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Supercomput i ng, wh ich 
involves the use of the 
highest-performance com-
puting resources available 

at a given time, has recently seen 
broader adoption as it is essential 
for training generative artificial 
intelligence/machine learning (AI/
ML) models. These AI use cases are 
in addition to the traditional model-
ing and simulation (modsim) work-
loads that continue to drive high 
use at traditional supercomputing 
centers.

Supercomputing centers are in-
creasingly adopting AI/ML tech-
niques into modsim workloads. 
This article by leaders from those 
centers, as well as within the indus-
try, explores the trends and direc-
tions that will shape future super-
computers, driven largely by that 
convergence of modsim and AI/ML 
techniques. This article extends 
the predictions of several recent 
articles that explored the future of 
supercomputing.1,2,3,4,5,6
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INCREASING USES, 
INCREASING ADOPTION
As we consider the future of super-
computing, we see several factors that 
will drive changes to the workloads 
that are run on supercomputers. These 
changes will continue to broaden the 
adoption of supercomputing and will 
affect the technology used to build 
supercomputers. In this section and 
the following one, we describe our ex-
pectations for future supercomputing 
workloads and discuss the technolo-
gies that will shape their evolution.

While we expect supercomputing 
workloads to be augmented with new 
workloads (for example, AI), we ex-
pect that traditional supercomputing 
workloads will remain a significant 
use case. These traditional workloads 
serve a wide range of purposes, from 
advancing science to deepening our 
understanding of the universe in 
which we live, addressing human-
ity’s needs in the modern world, to 
protecting the national interests of 
governments that deploy such sys-
tems. Nonetheless, we expect these 
traditional workloads to incorporate 
new algorithmic techniques, starting 
with the use of AI/ML models, as has 
already begun.7,8,9 The adoption of AI/
ML techniques includes their use to 
guide the simulated configurations in 
ensemble calculations but also their 
use to accelerate expensive calcula-
tions of models of physics and biolog-
ical phenomena.

With the end of Dennard scaling 
and the slowing of Moore’s law, the 
automatic increase in performance 
at constant cost and power is over. 
Modsim practitioners are faced with 
modest gains in performance with in-
cremental architecture changes. Fu-
ture gains are largely coming from the 
increase in silicon within the package. 
While providing needed performance 
boosts, it comes with higher power and 
higher costs for both the additional 

silicon and the integration to stitch to-
gether several chiplets. When viewed 
as performance per watt (for example, 
if a facility has a fixed power budget), 
then the gains are still modest.

At the same time, the explosive 
growth in AI, both training and in-
ference, has driven silicon vendors to 
tailor their products to this lucrative 
market. It is not clear, however, that 
modsim can take advantage of lower 
precision. Some apps will be able to 
use FP32 for some of their data struc-
tures (but not necessarily all) and see 
benefits compared to lazily promoting 
everything to FP64. It is not clear if 
apps will be able to use FP16 for mod-
sim unless it is using AI inferencing in 
lieu of a component in a multiphysics 
application, emulation, or iterative 
refinement. To use ML inferencing, 
there needs to be an already-trained 
model. There is a lot of research in-
terest in determining when/if mod-
sim applications can exploit lower 
precision, which is becoming much 
more plentiful. There are efforts to see 
which, if any, apps can use lower pre-
cision directly, use lower precision via 
AI methods, use lower precision via it-
erative refinement, or use lower preci-
sion via emulation. Some apps may be 
able to do so, while others will not.

The beauty of the General Ma-
trix-Matrix Multiplication (GEMM) 
emulation methods (that is, Ozaki 
methods10) is that precision is fin-
er-grained than with hardware. Hard-
ware is limited to powers of two (for 
example, FP64, FP32, and FP16), while 
Ozaki can provide any multiple of 
four bits (for example, FP40, FP48, 
and FP56) to provide just enough pre-
cision to converge on a valid solution 
without providing “too much.” While 
Ozaki’s scheme can outperform native 
cuBLAS in some cases, the downsides 
to emulation are 1) it can only emu-
late GEMM (that is, matrix-matrix) in-
structions but not vector instructions, 

and 2) it consumes 30–50% of the 
available memory, thus reducing the 
solvable problem size. If memory were 
cheap and plentiful, the latter would 
not be an issue, but supercomputer us-
ers want the fastest memory available. 
Today, that is high-bandwidth mem-
ory, and it is neither cheap nor plenti-
ful. Recently, systems used for AI/ML 
training have been cast as competitors 
to supercomputers.

