
Distributed Multigrid Neural Solvers on Megavoxel Domains
Aditya Balu

∗

Iowa State University

Ames, Iowa, USA

Sergio Botelho
∗

Rocket ML Inc.

Portland, Oregon, USA

Biswajit Khara
∗

Iowa State University

Ames, Iowa, USA

Vinay Rao

Rocket ML Inc.

Portland, Oregon, USA

Soumik Sarkar

Iowa State University

Ames, Iowa, USA

Chinmay Hegde

New York University

New York City, New York, USA

Adarsh Krishnamurthy

Iowa State University

Ames, Iowa, USA

Santi Adavani

Rocket ML Inc.

Portland, Oregon, USA

Baskar

Ganapathysubramanian

Iowa State University

Ames, Iowa, USA

Multigrid coefficient field Multigrid solution field

Level 3

Level 2

Level 1

MGDiffNet

Figure 1:We demonstrate a distributed multigrid strategy to train a neural solver that maps a coefficient field with solution field for a given

parametric PDE. Coefficient fields at different multigrid resolutions are input to the same underlying network architecture at different stages of

training to train the architecture at the highest resolution.

Abstract

We consider the distributed training of large scale neural networks

that serve as PDE (partial differential equation) solvers producing

full field outputs. We specifically consider neural solvers for the

generalized 3D Poisson equation over megavoxel domains. A scal-

able framework is presented that integrates two distinct advances.

First, we accelerate training a large model via a method analogous

to the multigrid technique used in numerical linear algebra. Here,

the network is trained using a hierarchy of increasing resolution

inputs in sequence, analogous to the ‘V’, ‘W’, ‘F’ and ‘Half-V’ cycles

used in multigrid approaches. In conjunction with the multi-grid

∗
Authors contributed equally to the paper

SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8442-1/21/11.
https://doi.org/10.1145/3458817.3476218

approach, we implement a distributed deep learning framework

which significantly reduces the time to solve. We show scalability of

this approach on both GPU (Azure VMs on Cloud) and CPU clusters

(PSC Bridges2). This approach is deployed to train a generalized 3D

Poisson solver that scales well to predict output full field solutions

up to the resolution of 512×512×512 for a high dimensional family

of inputs. This strategy opens up the possibility of fast and scalable

training of neural PDE solvers on heterogeneous clusters.

Keywords

Physics aware neural networks, Distributed training, Multigrid,

Neural PDE solvers

ACM Reference Format:

Aditya Balu, Sergio Botelho, Biswajit Khara, Vinay Rao, Soumik Sarkar,

Chinmay Hegde, Adarsh Krishnamurthy, Santi Adavani, and Baskar Ganap-

athysubramanian. 2021. Distributed Multigrid Neural Solvers on Megavoxel

Domains. In The International Conference for High Performance Comput-

ing, Networking, Storage and Analysis (SC ’21), November 14–19, 2021, St.

Louis, MO, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.

1145/3458817.3476218

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3458817.3476218
https://doi.org/10.1145/3458817.3476218
https://doi.org/10.1145/3458817.3476218
https://creativecommons.org/licenses/by/4.0/

SC ’21, November 14–19, 2021, St. Louis, MO, USA Balu, et al.

1 Introduction

In recent years, several data-driven [42, 46] and data-free [15, 19,

22, 34, 36, 39, 43, 45, 49] approaches for solving partial differential

equations (PDEs) have been proposed. The backbone of these ap-

proaches is the use of (deep) neural networks, which have proven

to be capable of learning complex non-linear relationships between

the inputs and the outputs. For a subset of these neural PDE solver

approaches, the intent is to obtain field predictions, which can

then be used to fill in a sparse amount of observable data [6, 38]

or optimize the input parameters for inverse design [9, 30]. The

motivation behind training such networks is to have a fast surro-

gate model that can quickly provide full-field solutions at a much

lower cost than traditional numerical simulators. This approach

is especially useful in computational design optimization, where

hundreds (or thousands) of simulations are necessary to obtain an

optimal design, making it computationally expensive or impractical

to use traditional scientific simulators. While reduced-order mod-

eling approaches exist for performing such design optimization,

they do not necessarily capture the complete complex relationship

of the underlying physics. Specifically, for design optimization at

very high resolutions, reduced-order modeling may not capture the

fine-scale features driving the design figure of merits (for instance,

initiation of combustion instabilities).

A canonical application that motivates this work is (real-time)

field reconstruction from sparse measurements. For instance, a

neural PDE solver that produces high-resolution outputs of con-

taminant spread under diverse release scenarios can be used to

assimilate sparse measurements of contaminants from sensors, and

evaluate containment and evacuation strategies in real-time as well

as identify the sources of the contaminant [13]. Here, both the

speed of prediction and the spatio-temporal resolution are critical.

While well-trained neural PDE solvers are ideal for this application,

(offline) training of such high-resolution solvers is computationally

expensive. This is the motivation for the current work, where we

explore the idea of using neural PDE solvers to obtain the field

solutions for parametric PDEs at a very high spatial resolution.

More generally, the multigrid strategy affords an elegant and cost-

effective approach to network architecture search (NAS) [12] since

the cost of each network training is significantly reduced (see Re-
mark 1).

A large fraction of neural solvers are designed for pointwise

prediction, i.e., the networks in these cases take as input a vector

𝑥 of locations in the spatial domain 𝐷 , and produces an output

2
8

2
10

2
12

2
14

2
16

2
18

0

100

200

8.76 8.97 11.3 20.36
62.86

237.8

Degrees of freedom

E
p
o
c
h
t
i
m
e
(
s
)

Figure 2: Time taken per epoch for performing training at different

resolutions of the 2D solution field using same network architecture.

vector 𝑢, by calculating the value of 𝑢 at each point. They exploit

the ideas of automatic differentiation [37] to solve the PDE by

minimizing the residual over a set of sampled points 𝑥 . Due to

this implicit representation, these methods do not require a mesh

and rely on collocating points from the domain randomly. Apart

from minimizing the volumetric residual, these approaches also

satisfy the prescribed boundary conditions. Some of these methods

satisfy/apply the boundary conditions exactly [25, 28, 32], while

others do that in an approximate (weak) sense [26, 39, 45]. While

the state-of-the-art methods mentioned here show great promise in

mapping the complex non-linear relationship between the domain

and the field values representing the physics, these methods have

the following limitations:

(1) Non-intuitive weights and hyper-parameters: The meth-

ods that approximately satisfy the boundary conditions do so

by adding a loss function with respect to the specified boundary

conditions. However, the losses have to be carefully weighed,

making this a non-trivial exercise in hyper parameter tun-

ing [47]. While recent work like Variational PINN [22], neurod-

iffeq [7] alleviate this issue (by the exact imposition of boundary

conditions, instead of another loss), these are not yet fully de-

veloped for arbitrary boundary conditions.

(2) Single instance solution:Most of the approaches above use

an implicit representation of the domain where the input are the

points 𝑥 for performing the prediction. Although the implicit

representation has several advantages, such as its capability to

predict the fields for any arbitrary resolution of points, there

are disadvantages, such as the inability to provide topological

information about the geometry. Topological information is

essential for developing a robust solver that can handle chang-

ing the input geometry or the input parameters. Therefore, the

above methods suffer from the limitation of their applicability

to a single instance of the PDE and do not solve a family of

parametric PDE instances. Recent works such as SimNet [16]

attempt to capture a small domain of parametric cases instead

of the complete field representation of the parametric PDE.

(3) Scalability:Most of these approaches (although fundamentally

scalable) have not been well explored in applications to 3D

spatial domains due to computational costs involved in training

such deep learning models. With the increase in dimensionality,

there is an increase in the number of collocation points sampled

(the spatial resolution). Further, enforcing boundary conditions

ismuchmore challenging (inweak enforcement of the boundary

condition). Apart from these technical issues, computational

issues such as the computational cost involved in training these

networks are also challenging.

A limited number of efforts address these issues. For example,

Liao and Ming [29] resolve application of essential boundary con-

ditions by using Nitsche’s variational formulation. Khoo et al. [23]

extend efforts for solving parametric PDEs. In additiona to these

mathematical developments, recent work such as Botelho et al. [3],

and Yang et al. [50] enable the scalable training of models used for

solving PDEs. Specifically, Yang et al. [50] demonstrates the scala-

bility of the framework to 27,500 GPUs. However, the application of

these methods in 3-dimensional spatial domains is computationally

Distributed Multigrid Neural Solvers on Megavoxel Domains SC ’21, November 14–19, 2021, St. Louis, MO, USA

expensive. As the spatial domain increases, traditional PINN (and its

variants) need a vast number of collocation points. Similarly, in the

parametric setting, using a convolutional neural network [3, 23], the

voxel resolution creates computational and memory requirement

challenges. For example, in Figure 2 we see that the computational

time per epoch increases quadratically with the increase in the res-

olution of the spatial domain. These challenges persist, especially

for training neural PDE solvers at scale.

Data-parallel distributed deep-learning strategies are often used

to overcomememory limitations, wheremultiple replicas of a model

are simultaneously trained to optimize a single objective function.

