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Abstract We consider optimal temperature spacings
for Metropolis-coupled Markov chain Monte Carlo
(MCMCMC) and Simulated Tempering algorithms. We
prove that, under certain conditions, it is optimal (in terms of
maximising the expected squared jumping distance) to space
the temperatures so that the proportion of temperature swaps
which are accepted is approximately 0.234. This generalises
related work by physicists, and is consistent with previous
work about optimal scaling of random-walk Metropolis al-
gorithms.

Keywords Metropolis-coupled MCMC · Simulated
tempering · Optimal scaling

1 Introduction

The Metropolis-coupled Markov chain Monte Carlo
(MCMCMC) algorithm (Geyer 1991), also known as paral-
lel tempering or the replica exchange method, is a version of
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the Metropolis-Hastings algorithm (Metropolis et al. 1953;
Hastings 1970) which is very effective at sampling from
multi-modal densities. The algorithm works by simulating
multiple copies of the target (stationary) distribution, each
at a different temperature. Through a swap move, the algo-
rithm allows copies at lower (slower-mixing) temperatures
to borrow information from copies at higher (faster-mixing)
temperatures, to help them mix faster (in particular, to es-
cape from local modes). The performance of MCMCMC
depends crucially on the temperatures used for the differ-
ent copies. There is an ongoing discussion (especially in
the Physics literature) about how to best select these tem-
peratures. In this paper, we show that this question can be
partially addressed using the optimal scaling framework ini-
tiated in Roberts et al. (1997).

MCMCMC can be described as follows. We are inter-
ested in sampling from a target probability distribution π(·)
having (complicated, probably multimodal, and possibly un-
normalised) target density fd(x) on some state space X ,
which is an open subset of Rd for some (large) dimension d .
We define a sequence of associated tempered distributions

f
(βj )

d (x), where 0 ≤ βn < βn−1 < · · · < β1 < β0 = 1 are
the selected inverse temperature values, subject to the re-
striction that f

(β0)
d (x) = f

(1)
d (x) = fd(x). (Usually the den-

sities f
(βj )

d are simply powers of the original density, i.e.

f
(βj )

d (x) = (fd(x))βj ; in this case, if X has infinite volume,
then we require βn > 0.)

MCMCMC proceeds by running one chain at each of
the n + 1 values of β . It has state space X n+1, with un-

normalised stationary density
∏n

j=0 f
(βj )

d (xj ), where each
xj corresponds to a chain at the fixed inverse temperature

βj having stationary density f
(βj )

d (xj ). In particular, the β0

chain has stationary density f
(β0)
d (x0) = fd(x0), so that after

a long run the samples x0 should approximately correspond
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to the density fd(x) which is the density of actual interest.
The hope is that the chains corresponding to smaller β (i.e.,
to higher temperatures) can mix more easily, and then can
“lend” this mixing information to the β0 chain, thus speed-
ing up convergence of the x0 values to the density fd(x).

MCMCMC alternates between two different types of dy-
namics. On some iterations, it attempts a within tempera-
ture move, by updating each xj according to some type of
MCMC update (e.g., a usual random-walk Metropolis up-

date) for which f
(βj )

d is a stationary density. On other it-
erations, it attempts a temperature swap, which consists of
choosing two different inverse temperatures, say βj and βk ,
and then proposing to swap their respective chain values,
i.e. to interchange the current values of xj and xk . This pro-
posed swap is then accepted according to the usual (sym-
metric) Metropolis algorithm probabilities, i.e. it is accepted
with probability

min

(

1,
f

(βj )

d (xk) f
(βk)
d (xj )

f
(βj )

d (xj ) f
(βk)
d (xk)

)

, (1)

otherwise it is rejected and the values of x are left unchan-
ged. (The rejected values are normally discarded, though it
is sometimes possible to make additional use of them Green
and Mira 2001; Frenkel 2006; Delmas and Jourdain 2009.)

Such algorithms lead to many interesting questions and
have been widely studied, see e.g. Geyer (1991), Kofke
(2002, 2004), Predescu et al. (2004), Earl and Deem (2005),
Kone and Kofke (2005), Madras and Zheng (2003), Cooke
and Schmidler (2008), Woodard et al. (2009a, 2009b). This
paper will concentrate on the specific question of optimis-
ing the choice of the β values to achieve maximal efficiency
in the temperature swaps. Specifically, suppose we wish to
design the algorithm such that the chain at inverse temper-
ature β will propose to swap with another chain at inverse
temperature β + ε. What choice of ε is best?

Obviously, if ε is very large, then such swaps will usually
be rejected. Similarly, if ε is very small, then such swaps
will usually be accepted, but will not greatly improve mix-
ing. Hence, the optimal ε is somewhere between the two ex-
tremes (this is sometimes called the “Goldilocks Principle”),
and our task is to identify it.

Our main result (Theorem 1) will show that, under certain
assumptions, it is optimal (in a sense to be defined later on)
to choose the spacing ε such that the probability of such a
swap being accepted is equal to 0.234. This is the same op-
timal acceptance probability derived previously for certain
random-walk Metropolis algorithms (Roberts et al. 1997;
Roberts and Rosenthal 2001), and generalises some results
in the physics literature (Kofke 2002; Predescu et al. 2004).
It also has connections (Sect. 5.1) to the Dirichlet form of an
associated temperature process.

We shall also consider (Sect. 4) the related Simulated
Tempering algorithm, and shall prove that under certain con-
ditions the 0.234 optimal acceptance rate applies there as
well. We shall also compare (Corollary 1) Simulated Tem-
pering to MCMCMC, and see that in a certain sense the
former is exactly twice as efficient as the latter, but there
are various mitigating factors so the comparison is far from
clear-cut.

1.1 Toy example

To illustrate the importance of temperature spacings, and
of measuring the “influence” of hotter chains on colder
ones, we consider a very simple toy example. Suppose
the state space consists of just 101 discrete points, X =
{0,1,2,3, . . . ,100}, with (un-normalised) target density
(with respect to counting measure on X ) given by π{x} =
2−x + 2−(100−x) for x ∈ X . That is, π has two modes, at
0 and 100, with a virtually insurmountable barrier of low
probability states between them (Fig. 1, top-left). Let the
tempered densities be given (as usual) by powers of π , i.e.
f

(β)
d (x) = (π(x))β . Thus, for very small β , the insurmount-

able barrier is nicely removed (Fig. 1, top-middle). Can we
make use of such tempered densities to improve conver-
gence of the original chain to π?

To be specific, suppose each fixed-β chain is a random-
walk Metropolis algorithm with proposal kernel
q(x, x + 1) = q(x, x − 1) = 1/2. Thus, the cold (large β)
chains are virtually incapable of moving from state 0 to state
100 or back (Fig. 1, top-left), but the hot (small β) chains
have no such obstacle (Fig. 1, top-middle). The question is,
what values of the inverse temperatures β will best allow an
MCMCMC algorithm to benefit from the rapid mixing of
the hot chains, to provide good mixing for the cold chain?

To test this, we ran an MCMCMC algorithm for 10,000
full iterations (each consisting of one update at each inverse-
temperature, plus one attempted swap of adjacent inverse-
temperature values), in each of four settings: with just
one inverse-temperature, i.e. an ordinary MCMC algorithm
with no temperature swaps (Fig. 1, top-right); with two
inverse-temperatures, 1 and 0.001 (Fig. 1, bottom-left); with
ten inverse-temperatures, 0.001j/9 for j = 0,1,2, . . . ,9
(Fig. 1, bottom-middle); and with fifty inverse-temperatures,
0.001j/49 for j = 0,1,2, . . . ,49 (Fig. 1, bottom-middle).
We started each run with all chains at the state 0, to inves-
tigate the extent to which they were able to mix well and
effectively sample from the equally-large mode at state 100.