Rather than competitors, the authors 
view both modsim and AI as having 
overlapping needs for supercomputer 
design, except for precision. However, 
the systems that provide AI/ML capa-
bility are best viewed as supercomput-
ers themselves and reflect that AI/ML 
training has emerged as an important 
workload for supercomputers. As we 
look toward the future, not only do we 
expect that AI/ML training will remain 
a critical supercomputing workload, 
but we anticipate that additional new 
workloads will emerge. We expect that 
domains that have begun to use super-
computers more extensively due to the 
success of large-scale AI/ML models, 
such as finance and retail, will identify 
new mechanisms to exploit the com-
putational capability available and ex-
pand the use of AI/ML in their domain. 

The convergence of cloud comput-
ing and supercomputing has long been 
expected. However, this convergence 
has not fully materialized yet, in part 
due to the requirements of traditional 
tightly coupled parallel modsim work-
loads. Nonetheless, cloud providers 
continue providing more high perfor-
mance computing (HPC) capability, 
and cloud computing continues to be 
a viable economic and technical al-
ternative for embarrassingly parallel 
workloads and, as of recently, for AI/
ML workloads. They are also suitable 
for offloading or bursting small-scale 
experiments and development.

Addressing humanity’s needs, such 
as weather forecasting and biomedical 
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research, continues to be an import-
ant target of supercomputing. These 
applications include energy needs 
and its production using nuclear 
fission near term and fusion long 
term—but also for fossil fuels and 
importantly, carbon and water man-
agement. Another use is for new 
materials, particularly for the con-
tinued advancement of technology 
beyond silicon CMOS device scaling. 
Yet another use case is mitigating and 
adapting to climate change, includ-
ing utilizing digital twins.

Digital twins are virtual represen-
tations of physical artifacts, systems, 
or processes with collected real-time 
information. They enable monitoring, 
simulation, and prediction of those 
physical artifacts. Digital twins often 
use supercomputers directly in a vari-
ety of vertical applications and services 
(for example, for structural analysis, 
Earth monitoring, manufacturing, 
and operations) as well as exploit them 
peripherally (for example, for moni-
toring, optimizing operation, anom-
aly detection, or what-if-analysis). 
Digital twins are used in areas such as 
the transportation industry, data cen-
ters,11,12 and even Earth.13

Another important use case of tra-
ditional supercomputing is helping 
drive new scientific breakthroughs 
[that is, helping answer the big ques-
tions, for example, performing com-
putation for the follow-on to Laser 
Interferometer, Gravitational-Wave 
Observatory (LIGO) or Laser Interfer-
ometer Space Antenna (LISA) that will 
enable sensing of gravitational wave-
lengths populated by a rich diversity 
in astrophysical phenomena that are 
of deep interest to astronomers and 
astrophysicists]. After a discussion 
on how the use and adoption of su-
percomputing evolved, we will next 
explore how technology evolution im-
pacts workloads.

EVOLVING TECHNOLOGIES 
AND WORKLOADS
Future supercomputing workloads 
will reflect recent and anticipated 

future technological and industry de-
velopments. These trends include not 
only the adoption of AI/ML to serve 
edge computing and other end-user 
applications but also productivity en-
hancements, such as those driving 
broad consumer adoption of cloud-
based computing. Further, architec-
tural and device-level advancements 
will continue to motivate new super-
computing application enhancements. 
This section provides a high-level de-
scription of these two influences on 
future supercomputers. We begin by 
describing the workloads.

	› New applications are continuing 
to demand more computational 
capability, including bioen-
gineering, climate modeling, 
national security, fusion energy, 
and many others.

	› HPC and AI will continue to con-
verge and thereby demand more 
AI-ready infrastructure.

	› Large language models and 
other models have captured the 
public imagination, and they 
open new opportunities  
in supercomputing.

	› Physics-informed neural net-
works and other models, possibly 
integrated into traditional mod-
sim applications, enable the faster 
exploration of design spaces.

	› Some workloads are increasing 
performance by leveraging 
mixed precision computation, 
while others are leveraging 
multitenancy to increase 
performance.

	› Application demand for scale-up 
networking, including Ultra 
Accelerator Link (UALink), will 
continue to increase per-device 
bandwidth and the number of 
directly connected scale-up 
devices, blurring the boundary 
between scale-up and scale-out 
infrastructure.

In the last couple of years, advance-
ments in AI, specifically in generative 
AI applications, have dramatically 

influenced private industry toward 
building large-scale computing infra-
structure. Even though these infra-
structures are driven by AI require-
ments, they are becoming increasingly 
HPC ready. AI and HPC are making 
significant strides toward conver-
gence, and this development is a major 
disruptor. We predict the forthcoming 
technological changes.

