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Topological characteristics of multidimensional potential energy surfaces are explored and the full
conformation space is mapped on the set of local minima. This map partitions conformation space
into energy-dependent or temperature-dependent ‘‘attraction basins’’ and generates a
‘‘disconnectivity’’ graph that reflects the basin connectivity and characterizes the shape of the
multidimensional surface. The partitioning of the conformation space is used to express the
temporal behavior of the system in terms of basin-to-basin kinetics instead of the usual state-to-state
transitions. For this purpose the transition matrix of the system is expressed in terms of
basin-to-basin transitions and the corresponding master equation is solved. As an example, the
approach is applied to the tetrapeptide, isobutyryl-~ala!3-NH-methyl ~IAN !, which is the shortest
peptide that can form a full helical turn. A nearly complete list of minima and barriers is available
for this system from the work of Czerminiski and Elber. The multidimensional potential energy
surface of the peptide is shown to exhibit an overall ‘‘funnel’’ shape. The relation between
connectivity and spatial proximity in dihedral angle space is examined. It is found that, although the
two are similar, closeness in one does not always imply closeness in the other. The basin to basin
kinetics is examined using a master equation and the results are interpreted in terms of kinetic
connectivity. The conformation space of the peptide is divided up in terms of the surface topography
to model its ‘‘folding’’ behavior. Even in this very simple system, the kinetics exhibit a ‘‘trapping’’
state which appears as a ‘‘kinetic intermediate,’’ as in the folding of proteins. The approach
described here can be used more generally to classify multidimensional potential energy surfaces
and the time development of complex systems. ©1997 American Institute of Physics.
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I. INTRODUCTION

Mesoscopic systems with many degrees of freedom
clude liquids, glasses, solutions, and macromolecules. T
are under intensive study in physics, chemistry, and biolo
In all cases the thermodynamic and dynamic properties
determined by the nature of the potential energy surfac1

Because of the complexity of the potential surfaces of s
mesoscopic systems, a method for analyzing their mult
minima can serve a useful role. It can aid, for example, in
interpretation of conformational transitions in peptides a
the kinetics of protein folding.2,3 Also, an understanding o
the special properties of glasses and the nature of the g
transition3–5 depends on a detailed characterization of
potential surface.

Potential energy surfaces~PES! can be characterized b
their minima, which correspond to locally stable configu
tions, and by transition regions connecting the minima.
small systems, which have only few minima, it is possible
use a direct approach and describe the entire potential en
surface. Such is the case for small reactive systems6 and for
the alanine dipeptide, which has only two significant degr
of freedom.7,8 For systems with many degrees of freedo
and a very large number of minima, a direct approach to
PES becomes very difficult.
J. Chem. Phys. 106 (4), 22 January 1997 0021-9606/97/106(4)/1
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Stillinger and Weber introduced a useful procedure
characterizing the multiminimum PES of large systems.9,10

They investigated the local minima by taking configuratio
from a molecular dynamics trajectory and quenching
points along the trajectory to the nearest local minimum
following the steepest descent path. In this way, a samp
of the PES and local minima accessible at a given temp
ture were obtained. The minima provide a ‘‘mapping’’ of th
PES, referred to as ‘‘hidden structures,’’ which they used
separate the partition function into thermal and configu
tional contributions.9 This procedure has been applied to
variety of systems, including water,10,11 rare gas clusters12,13

and the proteins myoglobin14 and bovine pancreatic tripsin
inhibitor ~BPTI!.15 The protein studies showed that there a
a very large number of minima in the vicinity of the nativ
state and that the local minima are kinetically ‘‘clustered
into subsets; i.e., within a cluster or ‘‘basin’’ the minim
tend to be connected by low barriers.15

A map of the minima and regions in their neighborho
gives only a partial description of the energy surface sinc
does not contain information about the barriers. While the
of minima and the surrounding portions of the potential s
face are often sufficient to determine the thermodynamics9 it
is the barrier distribution that is required for the kinetics.
1495495/23/$10.00 © 1997 American Institute of Physics
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1496 O. M. Becker and M. Karplus: Multidimensional potential surfaces
knowledge of the transition states connecting the mini
makes possible an exploration of the systems kinetics by
of the master equation approach.16 Recently, a rather com
plete map of the minima and barriers of a tetrapeptide
vacuum was obtained by Czerminski and Elber17,18 and a
more limited study of transitions states in TIPS2 water w
performed by Tanaka and Ohmine.11

Experimental evidence concerning the complexity of
PES for a system with many degrees of freedom can
obtained by the observation of a multiplicity of relaxatio
times.19 A particularly interesting study has been perform
by Frauenfelder and collaborators20–22of the complex kinet-
ics of CO to myoglobin. The results have been explained
terms of the existence of a hierarchy of minima, referred
as ‘‘conformational substates’’ that are thought to be
ranged in ‘‘tiers’’ corresponding to different energies a
barriers. The question of the role of solvent in the obser
relaxation behavior has been raised recently.23 The substates
were introduced to explain the different time scales on wh
certain kinetic phenomena take place in this system. It w
assumed that, in general, slower phenomena are assoc
with larger scale motions. These studies, which represen
most detailed analysis of the dynamics of folded protei
have inherent in them the limitations of an experimental
proach. Because only a few probes can be used to ob
kinetic data, the interpretation is based on simplified mod
and the specific connection between the dynamics and s
ture is not clear; e.g., in a system as inhomogeneous
protein, very localized motions can have very high barrier24

Peptides and proteins differ in an essential way from
glasses usually investigated in studies of complex poten
surfaces and multiple time scales.5,19,25The latter are inher-
ently homogeneous; i.e., on an infinite time scale, each
gion of the usual glassy system is equivalent to every o
region. By contrast, a protein is inherently inhomogene
due to the nature of the native structure and the amino
sequence of which it is composed.

Many terms have been used in describing various
tributes of complex potential energy surfaces. They inclu
‘‘funnels,’’ 26,27 ‘‘clusters of minima,’’15 and ‘‘tendrils.’’9 All
these represent attempts to describe the generalshapeand
overall connectivitythat characterize multidimensional po
tential surfaces. Since the concepts of shape and connec
are within the realm of topology the present paper attem
to describe potential energy surfaces using a topological
proach.

In theoretical studies of the gas-phase chemistry of sm
molecules, it is customary to focus on state-to-state tra
tions as the property of fundamental interest, although
constants which represent averages over initial and fi
states are often used.6 For systems with many degrees
freedom there are alternative approaches for analyzing
kinetics of the transitions among the multiple minima. In ra
gas clusters12,13 and proteins, for example, where individu
states are usually clustered in ‘‘basins,’’ the interesting
netics involves basin to basin transitions. The internal dis
bution within a basin is expected to approach equilibrium
a relatively short time scale, while the slower basin-to-ba
J. Chem. Phys., Vol. 106,
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kinetics, which involves the crossing of higher barriers, go
erns the intermediate and long time behavior of the syst
Experimental studies of protein kinetics, such as those of
Fraunfelder group20–22 measure only certain basin-to-bas
transitions, since they cannot resolve the individual localiz
minima.

In the present work we use topology to define a map
the potential energy surface that emphasizes itsshapeand
connectivity, and thus, offers a tool for a better understand
of the physical system. This map, which partitions config
ration space into energy or temperature-dependent ba
generates a formal ‘‘disconnectivity’’ graph that is used
characterize the multidimensional potential surface. Co
bined with an appropriate metric, this method can be app
to qualitative and quantitative studies of a variety of system
In terms of kinetics, the topological connectivity is man
fested as basin-to-basin kinetics, which is used to reform
late the transition matrix and master equation. To illustr
the topological concepts, an application to the analysis o
tetrapeptide potential energy surface and its kinetic con
quences is presented. The results for the simple peptide
used to draw conclusions concerning the behavior of m
complex systems.

In Sec. II several procedures are defined for mapping
overall potential energy surface on the set of local minim
and in Sec. III the resulting disconnectivity graph is define
In Sec. IV this graph is related to the topography of t
potential energy surface while Sec. V uses it to interp
various physical phenomena. A detailed discussion of ba
to-basin kinetics is given in Sec. VI. Section VII presents t
tetrapeptide example, which is followed by a discussion
Sec. VIII.

II. MAPPING AND BASINS

A molecule composed ofN atoms has a 3N-dimensional
conformation spacer5~r1,...,rN!PR

3N,28 where ther i are
the vectors giving the position of atomsi in the three-
dimensional space. The potential energy of the system,F, is
a function defined over the 3N-dimensional conformation
space,F~r1,...,rN!. The F hypersurface has a multitude o
local minima, which can be described as a discrete set
dexed bya. The mapMd~r ! from the 3N-dimensional con-
tinuumR

3N to the discrete set of minima$a%, was introduced
by Stillinger and Weber;9 the notation we use is similar to
that used by them. It is defined by direct minimization fro
any point inR

3N along a steepest descent path to the nea
local minimum,

Md~r !:R3N→$a%, ~1!

where thed superscripts stands fordirect minimization or
direct ‘‘quenching.’’

Following Stillinger and Weber,9 let R~a!,R
3N denote

the set of system configurationsr which map to a local mini-
mum a. R~a! is a connected set, since allrPR~a! are con-
nected by a path througha, and the differentR~a! are dis-
joint. The significance of this mapping is that theR~a!
partition the 3N26 dimensional configuration space in
No. 4, 22 January 1997
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1497O. M. Becker and M. Karplus: Multidimensional potential surfaces
‘‘attraction basins’’ around thea minima. The boundaries o
these sets lay on the~3N27! dimensional bifurcation hyper
surface. The union of the boundaries constitutes a zero m
sure set in the configuration spaceR

3N for which the map-
pingMd is undefined. Since the boundaries are not includ
in theR~a! basins, they form open sets.

When the potential energy surface~PES! represents an
ensemble of small molecules~e.g., a water cluster!, the num-
ber of distinct R~a! can be further reduced by formin
equivalence classes from allR~a! sets which are identica
except for particle permutations.9 In this case a symmetry
numbers is assigned to each equivalence class to acco
for this grouping. If the potential energy surface represen
single macromolecule, such as a protein, the bonding c
nectivity prevents such permutations. This is an aspect of
essential inhomogeneous character of the system menti
in the Introduction. For such systems eachR~a! basin is in
an equivalence class by itself and the symmetry number
sociated with it is unity~s51!.

Although theMd~r ! map partitions the PES in a phys
cally meaningful way~i.e., it gives the relation between an
point in R

3N and the nearest minimuma!, the information
from this partition is limited. In particular, it does not conta
information about the barriers between the minima. For
ample, the map is unable to distinguish between lo
minima which account for small defects in an otherwise
dered crystal and the minima in the disordered matrix o
glass. This limitation arises from the fact that theR~a! give
dynamical information only at theT→0 limit, where any
barrier, however small, traps the system in a given minimu

To account for the behavior of a system at finite te
perature, it is useful to have a description that groups min
which are connected by low barriers. This can be achie
by introducing ‘‘super basins’’

RT~a8!5øR~a!, ~2!

which are a union of all theR~a! sets connected by barrier
F‡ lower thankT ~or some small multiple ofkT!; i.e., a
super basin implies that the system moves rapidly betw
its component minima. Consequently,RT~a8! is defined as
the union of allR~a! sets for which max(F‡

i j ,F
‡
j i )<kT,

whereF‡
i j is the barrier going from basinj to i , andF‡

j i is
the barrier going fromi to j . We introduce both barriers to
implicitly take into account the energy difference betwe
basins. The symbola8 refers to the lowest minimum in
RT~a8!; i.e.,

a85min$auaPR~a!,RT~a8!%. ~3!

We can define a new mapping procedureMT~r ! that will
partition the 3N-dimensional configuration spaceR3N into
super basins at temperatureT and map it onto the smaller se
of minimum $a8%T defined by Eq.~3!

MT~r !:R3N→$a8%T . ~4!

The resulting super basins are also disjoint open sets w
the set$a8%T depends on the temperatureT. The significance
of theMT mapping is that it reflects the system connectiv
at different temperatures. Assuming atime scaleof observa-
J. Chem. Phys., Vol. 106,
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tion, defined as the time in which equilibrium among all
the a minima associated with an individualRT~a8! is
reached, the dynamics of the system at that temperatureT is
sensitive only to transitions between differentRT~a8! basins,
and not to the underlying structure within the basins the
selves; i.e., this time scale, which depends onT, is less than
the mean time for a dynamical trajectory to cross from o
RT~a8! basin to another.