The results of our runs were that the ordinary MCMC al-
gorithm with no temperature swaps did not traverse the bar-
rier at all, and just stayed near the state 0 (Fig. 1, top-right).
Adding one additional temperature improved this somewhat
(Fig. 1, bottom-left), and the cold chain was now able to
sometimes sample from states near 100, but only occasion-
ally. Using ten temperatures improved this greatly and led
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Fig. 1 The toy example’s target
density (top-left), tempered
density at inverse-temperature
β = 0.001 (top-middle),
random-walk Metropolis run
(top-right), and trace plots of
the cold chain over 10,000 full
iterations of MCMCMC runs
with two temperatures
(bottom-left), ten temperatures
(bottom-middle), and fifty
temperatures (bottom-right)

to quite good mixing of the cold chain (Fig. 1, bottom-
middle). Perhaps most interestingly, using lots more tem-
peratures (fifty) did not improve mixing further, but actu-
ally made it much worse (Fig. 1, bottom-right), despite the
greatly increased computation time (since each temperature
requires its own chain values to be updated at each iteration).

So, we see that in this example, ten geometrically-spaced
temperatures performed much better than two temperatures
(too few) or fifty temperatures (too many). Intuitively, with
only two temperatures, it is too difficult for the algorithm to
effectively swap values between adjacent temperatures (in-
deed, only about 5% of proposed swaps were accepted). By
contrast, with fifty temperatures, virtually all swaps are ac-
cepted, but too many swaps are required before the rapidly-
mixing hot chains can have much influence over the values
of the cold chain, so this again does not lead to an efficient
algorithm. Best is the compromise choice of ten tempera-
tures. That choice makes the temperature differences small
enough so swaps are easily accepted, but still large enough
that they lead to efficient interchange between hot and cold
chains and thus to efficient convergence of the cold chain
to π . This illustrates that we would like the hot and cold
chains’ values to be able to influence each other effectively,
which requires lots of successful swaps each of significant
distance in the inverse-temperature domain.

This leads to the question of how to select the number
and spacing of the inverse-temperature values for a given
problem, which is the topic of this paper. To maximise the
influence of the hot chain on the cold chain, we want to max-
imise the effective speed with which the chain values move

along in the inverse-temperature domain. We shall do this
by means of the expected squared jumping distance (ESJD)
of this influence, defined below. Our main result (Theorem 1
below) says that to maximise ESJD, it is optimal (under cer-
tain assumptions) to select the inverse-temperatures so that
the probability of accepting a proposed swap between adja-
cent inverse-temperature values is approximately 23%.

2 Optimal temperature spacings for MCMCMC

In this section, we consider the question of optimal tempera-
ture choice for MCMCMC algorithms. To fix ideas, we con-
sider the specific situation in which the algorithm is propos-
ing to swap the chain values at two specific inverse temper-
atures, namely β and β + ε, where β, ε > 0 and β + ε ≤ 1.
We shall consider the question of what value of ε is opti-
mal in terms of maximising the influence of the hot chain
on the cold chain. We shall focus on the asymptotic situa-
tion in which the chain has already converged to its target

stationary distribution, i.e. that x ∼ ∏n
j=0 f

(βj )

d .
To measure this precisely, let us define γ = β + ε if the

swap is accepted, or γ = β if the swap is rejected. Then γ is
an indication of where the β chain’s value has traveled to, in
the inverse temperature space. That is, if the proposed swap
is accepted, then the value moves from β to γ = β + ε for a
total inverse-temperature distance of γ − β = ε, while if the
swap is rejected then it does not move at all, i.e. the distance
it moves is γ − β = 0. Hence, γ − β indicates the extent
to which the swap proposal succeeded in moving different
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x values around the β space, which is essential for getting
benefit from the MCMCMC algorithm. So, the larger the
magnitude of γ − β , the more efficient are the swap moves
at providing mixing in the temperature domain. We there-
fore define the “optimal” choice of ε to be the one which
maximises the stationary (i.e. asymptotic) expected squared
jumping distance (ESJD) of this movement, i.e. which max-
imises

ESJD = Eπ

[
(γ − β)2] = ε2 × Eπ [P(swap accepted)]

≡ ε2 × ACC, (2)

where from (1),

ACC = Eπ [P(swap accepted)]

= Eπ

[

min

(

1,
f

(βj )

d (xk) f
(βk)
d (xj )

f
(βj )

d (xj ) f
(βk)
d (xk)

)]

(3)

and where the expectations are with respect to the stationary

(asymptotic) distribution x ∼ ∏n
j=0 f

(βj )

d .
We shall also consider the generalisation of (2) to

ESJD(h) = Eπ

[
(h(γ ) − h(β))2] (4)

for some h : [0,1] → R; then (2) corresponds to the case
where h is the identity function. Of course, (2) and (4) rep-
resent just some possible measures of optimality, and other
measures might not necessarily lead to equivalent optimisa-
tions; for some discussion related to this issue see Sect. 5.

To make progress on computing the optimal ε, we restrict
(following Roberts et al. 1997; Roberts and Rosenthal 2001)
to the special case where

fd(x) =
d∏

i=1

f (xi), (5)

i.e. the target density takes on a special product form. (Al-
though (5) is a very restrictive assumption, it is known, Ro-
berts et al. 1997; Roberts and Rosenthal 2001, that conclu-
sions drawn from this special case are often approximately
applicable in much broader contexts.) We also assume that
the tempered distributions are simply powers of the original
density (which is the usual case), i.e. that

f
(β)
d (x) =

d∏

i=1

f (β)(xi) ≡
d∏

i=1

(
f (xi)

)β
. (6)

Intuitively, as the dimension d gets large, so that small
changes in β lead to larger and larger changes in f

(β)
d ,

the inverse-temperature spread ε must decrease to preserve
a non-vanishing probability of accepting a proposed swap.

Fig. 2 A graph of the relationship between the expected squared jump-
ing distance (ESJD) and asymptotic acceptance rate (ACC), as de-
scribed in (8), in units where dI (β) = 1

Hence, similar to Roberts et al. (1997), Roberts and Rosen-
thal (2001), we shall consider the limit as d ↗ ∞ and cor-
respondingly ε ↘ 0. To get a non-trivial limit, we take

ε = d−1/2� (7)

for some positive constant � to be determined. (Choosing
a smaller scaling would correspond to taking � ↘ 0, while
choosing a larger scaling would correspond to letting � ↗
∞; either choice is sub-optimal, since the optimal � will be
strictly between 0 and ∞ as we shall see.)

2.1 Main result

Under the above assumptions, we shall prove the following
(where �(z) = 1√

2π

∫ z

−∞ e−s2/2 ds is the cdf of a standard
normal):

Theorem 1 Consider the MCMCMC algorithm as de-
scribed above, assuming (5), (6), and (7). Then as d → ∞,
the ESJD of (2) is maximized when � is chosen to maximize
�2 × 2�(−�

√
I (β)/2), where I (β) > 0 is defined in (10)

below. Furthermore, for this optimal choice of �, the corre-
sponding probability of accepting a proposed swap is given
(to three decimal points) by 0.234. In fact, the relationship
between ESJD of (2) and ACC of (3) is given by

ESJD = (2/dI (β)) × ACC × (�−1(ACC/2))2 (8)

(see Fig. 2). Finally, the optimal choice of � also max-
imises ESJD(h) of (4), for any differentiable function h :
[0,1] → R.

