 4.5, and 5.3 N/m for one to four turns,

respectively, of the nanohelix as labeled in

Fig. 4B. The measured K
Helix

is near the the-

oretically estimated transverse spring con-

stant of 4.2 N/m (11), and so the elastic

modulus, E, values of the nanohelix derived

from the measured spring constant (11) are 42,

49, 48, and 57 GPa for the four turns, re-

spectively, which agrees well with the elastic

modulus measured for straight ZnO nanobelts

by mechanical resonance with the use of in

situ TEM (19).

The perfect helix we observed is of great

interest not only for understanding the growth

behavior of polar-surface–driven growth pro-

cesses in the wurtzite system, such as GaN,

AlN, and InN, but also for investigating funda-

mental physics and optical phenomena. The

piezoelectric and semiconducting properties

of ZnO suggest that the nanohelix could be a

fundamental unit for investigating electrome-

chanically coupled nanodevices by using the

superlattice piezoelectric domains. The nano-

helix is likely to have important applications in

sensors, transducers, resonators, and photonics.
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Simulated Quantum Computation
of Molecular Energies

Alán Aspuru-Guzik,1*. Anthony D. Dutoi,1* Peter J. Love,2

Martin Head-Gordon1,3

The calculation time for the energy of atoms and molecules scales exponentially
with system size on a classical computer but polynomially using quantum
algorithms. We demonstrate that such algorithms can be applied to problems of
chemical interest using modest numbers of quantum bits. Calculations of the
water and lithium hydride molecular ground-state energies have been carried
out on a quantum computer simulator using a recursive phase-estimation
algorithm. The recursive algorithm reduces the number of quantum bits required
for the readout register from about 20 to 4. Mappings of the molecular wave
function to the quantum bits are described. An adiabatic method for the
preparation of a good approximate ground-state wave function is described and
demonstrated for a stretched hydrogen molecule. The number of quantum bits
required scales linearly with the number of basis functions, and the number of
gates required grows polynomially with the number of quantum bits.

Feynman observed that simulation of quantum

systems might be easier on computers using

quantum bits (qubits) (1). The subsequent

development of quantum algorithms has made

this observation concrete (2–6). On classical

computers, resource requirements for com-

plete simulation of the time-independent

SchrPdinger equation scale exponentially with

the number of atoms in a molecule, limiting

such full configuration interaction (FCI)

calculations to diatomic and triatomic mole-

cules (7). Computational quantum chemistry

is therefore based on approximate methods

that often succeed in predicting chemical

properties for larger systems, but their level

of accuracy varies with the nature of the

species, making more complete methods

desirable (8).

Could quantum computation offer a new

way forward for exact methods? Despite the

formal promise, it has not been demonstrated

that quantum algorithms can compute quan-

tities of chemical importance for real molec-

ular systems to the requisite accuracy. We

address this issue by classically simulating

quantum computations of the FCI ground-state

energies of two small molecules. Although the

basis sets used are small, the energies are

obtained to the precision necessary for chem-

istry. Absolute molecular energies must be

computed to a precision (greater than six

decimal places) that reflects the smaller energy

differences observed in chemical reactions

(È0.1 kcal/mol). These simulations show that

quantum computers of tens to hundreds of

qubits can match and exceed the capabilities of

classical FCI calculations.

A molecular ground-state energy is the

lowest eigenvalue of a time-independent

SchrPdinger equation. The phase-estimation al-

gorithm (PEA) of Abrams and Lloyd (3, 4) can
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Berkeley, CA, USA. 2D-Wave Systems, Inc., 4401 Still
Creek Drive, Suite 100, Burnaby, BC V5C 6G9, Canada.
3Chemical Sciences Division, Lawrence Berkeley Na-
tional Laboratory, Berkeley, CA 94720, USA.

*These authors contributed equally to this work.
.To whom correspondence should be addressed.
E-mail: alan@aspuru.com

R E P O R T S

9 SEPTEMBER 2005 VOL 309 SCIENCE www.sciencemag.org1704

 o
n 

Ja
nu

ar
y 

21
, 2

01
3

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

http://www.sciencemag.org/


be used to obtain eigenvalues of Hermitian

operators; we address issues concerning its

implementation for molecular Hamiltonians.

The molecular ground-state wave function

kYÀ is represented on a qubit register S

(state). Another register R (readout) is used to

store intermediate information and to obtain the

Hamiltonian eigenvalue E. The Hamiltonian Ĥ

is used to generate a unitary operator Û, with E

mapped to the phase of its eigenvalue ei2pf.