From the above definitions it is clear that the direct mi
mization mappingMd~r ! is theT→0 limit of this more gen-
eral mappingMT~r !; i.e.,

Md~r !5 lim
T→0

MT~r !5a,

RT50~a8!5R~a!, ~5!

$a8%T505$a%.

At theT→` limit, assuming that the physical system is we
behaved~i.e., it does not have infinite barriers!, all of con-
figuration space is incorporated in a single super basin,
thea8 minima that corresponds to it is the global minimaag,
i.e.,

RT→`~a8!5R3N,
~6!

$a8%T→`5ag.

At this limit the system is ergodic and a dynamical trajecto
spans the full conformation space. In the present cont
ergodicity is defined as being time scale dependent. Nam
it means that the system is not trapped in any subregion
conformation space and that given a long but finite time, e
a time longer than the length of a ‘‘long’’ molecular dynam
ics trajectory~;10 ns!, any dynamical trajectory will span
all of the available space. Exceptions to Eq.~6! exist only in
systems which have infinite barriers,F‡5`, and are thus
never ergodic. At finiteT, the system completely spans an
givenRT~a8! on the specified time scale but not the who
space.

Similar to theMT~r ! mapping, which is formulated in
terms of thecanonicalensemble using the relative barrie
F‡

i j , amicrocanonicalmappingM
E~r ! can also be defined

ME~r !:R3N→$a8%E . ~7!

This map uses the total energyE rather than the temperatur
T as the control parameter. The analogous microcanon
super basinsRE(a8)5øR(a) are defined by the mappin
ME~r ! as a union of elementary basins connected by barr
F‡<E, whereF‡ is the energy value of the barrier. Th
significant difference between the two mapsME~r ! and
MT~r ! is in the physical content of the result. The microc
nonical map is concerned with the absolute energies and
flects thetopographyof the potential energy surface, whil
the canonical map highlights the relative energies and
flects thekinetic connectivityof the system. This difference
in interpretation is further discussed in Secs. IV and V.

An important aspect of potential energy surface is t
the dynamical system with a finite energy,E,`, is confined
to a subspaceG of the full configuration space,G,R

3N. This
No. 4, 22 January 1997
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1498 O. M. Becker and M. Karplus: Multidimensional potential surfaces
subspace, which we name the ‘‘accessible configura
space,’’ is strictly defined as the union of all configuratio
which are accessible to the system at a given energy; i.e

G~E!5$r uF~r !<E%, ~8!

whereE is the total energy of the system.G is bound by the
F5E isoenergy manifold, which is the classical ‘‘turning
manifold of the system; i.e., the manifold on which any tr
jectory ~with total energyE! instantaneously has zero kinet
energy. This corresponds to the use of constant energy
tours to characterize the PES.30 The disjoint setsRE~a8!
cover this accessibleG space since their union isG; i.e.,

G~E!5øRE~a8!. ~9!

The accessible configuration spaceG is more loosely de-
fined in the canonical representation, since the system h
nonzero~though often small! probability for reaching every
point in configuration space. The canonical accessible c
figuration space is therefore the region in which the syste
spendsmostof its time @where the time scale was define
following Eq. ~4!#. We define this canonical accessible co
figuration space as

G~T!5$r uDF~r !<nkT%, ~10!

whereDF~r ! is the potential energy atr relative to the global
minimum @DF~r !5F~r !2F~ag!#, andn is a small number
~which depends on the particular time scale used!. As T in-
creases the accessible configuration spaceG becomes larger

Although the ‘‘ergodic limit’’ ~as defined above! is for-
mally reached only asT→`, it is expected to be reached
finite temperatures in many physical systems. It is physic
reasonable, therefore, to assumes that there is an ‘‘ergo
temperatureTerg,` for which all of the accessible configu
ration space~defined in terms of long but finite times! is
incorporated in a single basin; i.e.,

RTerg~a8!5G,R3N. ~11!

MTerg(r ) maps all configurationsr P RTerg(a8) 5 G to the
deepest minimum,a8g, in the accessibleG space. Although
there is no guaranty thatagPG ~i.e., that the global minimum
ag is within the accessible configuration spaceG! it is likely
to be true for most cases of physical interest. Equation~11!
also assumes that theG space is connected. Again, this a
sumption is expected to be met for most physical cases
though in principle there can be systems in whichG becomes
connected only atT→`, when it becomes identical toR3N.

III. THE TOPOLOGICAL DISCONNECTIVITY GRAPH

The map and its partitioning of configuration space in
basins can be investigated further by use of topology.31–34In
particular, it allows us to use the set of local minima$a%,
instead of the continuousR~a! basins, in the analysis of th
topology of the potential energy surface. Details of th
analysis are given in the Appendix.

An interesting topological structure is obtained wh
considering the set-of-sets generated by applying theMT~r !
map or theME~r ! map several times each at a different te
perature or energy@the setA3 in Eq. ~A4!#. Each application
J. Chem. Phys., Vol. 106,
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of these mapping procedures yields a different partitioning
the potential energy surface, and the way these partition
change as a function of temperature or energy reveals
underlying topography of the surface. Technically, this re
tionship can be described by a graph which is defined by
inclusion relationship of the different basins, i.e., the w
smaller basins coalesce to form larger basins. An exampl
such a graph is given in Fig. 1. Each vertex on this gra
represents an attraction basinRT~a8! @or RE~a8!# and the
successive horizontal levels correspond to the partition
obtained from the map at different temperaturesT ~or ener-
gies E!. Using common conventions, which represent t
inclusion relationx.y by assigning an arrowx→y to the
edges (x,y) of the graph, we see that the graph in Fig. 1 h
a very well defined directionality associated with it. All th
arrows on this graph are directed downward, pointing in
direction of splitting super basins into smaller sub-basi
Therefore, we name this directed graph,G~F!, the ‘‘discon-
nectivity graph’’ of the potential energy surfaceF ~in future
references to this graph we omit the arrows!. Figure 1 is one
possible example ofG~F!; other examples may have differ
ent branching characteristics.

The disconnectivity graphG~F! has a natural hierarchy
it ~see Fig. 1!. Each vertex at a levelj of the graph corre-
sponds to a basinRj ~a8! defined by the mappingMTj~r ! at a
temperatureTj . All basins associated with an arbitrary ‘‘cur
rent’’ temperature~or energy! are indexedj50, i.e.,R0~a8!.
All ‘‘parent’’ basins, which belong to those levels of th
graph associated with higher temperatures~energies!, are in-
dexedR1(a8),R2(a8) etc., where larger indicesj51,2,...
correspond to higher temperatures~energies!. All ‘‘descen-
dent’’ basins, which belong to levels of the graph layin
below the current level, are indexedR21(a8),R22(a8) etc.,
where smaller indicesj521,22,... correspond to lower tem
peratures~energies!. Thus, the graphG~F! preserves the
temperatures~energies! related connectivity information a
well as the minima information.

FIG. 1. A sample disconnectivity graph of a potential energy surface. E
vertex on this graph represents an attraction basinRT~a8! @or RE~a8!# and
the successive horizontal levels correspond to the different temperaturT
~energiesE! in which the mapping was performed. The arrows repres
inclusion relations between vertices~basins!.
No. 4, 22 January 1997

to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp



ti
he

e

he
in
si
in
ew
th
gu

s

n

re
ra
f
n
d
a
be

f
ep
o
se
er
g
f
y
l
ri

n

in

-
r
ia

e-
truc-

be-

ach

ice

re-
re-

of
ture
are
ear,
of
the
n

es

n
,
ch
the
ures

III
tly
out

ed
h

ph
to
ugh
the

las-
et-
ruc-
the

a
of
or a

1499O. M. Becker and M. Karplus: Multidimensional potential surfaces
Another important characteristic of the graphG~F! is
the number of edges originating at each vertex. This quan
is the main feature that distinguishes one graph from anot
We call this branching number themultiplicity m of a vertex.

AlthoughG~F! does not contain information about th
size of a given attraction basin in the 3N26 dimensional
conformation space, it does provide aqualitativemeasure of
the relative sizeof the attraction basins associated with t
graph’s vertices; i.e., the number of local minima included
the basin. It is expected that often, though not always, ba
which include many minima will have a larger volume
configuration space than basins which include only f
minima. Thus, a qualitative measure is obtained from
number of branches below a given vertex; i.e., the confi
ration space volume of a basinRT~a8! is roughly propor-
tional to the sum over the multiplicities of all the vertice
which are under the vertex of interest

E
R3N

RT~a8! } 11(
j

~mj21!, ~12!

wheremj is the multiplicity of a vertexj and the} sign
stands for proportionality. The term on the left is the co
figuration space volume of basinRT~a8!, and the summation
on the right is over all the vertices of the graph which a
under the vertex of interest. The ‘‘1’’ stands for the cent
branch and the~mj21! summation counts the number o
edges that branch off the main branch. The relation give
Eq. ~12! is not rigorous and there may be situations that
not conform to it; e.g., a small rough region, with many loc
minima, in an otherwise relatively smooth surface will
overweighted by Eq.~12!.

The graphG~F!, which highlights the basin structure o
the PES, is related to the local connectivity tree, which r
resents all the local barriers connecting two local minima
the PES. In factG~F! can be considered to be a coar
grained version of this local connectivity tree. Howev
while the latter is characterized by binary branching alon
continuous energy scale~indicating the pairwise character o
the barriers!, in G~F! the vertices have a higher multiplicit
and are arranged on a discrete energy level. At any leve
theG~F! graph, all minima that are interconnected by bar
ers lower than the energy~or temperature! that defines that
level are joint to a single vertex of the graph. Namely, a
two minima that belong to the same vertex~basin! are con-
nected by a path with barriers not higher than the defin
energy~temperature! of that level.

IV. PES TOPOGRAPHY AND THE GE(F)
DISCONNECTIVITY GRAPH

The disconnectivity graphGE~F! generated by the mi
crocanonical mapME~r !, which uses the absolute barrie
heightsF‡, reflects the underlying structure of the potent
J. Chem. Phys., Vol. 106,
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energy hypersurfaceF. Consequently, there is a relation b
tween the topography of the PES hypersurface and the s
ture of its energy-parametrized disconnectivity graphGE~F!.
The feature of the graph that is sensitive to differences
tween particular topologies is the multiplicitym associated
with each vertex; i.e., the number of edges going out of e
vertex.

A. The metric

Before using the disconnectivity graphG~F! to classify
PES topographies, it is necessary to define themetric that
will be imposed on the abstract graph structure. The cho
of metric is essential, since the graphG~F! does not repre-
sent a metric-independent topology but rather a specific
ducible basis of such a topology. It is not unique and the
fore depends on the metric used to generate it.

The metric used here has two features:
~1! It defines the discrete spacing between the levels

the graph, i.e., sets the intervals of the energy or tempera
parameter with respect to which successive mappings
performed. The resulting set of parameters can be lin
logarithmic or obey other functional forms. This setting
level spacing is essential and may significantly affect
resulting graphGE~F! or GT~F!. In the extreme case of a
infinite level spacing@i.e., only E50 andE5` ~T50 and
T5`! are used#, the graph has the trivial structure of edg
connecting a single root~the full configuration space! to the
multitude of local minima. It has no more information tha
the direct minimization mapMd~r !. In the other extreme
where the parameter spacing is infinitesimally small, ea
individual barrier will be represented as a vertex and
notions of super basins and long range topographical feat
will be lost. The graphG~F! that is generated in this limit is
identical to the local connectivity tree mention in Sec.
above. It is a graph where all local barriers are explici
marked and every vertex has exactly two edges coming
of it ~like an irregular k53 Bethe lattice!.

~2! The second element of the metric, which is employ
only for GE~F!, is that the ‘‘dead branches’’ of the grap
~i.e., edges that do not split any more! are drawn only down
to the energy of their lowest minima. In principle, the gra
itself could be drawn with all dead branches going down
the baseline. The elimination of the dead branches, altho
not essential, helps in visualizing the energy spectrum of
system.