Typically, universities and government research labs either use

on-premise HPC clusters or supercomputers such as the Summit,

Bridges2, Frontera, and Stampede2. In this paper, we use a dis-

tributed deep learning strategy for performing our training on the

Bridges2 cluster running on CPU nodes. However, most of these

systems have very few GPU nodes (except for Summit, having

27,360 GPUs). Therefore, we use the Microsoft Azure on-demand

HPC virtual machines for performing our distributed experiments

on the GPU. This is especially topical, given recent efforts by fed-

eral agencies (like the US NSF) for providing cloud access via the

CloudBank service.

In addition to using distributed deep learning, we also propose

a new training scheme inspired by the multigrid approaches to

solving PDEs. The key idea is to use a variational formulation of

the loss function to train the neural network at different resolutions

or levels (similar to different levels in the multigrid approach). This

approach is particularly useful because the training in the lower

resolutions is much faster (see Figure 2) than the training time at

higher spatial resolutions. We explore strategies for efficient and

scalable training of neural PDE solvers based on this approach.

Remark 1: While our PDE application motivates these devel-

opments, the distributed multigrid approach can be used to train

any fully convolutional neural network that maps input fields to

output fields that are resolution agnostic. This encompasses diverse

applications, including semantic segmentation and image-to-image

translation prevalent in computer vision.

The main contributions of this paper are:

(1) A variational loss function to solve PDEs (similar to previously

proposed ideas [22, 29, 45]) but with the exact application of

boundary conditions.

(2) A multigrid-inspired training scheme for training the networks

at higher resolutions. We explore several multigrid training

schemes and perform a detailed comparison with the direct

training of the neural network at high resolutions.

(3) Cluster-agnostic data parallel distributed deep learning library

to train CNNs. We illustrate versatility using on-prem and cloud

based CPU and GPU HPC clusters.

(4) Demonstrated scaling of the approach to very high resolutions

(up to 512 × 512 × 512 voxel resolution) in 3D using CPU (on

PSC Bridges2) and GPU (on Azure VMs) clusters.

The rest of the paper is arranged as follows: we first explain the

mathematical preliminaries in Section 2; we explain the algorithmic

contributions of our work in Section 3; we present the scaling and

timing results in Section 4; and finally, we conclude and provide a

few remarks on possible future work. Some of the notations and

abbreviations are summarized in Table 1.

Table 1: Notations used in paper.

𝑃𝐷𝐸 partial differential equation

𝐹𝐸𝑀 finite element method

𝑁𝑁 neural network

𝑀𝐺 multigrid

𝐺𝑀𝐺 geometric multigrid

𝑆𝐺𝐷 stochastic gradient descent

𝑝 number of MPI tasks in the MPI communicator

𝑁 elements along a dimension in an FEM discretization

𝑁𝑠 number of samples used in a neural optimization

𝑁𝑏 number of minibatches in the optimization process

𝑏𝑠 batch-size for SGD based optimization

𝑁𝑤 number of neural network model parameters

𝐺𝑛𝑛 the neural network as a function

2 Mathematical preliminaries

2.1 Convolutional Neural Networks (CNNs)

A deep neural network consists of several layers of connections

forming one network, which takes an input 𝛾𝑖𝑛 and produces an

output 𝛾𝑜𝑢𝑡 . Each connecting layer (𝑙𝑖) in the network can be repre-

sented as𝛾𝑙𝑖+1 = 𝜎 (𝑊𝑙𝑖 ·𝛾𝑙𝑖 +𝑏𝑙𝑖), where𝜎 (...) represents a non-linear
activation function,𝑊𝑙𝑖 and 𝑏𝑙𝑖 are the weights and biases in the

connection. A convolution connection (compared to a dense connec-

tion) provides a more efficient and compact connection especially

for images and fields. The convolution operation (⊗) between a 3𝐷

input representation 𝛾 and a corresponding 3𝐷 weight,𝑊 is given

by

𝑊 [𝑚,𝑛, 𝑝] ⊗ 𝛾 [𝑚,𝑛, 𝑝] =
𝑖=ℎ∑
𝑖=−ℎ

𝑗=𝑙∑
𝑗=−𝑙

𝑘=𝑞∑
𝑘=−𝑞

𝑊 [𝑖, 𝑗, 𝑘] · 𝛾 [𝑚 − 𝑖, 𝑛 − 𝑗, 𝑝 − 𝑘] (1)

A series of convolutional connections, non-linear activations,

and pooling forms a CNN. CNNs are more prevalent in deep learn-

ing due to their efficacy in capturing the topological information

in datasets such as images, videos, voxels, etc. Several recent pa-

pers have utilized such neural networks for producing field predic-

tions [35, 40, 51, 52]. In the next section, we provide details of the

network used in this paper. Now, we shall cover some preliminaries

for solving PDEs using neural networks.

2.2 DiffNet: Solving PDEs using CNNs

Consider a bounded open (spatial) domain 𝐷 ∈ R𝑛, 𝑛 ≥ 2 with a

Lipschitz continuous boundary Γ = 𝜕𝐷 . We will denote the domain

variable as 𝑥 , where the underbar denotes a vector or tuple of real

numbers. In R𝑛 , we have 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛); but for 2D and 3D

domains, we will use the more common notation 𝑥 = (𝑥,𝑦) and
𝑥 = (𝑥,𝑦, 𝑧) respectively. On this domain𝐷 , we consider an abstract

PDE on the function 𝑢 : 𝐷 → R as:

N[𝑢; 𝑠 (𝑥, 𝜔)] = 𝑓 (𝑥), 𝑥 ∈ 𝐷 (2a)

B(𝑢, 𝑥) = 𝑔(𝑥), 𝑥 ∈ Γ (2b)

where N is a differential operator (possibly nonlinear) operating

on a function 𝑢. The differential equation also depends on the data

of the problem 𝑠 which in turn is a function of the domain variable

SC ’21, November 14–19, 2021, St. Louis, MO, USA Balu, et al.

𝑥 and parameter 𝜔 . Thus N is essentially a family of PDE’s param-

eterized by 𝜔 . B is a boundary operator acting on 𝑢. In general,

there can be multiple boundary operators for different parts of the

boundary Γ.
Given such a PDE along with appropriate boundary conditions,

the goal is to find a solution 𝑢 that satisfies Equation 2 as accurately

as possible. Previous works [25, 39, 45] seek to find this exact map-

ping 𝑢 : 𝐷 → R. But as we present in the next section, we do not

have to restrict ourselves to this mapping, and in fact, with the help

of deep neural networks coupled with numerical methods, we can

find other mappings to retrieve a discrete solution.

In this work, without any loss of generality, we focus on the

Poisson equation with both Dirichlet and Neumann conditions

applied on the boundaries.

2.2.1 Poisson Equation: Consider the equation:

−∇ · (𝜈 (𝑥)∇𝑢) = 𝑓 (𝑥) in 𝐷 (3)

along with the boundary conditions

𝑢 = 𝑔 on Γ𝐷 (4)

𝜕𝑢

𝜕𝑛
= ℎ on Γ𝑁 (5)

where 𝜈 is the permeability (or diffusivity), 𝑓 is the forcing; Γ𝐷 and

Γ𝑁 are the boundaries of the domain 𝐷 where Dirichlet and Neu-

mann conditions are specified respectively. We will assume that

𝜕𝐷 = Γ = Γ𝐷 ∪ Γ𝑁 . We are mostly interested in a steady-state mass

(or heat) transfer through an inhomogeneous medium (material),

which means that the material has different properties at differ-

ent points. The only material property appearing in the Poisson’s

equation (3) is 𝜈 (𝑥), thus the inhomogeneity can be modeled by a

spatially varying 𝜈 , i.e., 𝜈 = 𝜈 (𝑥).
Without loss of generality, we consider the following equation:

−∇ · (𝜈 (𝑥)∇𝑢) = 0 in 𝐷 (6)

with the boundary conditions

𝑢 (0, 𝑦) = 1 (7)

𝑢 (1, 𝑦) = 0 (8)

𝜕𝑢

𝜕𝑛
= 0 on other boundaries (9)

where 𝐷 is a hypercube domain in R𝑛 , 𝑛 = 2, 3. Here the diffusivity

𝜈 is parametric, and is represented by the following log perme-

ability expression, typically used in geological simulations and in

uncertainty quantification:

𝜈 (𝑥 ;𝜔) = exp

(
𝑚∑
𝑖=1

𝜔𝑖𝜆𝑖𝜉𝑖 (𝑥)𝜂𝑖 (𝑦)
)

(10)

where 𝜔𝑖 is an𝑚-dimensional parameter, 𝜆 is a vector of real num-

bers with monotonically decreasing values in order; and 𝜉 and 𝜂

are functions of 𝑥 and 𝑦 respectively. We take𝑚 = 4, 𝜔 = [−3, 3]4
and 𝜆𝑖 =

1

(1+0.25𝑎2
𝑖
) , where 𝑎 = (1.72, 4.05, 6.85, 9.82). Also 𝜉𝑖 (𝑥) =

𝑎𝑖
2
cos(𝑎𝑖𝑥) + sin(𝑎𝑖𝑥) and 𝜂 (𝑦) = 𝑎𝑖

2
cos(𝑎𝑖𝑦) + sin(𝑎𝑖𝑦).