Proof For this MCMCMC algorithm, the acceptance prob-
ability of a temperature swap is given by

α ≡ 1 ∧ eB
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where

eB = f
(β)
d (y)f

(β+ε)
d (x)

f
(β)
d (x)f

(β+ε)
d (y)

and where x ∼ f
(β)
d and y ∼ f

(β+ε)
d are independent

and in stationarity. We write g = logf so that g
(β)
d (x) =

logf
(β)
d (x), etc. We then have that

B = [(
g

(β)
d (y) − g

(β+ε)
d (y)

) − (
g

(β)
d (x) − g

(β+ε)
d (x)

)]

≡ Td(y) − Td(x),

where

Td(x) = g
(β)
d (x) − g

(β+ε)
d (x) = βgd(x) − (β + ε)gd(x)

= −ε gd(x) = −
d∑

i=1

ε g(xi).

Now, write E
β for expectation with respect to the distrib-

ution having density proportional to f β , and similarly for
Varβ . Then in this distribution, g has mean

E
β(g) =

∫
logf (x)f β(x) dx

∫
f β(x) dx

≡ M(β), (9)

and variance

Varβ(g) =
∫
(logf (x))2f β(x) dx

∫
f β(x) dx

− M(β)2 ≡ I (β). (10)

Hence, in the distribution proportional to f
β
d , Td(x) has

mean

E
β
d

(
Td(x)

) = −dε M(β) ≡ μ(β),

and variance

Varβd
(
Td(x)

) = dε2I (β) ≡ σ(β)2.

Now, taking derivative with respect to β (using the “quotient
rule”),

M ′(β) =
∫
(logf (x))2f β(x) dx

∫
f β(x) dx

−
(∫

f β logf (x)dx
∫

f β(x)dx

)2

= I (β), (11)

from which it follows that

μ′(β) = −dεM ′(β) = −dεI (β) = −σ(β)2/ε.

Now, recall that ε = d−1/2�. Hence,

Td(y) − Td(x) = − �√
d

d∑

i=1

(
g(yi) − g(xi)

)
.

We claim that, as d → ∞, Td(y) − Td(x) converges weakly
to a random variable A ∼ N(−σ(β)2,2σ(β)2). To see this,
let φd(t) be the characteristic function of Td(y) − Td(x).
Then we have:

φd(t) = E
[
e−itε(Td (y)−Td(x))

] = e−itεd(M(β+ε)−M(β))

× {
E(e−itεḡ(y1))E(e−itεḡ(x1))

}d
,

where ḡ(x) = g(x) − E
β(g(x)). Since M(β + ε) −

M(β) = εM(β) + o(ε) and ε = d−1/2�, it follows that
limd→∞ itεd(M(β + ε) − M(β)) = it�2I (β). Hence, us-
ing a Taylor series expansion,

E
(
e−itεḡ(y1)

)
E

(
e−itεḡ(x1)

)

=
(

1 − �2t2

2d
I (β + ε) + o(d−1)

)

×
(

1 − �2t2

2d
I (β) + o(d−1)

)

=
(

1 − �2t2

2d
I (β) + o(d−1)

)2

.

Hence, φd(t) converges to e−it�I (β)e−�2t2I (β) as d → ∞.
This limiting function is the characteristic function of the
distribution N(−�2I (β),2�2I (β)), thus proving the claim.

To continue, recall (e.g. Roberts et al. 1997, Proposi-
tion 2.4) that if A ∼ N(m, s2), then

E(1 ∧ eA) = �

(
m

s

)

+ em+ s2
2 �

(

−s − m

s

)

.

In particular, if A ∼ N(−c,2c) (so that E(eA) = 1), then

E(1 ∧ eA) = 2�(−√
c/2 ) .

Since the function 1 ∧ eB is a bounded function, it follows
that as d → ∞, the acceptance rate of MCMCMC converges
to

E(α) = E(1 ∧ eB) ∼ E
(
1 ∧ exp

(
N(−σ(β)2,2σ(β)2)

))

= 2�
(−σ(β)/

√
2
)
.

Now, with ε = d−1/2�, ε2d = �2 and σ(β)2/2 =
dε2I (β)/2 = �2I (β)/2, whence σ(β)/

√
2 = � [I (β)/2]1/2.

Then as d → ∞, P(accept swap) = E(1 ∧ eB) →
2�(−� [I (β)/2]1/2), and so

ESJD = ε2P(accept swap) ∼ (�2/d) × 2�(−� [I (β)/2]1/2)

≡ eMC(�). (12)

Hence, maximising ESJD is equivalent to choosing � =
�opt to maximise �2 × 2�(−� [I (β)/2]1/2), with the second
factor being the acceptance probability. It then follows as
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in (Roberts et al. 1997; Roberts and Rosenthal 2001) that
when � = �opt, the acceptance probability becomes 0.234
(to three decimal places). Indeed, making the substitution
u = �[I (β)/2]1/2 shows that finding �opt is equivalent to
finding the value û of u which maximizes 8I (β)−2u2�(−u),
and then evaluating â = 2�(−û). It follows that the value
of û, and hence also the value of â, does not depend on
the value of I (β) (provided I (β) > 0). So, it suffices to as-
sume I (β) = 1, in which case we compute numerically that
û

.= 1.190609, so that â = 2�(−1.190609)
.= 0.2338071

.=
0.234.

Finally, if instead of ESJD we consider ESJD(h) ≡
E[(h(γ ) − h(β))2] for some differentiable function h, then
as ε ↘ 0 we have (h(γ ) − h(β))2 ∼ [h′(β)]2 (γ − β)2, so
ESJD(h) ∼ [h′(β)]2 (ESJD). Hence, as a function of ε, max-
imising ESJD(h) is equivalent to maximising ESJD, and is
thus maximised at the same value εopt. �

2.2 Iteratively selecting the inverse temperatures

The above results show that, in high dimensions under cer-
tain assumptions, it is most efficient to choose the inverse
temperatures for MCMCMC such that the average accep-
tance probability between any two adjacent temperatures is
about 23%.

This leads to the question of how to select such tempera-
tures. Although this may not be a practical approach in gen-
eral, we shall adopt an intensive iterative approach to this
in order to assess the effects of our theory in applications.
We assume we know (perhaps by running some prelimi-
nary simulations) some sufficiently small inverse tempera-
ture value β̄ such that the mixing of the chain with corre-

sponding density f
β̄
d is sufficiently fast. This value β̄ shall

be our minimal inverse temperature. (In the examples below,
we use β̄ = 0.01.)

In terms of β̄ , we construct the remaining βj values itera-
tively, as follows. First, starting with β0 = 1, we find β1 such
that the acceptance probability of a swap between β0 = 1
and β1 is approximately 0.23. Then, given β1, we find β2

such that the acceptance probability of the swap between β1

and β2 is again approximately 0.23. We continue in this way
to construct β3, β4, . . . , continuing until we have βj ≤ β̄ for
some j . At that point, we replace βj by β̄ and stop.