B. Classification of PES

We now use theGE~F! disconnectivity graph to classify
some basic potential energy surface topographies. This c
sification is summarized in Table I. We assume that the m
ric used has a level spacing which reveals the internal st
ture of the surface. In real physical systems one expects
relevant energy spacing to be on the order ofkT, i.e., on the
order of 0.5–2 kcal/mol at room temperature. Naturaly, in
large multidimensional system a combination of several
these elementary topographic features will be needed f
complete description of the surface.
No. 4, 22 January 1997
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1500 O. M. Becker and M. Karplus: Multidimensional potential surfaces
1. A rough PES

Many descriptions of the PES for a protein-formin
polypeptide chain have assumed that it is ‘‘rough.’’2 A
model of such a rough PES is the fractal structure of a K
curve;35 i.e., each basin can be divided intok equal sub-
basins, and so on, at all levels. For this simple case the m
tiplicity m of the vertices of the graph is fixed; i.e.,m5k
5constant for all vertices. The corresponding graph wi
k53 is shown in Fig. 2 along with a one-dimensional sch
matic cut through the 3N26 dimensionalF hypersurface
corresponding to it. In this case the graph is identical t
Bethe lattice of rankk.35 In general, rough potential energ
surfaces~though not necessarily fractal in form! are expected
to characterize glassy systems.

2. A single minimum PES with small fluctuations

Another possible shape for a PES is a surface wit
dominant single minimum that may have some small fl
tuations in the neighborhood of the minimum. On such
surface a decrease in the energyE reduces the size of th
‘‘accessible’’ surfaceG but does not branch theGE~F!
graph; i.e.,m51 for all vertices. Only atE→0 the weak
variations that are expected to be present in complex sys
like proteins,14,15may become significant and the single d
scending line will split at its lowest end into many sma
branches. In this case the multiplicity ism51 down to

FIG. 2. A schematic one-dimensional partial cross section through a ro
3N-dimensional potential energy hypersurfaceF ~triadic Koch curve!. The
horizontal lines on the PESF correspond to the energies used by the m
Ma~r ;E! to define theR~a! basins. These energies determine the cor
sponding levels on the disconnectivity graphGE~F!.

TABLE I. Classification of basic PES structures in terms of theirGE~F!
graphs~in terms of the microcanonical ensemble!.

F
Potential energy surface

GE~F!
Disconnectivity graph

m
Vertex multiplicity

Rough An ever branching graph. m.1 for all E

Single minimum
~with weak fluctuations!

A single nonsplitting branch
~some splitting at lower end!

m51 for E.0
~m.1 for E→0!

Funnel A single splitting branch
with many dead branches
splitting from it.

Main branch:
^m&.1 for all E
Other branches:
^m&>1 at highE
m51 at lowE
J. Chem. Phys., Vol. 106,
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E→01e wherem.1 ~in fact one expectsm@1!. This PES
topography and the correspondingGE~F! graph are shown in
Fig. 3.

3. A funnel shaped PES

The ‘‘funnel’’ structure, which has been postulated to
important in protein folding,26,27 is related to the single mini-
mum potential; the role of such funnels in protein folding h
yet to be confirmed.36 In both the funnel and the simpl
minimum potential there is a deep minimum flanked
weaker local minima. The main difference between the t
topographies is that in the funnel the flanking local minim
exist over a wide range of energies, and therefore appea
all levels of the graph. As in the rough surface, each decre
in the mapping parameter can split the basins and branch
graph, but in a funnel most of these branches are expecte
‘‘die out’’ quickly; i.e., each branch reaches a local min
mum and appear in theGE~F! graph as an unbranched d
scending line. Ideally, only one branch, which correspond
the core of the funnel, continues to branch down toE50.
The graph of this topography, is therefore characterized b
single splitting branch which has an average multiplic
larger than 1~^m&.1! over the whole temperature range; a
averagêm& is used because there may be vertices where
branching occurs due to the irregularity of the surface,
though the overall feature is of a branching branch. Ot
branches may start withm>1 but then collapse to am51
branch. Figure 4 presents a schematic picture of the fun
potential energy surface and its correspondingGE~F! graph.

gh

-

FIG. 3. A schematic representation of the PESF and correspondingGE~F!
graph for a single minima with weak noise.

FIG. 4. A schematic representation of a funnel potential energy surfacF
and its correspondingGE~F! graph.
No. 4, 22 January 1997
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1501O. M. Becker and M. Karplus: Multidimensional potential surfaces
V. THE RELATION BETWEEN PHYSICAL
PHENOMENA AND THE GT(F) GRAPH

While the microcanonical~energy dependent! discon-
nectivity graphGE~F! can be used to classify the shape a
the topography of potential energy surfaces, the canon
~temperature dependent! disconnectivity graphGT~F! is use-
ful for describing the kinetics, both qualitatively and quan
tatively. In this section we present a qualitative descript
of the kinetics of the system in terms of the canonical d
connectivity graphGT~F! and the super basin mapping pr
cedureMT(r ). In Sec. VI we present a quantitative treatme
of the kinetics based on the master equation. In general
graph can also be used to discuss and describe other phy
phenomena such as glass transitions and freezing.

The disconnectivity graphGT~F! at a temperatureT par-
titions the PES into a set ofRT~a8! basins. This offers a
simple representation that can be used in a qualitative
scription of the kinetics of a complex system. We define
‘‘transition’’ as motion along a path that crosses a barr
higher than the thermal energy. Since local states incor
rated in a given basin are separated by barriers lower
kT, there are no formal ‘‘transitions’’ between these stat
which are in rapid equilibrium. Therefore, the initial an
final states in any kinetic transition are, in fact, not pu
‘‘states’’ ~local minima! but collections of local minima tha
belong to the same basin. Namely, basins, and not min
the elements that define the kinetics of the system. Ba
that are separated by low barriers have a high probability
transition between them and basins that are separated by
barriers have low transition probabilities.

The disconnectivity graphGT~F! reflects this type of
kinetic connectivity~Fig. 5!. In fact, the levels of the graph
reflects akinetichierarchy. As described in Sec. III, we num
ber the levels of the graph relative to the system temperat
which is assigned the index 0. All nodes on the 0-level of
graph represent actual super-basins at this tempera
These are denoted as Ra, Rb, Pa etc., and in many case
connected to several sub-basins, which in turn are in ra

FIG. 5. A schematic representation of kinetic transitions on a canon
disconnectivity graphGT~F!. 0→0 transitions are denoted by solid arrow
0→1 transitions are denoted by dashed arrows.
J. Chem. Phys., Vol. 106,
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equilibrium. The transition rate between the 0-level vertic
of GT~F! ~i.e., super basins on the PES! is related to the
location of their least upper bound~or join! on the graph,
which in turn is proportional to the height of the lowe
barrier separating the two basins. The higher thejoin ~i.e.,
the higher the barrier!, the slower the transition. Figure
illustrates kinetic transitions on the disconnectivity grap
Transitions between 0-level basins with a join at level 1@de-
noted as 0→~1!→0 transitions# are expected to be faster tha
those between basins with a join at level 2@0→~2!→1 tran-
sitions#.

Another feature that influences the rate of transitio
especially if the kinetic hierarchy is not strongly ‘‘sep
rated’’ ~i.e., the energy differences between levels are
large!, is the connectivity among the different basins.
given transition probability depends not only on the barr
height but also on the probability of reaching the vicinity
that barrier from different parts of the surface. In case o
transition that crosses a level-2 barrier, it means that
internal connectivity within the level-1 super basins can
fect the rate. We use theG~F! graph~Fig. 5! to illustrate this
point. TwoR0~a8! basins within a givenR1~a8! super basin
are directly connectedif the path connecting their two re
spectivea8 minima does not go through any otherR0~a8!
basin. A limiting case is that of maximal connectivity withi
a super basin, in which all possible pairs of basinsR0~a8!
that belong to the same ‘‘parent’’R1~a8! super basin are
directly connected. For example, in the system shown in F
5 the maximal connectivity limit means that there is a dire
path connecting each of the three possible basin pairs:
Rb, Ra–Rc, and Rb–Rc, that belong to the ‘‘R’’ super basin.
This is schematically represented in the ‘‘basin connectiv
graph’’ of Fig. 6~a!, which shows the direct connections b
tween basins. In this case, all the level-0 basins~Ra,Rb,Rc!
are not more than one basin away from the level-2 barr
which is located between Ra and Pb. If the internal conn
tivity within super-basinR is less than maximal@as illus-

al

FIG. 6. A ‘‘basin connectivity graph’’ schematically representing the co
nectivity among the basins defined in Fig. 5:~a! maximal connectivity
within the super basins,~b! minimal connectivity within the super basins
Dots indicate local minima, dashed lines are direct barriers between ba
and the solid line is the level-2 barrier connecting super basinR and super
basinP.
No. 4, 22 January 1997
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1502 O. M. Becker and M. Karplus: Multidimensional potential surfaces
trated in Fig. 6~b!# some basins are significantly further aw
from the level-2 barrier.

It is useful to distinguish between a strong kinetic hie
archy and a weak kinetic hierarchy:

~i! If there is a strong hierarchy, reflected in a lar
energy separation between the levels of the graph, there
time separation between 0→~1!→0 transitions, 0→~2!→1
transitions etc.~Fig. 5!, which is essentially independent o
the multiplicity of the connectivity. Before each 0→~2!→1
transition there is sufficient time for equilibration among t
0-level basins on the ‘‘reactant’’ side, and the rate of t
0→~2!→1 transition will not depend on the 0-level conne
tivity ~within the level-1 reactant basin!. This type of time
separation between 0→0 transitions and~at least! 0→1 tran-
sitions was observed in simulations of the protein bov
pancreatic trypsin inhibitor~BPTI!,15 and corresponds to th
tier picture suggested by Frauenfelder and co-workers
transitions in myoglobin.20–22

~ii ! If the kinetic hierarchy is weak, as reflected in
small energy separation between levels on the graph, t
will not be a well-defined time separation between tran
tions relating to the different levels. This means that inter
equilibration within the ‘‘reactant’’ super basin is no
achieved before the higher order kinetic transitions ta
place, and the reaction rate will depend on specific conn
tivity among the reactant 0-level basins. A graph of ba
connectivity~as in Fig. 6! shows the internal structure of th
basin and helps in locating entropic contributions to the
netics.

In a similar way, the connectivity within the ‘‘product’
R1~a8! basin influences theshort-time nonequilibriumdistri-
bution among final states~the final equilibrium distribution is
insensitive to this!. TheGT~F! graph shows that a 0→~2!→1
transition starts at a level-0 basin~within the reactant supe
basin!, crosses a level-2 barrier~the join! and ends up in the
level-1 ‘‘product’’ super basin. Although the system final
ends up with an equilibrium distribution among the vario
level-0 product basins~Pa,Pb,Pc!, theGT~F! graph does not
reveal the kinetics of this distribution, especially on sh
time-scales. An insight into this process requires the ‘‘ba
connectivity graph’’ described in Fig. 6.

VI. ‘‘BASIN-TO-BASIN’’ KINETICS

The basin picture of the potential energy surface focu
on the basins, and not the energy minima, as the elemen
entities that govern the behavior of the system. It highlig
the role of groups of states that are in rapid equilibrium a
given temperature. The focus onbasin to basinkinetics con-
trasts with thestate to statekinetics often employed in ga
phase and molecular beam reactions6 or the complete aver
aging over initial and final states in solution reactions. In t
section we explore quantitatively the basin-to-basin kine
that was discussed qualitatively in the previous section.
analyze the transition matrix for the system and introduc
new representation of the master equation that reveals
basin to basin kinetics by summing over the states that
long to any given basin~see Sec. VI C!.
J. Chem. Phys., Vol. 106,
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A. The master equation

The master equation is a loss–gain equation which
scribes the time evolution of the probabilitypi(t) for finding
the system in a statei .16 The basic form of this equation is

dpi~ t !

dt
5(

j
@Wij pj~ t !2Wji pi~ t !#, ~13!

whereWij is the transition probability from statej to statei .
Equation~13! can be rewritten in matrix form by defining th
transition matrix elements as

W i j5Wij2d i j S (
k
WkiD . ~14!

The matrixW has the properties thatW i j>0 for iÞ j and
that the sum over each column is zero; i.e.,(iW i j50 for all
j . This last property is required for a closed system so t
the flux out of any given state remains within the syste
~i.e., goes into the other states of the system!. In matrix form
Eq. ~13! becomes

ṗ~ t !5Wp~ t !, ~15!

which has the formal solutionp(t) 5 etWp(0); wherep(t) is
the probability vector at timet.