	› Accelerators, from traditional 
(for example, compression and 
crypto) to ones focused on AI (for 
example, Cerebras, NextSilicon, 
and SambaNova) to upcoming 
(for example, neuromorphic 
and quantum), will address 
specialized but important 
demands, and some are already 
being incorporated into exist-
ing supercomputers. 2.5D and 
3D memories present obstacles 
that must be overcome to use, 
but they provide significant 
opportunities to help ameliorate 
memory wall challenges.

	› Continued evolution of the scale 
and latency-sensitive indus-
try-standard or standard-compat-
ible/interoperable interconnects 
(for example, scale-up merging 
with scale-out) will occur.

	› Increasingly integrated photonics 
as a means of power reduction, 
packaging simplicity, and band-
width enhancement will be seen.

	› Improvements in reliability are 
driven by the need to address 
resilience (or fault tolerance) 
at all levels of the system, from 
hardware to system software to 
applications.

These technology changes will 
result in a new macro-political land-
scape that may influence decisions on 
next-generation supercomputer pro-
curement. For example

	› AI will drive technology di-
rections/priorities, including 
reduced precision, systolics, and 
fixed function units.



	 J U LY  2 0 2 5 � 113

	› Silicon transistor devices are 
approaching hard limits in 
scaling, with limited improve-
ments in performance through 
silicon CMOS scaling, which has 
implications for specialization, 
tight integration, and power 
reduction. These limits intro-
duce a need for deeper co-design 
alongside other major market 
forces, such as AI.

	› New computing technologies 
are being explored, including 
quantum, neuromorphic, and 
other accelerators that may sub-
stantially change the landscape 
in terms of scaling, reliability, 
power, and cooling.

	› Research in new nonvolatile 
memories (NVMs) has been 
occurring for many years. If 
that work leads to successful 
productization, it may affect the 
way we design storage, conduct 
checkpointing, and in general, 
manage memory.

	› New algorithms (potentially AI 
inspired and enabled by new 
accelerators) can also impact 
performance and scale.

ARCHITECTURE
Two main architectural changes have 
brought A I a nd HPC appl icat ions 
closer together. The first is the addition 
of high-performance GPUs alongside 
high-performance CPUs for compute, 
and the second is AI’s need for fast and 
efficient communication within and 
between compute elements.

One of the biggest shifts in the last 
decade has been the widespread adop-
tion of GPUs for computation. While 
accelerated by AI use cases on super-
computers, this trend was occurring 
independently on HPC systems due to 
the need for higher compute capabili-
ties while keeping power manageable. 
Similar motivators (that is, raw perfor-
mance, performance per watt, perfor-
mance per area, and performance per 
dollar) will likely drive the inclusion of 
accelerator technology (for example, 
Cerebras, NextSilicon, SambaNova, 

and potentially quantum or neuro-
morphic), though the intercept of the 
latter two’s productive use will require 
additional time.

As GPUs became dominant, the 
primary architecture of the system 
remained homogeneous by node. That 
is, while each node was heterogeneous 
(microheterogeneity), the overall sys-
tem was homogeneous. Many of these 
new accelerators are not as general 
purpose as GPUs, and therefore, sys-
tems are likely to be macro-hetero-
geneous. What remains open is the 
tightness of coupling of these mac-
ro-heterogeneous partitions.

The severity of the memory bottle-
neck in generative AI has led to other 
forms of acceleration reentering con-
sideration, including computation 
near memory (CNM) as well as pro-
cessing in memory (PIM). These com-
putational accelerators, coupled with 
collective acceleration in the network, 
data processing units (DPUs), and 
forms of compute near storage, create 
a more diverse acceleration landscape 
than that enabled by GPUs. Further, 
as chiplet-based design points lead to 
finer-grained customization, the op-
portunity to intermingle compute ac-
celeration with general purpose com-
pute may become attractive to better 
balance system performance, power 
delivery, and thermal dissipation.

A major block to heterogeneity, 
whether it be at the micro or macro 
level, is the programming model. With-
out a productive programming model 
that enables efficient offload to acceler-
ators, the additional hardware will not 
provide a good return on area, cost, or 
power investment. The transition from 
CPUs to GPUs was made easier via a 
programming model and tool stack for 
GPUs, and any accelerators will have to 
match those capabilities to be viable. 
For example, circuits for CNM have 
been known for more than 50 years,14 
but the general programmability prob-
lem remains unsolved and generally 
avoided as “too hard” to solve.

One of the significant challenges in 
the post-exascale era is communication. 