ÛkYÀ 0 eiĤtkYÀ 0 ei2pfkYÀ; E 0 2pf=t ð1Þ

Through repeated controlled action of powers

of Û, the computer is placed in the state

kRÀ ` kSÀ 0
X

n

eði2pfÞnknÀ

 !
` kYÀ ð2Þ

The summation index n enumerates the basis

states of R according to their bit-string value.

The quantum inverse Fourier transform is

then applied to R to obtain an approximation

to f written in binary to R. The procedure is

related to the Fourier transform of the time

dependence of an eigenstate to obtain its

eigenenergy. By using polynomially scaling

classical approximation methods, an initial

estimate of E can be obtained to choose t such

that 0 e (f , 1/2) G 1.

We address four separate issues. First, we

show how standard chemical basis sets can be

used for representations of the wave function

on S. Second, although the size of R relative

to S will be marginal in the large-system limit,

this initial overhead (20 qubits for a chemi-

cally meaningful result) presently represents a

substantial impediment to both classical sim-

ulation and actual implementation of the

algorithm. We show how a modification of

the PEA makes it possible to perform a

sequence of computations with a smaller

register, such that the precision of the result

obtained is independent of the size of R.

Third, the algorithm requires that any esti-

mated ground state has a large overlap with

the actual eigenstate. We show how a good

estimate of the ground-state wave function

may be prepared adiabatically from a crude

starting point. Finally, Û must be represented

in a number of quantum gates that scales

polynomially with the size of the system, and

we give such bounds.

Any implementation of a quantum-simulation

algorithm requires a mapping from the system

wave function to the state of the qubits. Basis-

set methods of quantum chemistry often rep-

resent many-particle molecular wave functions

in terms of single-particle atomic orbitals. The

number of orbitals in a basis set is proportional

to the number of atoms in a molecule. The

molecular wave function may be represented

by a state of S in two basic ways. In the direct

mapping, each qubit represents the fermionic

occupation state of a particular atomic orbital,

occupied or not. In this approach, a Fock

space of the molecular system is mapped onto

the Hilbert space of the qubits. This mapping

is the least efficient but has advantages

discussed later. In the more efficient com-

pact mapping, only a subspace of the Fock

space with fixed electron number is mapped

onto the qubits. The states of the simulated

system and of the qubit system are simply

enumerated and equated. Furthermore, one

could choose only a subspace of the fixed-

particle-number space. The compact mapping

with restriction to a spin-state subspace is the

most economical mapping considered in this

work. Figure 1 shows that the number of

qubits required for both the compact and di-

rect mappings scales linearly with the number

of basis functions. Also shown are the qubit

requirements for specific molecules with dif-

ferent basis sets and mappings. More exten-

sive qubit estimates for computations on H
2
O

are given in Table 1, including restriction to

the singlet-spin subspace.

In this work, a modified PEA was carried

out, which uses a relatively small number of

qubits in R (as few as four for stability). This

implementation allows more of the qubits to

be devoted to information about the system

and decreases the number of consecutive

coherent quantum gates necessary. This pro-

cedure can be interpreted as making continu-

ally better estimates of a reference energy.

The Hamiltonian is then shifted by the current

reference energy and an estimate of the

deviation of the actual energy from the

reference is computed. The reference energy

is then updated, and the procedure is repeated

until the desired precision is obtained.

The algorithm at iteration k is illustrated in

Fig. 2A. In iteration zero, we set V̂ 0 0 Û and

Fig. 1. Qubit requirements versus basis size. The number of qubits required to store the wave
function of a molecule is shown as a function of the number of basis functions for different
mappings. For the compact mapping, the qubit requirement depends also on the ratio of number
of electrons to basis functions, which is relatively constant for a given basis set; although the
higher quality cc-pVTZ basis is more economical per basis function, a molecule in this basis uses
substantially more functions than with the 6-31G* basis. The qubits required for specific molecules
and basis sets are also shown.

Table 1. Qubit requirements for computations on water. The number of qubits needed to store the wave
function of water is given for various basis sets and system-qubit mappings, including restriction to the
singlet-spin subspace.

Water Basis set (number of functions)

Mapping STO-3G (7) 6-31G* (19) cc-pVTZ (58)

Compact (singlets) 8 25
Compact 10 29 47
Direct 14 38 116

42
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perform a four-qubit PEA on V̂ 0. This estimates

f on the interval zero to unity with a precision

of 1/16. We use this estimate to construct a

shift f
0
, which is a lower bound on f. We

apply this shift and repeat the four-qubit PEA

using the new operator V̂ 1 0 eji2pf0 V̂ 0

� �2
.