B. The transition matrix

We now consider the structure of the transition mat
W in the basin description given in Sec. II. For the pepti
and protein systems of primary interest here, each stai
corresponds to one of the potential energy minimaa. In such
systems theWij transition probabilities are the state to sta
rate constants,ki j , for a transitionj→ i . Given a knowledge
of the minima and transition states it would be possible
use transition state theory, for example, to evaluate the
constants.37 In this case, we have

ki j5Wij5
kT

h

Qi j
#

Qj
exp~2Ei j /kT!, ~16!

wherek is the Boltzmann constant,h is the Planck constant
Qj is the partition functions of the ‘‘reactant’’ state,Qi j

] , is
the partition function of the transition state andEi j is the
barrier height measured relative to statej . Depending on the
nature of the environment and the interest in more quan
tive kinetics, a stochastic description~Kramers theory! or
more accurate rate theory should be used instead of
~16!.38

In the usual case of nondegenerate states

Ei jÞEji for EiÞEj , ~17!

so that the transition matrixW is not symmetric, with
Wij.Wji in most cases ifEi,Ej . The diagonal matrix ele-
ments are assigned the valueW i j52S iÞ jW i j to fulfill the
requirement thatSiW i j50 for all j .
No. 4, 22 January 1997
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1503O. M. Becker and M. Karplus: Multidimensional potential surfaces
From the formulation of the potential energy surface
terms of temperature dependent basins,RT~a!, ~Sec. II! all
barriers that connect minima that belong to the same b
are lower thankT. Therefore, transitions within such a bas
have a high probability~relative to inter-basin transitions!
and there is rapid equilibration. As a result the physica
interesting kinetics of such systems is best described in te
of basin to basintransitions and notstate to statetransitions.
To introduce this behavior into the master equation, we
write the transition matrixW in block form

W5S WAA WAB WAC • • • WAT

WBA WBB WBC • • • WBT

WCA WCB WCC • • • WCT

• • • • • • •

• • • • • • •

• • • • • • •

WTA WTB WTC • • • WTT

D , ~18!

where theWAA , WBB ,... blocks along the diagonal includ
the transitions within a givenRT~a8! basin while the off-
diagonal blocks~e.g.,WAB , WBA!, include the transition el-
ements between two such basins. TheWAA , WBB ,... blocks
may be rearranged, without loss of generality, so that
deepest minimuma8 of the basin corresponding to bloc
WAA is deeper than the deepest minimum of the basin co
sponding to blockWBB , etc. In the last block along the d
agonal, denoted here byWTT ~for ‘‘transient’’!, we include
all the high energy states; theWTT block is somewhat loosely
defined and is introduced for completeness. It includes
states with a very small input flux and a very large outp
flux; the fact that it could be further partitioned is unimpo
tant for the present discussion.

The definition ofWij @Eq. ~16!# implies that all off-
diagonal terms are nonzero. This means that, in generaW
cannot be decomposed into block diagonal form and
equilibrium distributionp~`! is expected to be spread over
large portion of state space. However, since states may
be connected directly~as was discussed in Sec. V!, many of
the off-diagonal terms in Eq.~18! are expected to be ver
small. At short and intermediate time scales these terms
often be neglected leading to a simpler description of
kinetics of the system.

C. Basin population probabilities and master
equation

To focus on the basin populations and inter-basin tra
tions, it is useful to transform the master equation@Eq. ~15!#.
Instead of expressing the probability vectorp(t) on a state-
by-state basis, Eq.~15! can be rewritten by introducing basi
probabilities in the form
J. Chem. Phys., Vol. 106,
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p~ t !5S •
•
•

pi~ t !
•

•

•

D 5S PA~ t !
PB~ t !
PC~ t !
•
•
•

PT~ t !

D , ~19!

wherePA(t), PB(t) etc. are vectors which incorporate all th
states that belong to a given basinA, B, etc.; i.e., each of
these vectors are defined

PI~ t !5S •
•
•

pi~ t !
•
•
•

D , iPI . ~20!

With this definition of basin vectors, the master equati
@Eq. ~13!# can be rewritten in terms of thesePI(t) as

dPI~ t !

dt
5(

J
@WM IJPI~ t !2WM JIPI~ t !# ~21!

or

P̃
˙

5WM P̃, ~22!

where theWM matrix is in the basin-block form introduced i
Sec. VI B. The new equations, Eqs.~21! and~22!, which are
cast in terms of conformation basins, are a compact and
cused form of the master equation@Eq. ~13!#. In addition, we
can define a new probability vectorP8(t) which gives the
accumulated probability of finding the system in a given b
sin, rather than in a given state. The scalar elementsPI8(t) of
P8(t) are defined as the sum over the probabilities of
individual states in basinI ,

PI8~ t !5(
iPI

pi~ t !. ~23!

Sincep(t) is normalized,P8(t) is also normalized; i.e.,

(
I
PI8~ t !5(

I
(
iPI

pi~ t !51. ~24!

The time evolution of this probability vector is given b
the transition matrix in the block form of Eq.~18!. In Sec.
VII D, we examine the transition matrixW and the time
evolution of the basin probability distributionP8(t) for the
specific case of the tetrapeptide IAN.

VII. AN EXAMPLE: THE IAN TETRAPEPTIDE

The topological analysis in Sec. II C and subsequent d
cussions are based on theMT andME maps of the multidi-
mensional potential energy surface. Constructing a fullMT

map, is a time-consuming task for a complex system.
each of the temperatures it is necessary to generate a
No. 4, 22 January 1997
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1504 O. M. Becker and M. Karplus: Multidimensional potential surfaces
dynamics trajectory that samples the conformation sp
which is accessible at that temperature. It is then necessa
perform ‘‘finite time’’ simulated annealing for many confor
mations along the trajectory. Because of the difficulty of o
taining complete results by this approach even for relativ
small systems~e.g., rare gas clusters of 15 or more atom
peptides of 10 or more residues! approaches based on stati
tical sampling have been introduced.13 However, if the sys-
tem is simple enough, it is possible to determine the mini
and local barriers directly and to construct the disconnec
ity graphsG~F! from them. A molecule for which the nec
essary information about the minima and barriers is availa
is the tetrapeptide isobutyryl-~ala!3-NH-methyl ~IAN ! in
vacuum ~Fig. 7!, which was studied by Czerminski an
Elber.17,18This peptide, which is a derivative of tetra-alanin
is the simplest model system that can form a fulla-helical
turn, including the stabilizing hydrogen bond between t
first and the fourth amide plane.

In the polar hydrogen representation,39 with methyl
groups treated as single extended carbon atoms, IAN ha
72-dimensional conformation space, excluding overall tra
lation and rotation. However, the conformational transitio
of the peptide are well described in terms of a much sma
coordinate manifold. It consists of the seven soft torsio
corresponding to the dihedral anglesf andc ~Fig. 7!. Czer-
minski and Elber17,18 located 139 local minima and 502 bar
riers on the potential energy surface of this tetrapepti
With this information they looked at the barrier spectrum a
found a possible pathway from an ‘‘a-helix’’ conformation
to an extended ‘‘b-sheet’’ conformation. They also calcu
lated the relaxation times for the system using the mas
equation formulation.18 We use the data for IAN, which they
kindly made available to us,40 to construct the disconnectiv
ity graph and investigate the topography of this potent
energy surface. We then examine its basin-to-basin kinet
The present results provide a viewpoint that compleme
the work of Czeminski and Elber and present a clear illu
tration of the utility of the formulation.

A. Potential energy surface topography and
disconnectivity graphs

The search algorithm used by Cerminski and Elb
started with the minimum energy path between two config

FIG. 7. The tetrapeptide IAN@isobutyryl-~ala!3-NH-methyl#. The soft tor-
sions~f,c! are on each side of the C(i ) carbons.
J. Chem. Phys., Vol. 106,
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rations resembling ana-helix and ab-sheet, respectively
and then recursively determined alternative paths betw
any two minima encountered during the search.17,18 Each
path calculation involved several refinement steps and
search was ended when no new minima were found.
resulting 139 minima are a good representation of the imp
tant portions of the vacuum potential energy surface,
though some high energy minima are probably missi
Since the search was biased towards thea-helix andb-sheet
like conformation, it is possible18 that some structures wer
missed. The 139 minima were connected by 502 direct tr
sition states, i.e., barriers that connect two minima with
intermediates. Of the 502 barriers, only 393 were barri
that define connectivity between different minima. The oth
109 barriers were either self-connecting paths@i.e., paths that
starts at a given minimum, crosses a saddle point and ret
on the other side to the same minimum~20 barriers!# or
correspond to higher-lying saddle points between alre
connected minima~89 barriers!. When two minima were
connected by more than one path, we used the lowest t
sition state to describe the connectivity and the basin kin
ics.

Figures 8 shows the energy disconnectivity graphGE~F!
for the tetrapeptide IAN on different scales. The energy
relative to the global minima~E50!, and the point where the
branches terminate are the exact energies of the corresp
ing minima ~Sec. IV A! ~except for some high lying
minima!. In Fig. 8~a! the levels of the graph are separated
DE51 kcal/mol. Since each vertex of the graph correspo
to a basin on the PES~Sec. III!, the vertices at levelE56
kcal/mol represent basins which include minima connec
by barriers no higher than 6 kcal/mol, while vertices at lev
E55 kcal/mol represent basins with barriers not higher th
5 kcal/mol. Figures 8~b! and 8~c! are the corresponding
GE~F! graph with different level spacing; Fig. 8~b! is on the
scale ofDE50.5 kcal/mol and Fig. 8~c! is on the scale of
DE52 kcal/mol. While all three graphs correspond to t
same system, they show that the impression obtained f
the graph depends on the choice of energy scale. In par
lar, Fig. 8~b! shows that, although the funnel structure c
still be recognized even at higher resolution, the more
tailed branching picture makes it harder to identify glob
features. The more coarse graph in Fig. 8~c! shows the fun-
nel, but misses some of the interesting features in Fig. 8~a!,
as described below. Thus, it is important to use several
ferent scales in constructing disconnectivity graphs to ob
a full understanding of a given system.

The graph in Fig. 8~a! has one main central branch~ver-
ticesA–B–C–D!; i.e., the overall structure of the potentia
energy surface is that of a multidimensional ‘‘funnel’’~see
Sec. IV B and Fig. 4!. There is only one relatively large sid
branch indicated in Fig. 8~a! as vertex E. It is significantly
smaller than the main branch and ends at an energy ab
the global minimum. All 10 lowest minima and 14 out of th
15 lowest minima are inside the main funnel. The 20 low
minima are numbered in Fig. 8~a! and their energies are
given in Table II.

As the energyE of theME~r ! map decreases, the ‘‘size’
No. 4, 22 January 1997
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1505O. M. Becker and M. Karplus: Multidimensional potential surfaces
of the basin, which is related to the configuration space v
ume, of the main funnel also decreases. The size of a b
can be described by the number of minima incorpora
within it @see Eq.~12! and Sec. III above#. As we move down
from higher energies towards vertex A@using the notation in
Fig. 8~a!#, we find that initially only few high laying minima
become disconnected from the main basin, and that no
nificant splitting is observed. Vertex A, defined at theE57
kcal/mol level of the graph, corresponds to a basin of s
103; i.e., 103 out of the 139 minima are incorporated with
it ~and connected by barriers lower than 7 kcal/mol!. At one
level down~E56 kcal/mol!, the A basin has split into thre
sub-basins B, E, and F plus many smaller basin ‘‘fragmen
which include only a single minimum. Of the three ma
sub-basins, vertex B incorporates 55 minima, vertex E inc
porates 17 minima and vertex F has only 3 minima~a ratio of
1:0.31:0.05!. The structure under vertex E is not that of
funnel, but rather a region on the PES where a group
minima of similar energy are separated by relatively h
barriers. As the energy is reduced toE55 kcal/mol, the main
A–B–C branch shrinks further in volume and incorporat
39 minima at vertex C, with only very minor side branche
J. Chem. Phys., Vol. 106,
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Significant splitting occurs at the next level~E54 kcal/mol!,
where three identifiable sub-basins D, G, and H, are form
The central basin D, which leads down to the bottom of
funnel, has 14 minima, including 5 of the lowest 10 minim
Basin G incorporates 8 minima~including 4 of the lowest 10
minima! and basin H has only 2 minima including the e
tended ‘‘b strand’’ structure. From this level down it is har
to identify a central funnel as multiple branching occu
with two different branches containing the lowest and nex
lowest minimum.