This challenge involves moving data 
from memory to compute and between 
compute. One way to help address this 
challenge is to move to more tightly 
coupled architectures. Memory stack-
ing, 2.5D or 3D, has the potential to 
reduce power and increase bandwidth 
between compute and memory.

An important aspect of heteroge-
neous node architectures is moving 
data between compute elements, spe-
cifically between the main CPU and 
the accelerator. Coarser parallelism 
leads to less frequent data movement 
and more efficient use of the accelera-
tor. Traditional HPC applications need 
serial cores, and many large AI appli-
cations are also increasingly benefit-
ing from the utilization of CPUs. Fur-
ther, many HPC applications remain 
bulk synchronous with branchy and 
data-dependent code between paral-
lelizable kernels; that code runs better 
on CPUs. The AMD Instinct MI300A  
accelerated processing unit (APU) 
brings the CPU and the accelerator 
computing elements together both 
physically, via chiplets, and program-
matically through a unified memory 
model; Nvidia’s Grace-Hopper pro-
vides similar benefits using a full 
reticle CPU and GPU interconnected 
through NVLink—a chip-to-chip tech-
nology. However, hardware and soft-
ware challenges, such as software off-
load launch latencies, remain. Tighter 
coupling may further help improve 
performance. For example, 3D stack-
ing would allow more memory band-
width than 2/2.5D integration.

Moving across compute within the 
same package or same node offers 
challenges, but significant perfor-
mance cliffs occur when moving from 
high-performance nodes to the net-
work due to lower network byte/flop 
ratios, high network latencies, and 
high costs of synchronization across 
nodes. These inefficiencies require ap-
plication developers to partition their 
codes in a coarse-grained manner into 
serial and parallel compute phases, 
memory movement phases, and net-
work communicator phases with each 
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one optimized independently. This re-
quirement not only impacts program-
mer productivity but misses oppor-
tunities to optimize power efficiency 
and memory access across the system. 
These network inefficiencies also 
limit strong scaling. The bandwidth 
and latency cliffs are not the only 

inhibitors of performance. The model of 
how memory is accessed can also have 
a large and potentially greater impact 
on the performance of applications 
when they communicate outside the 
node. The right internode memory 
model with enhanced capabilities, 
such as atomics and load/store access 
to memory within a supernode, pod, 
or hypernode (collections of tightly 
coupled nodes with an enhanced mem-
ory model), can improve strong-scaled 
performance by more than an order of 
magnitude. Nvidia’s NVLink and the 
UALink standard (which AMD is a part 
of) are specific solutions that can pro-
vide tighter coupling between nodes. 
The general UALink industry-standard 
effort is moving to create an interoper-
able fabric for these needs. Competing 
pressures on interconnects will likely 
move future interconnects from low 
radix high diameter to high radix low 
diameter to improve efficiencies across 
a wide spectrum of use cases.

Two decades ago, the connection 
model was flat. A core comprised a 
node, and each node had a network 
connection. The topology varied (for 
example, butterfly, hypercube, or to-
rus), but all compute elements were 
uniformly separated. With the intro-
duction of multiple cores per chip, 
multiple chips within a node, and 
multiple GPUs within a node, two 
levels of connectivity, inter- and in-
tranode, were introduced. This archi-
tecture provided a communication 

latency and bandwidth advantage 
between these computing elements 
that were contained within a node. 
However, the architecture came at a 
cost. Applications—and particularly 
communication runtimes—needed to 
be aware of the topological structure 
to exploit it.

Motivated by AI, scale-up net-
working is creating another layer in 
the communication hierarchy. Pods, 
super nodes, wafer scale, or hyper-
nodes, represent an opportunity to 
connect tens to hundreds (perhaps 
small thousands) of nodes in a more 
tightly coupled manner with memory 
semantics (for example, load/store 
access and atomic operations). These 
architectures have better performance 
for AI and strong-scaled applications 
but also introduce a programmability 
cost. Again, the software layers have 
an opportunity and responsibility to 
attune the application appropriately 
for the communication hierarchy.

An open question remains as to the 
best overall system architecture since 
this intermediate communication layer 
(that is, scale-up: between or within a 
node and across the whole machine) is 
more expensive from a cost and power 
perspective than a flat communica-
tion architecture. One possibility that 
shows promise is merging the connec-
tivity emanating from a node into ei-
ther scale-up or scale-out connectivity. 
While this approach is a promising 
notion, no obvious technologies enable 
it, yet, but the two main standards ini-
tiatives in this space, UALink and the 
Ultra-Ethernet Consortium (UEC), are 
currently working on it.