This determines the remainder of f above the

previous lower bound on an interval repre-

senting half of the previous interval. In each

subsequent iteration k, we construct a similar-

ly modified operator V̂ k and shift f
k
. By

choosing a f
k

that is one-fourth lower than the

phase of the V̂ k eigenvalue estimate, we en-

sure that the phase of the V̂ kþ1 eigenvalue is

approximately centered on the interval zero to

unity. In each iteration, we therefore obtain

one additional bit of f, as shown in Fig. 2B

for a calculation on H
2
O.

To demonstrate the usefulness of the re-

cursive procedure, we carried out calculations

on H
2
O and LiH. For H

2
O, we used the min-

imal STO-3G basis set, yielding 196 singlet-

spin configurations; there are 1210 such

configurations for LiH in the larger 6-31G

basis. This required 8 and 11 qubits, respec-

tively, for the compact mapping of the singlet

subspace. Register S was initialized to the

Hartree-Fock (HF) wave function in both

cases. After 20 iterations, the electronic en-

ergy obtained for H
2
O E–84.203663 atomic

units (a.u.)^ matched the Hamiltonian diago-

nalization energy (–84.203665 a.u.). The LiH

calculation (–9.1228936 a.u.) matched diago-

nalization (–9.1228934 a.u.) to the same num-

ber of significant digits. The precision is good

enough for almost all chemical purposes. The

discrepancy between the PEA and diagonal-

ization is attributed to error in matrix expo-

nentiation to form Û from Ĥ.

In the simulations described above, the

approximation to the ground-state wave func-

tion was the HF state kYHFÀ. The probability of

observing the exact ground state kYÀ, and

hence the success of the PEA, is then propor-

tional to kbYkYHFÀk2. However, it is known for

some cases, such as molecules close to the

dissociation limit or in the limit of large system

size, that the HF wave function has vanishing

overlap with the ground state (9). The overlap

of the initially prepared state with the exact

state can be systematically improved by an

adiabatic-state-preparation (ASP) algorithm,

relying on the adiabatic theorem (10–12). The

theorem states that a system will remain in its

ground state if the Hamiltonian is changed

slowly enough. Our Hamiltonian is changed

slowly by discretized linear interpolation from

the trivial HF case to the FCI operator. The

efficiency is governed by how rapidly the

Hamiltonian may be varied, which is deter-

mined by the gap between ground-state and

first-excited-state energies along the path (11).

In the case of quantum chemistry problems,

lower bounds on this gap may be estimated

with conventional methods.

Fig. 2. Recursive PEA
circuit and output. (A)
The quantum circuit for
the recursive phase-
estimation algorithm is
illustrated. k iterations
are required to obtain k
bits of a phase f that
represents the molecu-
lar energy. QFTþ rep-
resents the quantum
inverse Fourier trans-
form and Hd is a Hada-
mard gate; the dial
symbols represent mea-
surement. (B) Output
probabilities for obtain-
ing the first eight bits
of f in the water calcula-
tion are shown. The
abscissa is scaled to be
in terms of molecular
energy, and the ordi-
nate is probability.

Fig. 3. ASP evolution of ground-
state overlap and excitation gap.
(A) Time evolution of the squared
overlap of the wave function
kYASPÀ with the exact ground
state kYÀ during adiabatic state
preparation is shown. The system
is the hydrogen molecule at
different nuclear separations r ;
time was divided into 1000 steps
in all cases. (B) Time evolution of
the singlet ground- to first-
excited-state energy gap of the
Hamiltonian used along the adia-
batic path is shown.
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The path ĤHF Y Ĥ is chosen by defining

ĤHF to have all matrix elements equal to zero,

except the first element, namely H
1,1

, which is

equal to the HF energy. This yields an initial

gap the size of the ground-state mean-field

energy, which is very large relative to typical

electronic excitations. The ASP method was

applied to the H
2

molecule at large separations

in the STO-3G basis, for which the squared

overlap of the HF wave function with the

exact ground state is one half. As evidenced

by Fig. 3A, the ASP algorithm prepares states

with a high squared overlap for several

internuclear distances of the H
2

molecule.

Figure 3B plots the relevant gap along the

adiabatic path, which is shown for this system

to be well-behaved and nonvanishing.

The accuracy and quantum-gate complex-

ity of the algorithm depend on the specific gate

decomposition of the unitary operators V̂ k ,

defined above. The factorization of unitary

matrices into products of one- and two-qubit

elementary gates is the fundamental problem

of quantum circuit design. We now demon-

strate that the lengths of the gate sequences

involved are bounded from above by a

polynomial function of the number of qubits.