2.3 Geometric Multigrid approach

The geometric multigrid (GMG) is a powerful tool used for scalable

numerical linear algebra. The GMG approach defines a hierarchy

of meshes and sequentially projects and solves the PDE on these

meshes. The advantage of GMG lies in accessing the different re-

gions of the error spectrum of a numerical operator by projecting

the error on meshes of varying refinement. This is a powerful con-

cept that can be naturally extended to training CNNs. We provide

a brief outline of the major ideas of multigrid approaches below.

Detailed discussions can be found in texts such as [4, 5, 14].

Suppose we want to solve the Poisson equation on a [0, 1]2 do-
main using 𝑁 × 𝑁 “finite elements”. This 𝑁 × 𝑁 grid marks the

“finest” grid, which is referred to as the “Level-1” (see Figure 3).

Such discrete grids are capable of representing only a finite num-

ber of Fourier modes. When classical iterative methods such as

under-relaxed Jacobi iteration are used on the linear system at this

level, the errors corresponding to the high frequencies (≥ 𝑁/2) are
reduced within a few iterations, but the errors corresponding to

the low frequencies (< 𝑁/2) take several iterations to reduce, thus

rendering the solve extremely slow. But this issue can be overcome

simply by performing subsequent iterations on increasingly coarser

grids, e.g., a grid having (𝑁/2 × 𝑁/2) elements (i.e., “Level-2”). The

maximum frequency at this level is now ≈ 𝑁/2, and thus the errors

in the frequencies above 𝑁/4 are reduced faster at this level. We can

continue this coarsening process by going to deeper levels until

a satisfactory accuracy at the lowest Fourier (frequency) mode is

achieved. In Figure 3, the coarsest level shown is “Level-4”. The

coarsening of the grid and projection of the solution to the coarse

grid is called “restriction”. In a geometric multigrid method, often,

the coarse grid is simply a coarser subset of the preceding grid.

Once a solution is obtained at the deepest level, it is then propa-

gated upwards through the finer levels. Interpolating the solution

from a coarser level to a finer level is called “prolongation”. After

prolongation, a few more iterations might be needed to smooth out

some additional errors introduced during prolongation, known as

“post-smoothing”. The same process is followed to go back to the

finest level (Level-1). This whole idea of solving the same problem

on multiple grids to strategically target all the Fourier modes of the

error is the essence of the multigrid approach.

One major aspect of GMG is the choice of different grid hier-

archies (or GMG cycles). Figure 3 illustrates some common grid

hierarchies in the multigrid approach. It is important to note that

solving the system on progressively coarser grids becomes progres-

sively cheaper. In a V-cycle hierarchy, restriction and smoothing

are performed until the coarsest grid, and then the prolongation

and correction are performed until one reaches the starting mesh

resolution. In a W-cycle (second from left in Figure 3) restriction

Level 1

Level 2

Level 3

Level 4

V Cycle W Cycle F Cycle Half-V Cycle

Figure 3: Different multigrid strategies.

Distributed Multigrid Neural Solvers on Megavoxel Domains SC ’21, November 14–19, 2021, St. Louis, MO, USA

and smoothing is performed to the coarsest cycle. However, in-

stead of performing prolongation and correction to the initial mesh

resolution, prolongation and correction are used alternatively to

minimize the low-frequency errors and improve stability. It is im-

portant to note that this does not compromise efficiency as these

alternate operations are done on really cheap coarse meshes. Sub-

sequently, correction and prolongation are performed fully to the

initial mesh resolution, just like in the V-cycle. The extra expense

of the W-cycle compared to the V-cycle is progressively lower for

increasing spatial dimensions [14]. The F-cycle falls somewhere

between V-cycle and W-cycle in terms of expense. It starts with the

restriction to the coarsest grid like the V-cycle. After reaching each

level the first time, a restriction to the coarsest grid is performed

in the prolongation process. In addition to the classical MG cycles

discussed above, we also consider the “half-V-cycle”, which is not

very common in numerical analysis literature, but turns out to be

a very natural method in the case of MGDiffNet (our proposed

approach). It can be classified as a special case of the V-cycle, in

which no smoothing is done before the coarsest grid layer. This is

discussed in more detail in Section 3.1.2.

Several works have been performed in the context of multi-

grid approaches to deep learning [8, 21, 48] and deep learning

approaches to improve multigrid operations [17, 20, 31, 33]. Here,

we leverage the multigrid hierarchy and try to establish a mapping

between the domain and the solution using a CNN on every grid

layer. However, careful scaling and timing analysis is required to

determine the best strategy, which we perform in Section 4.

3 Algorithmic Developments

3.1 Multigrid Approaches

We seek a mapping between the input 𝑠 and the full field solution

𝑢 in the discrete spaces. 𝑆𝑑 denotes the discrete representation of

the known quantity 𝑠 . 𝑆𝑑 could be either available only at discrete

points (perhaps from some experimental data). In many cases, 𝑠 is in

a functional form, and thus 𝑆𝑑 will be the values of 𝑠 evaluated at the

discrete points. Therefore, if we denote a MGDiffNet network by

𝐺𝑛𝑛 , then𝐺𝑛𝑛 takes as input a discrete or functional representation

of 𝑠 and predicts a discrete solution field𝑈𝑑
𝜃
, where 𝜃 denotes the

network parameters. For example, if we consider a PDE defined on

a 2D bounded domain,𝐺𝑛𝑛 takes a 2D matrix containing the values

of 𝑠 and predicts the solution field𝑈𝑑
𝜃
which is also a 2D matrix (as

illustrated in Fig. 1). The weights of the network𝐺𝑛𝑛 are initialized

randomly in the beginning, and using optimization schemes, we

obtain the network parameters 𝜃 , which maps the input coefficients

field 𝑠 to solution field𝑢. The first step is designing the loss function

based on the finite element method (FEM).

3.1.1 FEM Loss: The FEM loss involves the weakening of the

PDE using an appropriate weighting functions. Let the set 𝑋 =

(𝑥
1
, 𝑥

2
, .., 𝑥𝑁) ∈ R𝑛×𝑁 denote a collection of points in R𝑛 that pro-

duces a (uniform) discretization of D with a set of non-overlapping

elements denoted by 𝑄𝑖 , 𝑖 = 1, 2, . . . , 𝑛𝑒𝑙 such that ∪𝑛𝑒𝑙
𝑖

𝑄𝑖 = 𝐷 . we

define 𝑆𝑖 = 𝑠 (𝑥𝑖) and𝑈𝑖 an approximation of the unknown 𝑢 (𝑥𝑖).

The unknown solution can be approximated as:

𝑢ℎ
𝜃
=

𝑁∑
𝑖=1

𝜙𝑖 (𝑥) (𝑈𝑖)𝜃 (11)

where 𝜙𝑖 are the finite element basis functions.

This approximation is plugged into the PDE, after which we

invoke Galerkin’s method.Wemultiply the PDEwith a test function

and reduce the differentiability requirement on𝑢ℎ using integration

by parts:
1 ∫

Ω
𝑣

[
N(𝑢ℎ

𝜃
; 𝑠) − 𝑓

]
𝑑𝑥 = 0 ∀𝑣 ∈ 𝑉 , (12)

which results in this following (standard FEM) form

𝐵(𝑣,𝑢ℎ
𝜃
) − 𝐿(𝑣) = 0 ∀𝑣 ∈ 𝑉 , (13)

where 𝐵(𝑣,𝑢ℎ
𝜃
) is the bilinear form that encodes the PDE, while 𝐿(𝑣)

is the linear form that encodes the load and the boundary conditions.

By choosing the test function to be the (unknown) solution, 𝑢ℎ
𝜃
, we

get an energy functional whose minima is the solution:

𝐽 (𝑢ℎ
𝜃
) = 1

2

𝐵(𝑢ℎ
𝜃
, 𝑢ℎ

𝜃
) − 𝐿(𝑢ℎ

𝜃
) . (14)

This energy functional accounts for the PDE as well as all Neumann

(and Robin) boundary conditions. This energy functional also serves

as our loss function.

3.1.2 Multigrid Training of MGDiffNet: We first define the neural

network, 𝐺𝑛𝑛 , to be a fully convolutional neural network with the

following properties:

(1) The connections between each layer only use convolution

(and/or transpose convolution) operations;

(2) The downsampling (performed using max-pooling or con-

volution with stride > 1) is always a factor of two;

(3) Appropriate padding is performed to ward off fence effects.

Constructing such a fully convolutional network is not difficult.

A standard fully convolutional neural network, called U-Net [10, 41],

satisfies all the requirements mentioned above. The primary use

of such a fully convolutional neural network is that the network

architecture remains the same for different input resolutions. Recall

that the filter weights𝑊 for a convolution operation is not depen-

dent on the input resolution (𝑁 in each dimension) and the same

filter weights can be used to extract local information from any

resolution. This means that for learning a smooth solution field,

we can perform training of 𝐺𝑛𝑛 at different resolutions where the

network’s parameters learn the mapping between the solution field

𝑢 and the coefficients field 𝑠2.