In Fig. 8~b! with an energy spacing of 0.5 kcal/mol, a
the branches are shown down to their lowest minima@as in
Fig. 8~a!#. At this ‘‘finer’’ resolution the splitting of vertex A
to three sub-basing is preserved; atE56.5 kcal/mol, there
are 63 minima under vertex B, 21 under vertex E and 7 un
vertex F @a ration of 1:0.33:0.11, similar to that obtaine
from Fig. 8~a!#. Note, that the additional minima, now inco
porated in basin F, were classified in Fig. 8~a! under basin A.
Of interest in this more detailed graph is that the basin wh
corresponds to vertex H is larger than shown in Fig. 8~a!;
i.e., it includes more local minima than appear in Fig. 8~a!.
This basin splits from the main branch of the funnel
el,
The energy
branches
ow lying
of these
FIG. 8. Disconnectivity graphsGE~F! of IAN: ~a! mapped using a level spacing ofDE51.0 kcal/mol. The overall structure approximates that of a funn
though there are additional features outside the funnel. The numbers indicate the ordering of the 20 lowest minima on the potential energy surface.
scale is set relative to the lowest minima, i.e., the energy of minima #1 is 0 kcal/mol and the energy of minima #20 is 1.902 kcal/mol. For clarity,
leading to high lying minima were drawn only down to the next level of the graph. Other branches were drawn down to their respective minima. L
minima were drawn down to their respective minimum energy. The letters A–I indicate vertices of interest. The number of minima below each
vertices are: A-109; B-55; C-39; D-14; E-17; F-3; G-8; H-2; I-2. The symbolsa andb indicate minima closest to thea-helix andb-sheet conformations,
respectively.~b! The same withDE50.5 kcal/mol,~c! the same withDE52.0 kcal/mol.
No. 4, 22 January 1997
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1506 O. M. Becker and M. Karplus: Multidimensional potential surfaces
E54.5 kcal/mol and carries with it a cluster of 8 minim
The ‘‘additional’’ 6 minima, with respect to Fig. 8~a!, are
relatively high in energy; they rank between number 36 a
52 and were included in vertex C in Fig. 8~a!.

As discussed above~Sec. III!, a continuous mapping
with infinitesimal level spacing~DE→0! will result in a pic-
ture of the local connectivity. Such a continuous mapping
IAN for a small portion of the PES can be found in Ref. 1

B. Conformations and basins

An important question is the extent to which connec
configurations are near each other in conformation sp
and whether the similarity decreases as the location of
join increases in energy. In other words, how similar a
conformations that according to theG~F! graph belong to
the same basin. We use theG~F! graph in Fig. 8~a! and
analyze the structures of the 45 lowest minima, plus sev
of the high energy minima. To do the analysis we make
of the seven mainchain dihedral angles of the tetrapep
shown in Fig. 7. They are theF andC angles of the three
alanines andC0, the dihedral angle of theN terminal
C~CH3! group. Table II lists the energies and dihedral ang
of the 45 lowest minima of IAN grouped according to th
basins depicted in Fig. 8~a!. The three high energy minima
plus minimum 44, are not associated with any of these
sins. In particular, minimum 44 branches of above basin

FIG. 8. ~Continued.!
J. Chem. Phys., Vol. 106,
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~in basin A! and the other three branch off at the very top
the graph. Table III summarizes the data in terms of char
teristic angles for each basin. From the data one sees
while some dihedral angles have essentially unique value
a given basin~e.g., the central angleF2, which has the range
270°620° in basin D and 58°67° in G!, others exhibit a
number of alternative values.

The central funnel beginning with basin B and extendi
downward in energy, includes a wide range of dihedral an
values. The angleF3 is negative for all structures and main
in the neighborhood of270°620°, although basin D show
a wider range of values. ForF3, the basins~E,F,I! outside
the funnel all haveF3 values of 60°62°.

The split of the funnel~basins B and C! into its two main
components, basins D and G, is defined mainly by the
‘‘central’’ dihedralsC1 andF2. Their values lead to a ben
that is common to basins D and G@see Fig. 9~a! and 9~b!#. In
D this bend is similar to a type I turn~F2'260, C2'230
andF3'290, withC3 variable for the lowest energy struc
tures!. TheN-terminal dihedrals~F1,C2! seem less signifi-
cant. Structure 16, which is described as a standarda-helix
by Czerminski and Elber deviates significantly from
a-helix, in terms of its dihedral angles and its hydrogen bo
~1–3 rather than 1–4!.

Minima #34 and #36~grouped under ‘‘C~not in D, G,
H!’’, which are the conformations that form a bridge b
tween basin D and basin G~Fig. 10~c!#, correspond to a
mixture of the two basin structures. They are similar to the
basin in two dihedrals~F2 andC2! and to basin G in two
other dihedrals~F1 andC1!; F3 is common to both basins
and the terminal dihedrals are less specific. Similar beha
is found in the minima grouped under ‘‘B@not in C#’’. Here
dihedralsF1 andC1 are similar to basin D while dihedral
F2 andC2 are like basin G.

Basin H, which also is part of the central funnel, exhib
an extended conformation~b-strand type! very different
from the ‘‘bent’’ conformations of basins D and C@see Figs.
9~a! and 9~c!#. It has been noted recently41 that the minima of
such extended strands are nearF>70°, C>75°, instead of
the ‘‘ideal’’ values in the neighborhood ofF52140°,
C5140°. The conformations of basin H differ from those
basin G by only two dihedrals; they areF25270° and
C2570° in basin H, vsF2555°–65° andC25250°–270°
in basin G. From Fig. 8~b! one sees that basin H splits from
the central funnel at a higher level than basins D and
indicating that a higher barrier is associated with the cha
of dihedral angles.

Although the nonfunnel basins share the sa
C-terminal dihedral angles~F3 andC3!, they differ in the
other angles. An interesting characteristic of basin E is t
while all its minima share anglesF2, F3, andC3 ~270°–
290°; 60°;260°, respectively!, they can have one of two
values forC2 ~70 and220!. This results in conformations
that look very different from each other@see, for example,
Figs. 9~d! and 9~e!#.

The energetic effect of theN-terminal dihedralC0 is
very small. Its variation consistently leads to changes
about 0.05–0.10 kcal/mol for pairs of minima such as tho
No. 4, 22 January 1997
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TABLE II. The energies and dihedral angles of the lowest 45 minima of IAN grouped together according to their basin assignment. A few high lying
are added for comparison. The energies, in kcal/mol, are given relative to the lowest minima on the surface.

No. Energy C0 F1 C1 F2 C2 F3 C3

Basin D @includinga-helix ~#16!#
1 0.000 260.54 50.97 271.95 288.03 231.32 276.49 73.28
6 1.021 258.18 44.91 283.68 267.18 225.82 294.16 12.62
2 0.109 103.73 48.93 272.11 293.29 228.75 277.33 71.62
4 0.959 109.94 41.02 284.71 266.82 225.73 299.05 14.45
8 1.291 125.10 252.35 232.95 270.74 222.19 2101.86 232.52
13 1.546 124.70 248.23 234.14 258.25 220.63 284.38 26.84
15 1.748 118.00 57.84 262.81 275.16 70.10 272.85 72.12
18 1.828 259.73 58.10 262.88 275.21 69.92 272.92 72.09
16 1.750 262.53 253.37 231.78 269.52 222.31 2102.81 232.63
17 1.776 262.14 249.16 232.84 258.16 220.18 283.54 27.50
29 2.526 125.06 251.69 222.03 272.90 220.39 277.06 67.36
33 2.773 262.36 252.56 220.87 272.29 220.19 276.83 67.58
35 2.958 128.58 256.15 248.83 279.15 45.11 2167.12 248.84
37 3.211 262.83 259.36 250.19 279.28 48.31 2167.12 249.09

Basin G
3 0.897 263.61 272.79 80.81 64.56 256.64 272.91 74.95
5 0.969 126.71 271.21 81.63 64.92 255.89 272.69 74.94
7 1.161 262.00 273.40 78.46 55.03 269.37 293.85 223.99
10 1.360 126.60 271.42 81.35 56.59 268.68 292.31 224.64
12 1.427 124.40 256.55 124.51 63.21 247.31 269.99 225.06
23 2.103 264.62 258.34 124.23 63.17 247.65 269.69 224.76
32 2.720 120.23 286.48 66.18 62.32 254.11 282.86 146.25
38 3.225 283.00 290.72 60.56 60.75 255.00 283.97 151.61
42 3.710 256.68 271.83 145.28 51.06 269.00 288.47 219.79

Basin H @includingb-strand~#11!#
9 1.344 261.34 273.90 72.91 272.14 71.31 272.43 72.46
11 1.386 122.05 273.50 72.56 272.28 71.27 272.44 72.46

Basin C~outside of sub-basins D, G, H!
34 2.957 261.33 274.95 70.27 253.39 222.61 277.43 211.99
36 3.012 122.17 274.57 69.88 253.59 222.50 277.46 211.99
45 3.863 261.33 274.44 72.67 268.85 228.09 275.21 69.90

Basin B ~outside of sub-basin C!
26 2.414 118.58 58.64 262.13 57.97 260.69 274.56 71.68
27 2.482 259.98 58.82 262.23 57.97 260.69 274.56 71.68
30 2.618 118.50 58.67 261.25 49.73 270.30 94.43 221.56
31 2.683 259.95 58.87 261.33 49.77 270.30 294.48 221.56

Basin E
14 1.703 115.31 56.07 267.34 279.15 69.12 60.40 261.14
19 1.873 257.55 57.25 266.47 278.49 70.30 60.97 260.69
20 1.902 261.33 273.74 73.20 272.41 74.64 61.79 259.42
21 1.943 122.04 273.34 72.84 272.56 74.59 61.78 259.43
22 1.966 116.76 48.80 271.88 290.42 223.41 59.74 259.93
24 2.274 257.85 50.45 271.87 289.03 224.86 59.67 259.82
41 3.544 124.84 252.59 222.87 275.29 215.19 58.86 261.14
43 3.711 262.41 253.49 221.95 274.72 215.55 58.87 261.14

Basin F
25 2.410 261.77 273.74 77.04 61.91 260.21 59.26 259.99
28 2.492 123.43 272.97 77.29 62.06 260.12 59.28 259.99

Basin I
39 3.359 118.57 58.71 262.02 58.19 261.27 58.96 260.21
40 3.428 259.97 58.89 262.11 58.21 261.27 58.96 260.21

Some minima outside all of the above basins
44 3.792 123.53 269.67 70.38 176.43 240.67 2104.01 234.30
127 9.330 125.98 267.91 220.55 2143.31 144.46 2143.67 147.80
128 11.475 116.45 43.44 34.61 48.28 29.09 58.76 17.03
137 11.675 272.68 2143.39 102.60 47.99 53.34 54.53 274.75
J. Chem. Phys., Vol. 106, No. 4, 22 January 1997
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TABLE III. Characteristic dihedral angles of the different basins~based on the lowest 41 minima specified in Table II!. Angles are rounded to the close
multiple of 5. The numbers in parentheses indicate the percentage that a specific angle range appears within the basin.

Basin C0 F1 C1 F2 C2 F3 C3

D 100 to 125~50%! 40 to 60~43%! 220 to285 260 to290 220 to230 ~71%! 270 to2100 ~86%! 70 ~43%!

~14 minima! 260 ~50%! 250 to260 ~57%! ~220 to235! ~43%! 70 ~14%! 2165 ~14%! 15 ~14%!

~250 to285! ~57%! 45 ~14%! 210 ~14%!

230 ~14%!

250 ~14%!

G 120 to 125~44%! 255 to290 60 to 80~67%! 50 to 65 250 to270 270 to290 150~22%!

~9 minima! 255 to265 ~44%! 125 ~22%! 70 ~22%!

285 ~11%! 145 ~11%! 220 to225 ~56%!

H 120 ~50%! 275 70 270 70 270 70

~2 minima! 260 ~50%!

C ~not D,G,H! 120 ~33%! 275 70 250 to270 220 to230 275 210 ~66%!

~3 minima! 260 ~66%! 70 ~33%!

B ~not in C! 120 ~50%! 60 260 50 to 60 260 to270 275 to295 70 ~50%!

~4 minima! 260 ~50%! 220 ~50%!

Summary of 120~47%! 250 to295 ~66%! 220 to285 ~60%! 255 to290 ~60%! 220 to270 ~80%! 270 to2100~94%! 210 to230 ~40%!

basin B

~32 minima!