We analyze the gate complexity of our Û

for the direct mapping of the state. The mo-

lecular Hamiltonian is written in second quan-

tized form as

Ĥ 0
X

X

ĥX 0
X
p;q

bpkT̂ þ V̂N kqÀ âp
þâq j

1

2

X
p;q;r;s

bpkbqkV̂ekrÀksÀ âp
þâq

þârâs

ð3Þ

where kpÀ is a one-particle state, âp is its

fermionic annihilation operator, and T̂, V̂N , and

V̂e are the one-particle kinetic and nuclear-

attraction operators and the two-particle electron-

repulsion operator, respectively. It has been

shown in (2), that for the following approxi-

mation to Û

eiĤHt , k
X

eiĥX
t

M

� �M

ð4Þ

M can always be chosen such that the error is

bounded by some preset threshold. The num-

ber of gates to implement Û then scales

polynomially with the system size for a given

M, under the conditions that the number of

terms ĥx scales polynomially with system

size and that each ĥx acts on a polynomially

scaling number of qubits. In our case, these

conditions are manifestly fulfilled. The

number of terms in the Hamiltonian grows

approximately with the fourth power of the

number of atoms, and each term involves

maximally four basis functions, implying

action on at most five qubits in the direct

mapping (four qubits in S plus a control

qubit in R). A linear-scaling number of two-

qubit operations (similar to qubit swaps) can

account for fermionic antisymmetry in the

action of the unitary operator constructed

from each ĥX (13). M is a multiplicative

factor in the number of gates. Because the

fraction of all pairs of ĥX terms that do not

commute decreases with system size, it is

reasonable to assume that M increases poly-

nomially at worst. The advantage of the

direct mapping is that, at most, controlled

four-qubit unitary operations are required.

The number of one- and two-qubit elemen-

tary gates required to represent an arbitrary

four-qubit gate has been shown to be always

less than 400 (14); the structure of a con-

trolled four-qubit unitary operation will

allow a decomposition into a similar order

of magnitude in the number of gates.

We have found that chemical precision can

be achieved with modest qubit requirements for

the representation of the wave function and for

the readout register. The ASP algorithm has

been shown to systematically improve the

probability of success of the PEA. Although

exponentially difficult on a classical computer,

extension to larger molecules requires only

linear growth in the number of qubits. The di-

rect mapping for the molecular wave function to

the qubit state allows the unitary operator to be

decomposed into a number of gates that scales

polynomially with system size.

The difficulty of performing quantum-

computing simulations is about an order of

magnitude greater than conventional FCI.

Although possible as experiments, such simu-

lations are not a competitive alternative. To

repeat the calculations performed here with a

high-quality basis set (cc-pVTZ) would require

S to consist of 47 or 22 qubits for H
2
O or LiH,

respectively, using the compact mapping of

the full Hilbert space. For most molecules and

basis set combinations shown in Fig. 1, an

FCI calculation is certainly classically in-

tractable. An FCI calculation for H
2
O with

cc-pVTZ would be at the edge of what is

presently possible. This demonstrates an

often-stated conjecture, that quantum simula-

tion algorithms with 30 to 100 qubits will be

among the smallest applications of quantum

computing that can exceed the limitations of

classical computing.
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Fe-Mg Interdiffusion in
(Mg,Fe)SiO3 Perovskite and Lower

Mantle Reequilibration
Christian Holzapfel,1*. David C. Rubie,1 Daniel J. Frost,1

Falko Langenhorst2

Fe-Mg interdiffusion coefficients for (Mg,Fe)SiO3 perovskite have been mea-
sured at pressures of 22 to 26 gigapascals and temperatures between 1973 and
2273 kelvin. Perovskite Fe-Mg interdiffusion is as slow as Si self-diffusion and
is orders of magnitude slower than Fe-Mg diffusion in other mantle minerals.
Length scales over which chemical heterogeneities can homogenize,
throughout the depth range of the lower mantle, are limited to a few meters
even on time scales equivalent to the age of Earth. Heterogeneities can there-
fore only equilibrate chemically when they are stretched and thinned by in-
tense deformation.

The kinetics of many physical and chemical

processes in Earth_s mantle are controlled by

solid-state diffusion (1–5). Thus, understand-

ing and quantifying these processes in Earth

requires knowledge of diffusion coefficients

for mantle minerals over the range of pressure-

temperature conditions encompassed by Earth_s
mantle. The mineralogy of Earth_s lower man-

tle is dominated by silicate perovskite (È80

volume %).
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