Traditionally, the HPC community 
relied on large-scale hard-drive-based 
parallel file systems, such as Lustre and 
GPFS. In recent times, object store file 

systems optimized for NVM technol-
ogy, such as DAOS, VAST, and Weka, are 
gaining popularity and will increase, 
including the model stores for AI, such 
as vector databases. Cloud services 
have innovated object interfaces, such 
as S3, that AI frameworks use natively.

FACILITIES
Energy has been driving exascale su-
percomputing as one of the primary 
constraints. From the beginning of 
exascale planning, the desire to keep 
the spending on power to a minimum 
led to a target of 20 MW.15,16 This im-
pacted system designs, specifically 
cooling, space (the number of racks), 
and the CPU/GPU ratio. Air cooling 
was not sufficient, and liquid cooling 
has become the standard solution for 
capability-class supercomputers and 
is seeing broader-based adoption.

Figure 1 notionally presents the evo-
lution of power efficiency on the left 
(red curve) versus cooling choices on 
the right (blue curve) during the past 
few decades. Power efficiency numbers 
were taken from Oak Ridge National 
Laboratory supercomputers (Jaguar, 
Titan, Summit, Frontier). Due to 3D 
chips, the power density will continue 
to increase (more than double from 
2021 to 2031) according to the IRDS 
Roadmap,17 which will require further 
innovation in cooling, such as immer-
sive or evaporative spray cooling.

In the longer term, both cooling 
and power requirements may change 
substantially. Multiple reasons led to 
the 20-MW limit in the requirements 
for exascale supercomputers, includ-
ing cost and the ability to deliver that 
much power. The new means of energy 
production, such as small modular re-
actors (SMRs), are competitively priced 
per MW and complemented by onsite 
renewable energy production (for ex-
ample, wind and solar). If they suc-
ceed, they will address both the cost 
and power delivery to data centers.18 
The AI compute demand and the boom 
have further shifted the economics 
and scale of power generation, altering 
availability and pricing.

The future will determine if ESS leads to a  
common stack across the community or  

splinters the community.
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SOFTWARE STACK
The system software stack, as defined 
by everything below an application 
and above the hardware, continues to 
increase in complexity. From a model-
ing and simulation perspective, as the 
desired capability has increased, sys-
tem implementers have increasingly 
turned toward leveraging open source 
to provide this capability. This change 
complicates comprehensive testing. 
The combinations of open source com-
ponents exponentially increase the 
number of possible permutations of 
the software stack. Insufficient con-
nectivity between these open commu-
nities (and interest in being connected) 
has made comprehensive validation 
significantly more challenging than 
when a vendor owned all, or most of, 
the components in a stack. 

OpenHPC created a complete and 
comprehensive system general software 
stack. Extreme-scale Scientific Software 
Stack (E4S) of the Exascale Computing 
Project (ECP) made strides toward uni-
fying the development environment 
across many open source components. 
The High Performance Software Foun-
dation (HPSF), unified by Spack, is mak-
ing strides toward providing optimized 
software stacks for well-defined sys-
tems. Nonetheless, challenges remain, 
and a stronger community testing ef-
fort, perhaps under HPSF, is still needed.

The inclusion of AI software stacks 
on supercomputers has significantly 
increased the number of components 
of the overall software stack. More 
importantly, AI infrastructure, includ-
ing the software stack, is undergoing 
rapid change. The key contributors are 
investing significant effort to support 
this rapidly evolving environment 
while other organizations are chal-
lenged to keep up. Overall, the rapid 
evolution limits the organizations that 
can stand up and maintain an AI stack, 
which further increases the need for 
community efforts toward testing and 
maintaining the overall software stack.

While E4S was United States cen-
tered, Europe is developing the Eu-
ropean Software Stack (ESS). The Eu-
roHPC JU will work with stakeholders 
to coordinate co-design in the research 
and investigation of hardware and 
software activities and ensure that 
those activities meet user require-
ments and that developed technolo-
gies are deployed. Funding is planned 
for the different building blocks in 
HPC, AI, and quantum computing 
(QC) from innovation to deployment, 
targeting different technical readi-
ness levels as required by the status of 
hardware developments. Europe will 
focus on multiple aspects, such as per-
formance and efficiency, AI-software  
integration, energy consumption, 

workflow managers, and support to 
European processors, among others. 
The future will determine if ESS leads 
to a common stack across the commu-
nity or splinters the community.