260 ~53%! 40 to 60~33%! 60 to 80~33%! 50 to 65~40%! 45 to 70~20%! 150/70/15//250

E 115 to 125~50%! 50 to 55~50%! 270 ~75%! 270 to290 70 to 75~50%! 60 260

~8 minima! 260 ~50%! 250 to270 ~50%! 220 ~25%! 215 to225 ~50%!

F 120 ~50%! 270 80 60 260 60 260

~2 minima! 260 ~50%!

I 118 ~50%! 60 260 60 260 60 260

~2 minima! 260 ~50%!
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of basins H, F, and I. On the other hand, the energy bar
associated with this simple 180° dihedral angle flip~between
two values:260° and1120°! is rather high, typically 2 to 3
kcal/mol.

The high energy minima listed in Table II are quite d
ferent from any of the low energy structures; e.g., minimu
127 has most of the dihedral anglesF2, C2, F3 in the ideal
b-strand region, which is higher in energy than the act
strand minimum, as described above.

The basin designated by vertex H is particularly intere
ing. As already mentioned, the conformations incorpora
in basin H are extended. However, Fig. 8~a! indicates that
this basin is part of the central funnel, which otherwise
corporates nonextended conformations@Figs. 9~a! and 9~b!#.
This difference can be understood from the finerGE~F!
graph generated with 0.5 kcal/mol resolution@Fig. 8~b!#. At
this resolution one sees that the H basin branches off f
the central core of the funnel atE54.5 kcal/mol, 0.5 kcal/
mol above the point where the D and G branches sepa
The difference between the folded D-vertex configuratio
and the extended H-vertex configurations shows that con
tivity is not always simply related to conformational simila
ity.

C. Details of connectivity

TheG~F! graph~Fig. 8! shows the splitting of confor-
mation space into smaller basins as the total energyE de-
creases. It does not indicate, however, whether the min
J. Chem. Phys., Vol. 106,
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inside a basin are highly connected to each other due to
presence of multiple paths or whether they have only
minimal internal connectivity needed to define a basin. T
difference, which is of importance for understanding the
netics can be addressed by using the basin connectivity g
introduced in Sec. V~Fig. 6!. This graph shows the direc
connectivity within a given basin at a given total energyE.

Figure 10 shows graphs of the internal connectivity
different energy levels of the 39 minima of IAN that a
included in basin C, which corresponds to the ‘‘center’’
the funnel @Fig. 8~a!#. The graph is a projection of the
minima from the 3N-dimensional conformation space onto
plane. Each point in this graph is one of the 39 minim
belonging to vertex C~numbered according to their energy!,
and each edge represents a direct pathway between
minima that is lower than the energy value that defines t
graph; the different symbols for the points and lines are
scribed in the caption. The projection was arranged so
there would be as few line crossings as possible. As a re
connectivity is related to proximity. However, due to th
reduction in dimensionality, line crossings cannot be avoid
altogether. Further, as no special optimization was p
formed, the relative position of the minima give only a qua
tative indication of the connectivity shown explicitly by th
pathways.

Figures 10~a!–10~d! can be used to follow the creatio
of basins of increasing size in this region of the PES.
E53.5 kcal/mol three small basins are observed@Fig. 10~a!#,
No. 4, 22 January 1997
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FIG. 9. A sample of IAN conformations from different regions of the potential energy surface, classified according to the vertex that defines the basin
they belong. Dashed lines indicate hydrogen bonds.~a! Vertex D: minima number 1~bold!, 2, 4, 6, and 165a ~bold dashed!; ~b! Vertex G: minima 3~bold!
5, 7, and 10;~c! Vertex H: minima 9 and 115b ~bold dashed!; ~d! Vertex E: minima 14~bold! and 19;~e! Vertex E: minimum 20;~f! Vertex F: minima 25
~bold! and 28.
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each centered around one of the three lowest minima
including 3 to 4 other minima. The basins around minim
number 1 and 2 are associated with vertex D and the b
around minimum number 3 belongs to vertex G. The inter
connectivity of these basins is nearly minimal; i.e., with o
exception~4, 8, 13! each minimum is connected only to tw
others. As the total energy increases toE54 kcal/mol @Fig.
10~b!# the basins around minima 1 and 2 increase in size
becomes connected to forms the core of the funnel~vertex
D!. The G basin around minimum number 3 also increase
size, and a new basin is beginning to form around minim
and 11~vertex H!. The interconnectivity within basins D an
G has increased considerably; there is a square at the c
of D connecting its four lowest minima~numbers 1, 2, 4, and
6!, with each connected to several other minima.
J. Chem. Phys., Vol. 106,
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Increasing the energy toE54.5 kcal/mol results in an
increase in size of all three basins with basins D and G
coming connected to form basin C@Fig. 10~c!#. Although the
connectivity within D and G increases, the connection b
tween them to form basin C is rather weak. In fact, there
only one connecting path through a relatively high lyin
minimum ~number 34!. This type of connectivity is indica-
tive of an ‘‘entropic’’ barrier, which may disappear at high
energies as more pathways become available. There
simple ‘‘star-shape’’ connectivity within basin H. AtE55
kcal/mol @Fig. 10~d!# basin H is integrated into basin C
While the internal connectivity within the D and G sub
basins continues to increase, the connectivity between ba
D, G, and H is still weak and involves few pathways throu
high lying minima. Thus, the ‘‘entropic’’ barrier encountere
No. 4, 22 January 1997
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FIG. 10. Basin connectivity graphs showing the internal connectivity between the 39 minima that are included within basin C@Fig. 8~a!# at different energy
levels. ~a! At total energyE53.5 kcal/mol;~b! E54 kcal/mol; ~c! E54.5 kcal/mol, and~d! E55 kcal/mol. The minima are numbered according to th
energy~the global minimum is number 1! and the two-dimensional arrangement was chosen to minimize the complexity of the graph~no special optimization
was performed!. The dashed regions indicate connected sub-basins at the given energy, and the sub-basins are labeled C, D, G, and H according to
in Fig. 8~a!. The lines connecting two minima indicate that there is a pathway with a barrier below a given energy. Thick bold lines:F‡,3.5 kcal/mol; bold
lines: 3.5 kcal/mol,F‡,4 kcal/mol; dashed bold lines: 4 kcal/mol,F‡,4.5 kcal/mol; dashed lines: 4.5 kcal/mol,F‡,5 kcal/mol. The filled-in circles~1, 2,
and 3! correspond to the minimum within a given sub-basin on Fig. 10~a!.
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in Fig. 10~c! is somewhat weakened but does not complet
disappear. The weak connectivity between these three
basins reflects the fact that their conformations are dist
tively different @Figs. 9~a!–9~c!#.
J. Chem. Phys., Vol. 106,
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The finding that the connectivity within a basin is si
nificantly greater than that between basins supports the
cept of basin-to-basin kinetics~Sec. VI above!. When com-
bined with the lower energy barriers within a basin, it shou
No. 4, 22 January 1997
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1511O. M. Becker and M. Karplus: Multidimensional potential surfaces
FIG. 11. TheGT~F! map for IAN. Shown are minima with absolute energy lower than24 kcal/mol ~lowest 91 minima!. The level spacing in this map
correspond to a relative barrier height of 1.5 kcal/mol. The lowest 30 minima are numbered. The letters correspond to the basin assignments defi
8~a! and the numbers next to them to the numbers of the minima in the basin~see text!.
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lead to faster transitions within a basin and slower transiti
between basins. Thus, the slower, larger-scale transfor
tions correspond to basin-to-basin kinetics.

From the connectivity data it is possible to locate t
shortest path between any two minima. It is defined in ter
of the number of transitions required to go from one mi
mum to another. There are often several possible paths
tween two minima, even without taking into account th
there can be more than one path between directly conne
minima; the latter were not included in the graphs for si
plicity ~see Sec. VII A!. For example the shortest path b
tween thea-helix configurations~minimum 16! and the
b-sheet configuration~minimum 11!, involves four local
transitions. It can be written as 16-8-13-47-11~i.e., a move
from minimum #16 to minimum #8, then through minim
#13 and #47 to reach minimum #11!; this path was discusse
in Ref. 18. Three of the barriers crossed along this path
higher than 4 kcal/mol. An alternative path of equal length
16-17-13-47-11, which has a corresponding set of bar
heights; this was not considered in Ref. 18. It is possible
the slightly longer path~16-6-4-13-47-11! is preferential~or
at least competitive! since only two of its five barriers ar
higher than 4 kcal/mol~see Sec. VII D!. Similar arguments
can be made within the framework of the canonical e
semble, in which absolute barrier heights are replaced
relative values.

The INA example has shown that the disconnectiv
graphGE~f! can be used to reveal the underlying structu
of the PES. The overall shape of the potential energy sur
is that of a funnel, although at least one relatively large s
branch exists. Close to its bottom, the funnel splits to sev
sub-basins somewhat obscuring the funnel’s core. The fu
is centered around the global minimum of this surface.
most all the deep minima are in or close to the core of
funnel. There exists a high degree of conformational simi
J. Chem. Phys., Vol. 106,
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ity within the sub-basins at the bottom of the funnel, but
one goes up in energy and includes more branches the s
tural diversity increases and becomes significant even wi
the main funnel. There is high degree of internal connectiv
within sub-basins at the bottom of the funnel, but the int
connectivity between these sub-basins is low. This finding
in accord with the observed conformational diversity.

Although the expected relation between connectivity a
structural similarity~especially within local basins! is often
present, it does not always hold. In some cases conne
conformations exhibit structural similarity, but very dissim
lar conformations can show a high degree of connectiv
Thus, the graph provides information that is not evident fro
simplify looking at the structures.

D. Basin-to-basin kinetics

We now focus on the basin-to-basin kinetics of the IA
peptide and make use of the appropriate master equation
a semiquantitative analysis. Qualitative aspects of the kin
ics of the system are revealed by theGT~F! graph, which
indicates which minima are kinetically connected; i.e.,
shows that the ‘‘relative’’ barriers separating them are low
than a certainkT value. Figure 11 shows the canonic
GT~F! graph of IAN using a barrier height separation of 1
kcal/mol. As this is a ‘‘relative’’ energy scale, all the loca
minima are placed at zero and the nodes of the tree repre
the height of the barriers connecting them. This construct
is different than that used with theGE~F! graph that is de-
fined with respect to an absolute energy scale. We take
larger of the two relative barriers,F‡

AB for A→B andF‡
BA

for B→A, to define the kinetic connectivity. Although th
GE~F! graph and the kinetic connectivity graphGT~F! do
not necessarily have to resemble each other, Fig. 11 sh
No. 4, 22 January 1997
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1512 O. M. Becker and M. Karplus: Multidimensional potential surfaces
that the basin structure, which is evident in theGE~F! graphs
in Fig. 8, is also reflected in the kineticGT~F! graph. A
significant difference between the two graphs is that the
lationships between some of the minima in the B basin
slightly altered in theGT~F! graph.

The information provided by the canonicalGT~F! graph
can be used to transform the system’s transition matrixW
into the basin block form of Eq.~18!. To analyze the result
ing kinetic behavior, we use anapproximateform for the
transition rates. It is assumed that all transitions have
same characteristic frequency factor, which for this vacu
system, we set equal to the standard valuekT/h. With this
assumption Eq.~16! reduces to

ki j5Wij5n exp~Ei j /kT!, ~25!

where at 300 K, the frequency factorn5kT/h5631012 s21,
which corresponds to approximately 200 cm21. Use of Eq.
~25! instead of Eq.~16! for evaluating the transition rate
corresponds to a one-dimensional approximation for the t
sition and assumes that the basins all have the same sha
is used here to simplify the calculation of the kinetics but h
not been employed in constructing the potential surfa
Thus, the differences in rates from one minimum to anot
arise only from the connectivity and from the barriers alo
each of the paths. Czerminski and Elber in Ref. 18 u
complete transition state theory rate expressions; in m
cases, the effect was small~Czerminski, private communica
tion! and is not important for the present analyses.