The core idea behind different multigrid strategies is the transfer

learning between two grid resolutions. Due to the fully convolu-

tional nature of the neural network, once 𝐺𝑛𝑛 is trained at one

resolution, the forward pass of the coefficients through the network

itself becomes an excellent starting point for performing interpo-

lation (prolongation) and solving the PDE at a higher resolution.

1
For completeness, we assume 𝑢ℎ

𝜃
∈ 𝑉 ⊂ 𝐻 1 (𝐷) where 𝐻 1 (𝐷) denotes the Hilbert

space of functions on 𝐷 that have square-integrable first derivatives.

2
Interestingly, while writing this paper, we came across work that hypothesized deep

mathematical connections between numerical methods and neural nets [1], with a

specific call out to a link between multigrid approaches with U-Net architectures. Our

work anecdotally validates these assertions.

SC ’21, November 14–19, 2021, St. Louis, MO, USA Balu, et al.

𝐿𝑐
2 𝐿𝑐

2𝐺𝑛𝑛
𝛾𝑑𝑝
epochs

.

.

.

𝑁

4

2 𝑁

4

2

𝐺𝑛𝑛
𝜇3

epochs

𝑁

2

2 𝑁

2

2

𝐺𝑛𝑛
𝜇2

epochs

𝑁2 𝑁2𝐺𝑛𝑛
𝜇1

epochs

.

.

.

𝑁2 𝑁2𝐺𝑛𝑛
𝛾1

epochs

𝑁

2

2 𝑁

2

2

𝐺𝑛𝑛
𝛾2

epochs

𝑁

4

2 𝑁

4

2

𝐺𝑛𝑛
𝛾3

epochs
Depth 𝑑𝑝 = log2

𝑁

𝐿𝑐

Figure 4: Schematic diagram of a typical V-cycle in MGDiffNet for a 𝑁 × 𝑁 2D problem. 𝐿𝑐 is the grid size in one dimension at the coarsest

level. Here we assume that the ratio
𝑁
𝐿𝑐

is a perfect power of 2 and thus the level-depth 𝑑𝑝 = log
2

(
𝑁
𝐿𝑐

)
is an integer.

Algorithm 1 Underlying training algorithm for MGDiffNet at

each MG-level

1: procedure training(𝐺𝑛𝑛 , 𝑆
𝑑
, 𝛼 , tol)

2: for epoch← 1 to max_epoch do

3: for mb← 1 to max_mini_batches do

4: Sample 𝑆𝑑
𝑚𝑏

from the set

5: (𝑈𝑑
𝜃
)𝑖𝑛𝑡,𝑚𝑏 ← 𝐺𝑛𝑛 (𝑆𝑑𝑚𝑏

)
6: ⊲ “int” stands for interior nodes

7: (𝑈𝑑
𝜃
)𝑚𝑏 ← (𝑈𝑑

𝜃
)𝑖𝑛𝑡,𝑚𝑏 𝜒𝑖𝑛𝑡 + (𝑈𝑑

𝜃
)𝑏𝑐 𝜒𝑏

8: 𝑙𝑜𝑠𝑠𝑚𝑏 = 𝐿(𝑈𝑑
𝜃
)

9: 𝜃 ← 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 (𝜃, 𝛼,∇𝜃 (𝑙𝑜𝑠𝑠𝑚𝑏)) ⊲ 𝐺𝑛𝑛 is updated

10: end for

11: end for

12: Return 𝐺𝑛𝑛

13: end procedure

Algorithm 2 MGDiffNet algorithm for a V-cycle

Require: Finest Grid size 𝑁 , Coarsest grid size Lc, Set of optimiza-

tion inputs at each level = opt

1: procedure MG(N, Lc, opt, 𝐺𝑛𝑛) ⊲ N=grid size

2: Create samples 𝑆𝑑 for size 𝑁

3: Unpack 𝛼 and tol from opt for this level

4: 𝐺𝑛𝑛 ← training(𝐺𝑛𝑛 , 𝑆
𝑑
, 𝛼 , opt) ⊲ “smoothing” at this

level using Algorithm 1

5: if N/2 < Lc then

6: Return 𝐺𝑛𝑛

7: else

8: 𝐺𝑛𝑛 ←MG(N/2, Lc, opt, 𝐺𝑛𝑛)

9: end if

10: 𝐺𝑛𝑛 ← training(𝐺𝑛𝑛 , 𝑆
𝑑
, 𝛼 , opt) ⊲ “post-smoothing” at

this level using Algorithm 1

11: Return 𝐺𝑛𝑛

12: end procedure

We now train the network until convergence (defined by the early

stopping criteria) to proceed to higher resolutions. In the context

of deep learning, these cycles help the network become robust to

different resolutions and can learn the unique mapping at all the

resolutions. Here, we note that this is only true when the network

learning capacity is infinite. Different filters of the convolution

operation learn neighborhood information at different scales of the

multigrid, thus solving the PDE faster.

Different multigrid cycles can be performed using MGDiffNet:

• V-cycle: The simplest strategy is the V-cycle (see Figure 3). We

first run training of 𝐺𝑛𝑛 at the coarsest level (with resolution

𝑁 × 𝑁) for 𝛾1 epochs. Then, we change the input-output grid for

the same problem to 𝑁/2 × 𝑁/2 keeping the weights and biases

learnt from Level-1. Now, we perform training on this problem

for 𝛾2 epochs (usually 𝛾2 > 𝛾1). We continue this process till the

deepest level (coarsest grid). Now,we go back to the previous level

and let training run for a few epochs to fine-tune. The complete

training algorithm is shown in Algorithm 2 and Figure 4.

• W,F-cycles: The W and F-cycles are performed in a similar man-

ner as the V-cycle, except that the sequence of grids is different

(see Figure 3).

• Half-V cycle: The “half-V cycle”, an additional method available

in MGDiffNet, is not common in the numerical analysis litera-

ture. Here, we actually start from a coarse grid (instead of a fine

grid). Now this coarse scale model can serve as an starting point

for higher resolution grids, thus obviating the need to start from

scratch for a higher resolution problem and consequently saving

time and resources. We show examples of this in Section 4.

In this study, we only consider one ‘cycle’ of multigrid. While it

is certainly possible to extend this for several ‘cycles’ of multigrid

and with more variations on which cycle to apply at which stage

of the training, we restrict ourselves to just one cycle where each

step of the cycle involves longer training time for several epochs.

This avoids the problem of moving target (often quoted in rela-

tionship with reinforcement learning) where the distribution (or

the frequencies of information) of data learned keeps changing,

not allowing the network to be properly trained. Further, while

the study can be performed at any arbitrary number of multigrid

levels, we restrict ourselves to a maximum of 4 levels. Further, all

the multigrid prolongation steps are until we reach convergence

(defined using an early-stopping criterion). At the same time, all

the restriction steps are trained for a fixed number of epochs (be-

cause convergence is not necessary at the higher resolutions in the

beginning). Now, we will discuss our distributed data-parallel deep

learning implementation.

Distributed Multigrid Neural Solvers on Megavoxel Domains SC ’21, November 14–19, 2021, St. Louis, MO, USA

...

Input diffusivity maps

Mini-batches

...

P1

P2

Pn
Output solution field

...

Figure 5: Data-parallel distributed deep-learning: multiple replicas of the model are asynchronously trained by workers, each processing a local

subset of the global mini-batch.

Figure 6: Data splitting across workers in a parallel run: local mini-

batches are guaranteed to always have identical sizes at any given

time, promoting optimal load balance.

3.2 Distributed Deep Learning

One of the most widely used techniques for performing distributed

deep-learning training is the data parallel strategy, in which identi-

cal copies of the model are simultaneously trained by independent

processes that work together to minimize a common objective func-

tion [2]. For this to be possible, the training data samples (and

their corresponding labels in supervised learning) must be equally

split among the workers. Since stochastic optimization-based train-

ing already entails splitting the data into mini-batches, this means

one has to further split the mini-batches into local mini-batches,

which are then asynchronously processed via forward and back-

propagation steps. Local gradients are computed by each worker

and collectively averaged using an all-reduce operation. Once each

worker possesses the global gradient vector, they invoke the opti-

mizer to update their local network parameters, which are now in

sync with every other worker (see Figure 5).

However, we must ensure that results are independent of the

number of workers utilized, an essential tenet of high-performance

computing. To accomplish that, we start by augmenting the dataset

to make the total number of training samples 𝑁𝑠 divisible by the

number of workers 𝑝 . Then, each global mini-batch of size 𝑏𝑠 is

divided into 𝑝 equal parts, which become the local mini-batches to

be dispatched to the 𝑝 workers, as shown in Figure 6. This ensures

that the union of the 𝑛th local mini-batches across all workers will

be identical to the 𝑛th (global) mini-batch of the corresponding

single-processor run,

𝑝⋃
𝑖=0

(LMB)𝑖𝑛 = (GMB)𝑛 (15)

for all 𝑛 ∈ [0, 𝑁𝑏], where 𝑁𝑏 = ⌈𝑁𝑠/𝑏𝑠 ⌉ is the number of mini-

batches in each training epoch. Module rounding errors during

gradient communication, the above scheme thus guarantees that

Figure 7: Process-to-process hybrid distribution paradigm: processes

communicate via MPI and spawn local threads that exploit intra-node

parallelism.

the solution will be independent of the number of workers. It also

follows from the arithmetic that, for any global mini-batch size 𝑏𝑠
chosen, the local mini-batches processed by workers at any given

time will have the same size, thus optimizing load balance.