As discussed previously, macro- 
heterogeneity is on the horizon; en-
hancements of the software will be 
needed to incorporate the new elements 
into the system as well as to support 
macro-heterogeneity generally. To 
make these accelerators productive, a 
comprehensive software stack will need 
to be developed to enable nonexpert 
application developers. User interfaces, 
libraries, debuggers, validation tools, 
high-level programming models, and 
languages are needed as well as compil-
ers to translate high-level languages to 
be distributed over coarse-grain recon-
figurable architectures or to QC circuits 
and transpilers that adapt already-com-
piled circuits to a dedicated technology.

As the software stack becomes 
more complex and the overall user 
code moves from a single executable 
to a complex set of interconnected ex-
ecutables, we will need an overarching 
workflow infrastructure. Some exam-
ples of workflow management exist to-
day, but those capabilities will need to 
be enhanced to cover the great variety 
of emerging software stacks. They will 
also require many new capabilities, 
such as the control of data movement 

FIGURE 1. Supercomputer power efficiency and cooling over the years. 
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and enhanced authentication, secu-
rity, and monitoring.

The amount of power consumed by 
supercomputers is reaching an inflec-
tion point where the cost of electric-
ity throughout the life of the system 
is approaching its capital cost. New 
software capabilities must be created 
to enable users to understand and 
optimize the tradeoff between per-
formance and energy (for example, to 
allow a user or system administrator 
to reduce performance by 10% to save 
40% on energy). We will also need sup-
port to ramp up and down power more 
smoothly to meet the requirements of 
electricity providers.

OPERATIONS
The U.S. ECP was a multibillion-dollar  
effort, with multiple hundred-million- 
dollar procurements. In addition, the 
cost to operate an exascale supercom-
puter is on the order of 100 million U.S. 
dollars, a significant part of its total 
cost of ownership.

Producing and procuring a capabil-
ity-class supercomputer is a complex 
operation that is not optimal for the 
participants in the procurement: reg-
ulators, users, integrators, and suppli-
ers. Distributed spending with incre-
mental upgrades could be beneficial. 
Similarly, the operating expense costs 
are becoming too high to be financially 
sustainable. New means of producing 
and delivering supercomputers could 
prove beneficial for multiple parties.

Current supercomputers are de-
signed to run applications at an extreme 
scale. While needed for capability-class 
applications, this model has challenges 
for maintenance and partial system 
refreshes. Accelerator road maps are 
also more frequent and shorter than 
the lifetime of supercomputers, which 
makes refreshes more desirable than 
in the past, from both the performance 
and power/cost perspective.

NONFUNCTIONAL 
REQUIREMENTS
Reliability has long been a focus of 
traditional HPC, extending from 

high-level software to ensure that it 
did not have any single points of fail-
ure, down to the silicon, including 
both compute and memory. This fo-
cus was needed as the high-level fault 
tolerance model in applications was 
that if one node failed, the entire ap-
plication failed. Thus, as the machine 
grew in node count, it was imperative 
that reliability was improved. Never-
theless, the mean time between fail-
ure on the largest supercomputers has 
dropped from around a week on emer-
gent petascale systems to a handful of 
hours on emergent exascale systems. 
With each generation, new points of 
hardware and software reliability 
failures emerge due to ever increasing 
hardware complexity and software 
not planning for significant implica-
tions of heterogeneous architecture 
implementations.

Innovations in checkpointing ar-
chitecture in conjunction with im-
proved bandwidth for checkpoints 
have predominantly ameliorated the 
impact that this decreased reliability 
has on system availability. However, 
unless something changes, this trend 
will be unsustainable for the next 
three orders of magnitude of system 
performance improvement. Fewer ap-
plications can productively employ a 
full exaflop of compute than the num-
ber that could employ a full petaflop. 
This potentially implies a different us-
age model for supercomputers in the 
next decade. Each facility’s workload 
will determine whether petascale or 
exascale resources (for example, com-
pute, memory capacity, and memory 
bandwidth) are needed.

AI has only recently been run at 
large scales. Thus, GPUs have not fo-
cused as much on reliability as CPUs 
that were designed for supercomput-
ers. The AI software stack has also 
not had years of focus on reliability 
and ensuring no single point of fail-
ure. Recent data from Meta,19 Alibaba, 
Google,20 and others show the conse-
quences. As AI continues to scale and 
systems become larger with the desire 
to run capability-class applications, 

an increased focus on fault tolerance 
will be needed, both in designing and 
implementing more reliable hardware 
and in changing the application fault 
tolerance model.

AI applications are inherently more 
resilient to failures because of the 
nature of their computation. While 
academic work has explored applica-
tion-level fault tolerance for modsim 
applications, it has not been imple-
mented in practice as most of the work 
could address only specific computa-
tional kernels rather than the resil-
ience of the entire application. In one 
form or another, reliability will need 
more focus moving forward.