1. Qualitative features of kinetics

In Sec. VI B we discussed how the full transition matr
W can be rewritten in a block form, based on the ba
assignment of the individual states. Any transition matrix c
be rearranged so that all the states~local minima! that belong
to a given basin appear next to one another in the matrix.
nature of the blocks depends on the temperature at which
mapping was done. Figure 12 shows the transition matrixW
of IAN, at two different temperatures, after rearranging
into a block form similar to Eq.~18!. As described in Sec
VI B, the blocks themselves are arranged so that the
block corresponds to the basin which includes the dee
minimum on the surface, the second block corresponds to
basin with the lowest minimum among all the remaini
basins, etc. The size of the block is determined by the n
ber of minima included in the associated basin at the gi
temperature. Thus, in Fig. 12~a!, the minima between 1 an
38 all belong to the same basin, to which the global mi
mum also belongs. The next block, between 39 and 47,
cludes states connected with the ‘‘second deepest’’ ba
etc. In Fig. 12~b! the first ~and largest! block is associated
with the B basin and the second block with the E basin~the
‘‘side-branch’’!. The gray level of eachW IJ block ~using the
terminology of Sec. VI B! is proportional to theaverageof
the individual transition probabilities included in that bloc
~excluding the terms along the diagonal! and the dark points
indicate the location of the actual nonzero terms.
J. Chem. Phys., Vol. 106,
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From Fig. 12 one sees that the block partitioning of t
transition matrix reflects the kinetic character of the syste
It also highlights how this character changes with tempe
ture ~also seen in Fig. 11!. As expected, blocks along th
main diagonal, which represent intrabasin transitions, hav
dark shade reflecting the high probability of intrabasin tra
sitions. There are many off-diagonal terms which are wh
indicating that the two corresponding basins are kinetica
completely disconnected; i.e., a transition between two s
basins can occur only via a third basin. A closer look at
figure reveals that, while almost all basins have transit
elements connecting them to the main funnel~the large
square at the bottom left!, the connectivity among the rest o
the system is much less pronounced. It is particularly sm
for the high-layingtransientbasins~the lower right corner of
the matrices in Fig. 12!. There are a few high-laying basin

FIG. 12. The transition matrixW of the tetrapeptide IAN in a basin-blocke
form @similar to Eq. ~28!# at two temperatures:~a! kT53.0 kcal/mol,~b!
kT53.5 kcal/mol. Each block contains all the states~local minima! that
belong to the same basin~as defined by the canonic mapping at that spec
temperature!. The blocks themselves are arranged in the matrix in orde
their deepest minima. The gray scale is proportional to the average trans
probability in that block@as defined in Eq.~27!# and the darker points
indicate the actual transition elements.
No. 4, 22 January 1997
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1513O. M. Becker and M. Karplus: Multidimensional potential surfaces
that are not directly connected to the main funnel~indicated
by white ‘‘stripes’’ in the leftmost column!. We also see tha
the transitions in the ‘‘lower’’ triangle of the matrix, from
basins with lower minima to basins with higher minima, a
smaller on the average than transitions in the upper trian
~indicated by their lighter shades of gray!. This last observa-
tion indicates that, forintermediatetimes, when small prob-
ability transitions can be neglected, only the upper triangle
the matrix is kinetically significant. At these times the tra
sitions from the ‘‘higher’’ basins to the ‘‘lowest’’ basin~the
central funnel! dominate the kinetics. This results in an ove
all flow of probability from higher areas of the PES to th
central funnel~and the native conformation!. The reverse
transitions become significant at longer times when equi
rium is established.

ThekT values used in Fig. 12 were chosen because t
make a difference in the observed structure. Due to the
ture of the specific system, which is reflected in Fig. 11,
interesting kinetic structuring occurs around 3.0 kcal/mol.
lower kT values ~e.g., 1.0 kcal/mol! the system is almos
entirely kinetically disconnected, while at higher values~e.g.,
4.5 kcal/mol! the system is almost entirely connected in
one or two basins.

2. Quantitative features of kinetics

To follow the time development of the basin probabili
vectorP8(t) it is necessary to solve the master equation@Eqs.
~15! or ~22!#. A convenient way of solving Eq.~15! is by
expanding the probability vectorp(t) in terms of the eigen-
vectors and eigenvalues of the transition matrixW. If si are
the eigenvectors andli are the corresponding eigenvalue
the time evolution of the probability vectorp(t) can be writ-
ten as16

p~ t !5peq1 (
l i,0

Cisie
l i t, ~26!

where the coefficientCi5@si up~0!# is determined by the ini-
tial distribution,p~0!. Since allli<0, the equilibrium distri-
bution peq is the eigenvector that corresponds toli50; i.e.,
ast approaches infinity,p(t) approachespeqand all the other
terms decay to zero.

BecauseW is a nonsymmetric matrix, it cannot be gua
anteed that it has a complete set of eigenvectors spannin
space. However, with the condition of detailed balan
(Wij pj

eq 5 Wji pi
eq), there exists a symmetry transformatio

that transformsW into a real symmetric matrixV,16

V5@Peq#21/2W@Peq#1/2, ~27!

with @Peq# a diagonal matrix with the equilibrium vectorpeq

along its diagonal. The symmetricV matrix can be easily
solved with standard methods to obtain its eigenvectorsui
and eigenvalueski . Due to the nature of the transformatio
the V and theW matrices have the same eigenvalu
k i5l i , and their eigenvectors are related by the transform
tion operator used in Eq.~27!; i.e.

ui5@Peq#21/2si . ~28!
J. Chem. Phys., Vol. 106,
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Applying the transformation, Eq.~28!, to the probability vec-
tor p(t) results in a transformed probability vecto
q(t)5@Peq#21/2p(t), which obeys the master equation@Eq.
~15!# with the symmetric transition operatorV; that is

q̇~ t !5Vq~ t !. ~29!

As in Eq. ~26!, the solution of Eq.~28! can be cast in
terms of the eigenvectorsui and eigenvalueski of the V
matrix; that is

q~ t !5qeq1 (
k i,0

Ci8uie
k i t, ~30!

with Ci8 5 @ui uq(0)#. Solving for Eq.~30! and transforming
back to Eq.~26!, we get the time evolution of the probabilit
vectorp(t),

p~ t !5peq1 (
k i,0

Ci8@P
eq#1/2uie

l i t, ~31!

with Ci8 5 @ui u@Peq#21/2p(0)#. In the final form of Eq.~26!
the coefficients are given byCi5@si u@P

eq#21p~0!#, where
@Peq#21 is the normalization factor of thesi vectors.

In performing the calculation we proceeded as follow
First we found the eigenvalues of the nonsymmetricW ma-
trix using standard techniques~i.e., we transformed to Hes
senberg form and then found the eigenvalues using the
algorithm42!. The equilibrium vectorpeq was obtained
through LU decomposition and ‘‘inverse iteration’’ startin
from theli50 eigenvalue.42 Then theW matrix was trans-
formed to the symmetric formV @Eq. ~27!# and solved for
eigenvalueski and eigenvectorsui by reducing it to tridiago-
nal form and then applying the QL decompositio
algorithm.42 Finally the time evolution of the population vec
tor p(t) was obtained by solving Eq.~31!.

Figure 13~a! shows the time evolution of the populatio
probability PJ8(t) @Eq. ~20!# for several basins atkT53.0
kcal/mol, starting from uniform distribution. Figure 13~b!
shows the same results but the basin probabilities are div
by the number of minima in the basin to correct for si
effects. The time is given in terms of the characteristic
brational period used in Eq.~25!; i.e., t51/n5h/
kT51.6310213 s. Equilibrium is reached after about 6
time units. The ‘‘kinetic basins’’ are indicated by letter
which correspond to the notation used inGE~F! andGT~F!
@Figs. 8~a! and 11#, and by numbers, which indicate size
basin. The ‘‘kinetic basin’’ D-38~defined by the mapMT! in
cludes most of basins D and H of Fig. 8~a! ~theME map!;
basin D-6 is also a part of basin D of Fig. 8~a!. The nota tion
T-7 and T-6 indicates groups of high-lying transient sta
@not really a basin in the strict sense; T stands for trans ie
as in Eq.~18!#.

The flow of probability in Figs. 13~a! and 13~b!, which
starts with a uniformly distributed probability over all stat
of the system, clearly shows the tendency towards the cen
funnel on the PES. One sees that the probability of find
the system in the central basins increases both in abso
value and on a per minimum basis~basins D-38, D-6, and
G-9!. The probability of finding the system in high-lyin
No. 4, 22 January 1997
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1514 O. M. Becker and M. Karplus: Multidimensional potential surfaces
transient T basins decreases rapidly with time~T-7 is a seven
membered basin whose lowest minimum ranks 66 on
scale of 139 minima; and T-6 is a six membered basin w
a lowest minimum ranking 117!. The behavior of the side
branch E-17@basin E in Fig. 8~a!# is interesting. The results
indicate an initial flow of probability into this basin which i
later depleted in favor of the central basins; the depletio
related to the approach to equilibrium, since the minima
basin E are higher in energy than some of the basins in of
main funnel. Other small basins~e.g., D-6! also exhibited
nonmonotonic kinetics with either an initial decrease or
initial increase in probability followed by the opposite tren
in approaching equilibrium.

The probability per minima of the G-9 basin in Fig
13~b! is higher than that of the main D basin~both D-38 and

FIG. 13. The time evolution of several basin population probabilit
PJ8(t) at kT53.0 kcal/mol, starting from uniform distribution. The time
given in terms of the characteristic vibrational period used in the appr
mation of Eq.~38!, i.e., t51/n5h/kT51.6310213 s. The basins are indi-
cated by letters that relate to the notation of Fig. 8~a!, and numbers, which
indicate size of basin. Basins D-38, D-6, and G-9 are part of the cen
funnel, basin E-17 is a side branch@see Fig. 8~a!# and basins T-7 and T-6 are
high laying transient basins~centered around minima that rank 66 and 1
on the scale of 139, respectively!. ~a! Actual basin population probabilities
~b! basin population probabilities divided by the number of minima in ea
basin, to account for size effects. The horizontal bar on they axis represents
the initial uniform probability of 1/139 per minima.
J. Chem. Phys., Vol. 106,

Downloaded¬07¬Feb¬2005¬to¬128.125.4.122.¬Redistribution¬subject¬
e
h

is
f
e

n

D-6!. This is due to the fact that the larger D-38 basin
cludes alongside the lowest minima some local minima t
are slightly higher in energy~on the slopes of the funnel!.
These reduce the equilibrium ‘‘per minimum’’ values. Th
phenomenon is less significant in the smaller G-9 basin.

Folding model.There is considerable interest in the k
netics of protein folding.36 The present technique can be a
plied to this problem, in principle, by starting from the ve
large basin of ‘‘unfolded’’ states and following the syste
until it coalesces into the thermodynamically stable ba
corresponding to the native state. Although the tetrapep
is clearly too small to represent the folding behavior of
protein, it can be used as an interesting model system.
recast its behavior as a folding problem by making cert
assumptions concerning the nature of the basins. We dis
guish three groups of states~see Fig. 11!:

~i! Folded states:The 53 local minima that are include
in the central funnel on the surface~basin B in Fig. 8!.
This group of states includes the global minimum a
both the ‘‘a-helical’’ conformation and the so-calle
‘‘ b-sheet’’ conformation.

~ii ! An ‘‘intermediate’’ or ‘‘trap’’ basin: This is basin E
in Fig. 8, which is outside of the main funnel; it in
cludes 17 local minima.

~iii ! ‘‘Unfolded’’ states: The rest of the system, which
consists of 69 local minima.

Figures 14~a! shows the time evolution of the populatio
probability PJ8(t) @Eq. ~20!# of IAN at kT53.0 kcal/mol,
starting from a distribution in whichonly the unfolded states
are populated with equal probability~the probability of the
folded and intermediate states is initially zero!. Figure 14~b!
shows the same kinetics corrected for size effects~i.e., where
the basin probabilities are divided by the number of minim
in the basin!. As before, the time is given in terms of th
characteristic vibrational period used in the approximation
Eq. ~25!, i.e., t51/n5h/kT51.6310213 s. Equilibrium is
reached after about 60 vibrational periods,; only the first
periods are shown. In general, both figures show the
pected folding kinetics. There is an overall flow of probab
ity from the unfolded states to the folded states as the sys
approaches equilibrium. Due to the small size of the sys
and the approximate character of the transition probabilit
the probability of occupying unfolded states does not van
at equilibrium. It can be seen in Fig. 14~b! that the global
minimum has the largest probability.