To implement this iterative algorithm, we need to find
for each inverse-temperature β a corresponding inverse-
temperature β ′ < β such that the average acceptance proba-
bility of the swaps between β and β ′ is approximately 0.23.
We use a simulation-based approach for this, via random
variables {(Xn,X

′
n, ρn)}n≥0. After initialisations for n = 0,

then at each time n ≥ 1, we let β ′
n = β(1+ eρn)−1, and draw

Xn+1 ∼ f
β
d and X′

n+1 ∼ f
β ′

n

d (or update them from some
Markov chain dynamics preserving those distributions). The

probability of accepting a swap between β and β ′
n is then

given by αn+1 ≡ 1 ∧ eBn+1 where

Bn+1 = −(β ′
n − β)(gd(X′

n+1) − gd(Xn+1)).

We then attempt to converge towards 0.23 by replacing ρn

by

ρn+1 = ρn + n−1(αn+1 − 0.23),

i.e. using a stochastic approximation algorithm (Robbins
and Monro 1951; Andrieu and Robert 2001). This ensures
that if αn+1 > 0.23 then β ′ will decrease, while if αn+1 >

0.23 then β ′ will increase, as it should.
We shall use this iterative simulation approach to deter-

mine the inverse temperatures {βj } in all of our simulation
examples in Sect. 3 below.

2.3 Comparison with geometric temperature spacing

In some cases, it is believed that the optimal choice of tem-
peratures is “geometric”, i.e. that we want βj+1 = cβj for
appropriate constant c. Now, the notation of Theorem 1 cor-
responds to setting βj = β + ε and βj+1 = β . So, it is op-
timal to have βj+1 = cβj precisely when εopt ∝ β in Theo-
rem 1.

Recall now that, from the end of the proof of Theo-
rem 1, û ≡ �opt[I (β)/2]1/2 .= 1.190609, and in particular
û does not depend on β . Then �opt = û[2/I (β)]1/2. So,
εopt = �optd

−1/2 = ûd−1/2[2/I (β)]1/2 ∝ I (β)−1/2. It fol-
lows that the condition εopt ∝ β is equivalent to the con-
dition I (β)−1/2 ∝ β , i.e. I (β) ∝ β−2.

While this does hold for some examples, e.g. the case
when f (x) = e−|x|r (see Sect. 2.4 below), it does not hold
for most other examples (e.g. for the Gamma distribution,
various logx terms appear which do not lead to such a sim-
ple relationship).

Thus, the optimal spacing of inverse temperatures is not
necessarily geometric. In our simulations below, we con-
sider both geometric spacings, and spacings found using our
23% rule. We shall see that the 23% rule leads to superior
performance.

2.4 A simple analytical example

Consider the specific example where the target density is
given by (5) with f (x) = e−|x|r for some fixed r > 0.
(This includes the Gaussian (r = 2) and Double-Exponential
(r = 1) cases.)

For this example, f β(x) ∝ e−β|x|r , and g(x) = −|x|r .
We then compute from (9) that

M(β) = E
β(g) =

∫
g(x)f β(x) dx
∫

f β(x) dx
= − ∫ |x|r e−|x|r dx

∫
e−|x|r dx

= −2�(1/r)β−(1+r)/r r−2

2�(1 + 1
r
) β−1/r

= −1/rβ
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where �(z) = ∫ ∞
0 tz−1 e−t dt is the gamma function. Then

by (11),

I (β) ≡ Varβ(g) = M ′(β) = 1/rβ2 ∝ β−2.

Hence, since I (β) ∝ β−2, it follows as above that the
spread of inverse-temperatures should be geometric, with
βj+1 = cβj for some constant c.

2.5 Relation to previous literature

The issue of temperature spacings and acceptance rates for
MCMCMC has been widely studied in the physics literature
(Kofke 2002, 2004; Predescu et al. 2004; Earl and Deem
2005; Kone and Kofke 2005; Cooke and Schmidler 2008;
Woodard et al. 2009a, 2009b). For example, the conclusion
of Theorem 1, that the inverse temperatures should be cho-
sen to make the swap acceptance probabilities all equal to
the same value (here 0.234), is related to the “uniform ex-
change rates” criterion described in (Iba 2001), p. 629. In
addition, simulation studies (Earl and Deem 2005) have sug-
gested tuning the temperatures so the swap acceptance rate
is about 20%, and analytic studies have suggested (Kone and
Kofke 2005) an optimal rate of 0.23 in some specific circum-
stances, as we now discuss.

In physics, the canonical ensemble corresponds to writ-
ing f

(β)
d (x) = e−βV (x), where V is the energy function

and 1/β is the temperature. Thus, in our notation, V (x) =
−gd(x). Furthermore the average energy at inverse-tempe-
rature β is given by

U(β) =
∫

V (x) e−βV (x) dx
∫

e−βV (x) dx
.

Physicists have approached the problem using the concepts
of density of states and heat capacity. If the state space
X is discrete, the density of states is defined as the func-
tion G(u) := #{x ∈ X : V (x) = u}. If X is continuous, then
G(u) is defined to be the (d − 1)-dimensional Lebesgue
measure of the level set {x ∈ X : V (x) = u}. The heat ca-
pacity of the system at inverse-temperature β is defined as

C(β) = −β2 dU(β)

dβ
= −β2 Varβ(V (X)).

In our notation, Varβ(V (X)) = Varβ(−gd(X)) = I (β), so
C(β) = −β2I (β). Hence, C(β) is constant if and only if
I (β) ∝ β−2 as discussed in Sect. 2.3.

The previous literature has considered, as have we, the
idealised case in which exact sampling is done from each
distribution f β . In this case, a swap in MCMCMC between
β and β ′ (β < β ′) has acceptance probability

A(β,β ′) = E[min(1, e(β−β ′)(V (X)−V (X′)))] ,

with the expectation taken with respect to X ∼ f β and
X′ ∼ f β ′

. Assuming that the heat capacity is constant (i.e.,
C(β) ≡ C), and that the density of states has the form

G(u) =
(

1 + β0

C
(u − u0)

)C

G(u0),

(Kofke 2002) shows that the average acceptance probability
of a swap between β and β ′ > β is given by:

A(β,β ′) = 2�(2C + 2)

�(C + 1)2

∫ β/β ′

0

uC

(1 + u)2(C+1)
du

= 2

B(C + 1,C + 1)

×
∫ 1/(1+R)

0
θC(1 − θ)Cdθ, (13)

where R = β ′/β > 1, �(x) is the Gamma function and
B(a, b), the Beta function.

Assuming a constant heat capacity and a more specific
form for the density of state,

G(u) = (2π)C+1

�(C + 1)
uC,

Predescu et al. (2004) derived the same formula as in (13)
for A(β,β ′), which they call the incomplete beta function
law for parallel tempering. Letting C (and thus the dimen-
sion d of the system) go to infinity, Kofke (2004), Predescu
et al. (2004) use (13) to derive a limiting expression for
the acceptance probability of MCMCMC similar to that ob-
tained in (12) above. Kone and Kofke (2005) use these limits
to argue that 0.23 is approximately the optimal asymptotic
swap acceptance rate using arguments somewhat similar to
ours (indeed, Fig. 1 of Kone and Kofke 2005 contains the
same acceptance-versus-efficiency curve implied by (12)).

Now, it seems that the heat capacity C(β) being constant
is quite a restrictive assumption; it is satisfied for the exam-
ple f (x) = e−|x|r considered in Sect. 2.4, but is usually not
satisfied for more complicated functions. By contrast, our
assumption (6) does not impose any special conditions on
the nature of the density function f (x).