Our parallelization strategy leverages both distributed-memory

MPI-based communication primitives, which handle data transfer

across processes, and shared-memory OpenMP or CUDA-based

multi-threading, which exploits parallelism within a node. This

combination of shared memory and message-passing paradigms

within the same application is known as hybrid programming [11],

and is illustrated in Figure 7. In the specific case of our deep-learning

software, MPI collective all-reduce calls are invoked to handle gra-

dient communication and averaging across workers. They make

use of the ring-allReduce algorithm [44], which has a complexity

of 𝑂 (𝑁𝑤 + 𝑙𝑜𝑔(𝑝)), where 𝑁𝑤 is the number of model parameters.

Since 𝑁𝑤 ≫ 𝑝 , we expect the communication complexity to be al-

most independent of the cluster size. On the other hand, the engines

we use internally to execute forward and back-propagation can

spawn their own Open-MP or CUDA threads, which communicate

only with other threads within the same MPI process. Since MPI

communication only happens outside critical multi-threaded re-

gions, our parallelization strategy can be said to model the process-

to-process hybrid paradigm. The number of processes launched

per node and the maximum number of threads spawned by each

process will depend on the specs of the cluster and details of the

experiment and are chosen in such a way as to maximize resource

utilization, minimize communication overhead and fulfill memory

requirements.

SC ’21, November 14–19, 2021, St. Louis, MO, USA Balu, et al.

Table 2: Comparison between different multigrid strategies for different resolutions in 2D and 3D.

Dimension Resolution Strategy Levels Base Time (s) MG Time (s) Base Loss MG Loss Speedup

2D

128 × 128

V Cycle

3

3021.05

1934.305

0.0510

0.0571 1.56×
4 2401.070 0.0570 1.26×

Half-V Cycle

3 3133.861 0.0568 0.96×
4 3275.405 0.0588 0.92×

W Cycle

3 2023.778 0.0569 1.49×
4 2512.113 0.0597 1.20×

F Cycle 4 2578.451 0.0584 1.17×

256 × 256

V Cycle

3

9248.44

3297.706

0.0165

0.0210 2.80×
4 3639.291 0.0209 2.54×

Half-V Cycle

3 4585.830 0.0181 2.02×
4 4722.950 0.0174 1.96×

W Cycle

3 5791.277 0.0174 1.60×
4 5597.503 0.0188 1.65×

F Cycle 4 7401.254 0.0164 1.25×

512 × 512

V Cycle 4

21860.50

10352.543

0.0050

0.0058 2.11×
Half-V Cycle 4 11282.420 0.0053 1.94×
W Cycle 4 10996.353 0.0062 1.99×
F Cycle 4 17409.934 0.0053 1.26×

3D

128 × 128 × 128 Half-V Cycle 3 42422.50 7025.314 0.0400 0.0400 6.04×
256 × 256 × 256 Half-V Cycle 4 120000.00 9000.000 0.0200 0.0200 13.33×
512 × 512 × 512 Half-V Cycle 5 See Rem. 2 30600.000 See Rem. 2 0.0100 See Rem. 2

4 Results and Discussion

One of the key outcomes of our experiments was to demonstrate a

practical approach to train MGDiffNet on domain sizes up to 512
3
.

We applied our framework to train MGDiffNet for resolutions

up to 256
3
on GPU-based HPC clusters using on-demand multi-

GPU virtual machines on Microsoft Azure. To train DiffNet for

resolutions > 256
3
we used PSC Bridges2 HPC cluster with bare-

metal access to CPU nodes. We first talk about our experiments to

study the multigrid approach and then the scaling studies using

distributed deep learning.

4.1 Multigrid Training

We first sample the set of coefficients 𝜔 used for generating the

diffusivity maps using eq. 10. We sampled 65536 coefficients using

a quasi-random Sobol sampling. The U-Net architecture used for

all the experiments has a depth of 3 (i.e., a total of 3 convolution

layers and 3 transpose convolution layers). First, a block of con-

volution and batch normalization is applied. This output is saved

for later use using the skip-connection. This intermediate output

is downsampled to a lower resolution for a subsequent block of

convolution, batch normalization layers. This process is repeated

twice. The upsampling starts where the saved outputs of similar

dimensions are concatenated with the upsampling output for creat-

ing the skip-connections followed by a convolution layer. We use

LeakyReLU activation for all the intermediate layers and a Sigmoid

activation for the final layer. The starting filter size is 16, and we

double the number of filters as the depth of the U-Net increases.

For all the studies, we use the Adam optimizer [24] with a learning

rate of 1 × 10−5 and the global batch size of 64.

4.1.1 Multigrid Strategies: We first study eachmultigrid strategy at

different resolutions. In Table 2, we provide the time taken to reach

convergence and the final loss. As our baseline, we perform full

training at the highest resolution of the multigrid to quantify the

performance. The time and the loss value at convergence for this

full training are reported as Base Time and Base Loss. First, we note

that all the strategies at all the resolutions converge around a similar

loss value compared to the Base Loss. Also, at lower resolutions, the

speedup obtained from the multigrid approaches is very marginal,

and for the Half-V cycle, it is worse than the Base training time. At

the same time, the V cycle has the best computational speedup.

The speedup increases with the increase in resolution for each

strategy (except for the F cycle, where the increase is marginal). We

also see that each strategy has a slightly different trend in speedup

with the increase in resolution. To understand this, we plot the %

time spent on each of the levels of resolution in Figure 8. With the

primary assumption that % time spent on lower resolutions is better

than that on higher resolution (based on Figure 2), we conclude

that the Half-V cycle is the best. However, at lower resolutions such

as 128 × 128, the time taken per epoch on the lower resolution is

comparable with the time taken per epoch on higher resolution.

Distributed Multigrid Neural Solvers on Megavoxel Domains SC ’21, November 14–19, 2021, St. Louis, MO, USA

Table 3: An analysis of cost for solving a 256
3
problem in a standalone manner and with MGDiffNet half-V cycle approach. The $/hour value

provided is for a ND40rs_v2 Azure VM (Tesla V100-SXM2 with 8 GPUs per node).

Method Size # epoch Loss value Time (min) Cost ($/hour) Cost ($) Total cost ($)

MG

32 65 1.0 10

22.032

3.67

55.07

64 30 0.1 20 7.34

128 20 0.04 70 25.7

256 10 0.02 50 18.36

Standalone 256 400 0.02 2000 22.032 734.40 734.40

Table 4: Network adaptation studies.

Strategy Base Time (s) MG Time (s) Base Loss MG Loss Speedup

Half-V Cycle (no network adaptation) 21860.50 12270.44 0.0050 0.0067 1.94×

Half-V Cycle (network adaptation) 36267.75 11803.04 0.0047 0.0052 3.07×

W Cycle V Cycle Half-V Cycle F Cycle
L1

L2

L3

L4

Figure 8: Pie chart for % time spent on training at different resolutions

for each multigrid strategy

This allows for a drastic jump in speedup from 128 to 512. At the

same time, the speedup for the V cycle increased and then reduced.

While the speedup is desired, we want the MGDiffNet to have

similar performance accuracy compared to the base network. For

all resolutions, Half-V and F cycles perform closer to the Base loss,

whereas the V cycle has the maximum deviation. Combined with

the fact that the Half-V cycle has a much better speedup than the F

cycle, we conclude that the Half-V cycle performs the best.

Table 3 provides evidence of this conclusion by showing the

dollar cost on Microsoft Azure multi-GPU virtual machines. Here,

a 256
3
problem is trained in two ways: first, a “standalone” training

on a fixed mesh of 256
3
size; and second, through a MG half-V

cycle, using a sequence of meshes of sizes 32
3
, 64

3
, 128

3
and 256

3
.

This experiment reaffirms that the MG approach outperforms the

standalone training. The last column provides the total costs, and

we can clearly see that the MG method reduces the computational

cost by more than 10×. In the subsequent experiments, we only

show results on the Half-V cycle MGDiffNet strategy.

4.1.2 Architectural Adaptation: A direct extension to the proposed

multigrid approach is to adaptively add more weights for perform-

ing better at higher resolutions. This is particularly interesting

when the assumption that the network has infinite learning ca-

pacity is relaxed. As soon as this assumption is relaxed, one can

explore if the network learning at a lower resolution is sufficient

for learning at higher resolutions. To evaluate this question, we

perform an experiment where we add three additional layers (one

convolutional layer and two transpose convolutional layers) and

remove one learned transpose convolutional layer after training

at each coarse resolution and moving to the finer resolution. The

additional layers added are again initialized with random weights.