SUMMARY AND OUTLOOK
In this article, we presented our pre-
dictions of the future of supercomput-
ing. We first discussed increased use 
and adoption, followed by evolving 
technologies and workloads. We then 
presented the architecture, facilities, 
software stack, operation, and non-
functional requirements. We con-
cluded with some recommendations 
to critical actors in supercomputing.

Figure 2 and Table 1 summarize 
our predictions. Figure 2 describes 
the architecture of future super-
computing, emphasizing the inno-
vations required. Table 1 succinctly 
presents the evolution of HPC over 
decades, from traditional to future 
supercomputing.

Achieving the next level of scale 
will require innovation, just like it did 
to get from petascale to exascale. This 
innovation will likely need to come 
across the whole system, including new 
accelerators, interconnects, system 
software, application and algorithmic 
innovations, and power and cooling. 
Some of the scaling may be possible to 
achieve by leveraging macro-heteroge-
neity, for example, through the use of 
AI-specific, quantum or quantum-in-
spired, or other accelerators in the con-
text of a more traditional GPU-based 
supercomputer.

Supercomputers will also benefit 
from the growth in the bandwidth of 
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interconnects. Photonics could help 
overcome limited processor shoreline 
performance, power, and packaging. 
However, additional investments will 
have to be made to avoid congestion 
at scale and to address both jitter and 
tail latency.

In terms of power and cooling, the 
current limitations will remain and 
will have to be addressed with onsite 
power generation, possibly with SMRs 
and renewable energy sources as 
complements to grid supplies. Cool-
ing will require new techniques, as 
discussed in the “Facilities” section. 
Locating data centers in zones where 
power is cheap and reliable can also 
help. Areas with abundant water and 
favorable climates will assist with 
cooling challenges.

Sustainability is challenging in 
supercomputing due to the extreme 
use of power. Some of the approaches 
of large-scale enterprise data centers 
can be applied (for example, follow-
ing the sun or server consolidation) 

to a limited extent. Sustainability 
awareness can help, as can using 
digital twin techniques to conduct 
what-if-analyses and understand 
where opportunities lie.

The use of AI is inherently tied to 
ethics and is an important topic that 
will need to be addressed given the 
widespread use of AI. AI is effective 
at improving productivity in software 
development. Productivity in devel-
oping supercomputing applications 
is critical but also hard to automate 
using AI due to the performance and 
scale requirements.

RECOMMENDATIONS
We make recommendations to key 
actors in the supercomputing ecosys-
tem: supercomputer centers, develop-
ers, scientists/users, and industry.

Our recommendations for super-
computer centers are as follows:

	› Workloads of the future will 
continue to have demands for 

tightly coupled, highly parallel, 
and noise-free infrastructure at 
scale. Therefore, the growth in 
the needed capabilities of future 
supercomputers will continue, 
and centers should continue to 
plan to procure them.

	› Future supercomputers may be 
supplemented by leveraging 
offload to a public or private 
cloud or large AI infrastruc-
tures for training or services 
that enhance productivity. 
Centers should investigate how 
to incorporate complex work-
flow capabilities that allow this 
interaction as well as intrafacil-
ity and interfacility workflows. 
Infrequent delivery of single 
large supercomputers puts a 
strain on providers, users, and 
maintainers of supercomput-
ers. An alternative incremental 
delivery should be explored 
to ensure smooth delivery 
and secure a more reliable 

FIGURE 2. High-level supercomputing architecture. Highlighted text in yellow represents new features compared to existing  
supercomputers. API: application programming interface; SMRs: small modular reactors; DER: distributed energy resources; CIM: 
computing in memory; OCP: open compute; e2e: end-to-end.
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introduction of new features. 
It also puts HPC at a disad-
vantage from a performance 
standpoint. GPU performance 
is still scaling rapidly, and AI is 
forcing an acceleration in hard-
ware innovation from compute 
to networks.

Our recommendations for develop-
ers and the open source community 
are as follows:

	› Most of the system software 
running on supercomputers is be-
coming open source. The commu-
nity should become more strategic 

about planning and delivering new 
features and secure approaches 
and infrastructures to be able to 
develop and test solutions at scale.

	› To allow the broadest productive 
use of software, instilling good 
software engineering practices 
into community code will be 

TABLE 1. Comparing approaches to building and consuming leadership supercomputing systems.