3 Simulation examples

3.1 A simple Gaussian example

We illustrate Theorem 1 with the following simulation ex-
ample. We implement the MCMCMC described above for
Gaussian target and tempered distributions. Specifically, we
consider just two inverse-temperatures β0 ≡ 1 and β1 with
0 < β1 < 1. We define fd(x) and f

(β)
d (x) as in (5) and (6),

with f the density of a standard normal distribution N(0,1),
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so that f (β) = N(0, β−1). We use a version of the algorithm
where the within-temperature moves are given by a Ran-
dom Walk Metropolis (RWM) algorithm with Gaussian pro-
posal distribution N(x, (2.382/βd) Id) which is asymptoti-
cally optimal (Roberts and Rosenthal 2001). Our algorithm
attemps 20 within-temperature moves for every one time it
attempts a temperature swap.

We ran this algorithm for each of 50 different possible
choices of β1, each with 0 < β1 < 1. For each such choice
of β1, we ran the algorithm for a total of 500,000 iterations
to ensure good averaging, and then estimated the acceptance
probability as the fraction of proposed swaps accepted, and
the expected square jump distance (ESJD) as the average
of the squared temperature jump distances (γ − β0)

2 (or,
equivalently, as (β0 − β1)

2 times the average squared swap
distance). Figure 3 plots the estimated acceptance probabil-
ities versus squared jump distances (SJD), for each of four
different dimensions (10, 20, 50, and 100). We can see from
these results that the swap acceptance probability 0.234 is
indeed close to optimal, and it gets closer to optimal as the
dimension increases, and furthermore the relationship be-
tween the two quantities is given approximately by (8) and
Fig. 2, just as Theorem 1 predicts.

3.2 Inhomogeneous Gaussian example

We now modify the previous example to a non-i.i.d. case
where fd(x) = ∏d

i=1 fi(xi) with fi = N(0, i2), so that

f
β
i = N(0, i2β−1). (The inhomogeneity implies, in particu-

lar, that assumption (5) is no longer satisfied.) The rest of the
details remain exactly the same as for the previous example,
except that the proposal distribution for the RWM within-
temperature moves is now taken to be N(x, (2.382i2/βd)Id)

for the ith coordinate, which is optimal in this case. The re-
sulting plots (for dimensions d = 10 and d = 100) are given
in Fig. 4. Here again, an optimum value of β for the ESJD

function emerges at a swap acceptance probability of ap-
proximately 23%. Again, the agreement with Theorem 1 and
the relationship (8) and Fig. 2 is striking.

This is unsurprising given that this target distribution can
be written as a collection of scalar linear transformations of
Example 3.1, and Theorem 1 remains invariant through such
transformations.

3.3 A mixture distribution example

In this example and the next, we compare the two temper-
ature scheduling strategies discussed in Sects. 2.2 and 2.3.
One strategy consists of selecting the inverse-temperatures
as a geometric sequence; we saw that this strategy is opti-
mal when I (β) ∝ β−2, or equivalently the heat capacity is
constant. The other strategy consists of choosing the tem-
peratures such that the acceptance probability between any
two adjacent temperatures is about 23%. We report here a
simulation example comparing the two strategies.

Consider the density

fd(x1, . . . , xd) =
d∏

i=1

f (xi;ωi,μi, σ
2
i )

corresponding to a mixture of normal distributions, where
d = 20, and

f (x;ω,μ,σ 2) =
3∑

j=1

ωj

1√
2πσj

e
− 1

2σ2
j

(x−μj )2

,

with ω = (1/3,1/3,1/3), μ = (−5,0,5), and σ =
(0.2,0.2,0.2). For the 23% rule, we build the temperatures
sequentially as described in Sect. 2.2, with β̄ = 0.01. The
number of chains is thus itself unknown initially, and turns
out to be 9 as shown in the top line of Table 1. The geometric
schedule uses that same number (9) of chains, geometrically

Fig. 3 Squared jump distance (SJD) versus estimated Acceptance Probability for the Gaussian case f = N(0,1) and f β = N(0, β−1), in dimen-
sions (a) d = 10, (b) d = 20, (c) d = 50, and (d) d = 100
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Fig. 4 SJD versus Acceptance
Probability for the
inhomogeneous Gaussian case
fi = N(0, i2) and
f

β
i = N(0, i2β−1), in

dimensions (a) d = 10 and
(b) d = 100

Table 1 Inverse-temperature schedules for the two different temperature scheduling strategies for the mixture distribution example

0.23 rule 1.00 0.675 0.395 0.206 0.106 0.048 0.022 0.0105 0.01

Geometric spacing 1.00 0.562 0.316 0.178 0.100 0.056 0.032 0.018 0.01

spaced between β0 ≡ 1 and β̄ ≡ 0.01. (Thus, the geometric
schedule is allowed to “borrow” the total number of chains
from the 23% rule, which is in some sense overly generous
to the geometric strategy.) Each chain was run for 200,000
iterations.

We report the square jump distances both in the temper-
ature space and in the X -space (Table 2). We observe that
the 23% rule performs significantly better that the geometric
scheduling, in terms of having larger average squared jump-
ing distances in both the β space and the X space.

3.4 Ising distribution

We now compare the two scheduling strategies using the
Ising distribution on the N × N two-dimensional lattice,
given by π(x) = exp(E (x))/Z, where Z is the normalizing
constant and

E (x) = J

(
N∑

i=1

N−1∑

j=1

xij xi,j+1 +
N−1∑

i=1

N∑

j=1

xij xi+1,j

)

, (14)

with xi ∈ {1,−1}. Obviously, this distribution does not sat-
isfy the assumption (5). For definiteness, we choose N = 50
and J = 0.45.

The Ising distribution admits a phase transition at the crit-
ical temperature Tc = 2J/ log(1 + √

2)
.= 1.021, i.e. critical

inverse-temperature βc
.= 0.979, around which the heat ca-

pacity undergoes stiff variation. Tempering techniques like
MCMCMC and Simulated Tempering can perform poorly
near critical temperatures because small changes in the tem-
perature around Tc result in drastic variations of the prop-
erties of the distribution. We expect the 23% rule to outper-
form the geometric schedule in this case.

Table 2 Squared Jumping distances in β space and X space for the
two different temperature scheduling strategies for the mixture distrib-
ution example

E[|βn − βn−1|2] E[‖Xn − Xn−1‖2]

0.23 rule 0.209 0.428

Geometric spacing 0.084 0.315

For our algorithm, for the within-temperature (i.e., X -
space) moves, we use a Metropolis-Hastings algorithm with
a proposal which consists of randomly selecting a position
(i, j) on the lattice and flipping its spin from xij to −xij .

We first determine iteratively the inverse-temperature
points using the algorithm described in Sect. 2.2. Then,
given the lowest and highest temperatures and the number
of temperature points determined by this algorithm, we com-
pute the geometric spacing. Figure 5 gives the selected tem-
peratures (not inverse-temperatures, i.e. it shows Tj ≡ 1/βj )
from the two methods (the circles represent the 23% rule and
the ‘triangles’ represent the geometric spacing).

We note here that the 23% rule and the geometric spac-
ing produce very different temperature points. Interestingly,
in order to maintain the right acceptance rate, the 23% rule
puts more temperature points near the critical temperature
(1.021); this is further illustrated in Table 3.

Each version of MCMCMC was run for 5 million it-
erations. The average squared jump distance in inverse-
temperature space was 0.0095 for the 23% rule and 0.0049
for the geometric spacing, i.e. the 23% rule was almost twice
as efficient.