However, we observe that within 20-30 mini-batches of update,

the loss (which is expected to rise due to the random weights)

drops down. Table 4, shows comparisons between with and with-

out adaptation. Note that the base time and base loss for the case

with architectural adaptation accounts for the final network archi-

tecture and an experiment to run full training on that final network

architecture. We note that there is a marginal improvement in the

loss at the same time; we show that there is a 3× improvement in

training time for a very deep U-Net architecture. This ties into the

theme of correlations between U-Net architecture and multigrid

methods mentioned in Alt et al. [1].

4.1.3 Scaling to 3D: We next discuss training models for higher

resolutions in 3D. In Table 2, we show results for 128 × 128 × 128,
256 × 256 × 256, and 512 × 512 × 512 resolutions. Similar trends are

observed for 3D problems. Here, we only show results from half-V

cycle runs and compare with the base standalone training times.

We point out the significant speedup achieved in the case of 128
3

(≈ 6×) and 256
3
(≈ 13×) resolutions. See Remark 2 for a discussion

on the 512
3
case. We also show the loss performance plot of our

 0.01

 0.1

 1

 10

 0 50 100 150 200 250 300

L
o

s
s

Time (mins)

Full 256
3

Multigrid 32
3

Multigrid 64
3

Multigrid 128
3

Multigrid 256
3

Figure 9: Comparison of performance of base training and multigrid

training for 256 × 256 × 256 resolution. The multigrid strategy used

here is the Half-V cycle.

SC ’21, November 14–19, 2021, St. Louis, MO, USA Balu, et al.

multigrid approach in comparison with full training at the same

resolution in Figure 9. We see that the losses are first reduced in

the lower resolutions and then further reduced at a finer resolution

(as anticipated in a multigrid solver).

Remark 2:Although 3D problems as large as 256
3
can be trained

on GPU nodes, a problem of size 512
3
does not fit in the GPU RAM,

and we instead run across multiple CPU nodes, exploiting our

MPI based library. We ran the 512
3
problem on 8 CPU nodes of

Bridges-2, where one epoch takes about 6 hours. Thus, solving

this problem standalone would take multiple days. Due to limited

resources, we did not explore this path. That is why we do not

report the standalone training time for 512
3
in Table 2. However, by

using the network trained on a 256
3
grid to train the 512

3
case, we

achieve convergence in just one epoch! We report this total time in

the “MG Time” column (last row). This emphasizes the potential

for multigrid-based deep learning methods, where an extremely

expensive base case can be successfully run at a much lower cost

using multigrid cycles.

4.2 Scaling to Significantly Higher Resolutions

In what follows, we demonstrate the ability to train 3DMGDiffNet

onmuch higher resolutions by scaling out on GPU and CPU clusters

with hundreds to thousands of cores. We show that we can achieve

excellent speedups on both cloud and bare-metal infrastructures.

4.2.1 Scaling on a GPU Cluster: The first set of experiments were

performed on a GPU cluster of NDv2-series VMs on Microsoft

Azure, each containing 8 NVIDIA Tesla V100 GPUs with 32GB of

memory per device. The input dataset consisted of 1024 parametric

diffusivity maps of size 256× 256× 256, as described by Equation 10.

The training was performed on clusters with as many as 64 nodes

(512 GPUs), using 8 devices per node for 𝑝 ≥ 8 processes (for 𝑝 < 8,

certain GPUs were left idle). The local mini-batch size was fixed at

2 since each sample required ∼14GB during training, and we used

the SGD-based Adam optimizer [24] (with a learning rate of 10
−4
).

Figure 10 shows the wall-clock time per epoch, as well as the cor-

responding speedup. It demonstrates the ability of our distributed

deep-learning solution to scale virtually linearly to 512 GPUs, re-

ducing the runtime per epoch from 48 minutes to only 6 seconds (a

speedup of 480×). Inference time (i.e., full-field prediction time) on

a single GPU at this resolution was half a second.

4.2.2 Scaling on a CPU Cluster for Significantly High Resolutions:

Despite achieving excellent speedups, training on GPUs is still lim-

ited by their relatively small available memory per device, which

caps the maximum size of the training volumes at 256 × 256 × 256.
To demonstrate the ability of our software to solve problems at even

higher resolutions (without implementing model-parallelism), we

trained DiffNet with diffusivity maps of size 512×512×512 on a clus-
ter of AMD EPYC-7742 CPU nodes, each with 128 cores and 256GB

total RAM. Figure 11 shows epoch times and speedups obtained

on clusters with up to 128 nodes, with one MPI process per node

(using all 128 CPU cores) and two samples per local batch. Once

again, scalability is excellent up to 128 nodes. The peak memory

utilization per node was 230GB, which would have been infeasible

on a cluster of GPUs. The full-field prediction time on the same

machine type was around 20 seconds.

1 2 4 8
1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

10
0

10
1

10
2

10
3

MPI Processes→

E
p
o
c
h
T
i
m
e
(
s
)
→

1 × 1
1 × 2

1 × 4
1 × 8

2 × 8
4 × 8

8 × 8
16 × 8

32 × 8
64 × 8

1

2

4

8

16

32

64

128

256

512

S
p
e
e
d
u
p
→

Present

Ideal

Figure 10: Strong scaling results for training a 3D DiffNet using our

distributed deep-learning framework at 256× 256× 256 resolution on

a cluster of NVIDIA Tesla V100 cloud GPUs. The labels above the bars

indicate the number of nodes and the number of GPUs per node. Each

epoch consists of 1024 samples.

1 2 4 8
1
6

3
2

6
4

1
2
8

10
0

10
1

10
2

10
3

MPI Processes→

E
p
o
c
h
T
i
m
e
(
s
)
→

1

2

4

8

16

32

64

128

S
p
e
e
d
u
p
→

Present

Ideal

Figure 11: Strong scaling results for training a minibatch of 3D

DiffNet using our (MPI) distributed deep-learning framework at 512×
512× 512 resolution on a cluster of AMD EPYC-7742 bare-metal nodes

(with 1 MPI process per node). Each epoch consists of 128 samples.

4.3 Comparison with Traditional FEM

We also provide some visualizations and comparisons with tradi-

tional FEM simulations for the same parameters. Here, by “tradi-

tional FEM”, we mean the case where an equation is formed for

each unknown in the discrete domain, and then a matrix-vector

system is solved by numerical linear algebra methods [18, 27]. Ta-

ble 6 shows the visualization of the predictions from the multigrid

trained network for 512×512. An example in 3D is shown in Table 7.

We see the MGDiffNet predicts the solution field accurately. We

also compare the results obtained by different multigrid strategies

to confirm that the Half-V cycle predictions are the best among

all the strategies. We also show visualization of a few anecdotal

solution fields produced using MGDiffNet in 2D (Table 5).

Distributed Multigrid Neural Solvers on Megavoxel Domains SC ’21, November 14–19, 2021, St. Louis, MO, USA

Table 5: Visualization of MGDiffNet predictions and comparison with traditional FEM solutions for 2 anecdotal values of 𝜔 .

𝜈 𝑢MGDiffNet 𝑢𝐹𝐸𝑀 𝑢MGDiffNet −𝑢𝐹𝐸𝑀

10
20
30
40
50

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.075

0.050

0.025

0.000

0.025

𝜔 = (0.6681, 1.5354, 0.7644,−2.9709)

50

100

150

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.04

0.02

0.00

0.02

0.04

0.06

𝜔 = (1.3821, 2.5508, 0.1750, 2.1269)

2

4

6

8

10

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.05

0.00

0.05

0.10

𝜔 = (0.3105, 1.5386, 0.0932,−1.2442)

200
400
600
800
1000

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.10

0.05

0.00

0.05

0.10

𝜔 = (0.2838,−2.3550, 2.9574,−1.8963)

Another important comparison is between the time taken for

inference on MGDiffNet versus the time taken for performing

one “traditional” FEM solve. The FEM simulation takes about 576

seconds for the 512 × 512 × 512 resolution on 2 Stampede2 SKX

nodes (this is the minimum number of nodes required to fit the

FEM problem in memory). But the MGDiffNet inference, on the

other hand, takes only 20 seconds on 1 Stampede2 SKX node (unlike

training, inference can be performed on a single node). Since the

solutions are valid for a range of PDE parameters, the impact of our

framework in reducing the computational time while performing

inverse design will be substantial. We also note that there is no

need for any data annotation in this framework.

5 Conclusion and Future Work

In this work, we propose a distributed multigrid neural solver for

solving PDEs at large spatial dimensionswith efficient use of compu-

tational resources. To this end, we contribute a numerical multigrid-

inspired training scheme for fully convolutional neural networks

and further implement a distributed data-parallel training strategy

to train networks up to a resolution of 512 × 512 × 512 (≈ 134𝑀

voxels). Our multigrid-based training results show a 6X speedup

over the baseline full training at higher resolutions with negligible

loss in performance. Further, our method scales almost linearly with

minimal communication costs in a distributed environment over

both CPU and GPU clusters. This approach opens up the efficient

training of parametric PDEs for use in Scientific ML applications.