The most interesting aspect of the kinetics is the ti
evolution of the intermediate basin. As is seen in Fig. 14~b!,
the curve describing the probability per minimum of findin
the system in these states first increases and then decr
somewhat. The behavior is commonly referred to, in prot
folding as well as in general kinetics, as a ‘‘kinetic interm
diate.’’ However, the group of states are not kinetic interm
diates which have a positive role in the folding process,
rather traps outside of the main folding pathway. The
states interfere with the folding process rather than help
it, as has often been assumed.36 This result is similar to the
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h
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1515O. M. Becker and M. Karplus: Multidimensional potential surfaces
conclusion reached by Wolynes and co-workers from ana
ing an analytic folding model.27

VIII. CONCLUDING DISCUSSION

The multidimensional potential energy surfaces of co
plex systems are difficult to interpret and there is widespr
interest in simplified representations that preserve the es
tial features. In this paper we have defined a procedure
maps the potential energy surface onto the set of lo
minima. Disconnectivity graphs that describe the results
this mapping procedure were used to analyze the natur
the potential surface. The map differs from the direct mi
mization maps used previously in that it preserves the t
perature dependent picture of ‘‘attraction basins’’ and reta
information about the connectivity of the surface, includi
the barriers between minima. From any given basin, a do
ward ‘‘look’’ along the branches of the graph reveals t

FIG. 14. The ‘‘folding kinetics’’ of alanine tetrapeptide. Defined are thr
groups of states: folded, intermediate, and unfolded~see text!. Shown is the
time evolution of the population probabilityPJ8(t) of these states atkT53.0
kcal/mol, starting from an initial distribution in whichonly the unfolded
states are populated with even probability~the probability of the folded and
intermediate states is initially zero!. The time is defined as in Fig. 13.~a!
Actual basin population probabilities,~b! basin population probabilities di
vided by the number of minima in each basin, to account for size effec
J. Chem. Phys., Vol. 106,
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underlying structure of the surface, while an upward lo
towards its root reveals the structure of the transitions.

The topological analysis can be applied to the glass tr
sition and the concept of freezing, which have been d
cussed in terms of the structure of the potential ene
surface.5,9,25 It is generally assumed that above the fluid
solid transition temperature,Ttr, most physical system ar
ergodic; i.e., they are not trapped in any subregion of
configuration space and, given a reasonable time, any
namical trajectory will span all of the available space. ‘‘Re
sonable time’’ in this context may be considerably long
than the length of a ‘‘long’’ molecular dynamics trajecto
~1–10 ns!. This means that forT1.Ttr all of the PES is
incorporated in a single basinRTerg(a8) 5 G @Eq. ~11!#. Be-
low the transition temperature,Ttr, a glass forming materia
is trapped in one of its many disordered conformation. T
indicates that the corresponding PES is very rough, and
the roughness starts immediately belowTtr. The nature of the
glass transition is reflected in Fig. 1, which shows the to
logical graph of such a potential energy surface. AboveTtr

the system is ergodic~there is only one node, i.e., a sing
ergodic basin, at levels 2, 3, and 4 of the graph! but below
the transition temperature, which is at level 2 of the gra
there is significant splitting which indicates that trapping o
curs in subregions of the PES~levels 1, 0 etc. of the graph!.

Upon cooling a glass forming material below the gla
transition temperature,T2,Ttr, the system that starts at
random configurationrPG is trapped in one of the man
branches of the graph and is likely to end up in a configu
tion that is significantly different from the global minimum
i.e., upon cooling, the system descends along the branch
the disconnectivity graphGT~F! and, as the ergodic basi
RTerg(a8) splits into smallerRT2(a8) basins, the system get
trapped in a localized region of the PES. Correspondingly
any givenT2 temperature, theMT2(r ) mapping will result
in a large set of$a8% minima @Eq. ~3!#. The difference be-
tween the basin structure of a crystal and that of a glass
be related to the way in which theRT~a8! sets become dis
connected as the temperature drops. In contrast to the g
for a glass described above, the dominant features of the
for a crystal forming substance are expected to be simila
those of a single minimum with small fluctuations, as in S
IV B.

As an illustration of the approach, we have applied it
the potential energy surface of the alanine tetrapeptide
vacuum, which is the smallest peptide that can form a sin
a-helical turn. The analysis was based on 139 local mini
and 502 barriers determined by Czerminski and Elber.17,18

Although there are only seven significant dihedral angle
grees of freedom~F1 throughF3 andC0 throughC3!, the
‘‘disconnectivity’’ graph exhibits some interesting feature
It has a funnel-like structure that encompasses many mini
including the global minimum. Analysis of the detailed co
nectivity of the minima and the kinetics of transitions b
tween them showed the complexity present in this very sm
system.

The topological mapping analysis presented in this pa
can be compared with a recent statistical analysis by K

.
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1516 O. M. Becker and M. Karplus: Multidimensional potential surfaces
and Berry of the potential surface for a 19-atom Lenna
Jones cluster.13 The two analyses share many concepts,
that they both characterize the surface by the basin struc
highlighting the connectivity between the basins and follo
ing the basin-to-basin kinetics. Nevertheless, there are
eral significant differences. The study of Kunz and Berry
closely related to the work of Stillinger and Weber9,10 and
others.11–15 It differs from the earlier papers in that its em
phasis is more on connectivity and kinetics than on therm
dynamics. The paper determines minima sampled along
temperature dynamical trajectories with the connectivity,
cluding saddle points determined for successive coordin
sets along a given trajectory. These results in a ‘‘linea
connectivity map, which is equivalent to a one-dimensio
cut through the multidimensional surface. The topologi
mapping presented here analyzes the full multidimensio
surface, without first reducing its dimensionality. It provid
information regarding the overall structure of the entire s
face and the multidimensional connectivity between the
ferent basins as represented in the disconnectivity graph
the specific examples, it is interesting to note that, altho
the number of particles~26 in the peptide; 19 in the cluster!,
the number of minima~139 for the peptide, 299 for the clus
ter!, and the number of barriers~502 for the peptide and 46
for the cluster! are similar, the former correspond essentia
to the entire set of minima and most of the barriers, while
latter is a trajectory-based sample out of an estima
500 000 minima;13 no estimate of the number of barriers w
given. The smaller number of minima in the peptide is
direct consequence of the bonded connectivity of the ato

Although the tetrapeptide is a very simple system,
properties of its potential surface can be used to commen
questions raised for proteins. One question in protein fold
concerns the relative importance of pronounced local min
versus an overall funnel-like structure of the potential ene
surface. In the tetrapeptide these two features are cou
and the largest funnel is centered around the global m
mum. The deep minimum can be viewed as a ‘‘vortex’’ pe
turbing the surface around it to form a funnel; the deeper
minimum the larger the funnel is expected to be. Thus, i
possible that in proteins the thermodynamic requirement
folding ~a deep global minimum! is coupled to a kinetic so
lution to the search problem~the funnel!. This picture is the
opposite extreme from the ‘‘golf-course’’ potential, in whic
the deep global minimum does not influence the rest of
surface.

Another question concerning proteins is the existence
metastable states. These correspond to minima that may
very different structures and energies. They are assume
be separated by barriers that cannot be overcome on bio
cal time scales3,43so that the protein can be trapped in one
the minima during the folding process. This requires that
potential energy~or free energy! surface of a protein is
ragged and glass like. As has been pointed out,36 without a
uniquemetastable state, folding would be ineffective b
cause the same sequence could yield functional and nonf
tional folded polypeptide chains. In the trapeptide, almost
the deep minima are located close to each other in the m
J. Chem. Phys., Vol. 106,
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funnel and are separated by relatively low barriers. The c
formational similarity was generally correlated with conne
tivity and with spatial proximity in configuration space~al-
though there are exceptions to this rule44!. Configurations
that were far away on the surface were also generally
similar. Thus, a requirement of the metastability hypothe
~that there exist similar structures in remote regions of c
figuration space! is not supported by the tetrapeptide resul
Further, similar energies are not necessarily related to s
larity in structure.

The basin picture used in the analysis highlights
fact38 that at physiological temperatures the tetrapeptide,
a protein, is not confined to a single minimum but rather
moving freely within the attraction basin, which correspon
to the accessible multiminimum potential surface at that te
perature. Although it includes the global minimum, a d
namical trajectory can glide over the low barriers and e
plore a large part of the basin, without being sensitive to
details of the underlying structure.

Although the tetrapeptide is a minimal system, it is su
ficiently complex to show features that may be of interest
larger polypeptides and stable proteins. To test this poss
ity, a similar topological study of the potential surface of
protein is being made@O. M. Becker~in preparation!#.

ACKNOWLEDGMENTS

We thank Ron Elber and Ryszard Czerminski for ma
ing their data on IAN available to us, and thank Euge
Shakhnovich and Andrej Sˇali for helpful discussions. This
work has been supported in part by a grant from the Natio
Science Foundation.

APPENDIX: TOPOLOGICAL CHARACTERISTICS OF
THE MAP

Since all theR~a! andRT(a8)[RE(a8)] basins are open
sets they can, in principle, form a topological space. W
begin by defining theuniversal set X5$a1 ,...,a i ,•••%,
which contains all the local minima on the PESF. Each of
theseai minima correspond to a uniqueR~a! basin ~or
equivalence class ifs.1!. The mapping proceduresMd,MT,
andME partition the universal setX in different ways. The
direct minimization mapMd~r ! partitionsX into small sets,
each consisting of a single local minimum, i.e.,$ai%. The
MT~r ! map, on the other hand, partitionsX into ai

T sets@or
ai
E sets forME~r !# that may include more than a single loc

minimum. The members of a setai
T are all the local minima

ai included inRT(a i8), i.e.,

a i
T5$a j ua jPR~a j !,RT~a i8!%. ~A1!

This partition depends parametrically on the mapping te
peratureT ~or energyE!.

Since a topological structure is the relationship betwe
open sets, we now define the sets-of-sets to be investiga
We focus on the properties of three different sets-of-setsAi ,
which are defined through the different mapping procedu

~i! The set of all sets generated by the direct minimiz
tion mapMd~r !
No. 4, 22 January 1997
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1517O. M. Becker and M. Karplus: Multidimensional potential surfaces
A15$$a i%% all a iPX. ~A2!

~ii ! The set of all sets generated by the mapMT~r ! at a
specific temperature as defined in Eq.~A1!

A25$a i
T%5$a1

T ,a2
T ,•••% all a iPX. ~A3!

~iii ! The sets-of-sets generated by applying theMT~r !
map at several different temperatures

A35$$a i
0%,...,$a i

T%,...,$a i
`%% all a iPX

and 0<T<`. ~A4!

A1 is a special case ofA2 in which T50. Also note that the
$ai

0% sets ofA3 are the elements$ai% of A1 and that$a i
`%5X.

Thus, Eq.~A4! can be rewritten as

A35$A1 ,...,$a i
T%,...,X% all a iPX

and 0,T,`. ~A5!

To illustrate what is involved in these sets-of-sets, l
consider the simple example of a system with three lo
minima. The universal set in this case isX5$a1,a2,a3%. The
Md map generates from it the setA15$$a1%,$a2%,$a3%%. As-
suming that at an intermediate temperatureT1 minimaa1 and
a3 are connected, the setA2 generated byMT1(r ) at this
temperature isA25$$a1,a3%,$a2%%. Finally, theA3 set for this
example isA35$$a1%,$a2%,$a3%,$a1,a3%,$a1,a2,a3%%.

It is useful to describe some elementary properties of
Ai sets. First, the three setscover the universal setX, i.e.,

X5øa for all aPAi . ~A6!

Also, having the relationsA1,A3 andA2,A3 we see that
A3 is finer than bothA1 and A2. Note, that, although the
elements ofA2 are unions of the elements ofA1 ,A1úA2 ,
both A1 andA2 are disjoint sets; i.e., for everyx,yPAi ~i
51,2! the intersection is empty,xùy5B. On the other hand
the setA3 is not disjoint; i.e., there existx,yPA3 for which
the intersection is not empty. For example, the intersecti
$a i

T%ù$a i
0%5$a i

0% or B, depending on the condition
a i
0PR(a),RT~a8!; i.e., whether or notai

0 belongs to theai
T

super basin.
SinceA1 andA2 are disjoint sets they aretrivial posets

~partially ordered sets!, because in a disjoint set the parti
order relation is trivially reflexive, transitive, and antisym
metric. The correspondingdiagram,31,34 which displays the
inclusion relations between the elements of the poset
therefore a disconnected set of points. The structure ofA3 is
more interesting, as it is a nontrivial poset. This structure
discussed in detail in Sec. III. The structure of the inclus
relation in this poset is given by a directed graph, an exam
of which is given in Fig. 1.
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