We also present the trace plots (subsampled every 1,000
iterations) of the function {E (Xn), n ≥ 0} during the simu-
lation for each of the two algorithms in Fig. 6, together with
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their autocorrelation functions. While the trace plots them-
selves appear similar, the autocorrelations indicate that the
23% rule has resulted in a faster mixing (less correlated)
sampler in the X -space as well. We confirm this by cal-
culating the empirical average square jump distance in the
X space, SJD(X ) = n−1 ∑n

j=1 |E (Xj ) − E (Xj−1)|2, which

Fig. 5 The temperatures {Tj } selected for the Ising model (triangle:
geometric spacing; circle: 23% rule)

works out to 22.11 for the 23% rule, and 13.76 for the geo-
metric sequence, i.e. the 23% rule is 1.6 times as efficient by
this measure.

4 Simulated tempering

We now consider the Simulated Tempering algorithm (Mari-
nari and Parisi 1992; Geyer 1991). This is somewhat sim-
ilar to MCMCMC, except now there is just one parti-
cle which can jump either within-temperature or between-
temperatures. Again we focus on the between-temperatures
move, and keep similar notation to before.

The state space is now given by {β0, β1, . . . , βn}× X and
the target density is proportional to fd(β,x) = ∏d

i=1 eK(β)

× f β(xi) = edK(β) f
(β)
d (x) for some choice of “normaliz-

ing” constants K(β). Letting β = βj and β + ε = βk , a pro-
posed temperature move from (β,x) to (β+ε,x) is accepted
with probability

α = 1 ∧
(

edK(β+ε)f
β+ε
d (x)

edK(β)f
β
d (x)

)

.

Fig. 6 (a), (c) trace plots and
(b), (d) autocorrelation
functions of E(Xn) for the Ising
model, subsampled every 1,000
iterations, with (a), (b)
geometric temperature spacing,
and (c), (d) the 23% rule

Table 3 Selected temperature values near Tc = 1.021 for the Ising model

23% rule 1.00 1.02 1.06 1.10 1.14 1.18 1.24 1.30 1.37 1.44 1.53 · · ·
Geometric rule 1.00 1.20 1.46 1.77 2.14 2.59 3.13 3.79 4.59 5.55 6.70 · · ·
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Fig. 7 A graph of the relationship between the expected squared jump-
ing distance (ESJD) and asymptotic acceptance rate (ACC), as de-
scribed in (16) (top) and (8) (bottom), in units where dI (β) = 1

We again make the simplifying assumptions (5) and (6),
and again let ε ↘ 0 according to (7). We further assume that
we have chosen the “true” normalising constants,

K(β) = − log
(∫

f β(x) dx
)
, (15)

so that fd(β, ·) is indeed a normalised density function. This
choice makes the stationary distribution for β be uniform on
{β0, β1, . . . , βn}; this appears to be optimal since it allows
the β values to most easily and quickly migrate from the
cold temperature β0 to the hot temperature βn and then back
to β0 again, thus maximising the influence of the hot tem-
perature on the mixing of the cold chain.

4.1 Main result

Under the above assumptions, we prove the following ana-
log of Theorem 1:

Theorem 2 Consider the Simulated Tempering algorithm
as described above, assuming (5), (6), (7), and (15). Then
as d → ∞, the ESJD of (2) is maximized when � is cho-
sen to maximize �2 × 2�(−�I (β)1/2/2). Furthermore, for
this optimal choice of �, the corresponding probability of ac-
cepting a proposed swap is given (to three decimal points)
by 0.234. In fact, the relationship between ESJD of (2) and
ACC of (3) is given by

ESJD = (4/dI (β)) × ACC × (�−1(ACC/2))2 (16)

(see Fig. 7). Finally, this choice of � also maximises
the ESJD(h) of (4), for any differentiable function h :
[0,1] → R.

Proof A proposed temperature move from (β,x) to
(β + ε,x) is accepted with probability

α = 1 ∧
(

edK(β+ε)f
β+ε
d (x)

edK(β)f
β
d (x)

)

= 1 ∧ ed(K(β+ε)−K(β))eε
∑d

i=1 g(xi )

= 1 ∧ ed(K(β+ε)−K(β))+εdM(β)eε
∑d

i=1 ḡ(xi ),

where ḡ(x) = g(x) − M(β).
If we choose K(β) = − log(

∫
f β(x) dx), then we com-

pute (again using the “quotient rule”) by comparison with (9)
that K ′(β) = −M(β). Hence, from (11), K ′′(β) =
−M ′(β) = −I (β). Therefore, by a Taylor series expansion,
K(β + ε) − K(β) = ε K ′(β) + 1

2ε2K ′′(β) = −εM(β) −
1
2ε2I (β) for some βε ∈ [β,β + ε]. It follows that
d(K(β+ε)−K(β))+εdM(β) = ε2dK ′′(βε)/2 = (�2/2)×
K ′′(βε) = −(�2/2)I (βε).

Setting ε = d−1/2� for some � > 0 and letting d → ∞, it
follows from the above and the central limit theorem that

lim
d→∞ 1 ∧

(
edK(β+ε)f

β+ε
d (x)

edK(β)f
β
d (x)

)

= lim
d→∞ 1 ∧ (

e−(�2/2)I (βε) eε
∑d

i=1 ḡ(xi )
)

= lim
d→∞ 1 ∧ (

e−(�2/2)I (β) e�d−1/2 ∑d
i=1 ḡ(xi )

) ≡ 1 ∧ eA,

where A ∼ N(−(�2/2)I (β), �2 Varβ(g)) = N(−(�2/2)×
I (β), �2I (β)).

The rest of the argument is standard, just as in Theorem 1,
and shows that for large d , the squared jump distance of
Simulated Tempering is approximately

ESJD = (�2/2d) × 2�
(−�I (β)1/2/2

) ≡ eST(�), (17)

which is again maximised by choosing � such that the accep-
tance probability is (to three decimal places) equal to 0.234.
The argument for (16) is identical to that for Theorem 1. �

4.2 Comparison of simulated tempering and MCMCMC

Now that we have optimality results for both Simulated
Tempering (Theorem 2) and MCMCMC (Theorem 1), it is
natural to compare them. We have the following.

Corollary 1 Under assumptions (5), (6), (7), and (15), as-
ymptotically as d → ∞, the maximal value of ESJD for
Simulated Tempering is precisely twice that for MCMCMC
(cf. Fig. 7). (More generally, the maximal ESJD(h) for Sim-
ulated Tempering is precisely twice that for MCMCMC, for
any differentiable h.) Furthermore, the optimal choice of �

for Simulated Tempering is
√

2 times that for MCMCMC.
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Proof Comparing eMC(�) from (12) with eST(�) from (17),
we see that eMC(�) = 1

2eST(�
√

2). In particular,
sup� eMC(�) = 1

2 sup� eST(�), and also argsup�eMC(�) =
(1/

√
2) argsup�eST(�), which gives the result. �

Corollary 1 says that, under appropriate conditions, the
ESJD of MCMCMC is precisely half that of Simulated Tem-
pering. That is, if Simulated Tempering has ideally-chosen
normalisation constants K(β) as in (15), then in some sense
it is twice as efficient as MCMCMC. (For a related inequal-
ity about spectral gaps of these two algorithms on finite state
spaces, see Theorem 3 of Zheng 2003.)

However, choosing K(β) ideally may be difficult or im-
possible (though it may be possible in certain cases to
learn these weights adaptively during the simulation, see
e.g. Atchade and Liu 2010), and for non-optimal K(β) this
comparison no longer applies. By contrast, MCMCMC does
not require K(β) at all.