Comparison 
criteria

Supercomputer eras

Traditional HPC 
supercomputer 
(1990 to 
present)*

Grid21 (2000–
2010)

Cloud22 
(2006 to 
present)

AI cluster 
training

AI cluster-
inference HPC cloud23

Future HPC 
supercomputer

H
ow

 th
e 

sy
st

em
 is

 b
ui

lt

Coupling Very Tight scale-
out

Tight scale-out 
federated

Loose Tight 
(scale-up 
and scale-
out)

Loose + 
scale-up

Loose, scale-
up, medium-
tight

Configurable

Scale <10× exascale Multisite 
(federated?)

Multiregions Collocated Distributed Multiregions >100× Exascale

Reliability Job-based 
restarts

Job-based 
restarts

Cloud like† Job-based 
restarts

Cloud like† Cloud like Job restarts + 
cloud like*

Elasticity No Desired By design Moderate Cloud like Cloud like Generally 
desired, 
essential 
for broader 
workflows

Storage 
System

Parallel FS 
(write intensive)

Grid FS Block, 
object (read 
intensive)

Read-
training 
data write-
ckpt (file, 
object)

Read 
intensive 
(mostly 
objects)

Block, 
object (read 
intensive)

Mixture

Co
ns

um
pt

io
n 

m
od

el

Business 
Adoption

Governments Governments/
industry

Consumer/
enterprise

Model 
builders, 
sovereign 
AI

Service 
providers, 
enterprise

Government/
industry/
provider

Converged AI + 
HPC users 

Networking‡ No (@ 
Periphery§)

Yes Inherent Yes Yes Yes Yes

Multitenancy Minimal Yes Inherent Moderate 
(job based)

Yes Inherent Yes

Virtualization No (well, some 
containers)

Some Built-in VMs Containers 
+ K8s

Containers 
+ K8s

Built-in VMs, 
containers

Yes

Optimized for Mod/sim HPC (data-
intensive) HPC

Content 
serving, 
horizontal 
scale

Training 
and tuning 
large AI 
models

Models 
at scale, 
agents, 
workflows

Loosely 
coupled HPC, 
AI

HPC, AI

VMs: virtual machines. 
*While the first supercomputer was delivered in 1964, we started counting from 1990 when the first modern scale-out computer was delivered.
†Cloud-like reliability: 1) stateless/fungible VMs; 2) reliable persistence layer (S3, etc.); 3) restartable service requests; and 4) eventual consistency for distributed tasks.
‡�Most HPC and AI training is dominantly East-West, while cloud and AI serving are dominantly North-South (N-S). The difference with AI is that it is N-S + scale-up 
(multi-GPU networks), while the traditional cloud is largely N-S.

§Supercomputers are connected to the outside—but only at the periphery of the system, with a different network.
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beneficial (for example, the work 
E4S did made its components 
more accessible to a wider com-
munity). HPSF is a good step in 
this direction.

	› As AI is becoming more prev-
alent in almost every aspect 
of programming, the models 
should be treated the same way 
as open software. The data that 
were used for training should 
be made available and docu-
mented. While enhancement 
based on private data will be 
necessary for some use cases, the 
data on which open models are 
based must also be open.

	› In general, but especially for sci-
ence applications, focus on the 
explainability of AI methods.

	› Open hardware is becoming 
an alternative that needs to 
be carefully evaluated and 
considered in supercomput-
ing solutions. Open firmware 
is also an interesting direc-
tion to enhance security and 
maintainability.

	› Work on leveraging low-pre-
cision hardware to emulate or 
perform high-precision calcula-
tions is essential. Ultimately, sci-
entific applications need a more 
rigorous error-based approach to 
numerical precision.

Our recommendations for scien-
tists and users of supercomputers are 
as follows:

	› Adjust to using cloud infrastruc-
ture and AI programming mod-
els combined with the existing 
traditional HPC algorithms.

	› Continue to be innovative in 
terms of continuously increased 
scale and alternative program-
ming models offered by new 
hardware (for example, AI accel-
erators and quantum).

	› Invent new algorithms and 
applications to leverage the new 
AI and future computing and 
memory technology.

Our recommendations for industry, 
integrators, and system vendors are 
as follows:

	› Ensure sufficient interoperabil-
ity across the components and 
interconnects to enable reusabil-
ity across supercomputers.

	› Provide sufficient documentation 
and interfaces for using hardware 
and core system software.

	› Support interfaces and soft-
ware for the maintenance and 
management of supercomputers 
at scale.

	› Provide the capability to com-
bine AI capability productively 
into existing applications.

The need for supercomputing 
continues to grow. In addition 
to the needs of traditional scien-

tific computing, AI's needs are driving 
the evolution of computing hardware 
and software. The authors lay out sev-
eral challenges and opportunities for 
the next decade for computing facili-
ties; developers, scientists and users; 
and industry. 
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