SC ’21, November 14–19, 2021, St. Louis, MO, USA Balu, et al.

Table 6: Visualization of MGDiffNet predictions with different multigrid strategies. The input 𝜔 = (0.3105, 1.5386, 0.0932,−1.2442)

.

Strategy V Cycle W Cycle F Cycle Half-V Cycle

𝑢MGDiffNet

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

𝑢MGDiffNet −𝑢𝐹𝐸𝑀

0.1

0.0

0.1

0.2

0.1

0.0

0.1

0.05

0.00

0.05

0.10

0.15

0.15

0.10

0.05

0.00

0.05

Table 7: Visualization of MGDiffNet predictions and comparison with traditional FEM solutions for 𝜔 = (0.3105, 1.5386, 0.0932,−1.2442).

𝜈 𝑢MGDiffNet 𝑢𝐹𝐸𝑀

Additionally, this approach can be naturally applied to a variety of

high-resolution image-to-image translation tasks.

There are several avenues of future work that follow:

• Scaling beyondmegavoxels to gigavoxels. This is currentlymainly

limited by the CPU memory, since we estimate a single 1024
3

solve would require about 2𝑇𝐵 of memory on one node. Ex-

tending our approach to allow model-parallel distributed deep

learning could alleviate this issue.

• Elucidating the mathematical connections between the multigrid

approach with stability and convergence of the training.

• Deploying this neural PDE Poisson solver for applications in

topology optimization, flow through porous media, and thermal

transport in composites–all of which are defined by Equation 3.

• Deploying this framework to other PDE’s where having high-

resolution outputs is critical for control (via model predictive

control approaches).

We envision such bidirectional linkages between numerical linear

algebra and scalable solutions of neural networks to significantly

accelerate scientific computing workflows.

Acknowledgments

This work was partly supported by the ARPA-E DIFFERENTIATE

under grant DE-AR0001215 and National Science Foundation under

grants RII award number(s): 2019574, COALESCE award number(s):

1954556, CM award number(s): 1644441 and CAREER award num-

ber(s): 1750865. This work used the Extreme Science and Engineer-

ing Discovery Environment (XSEDE), which is supported by NSF

grant ACI-1548562 and the Bridges2 system supported by NSF grant

ACI-1445606, at the Pittsburgh Supercomputing Center (PSC). We

also used Microsoft Azure compute resources for performing some

of the GPU performance results shown.

References

[1] T. Alt, P. Peter, J. Weickert, and K. Schrader, “Translating numerical concepts for

pdes into neural architectures,” arXiv preprint arXiv:2103.15419, 2021.

[2] T. Ben-nun and T. Hoefler, “Demystifying parallel and distributed deep learning:

An in-depth concurrency analysis,” arXiv preprint arXiv:1802.09941v2, 2018.

[3] S. Botelho, A. Joshi, B. Khara, S. Sarkar, C. Hegde, S. Adavani, and B. Ganapa-

thysubramanian, “Deep generative models that solve pdes: Distributed computing

for training large data-free models,” arXiv preprint arXiv:2007.12792, 2020.

[4] J. H. Bramble, Multigrid methods. Chapman and Hall/CRC, 2019.

Distributed Multigrid Neural Solvers on Megavoxel Domains SC ’21, November 14–19, 2021, St. Louis, MO, USA

[5] W. L. Briggs, V. E. Henson, and S. F. McCormick, A multigrid tutorial. SIAM,

2000.

[6] S. Cai, H. Li, F. Zheng, F. Kong, M. Dao, G. E. Karniadakis, and S. Suresh, “Artificial

intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional

analysis of blood flow in physiology and disease,” Proceedings of the National

Academy of Sciences, vol. 118, no. 13, 2021.

[7] F. Chen, D. Sondak, P. Protopapas, M. Mattheakis, S. Liu, D. Agarwal, and

M. Di Giovanni, “Neurodiffeq: A python package for solving differential equa-

tions with neural networks,” Journal of Open Source Software, vol. 5, no. 46, p.

1931, 2020.

[8] Y. Chen, B. Dong, and J. Xu, “Meta-mgnet: Meta multigrid networks for solving

parameterized partial differential equations,” arXiv preprint arXiv:2010.14088,

2020.

[9] Y. Chen, L. Lu, G. E. Karniadakis, and L. Dal Negro, “Physics-informed neural

networks for inverse problems in nano-optics and metamaterials,” Optics express,

vol. 28, no. 8, pp. 11 618–11 633, 2020.

[10] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net:

learning dense volumetric segmentation from sparse annotation,” in Interna-

tional conference on medical image computing and computer-assisted intervention.

Springer, 2016, pp. 424–432.

[11] T. V. T. Duy, K. Yamazaki, K. Ikegami, and S. Oyanagi, “Hybrid mpi-openmp

paradigm on smp clusters: Mpeg-2 encoder and n-body simulation,” arXiv preprint

arXiv:1211.2292, 2012.

[12] T. Elsken, J. H. Metzen, F. Hutter et al., “Neural architecture search: A survey.” J.

Mach. Learn. Res., vol. 20, no. 55, pp. 1–21, 2019.

[13] A. D. Fontanini, U. Vaidya, and B. Ganapathysubramanian, “A methodology for

optimal placement of sensors in enclosed environments: A dynamical systems

approach,” Building and Environment, vol. 100, pp. 145–161, 2016.

[14] W. Hackbusch,Multi-grid methods and applications. Springer Science & Business

Media, 2013, vol. 4.

[15] J. Han, A. Jentzen, and E. Weinan, “Solving high-dimensional partial differential

equations using deep learning,” Proceedings of the National Academy of Sciences,

vol. 115, no. 34, pp. 8505–8510, 2018.

[16] O. Hennigh, S. Narasimhan, M. A. Nabian, A. Subramaniam, K. Tangsali, M. Ri-

etmann, J. d. A. Ferrandis, W. Byeon, Z. Fang, and S. Choudhry, “Nvidia

simnetˆ{TM}: an ai-accelerated multi-physics simulation framework,” arXiv

preprint arXiv:2012.07938, 2020.

[17] R. Huang, R. Li, and Y. Xi, “Learning optimal multigrid smoothers via neural

networks,” arXiv preprint arXiv:2102.12071, 2021.

[18] T. J. Hughes, The finite element method: linear static and dynamic finite element

analysis. Courier Corporation, 2012.

[19] S. Karumuri, R. Tripathy, I. Bilionis, and J. Panchal, “Simulator-free solution

of high-dimensional stochastic elliptic partial differential equations using deep

neural networks,” Journal of Computational Physics, vol. 404, p. 109120, 2020.

[20] A. Katrutsa, T. Daulbaev, and I. Oseledets, “Deep multigrid: learning prolongation

and restriction matrices,” arXiv preprint arXiv:1711.03825, 2017.

[21] T.-W. Ke, M. Maire, and S. X. Yu, “Multigrid neural architectures,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp.

6665–6673.

[22] E. Kharazmi, Z. Zhang, and G. E. Karniadakis, “hp-VPINNs: Variational physics-

informed neural networks with domain decomposition,” Computer Methods in

Applied Mechanics and Engineering, vol. 374, p. 113547, 2021.

[23] Y. Khoo, J. Lu, and L. Ying, “Solving parametric pde problems with artificial

neural networks,” arXiv preprint arXiv:1707.03351, 2017.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc.

Int. Conf. Learning Representations (ICLR), 2015.

[25] I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural networks for solving

ordinary and partial differential equations,” IEEE transactions on neural networks,

vol. 9, no. 5, pp. 987–1000, 1998.

[26] I. E. Lagaris, A. C. Likas, and D. G. Papageorgiou, “Neural-network methods for

boundary value problems with irregular boundaries,” IEEE Transactions on Neural

Networks, vol. 11, no. 5, pp. 1041–1049, 2000.

[27] M. G. Larson and F. Bengzon, The finite element method: theory, implementation,

and applications. Springer Science & Business Media, 2013, vol. 10.

[28] H. Lee and I. S. Kang, “Neural algorithm for solving differential equations,” Journal

of Computational Physics, vol. 91, no. 1, pp. 110–131, 1990.

[29] Y. Liao and P. Ming, “Deep nitsche method: Deep ritz method with essential

boundary conditions,” arXiv preprint arXiv:1912.01309, 2019.

[30] L. Lu, R. Pestourie, W. Yao, Z. Wang, F. Verdugo, and S. G. Johnson, “Physics-

informed neural networkswith hard constraints for inverse design,” arXiv preprint

arXiv:2102.04626, 2021.

[31] I. Luz, M. Galun, H. Maron, R. Basri, and I. Yavneh, “Learning algebraic multigrid

using graph neural networks,” in International Conference on Machine Learning.

PMLR, 2020, pp. 6489–6499.

[32] A. Malek and R. S. Beidokhti, “Numerical solution for high order differential equa-

tions using a hybrid neural network—optimization method,” Applied Mathematics

and Computation, vol. 183, no. 1, pp. 260–271, 2006.