Furthermore, a single temperature swap of MCMCMC
updates two different chain values, and thus may be twice
as valuable as a single temperature move under Simulated
Tempering. If so, then the two different factors of two pre-
cisely cancel each other out.

In addition, it may take more computation to do one
within-temperature step of MCMCMC (involving n+1 par-
ticles) than one step of Simulated Tempering (involving just
one particle).

In summary, this comparison of the two algorithms in-
volves various subtleties and is not entirely clear-cut, though
Corollary 1 still provides certain insights into the relation-
ship between them.

4.3 Langevin dynamics for simulated tempering?

One limitation of Simulated Tempering is that it performs a
Random Walk Metropolis (RWM) algorithm in the β-space,
where each proposal bears a high chance of being rejected if
the value of the energy

∑d
i=1 g(xi) is not consistent with the

proposed value of temperature. Now, it is known (Roberts
and Rosenthal 1998) that Langevin dynamics (which use
derivatives to improve the proposal distribution) are signifi-
cantly more efficient than RWM when they can be applied.
In the context of the inverse temperatures, a Langevin-style
proposal distribution could take the form:

N
[

β + σ 2

2

( d∑

i=1

g(xi) − d∇K(β)

)

, σ 2
]

.

Furthermore, in this case ∇K(β) = Eβ(g(X)). Therefore,
such a Langevin proposal will compare the current value of∑d

i=1 g(xi) to the average value d∇K(β). If
∑d

i=1 g(xi) ≤
d∇K(β) then smaller temperature are more compatible and
are more likely to be proposed (and vice versa).

The main limitation of this idea is that in practice, we
do not know the gradient ∇K(β). This can perhaps be es-
timated during the simulation as the average of the energy
∑d

j=1 g(Xn) at times n where the inverse-temperature level
β is visited, but this needs more investigation and we do not
pursue it here.

5 Discussion and future work

This paper has presented certain results about optimal
inverse-temperature spacings. In particular, we have proved
that for MCMCMC (Theorem 1) and Simulated Tempering
(Theorem 2), it is optimal (under certain conditions) to space
the inverse-temperatures so that the probability of accepting
a temperature swap or move is approximately 23%. Our the-
orems were proved under the restrictive assumption (5), but
we have seen in simulations (Sect. 3) that they continue to
approximately apply even if this assumption is violated.

Theorems 1 and 2 were stated in terms of the ex-
pected squared jumping distances (ESJD) of the inverse-
temperatures, assuming the chain begins in stationarity.
While this provides useful information about optimising the
algorithm, it provides less information about the algorithm’s
long-term behaviour. In this section, we consider various
related issues and possible future research directions.

5.1 Inverse-temperature process

It is possible to define an entire inverse temperature process,
{yn}∞n=0, living on the state space Y = {β0, β1, . . . , βn}.
For Simulated Tempering (ST), this process is simply the
inverse-temperature β at each iteration. For MCMCMC,
this process involves “tracking” the influence of a particular
inverse-temperature’s chain through the temperature swaps,
i.e. if yn = βj , and then the βj and βj+1 chains successfully
swap, then yn+1 = βj+1 (otherwise yn+1 = βj ).

In general, this {yn} process will not be Markovian. How-
ever, if we assume that the ST/MCMCMC algorithm does
an automatic i.i.d. “reset” into the distribution f (β) imme-
diately upon entering the inverse-temperature β (i.e., where
the chain values associated with each inverse-temperature β

are taken as i.i.d. draws from f
(β)
d at each iteration), then

{yn} becomes a Markov chain. Indeed, under this assump-
tion, it corresponds to a simple random walk (with holding
probabilities) on Y .

In that case, it seems likely that as d → ∞, if we appro-
priately shrink space by a factor of

√
d and speed up time by

a factor of d , then as in the RWM case (Roberts et al. 1997;
Roberts and Rosenthal 2001), the {yn} will converge to a
limiting Langevin diffusion process. In that case, maximis-
ing the speed of the limiting diffusion is equivalent to opti-
mising the original algorithm (according to any optimisation
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measure, see Roberts and Rosenthal 2001), and this would
provide another justification of the values of �opt in Theo-
rems 1 and 2.

In terms of this {yn} Markov chain, ESJD from (2) is sim-
ply the expected squared jumping distance of this process.
Furthermore, ESJD(h) from (4) is then the Dirichlet form
corresponding to the Markov operator for {yn}. Thus, Theo-
rems 1 and 2 would also be saying that the given values of
�opt maximise the associated Dirichlet form.

Of course, this “reset” assumption that the moves within
each inverse temperature βj result in an immediate i.i.d. re-
set to the density f βj is not realistic, since in true applica-
tions the convergence within each fixed temperature chain
would occur only gradually (especially for larger βj ). How-
ever, it is not entirely unrealistic either, for a number of rea-
sons. For example, some algorithms might run many within-
temperature moves for each single attempted temperature
swap, thus making the within-temperature chains effectively
mix much faster. Also, some within-temperature algorithms
(e.g. Langevin diffusions, see Roberts and Rosenthal 1998)
have convergence time of smaller order (O(d1/3)) than
that of the temperature-swapping random-walk behaviour
(O(d)), so effectively the within-temperature chains con-
verge immediately on a relative scale, which is equivalent
to the “reset” assumption.

Proving convergence to limiting diffusions can be rather
technical (see e.g. Roberts et al. 1997; Roberts and Rosen-
thal 1998), so we do not pursue it here, but rather leave it
for future work. In any case, assuming the limiting diffusion
does hold (as it probably does), this provides new insight
and context for the optimal behaviour of MCMCMC and ST
algorithms.

5.2 Joint diffusion limits?

If we do not assume the “reset” assumption as above, then
the process {yn} is not Markovian, so a diffusion limit seems
far less certain.

However, it is still possible to jointly consider the chain
{xn}∞n=0 living on X (for ST) or X d (for MCMCMC), to-
gether with the inverse temperature process {yn}. The joint
process (xn, yn) must be Markovian, and it is quite possi-
ble that it has its own joint diffusion limit and joint optimal
scalings.

This would become quite technical, and we do not pur-
sue it here, but we consider it an interesting topic for future
research.

5.3 Models for how the algorithms converge

Related to the above is the question of a deeper under-
standing of how MCMCMC and ST make use of the tem-
pered distributions to improve convergence. Significant

progress was made in this direction in previous research
(e.g. Woodard et al. 2009a), but more remains to be done.

One possible simplified model is to assume the process
does not move at all in the within-temperature direction, ex-
cept at the single inverse-temperature β = β̄ when it does an

immediate i.i.d. reset to f
(β̄)
d . At first we thought that such

a model is insufficient since it would then be exponentially
difficult for the algorithm to climb from β = β̄ to β = β0,
but the work of Woodard et al. (2009a) shows that this is in
fact not the case. So, we may explore this model further in
future work.

A compromise model is where the state space X is par-
titioned into a finite number of modes, and when entering
any β > 0 the process does a “reset” into f (β) conditional
on remaining in the current mode. Such a process assumes
fast within-mode mixing at all temperatures, but between-
mode mixing only at the hot temperature when β = 0. We
believe that in this case, there is a joint diffusion limit of
the joint (β , mode) process. If so, this would be interesting
and provide a good model for how the hot temperature and
intermediate temperature mixing all works together.

5.4 State space invariance

Our results do not depend in any way on the update mech-
anism within the state space X . Moreover, although our re-
sults are proved for the case of IID components, this ob-
servation immediately generalises our findings to the very
large class of distributions which we can write as functions
of IID components. In fact the only thing which stops this
being a completely general d-dimensional state space result
is the fact that ST on the transformed variables is a different
method from the transformed ST algorithm. From a practical
point of view, this might even suggest improved tempering
schemes (rather than simply considering powered densities).

5.5 Implementation

Finding practical ways to implement MCMCMC and ST
in light of our results has not been a focus of this paper,
though this is an important issue for future consideration.
The approach adopted in Sect. 2.2 is designed to be a thor-
ough methodology to investigate the effects of Theorem 1,
but cannot be considered a practical approach in general.
Intriguing is the prospect of integrating our theory within
an adaptive MCMC framework as in for example (Atchade
2006; Andrieu and Moulines 2007, Roberts and Rosenthal
2007, 2009).

5.6 Parallelisation

As computational power become more and more wide-
spread, there is increasing interest in running Monte Carlo
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algorithms in parallel on many machines, perhaps even us-
ing Graphics Processing Units (GPUs), see e.g. Glynn and
Heidelberger (1991), Rosenthal (2000), Lee et al. (2009). It
would be interesting to consider, even in simple situations,
how to optimise parallel computations asymptotically as the
number of processors goes to infinity.

Acknowledgements We thank the editors and anonymous referees
for very helpful reports that significantly improved the presentation of
our results.

References

Andrieu, C., Moulines, E.: On the ergodicity properties of some
Markov chain Monte Carlo algorithms. Ann. Appl. Probab. 44(2),
458–475 (2007)

Andrieu, C., Robert, C.P.: Controlled MCMC for optimal sampling.
Preprint (2001)

Atchade, Y.F.: An adaptive version of the Metropolis adjusted
Langevin algorithm with a truncated drift. Methodol. Comput.
Appl. Probab. 8(2), 235–254 (2006)

Atchade, Y.F., Liu, J.S.: The Wang-Landau algorithm in general state
spaces: applications and convergence analysis. Stat. Sin. 20, 209–
233 (2010)

Cooke, B., Schmidler, S.C.: Preserving the Boltzmann ensemble
in replica-exchange molecular dynamics. J. Chem. Phys. 129,
164112 (2008)

Delmas, J.-F., Jourdain, B.: Does waste recycling really improve the
multi-proposal Metropolis-Hastings algorithm? An analysis based
on control variates. J. Appl. Probab. 46(4), 938–959 (2009)

Earl, D.J., Deem, M.W.: Parallel tempering: theory, applications, and
new perspectives. J. Phys. Chem. B 108, 6844 (2005)

Frenkel, D.: Waste-recycling Monte Carlo. In: Computer Simulations
in Condensed Matter: From Materials to Chemical Biology. Lec-
ture Notes in Physics, vol. 703. Springer, Berlin (2006)

Geyer, C.J.: Markov chain Monte Carlo maximum likelihood. In: Com-
puting Science and Statistics: Proceedings of the 23rd Symposium
on the Interface, pp. 156–163 (1991)

Glynn, P.W., Heidelberger, P.: Analysis of parallel, replicated simu-
lations under a completion time constraint. ACM Trans. Model.
Simul. 1, 3–23 (1991)

Green, P.J., Mira, A.: Delayed rejection in reversible jump Metropolis-
Hastings. Biometrika 88(3), 1035–1053 (2001)

Hastings, W.K.: Monte Carlo sampling methods using Markov chains
and their applications. Biometrika 57, 97–109 (1970)

Iba, Y.: Extended ensemble Monte Carlo. Int. J. Mod. Phys. C 12(5),
623–656 (2001)

Kofke, D.A.: On the acceptance probability of replica-exchange Monte
Carlo trials. J. Chem. Phys. 117, 6911 (2002). Erratum: J. Chem.
Phys. 120, 10852

Kofke, D.A.: Comment on “the incomplete beta function law for paral-
lel tempering sampling of classical canonical systems”. J. Chem.
Phys. 121, 1167 (2004)

Kone, A., Kofke, D.A.: Selection of temperature intervals for parallel-
tempering simulations. J. Chem. Phys. 122, 206101 (2005)

Lee, A., Yau, C., Giles, M.B., Doucet, A., Holmes, C.C.: On the util-
ity of graphics cards to perform massively parallel simulation of
advanced Monte Carlo Methods. Preprint (2009)

Madras, N., Zheng, Z.: On the swapping algorithm. Random Struct.
Algorithms 22, 66–97 (2003)

Marinari, E., Parisi, G.: Simulated tempering: a new Monte Carlo
scheme. Europhys. Lett. 19, 451–458 (1992)

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller,
E.: Equations of state calculations by fast computing machines.
J. Chem. Phys. 21, 1087–1091 (1953)

Predescu, C., Predescu, M., Ciobanu, C.V.: The incomplete beta func-
tion law for parallel tempering sampling of classical canonical
systems. J. Chem. Phys. 120, 4119 (2004)

Robbins, H., Monro, S.: A stochastic approximation method. Ann.
Math. Stat. 22, 400–407 (1951)

Roberts, G.O., Gelman, A., Gilks, W.R.: Weak convergence and opti-
mal scaling of random walk Metropolis algorithms. Ann. Appl.
Probab. 7, 110–120 (1997)

Roberts, G.O., Rosenthal, J.S.: Optimal scaling of discrete approxi-
mations to Langevin diffusions. J. R. Stat. Soc. B 60, 255–268
(1998)

Roberts, G.O., Rosenthal, J.S.: Optimal scaling for various Metropolis-
Hastings algorithms. Stat. Sci. 16, 351–367 (2001)

Roberts, G.O., Rosenthal, J.S.: Examples of adaptive MCMC. J. Com-
put. Graph. Stat. 18(2), 349–367 (2009)

Roberts, G.O., Rosenthal, J.S.: Coupling and ergodicity of adaptive
MCMC. J. Appl. Probab. 44, 458–475 (2007)

Rosenthal, J.S.: Parallel computing and Monte Carlo algorithms. Far
East J. Theoret. Stat. 4, 207–236 (2000)

Woodard, D.B., Schmidler, S.C., Huber, M.: Conditions for rapid mix-
ing of parallel and simulated tempering on multimodal distribu-
tions. Ann. Appl. Probab. 19, 617–640 (2009a)

Woodard, D.B., Schmidler, S.C., Huber, M.: Sufficient conditions for
torpid mixing of parallel and simulated tempering. Electron. J.
Probab. 14, 780–804 (2009b)

Zheng, Z.: On swapping and simulated tempering algorithms. Stoch.
Process. Their Appl. 104, 131–154 (2003)


	Towards optimal scaling of metropolis-coupled Markov chain Monte Carlo
	Abstract
	Introduction
	Toy example

	Optimal temperature spacings for MCMCMC
	Main result
	Iteratively selecting the inverse temperatures
	Comparison with geometric temperature spacing
	A simple analytical example
	Relation to previous literature

	Simulation examples
	A simple Gaussian example
	Inhomogeneous Gaussian example
	A mixture distribution example
	Ising distribution

	Simulated tempering
	Main result
	Comparison of simulated tempering and MCMCMC
	Langevin dynamics for simulated tempering?

	Discussion and future work
	Inverse-temperature process
	Joint diffusion limits?
	Models for how the algorithms converge
	State space invariance
	Implementation
	Parallelisation

	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