[33] N. Margenberg, C. Lessig, and T. Richter, “Structure preservation for the deep

neural network multigrid solver,” arXiv preprint arXiv:2012.05290, 2020.

[34] C. Michoski, M. Milosavljevic, T. Oliver, and D. Hatch, “Solving irregular and

data-enriched differential equations using deep neural networks,” arXiv preprint

arXiv:1905.04351, 2019.

[35] A. G. Özbay, S. Laizet, P. Tzirakis, G. Rizos, and B. Schuller, “Poisson cnn: Convo-

lutional neural networks for the solution of the poisson equation with varying

meshes and dirichlet boundary conditions,” arXiv preprint arXiv:1910.08613, 2019.

[36] G. Pang, L. Lu, and G. E. Karniadakis, “fpinns: Fractional physics-informed neural

networks,” SIAM Journal on Scientific Computing, vol. 41, no. 4, pp. A2603–A2626,

2019.

[37] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,

A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,”

2017. [Online]. Available: https://openreview.net/forum?id=BJJsrmfCZ

[38] M. Raissi and G. E. Karniadakis, “Hidden physics models: Machine learning of

nonlinear partial differential equations,” Journal of Computational Physics, vol.

357, pp. 125–141, 2018.

[39] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks:

A deep learning framework for solving forward and inverse problems involving

nonlinear partial differential equations,” Journal of Computational Physics, vol.

378, pp. 686–707, 2019.

[40] R. Ranade, C. Hill, and J. Pathak, “Discretizationnet: A machine-learning based

solver for navier–stokes equations using finite volume discretization,” Computer

Methods in Applied Mechanics and Engineering, vol. 378, p. 113722, 2021.

[41] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for

biomedical image segmentation,” in International Conference on Medical image

computing and computer-assisted intervention. Springer, 2015, pp. 234–241.

[42] S. Rudy, A. Alla, S. L. Brunton, and J. N. Kutz, “Data-driven identification of

parametric partial differential equations,” SIAM Journal on Applied Dynamical

Systems, vol. 18, no. 2, pp. 643–660, 2019.

[43] E. Samaniego, C. Anitescu, S. Goswami, V. M. Nguyen-Thanh, H. Guo, K. Hamdia,

X. Zhuang, and T. Rabczuk, “An energy approach to the solution of partial differ-

ential equations in computational mechanics via machine learning: Concepts,

implementation and applications,” Computer Methods in Applied Mechanics and

Engineering, vol. 362, p. 112790, 2020.

[44] A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep learning in

TensorFlow,” arXiv preprint arXiv:1802.05799, 2018.

[45] J. Sirignano and K. Spiliopoulos, “Dgm: A deep learning algorithm for solving

partial differential equations,” Journal of Computational Physics, vol. 375, pp.

1339–1364, 2018.

[46] J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin, “Accelerating eulerian

fluid simulation with convolutional networks,” in International Conference on

Machine Learning. PMLR, 2017, pp. 3424–3433.

[47] R. van der Meer, C. Oosterlee, and A. Borovykh, “Optimally weighted loss func-

tions for solving pdes with neural networks,” arXiv preprint arXiv:2002.06269,

2020.

[48] C.-Y. Wu, R. Girshick, K. He, C. Feichtenhofer, and P. Krahenbuhl, “A multigrid

method for efficiently training video models,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2020, pp. 153–162.

[49] L. Yang, D. Zhang, and G. E. Karniadakis, “Physics-informed generative adversar-

ial networks for stochastic differential equations,” arXiv preprint arXiv:1811.02033,

2018.

[50] L. Yang, S. Treichler, T. Kurth, K. Fischer, D. Barajas-Solano, J. Romero, V. Churavy,

A. Tartakovsky, M. Houston, M. Prabhat et al., “Highly-scalable, physics-informed

gans for learning solutions of stochastic pdes,” in 2019 IEEE/ACM Third Workshop

on Deep Learning on Supercomputers (DLS). IEEE, 2019, pp. 1–11.

[51] Y. Zhu and N. Zabaras, “Bayesian deep convolutional encoder–decoder networks

for surrogate modeling and uncertainty quantification,” Journal of Computational

Physics, vol. 366, pp. 415–447, 2018.

[52] Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris, “Physics-constrained

deep learning for high-dimensional surrogate modeling and uncertainty quan-

tification without labeled data,” arXiv preprint arXiv:1901.06314, 2019.

https://openreview.net/forum?id=BJJsrmfCZ

SC ’21, November 14–19, 2021, St. Louis, MO, USA Balu, et al.

A Artifact Description

Summary of Reported Experiments

We performed the experiments (all experiments are described in

the “Results and Discussions" section of the paper):

(1) Comparison of strategies - these were done on Azure cloud

platform.

(2) Scaling studies were performed for training MGDiffNet of

256 × 256 × 256 and lower were performing on Azure cloud

platform and studies above 256 × 256 × 256 were performed

on PSC Bridges2.

(3) Solving the PDE using FEM for comparisonwithMGDiffNet

results was done on PSC Bridges2 using 1 Regular Memory

node.

Modules loaded on Bridges2 for MGDiffNet experiments:

1) cmake/3.16.1
2) gcc/10.2.0
3) openmpi/4.0.5-gcc10.2.0

Libraries Dependencies

The following dependencies are required to compile the code:

• C/C++ compilers with C++11 standards and OpenMP sup-

port

• MPI implementation (e.g. openmpi, mvapich2)

• Petsc 3.8 or higher

• ZLib compression library (used to write .vtu files in binary

format with compression enabled)

• MKL / LAPACK library

• CMake 2.8 or higher version

• OpenCV 3.4.2

Computing Configuration

Relevant computational hardware details are provided here:

Table 8: Functional specifications of Microsoft Azure and Bridges2

infrastructures used in our experiments.

Specification Microsoft Azure Bridges2

Type Virtual Machine Bare-Metal

CPU

Intel Xeon

Platinum 8168

AMD EPYC 7742

CPU cores 40 128

Memory (GB) 672 256

GPU Tesla V100 -

GPU Memory (GB) 32 -

No. of GPUs 8 -

Interconnect EDR Infiniband HDR Infiniband

Bandwidth 100 Gb/sec 200 Gb/sec

Topology Fat tree Fat tree

Artifact Availability

Software Artifact Availability: Some author-created software arti-

facts are NOT maintained in a public repository or are NOT avail-

able under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hard-

ware artifacts.

Data Artifact Availability: Some author-created data artifacts are

NOT maintained in a public repository or are NOT available under

an OSI-approved license.

Proprietary Artifacts: There are associated proprietary artifacts that

are not created by the authors. Some author-created artifacts are

proprietary.

Author-Created or Modified Artifacts:

Persistent ID: None
Artifact name: MGDiffNet
Citation of artifact: MGDiffNet is a proprietary

software from an early-stage startup whose
business model is based on software licensing.
Due to this reason, we cannot disclose our
software details.

↩→

↩→

↩→

↩→

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We performed the experiments (all experiments are described in
the “Results and Discussions" section of the paper):

(1) Comparison of strategies - these were done on Azure cloud
platform.

(2) Scaling studies were performed for training of 256 × 256 ×
256 and lower were performing on Azure cloud platform
and studies above 256 × 256 × 256 were performed on PSC
Bridges2.

(3) Solving the PDE using FEM for comparison with results was
done on PSC Bridges2 using 1 Regular Memory node.

Modules loaded on Bridges2 for experiments:
1) cmake/3.16.1
2) gcc/10.2.0
3) openmpi/4.0.5-gcc10.2.0

Author-Created or Modified Artifacts:

Persistent ID: None
Artifact name: MGDiffNet
Citation of artifact: MGDiffNet is a proprietary

software from an early-stage startup whose
business model is based on software licensing.
Due to this reason, we cannot disclose our
software details. The data parallel distributed
deep learning library written in C++ and Python to
train CNNs on CPU/GPU based HPC clusters both
on-prem and on cloud. Key features of the library
include a) user defined variational loss
functions to solve PDEs, b) ability to use
multiple resolutions along with transfer learning
between resolutions in a single run, and c)
ability to experiment with different multigrid
approaches like V, W, F, half-V cycle.

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Intel Xeon Platinum 8168, AMD EPYC
7V12, NVIDIA Tesla V100

Operating systems and versions: Ubuntu 18.04

Compilers and versions: gcc 7.5.0

Applications and versions: OpenCV 3.4.2

Libraries and versions: OpenMPI v3.1.3, HPCX

Key algorithms: Data parallel Distributed Deep Learning

	Abstract
	1 Introduction
	2 Mathematical preliminaries
	2.1 Convolutional Neural Networks (CNNs)
	2.2 DiffNet: Solving PDEs using CNNs
	2.3 Geometric Multigrid approach

	3 Algorithmic Developments
	3.1 Multigrid Approaches
	3.2 Distributed Deep Learning

	4 Results and Discussion
	4.1 Multigrid Training
	4.2 Scaling to Significantly Higher Resolutions
	4.3 Comparison with Traditional FEM

	5 Conclusion and Future Work
	References
	A Artifact Description

