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Topological characteristics of multidimensional potential energy surfaces are explored and the full
conformation space is mapped on the set of local minima. This map partitions conformation space
into energy-dependent or temperature-dependent *“attraction basins” and generates a
“disconnectivity” graph that reflects the basin connectivity and characterizes the shape of the
multidimensional surface. The partitioning of the conformation space is used to express the
temporal behavior of the system in terms of basin-to-basin kinetics instead of the usual state-to-state
transitions. For this purpose the transition matrix of the system is expressed in terms of
basin-to-basin transitions and the corresponding master equation is solved. As an example, the
approach is applied to the tetrapeptide, isobutyay®y,-NH-methyl (IAN), which is the shortest
peptide that can form a full helical turn. A nearly complete list of minima and barriers is available
for this system from the work of Czerminiski and Elber. The multidimensional potential energy
surface of the peptide is shown to exhibit an overall “funnel” shape. The relation between
connectivity and spatial proximity in dihedral angle space is examined. It is found that, although the
two are similar, closeness in one does not always imply closeness in the other. The basin to basin
kinetics is examined using a master equation and the results are interpreted in terms of kinetic
connectivity. The conformation space of the peptide is divided up in terms of the surface topography
to model its “folding” behavior. Even in this very simple system, the kinetics exhibit a “trapping”
state which appears as a “kinetic intermediate,” as in the folding of proteins. The approach
described here can be used more generally to classify multidimensional potential energy surfaces
and the time development of complex systems. 1897 American Institute of Physics.
[S0021-960627)50948-1

I. INTRODUCTION Stillinger and Weber introduced a useful procedure for

Mesoscopic systems with many degrees of freedom ingharacterizing the multiminimum PES of large SYSté?’H_g-
clude liquids, glasses, solutions, and macromolecules. ThelheY investigated the local minima by taking configurations
are under intensive study in physics, chemistry, and biologyTom & molecular dynamics trajectory and quenching the
In all cases the thermodynamic and dynamic properties arBOints along the trajectory to the nearest local minimum by
determined by the nature of the potential energy surfacesfollowing the steepest descent path. In this way, a sampling
Because of the complexity of the potential surfaces of suci®f the PES and local minima accessible at a given tempera-
mesoscopic systems, a method for analyzing their multipléure were obtained. The minima provide a “mapping” of the
minima can serve a useful role. It can aid, for example, in thd’ES, referred to as “hidden structures,” which they used to
interpretation of conformational transitions in peptides andseparate the partition function into thermal and configura-
the kinetics of protein folding? Also, an understanding of tional contributions. This procedure has been applied to a
the special properties of glasses and the nature of the glaygriety of systems, including waté}* rare gas clustet$'?
transitior> depends on a detailed characterization of theand the proteins myoglobifiand bovine pancreatic tripsin
potential surface. inhibitor (BPTI).X® The protein studies showed that there are

Potential energy surfacéBES can be characterized by a very large number of minima in the vicinity of the native
their minima, which correspond to locally stable configura-state and that the local minima are kinetically “clustered”
tions, and by transition regions connecting the minima. Ininto subsets; i.e., within a cluster or “basin” the minima
small systems, which have only few minima, it is possible totend to be connected by low barriérs.
use a direct approach and describe the entire potential energy A map of the minima and regions in their neighborhood
surface. Such is the case for small reactive systemd for  gives only a partial description of the energy surface since it
the alanine dipeptide, which has only two significant degreesloes not contain information about the barriers. While the set
of freedom’® For systems with many degrees of freedomof minima and the surrounding portions of the potential sur-
and a very large number of minima, a direct approach to théace are often sufficient to determine the thermodynarhics,
PES becomes very difficult. is the barrier distribution that is required for the kinetics. A
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1496 0. M. Becker and M. Karplus: Multidimensional potential surfaces

knowledge of the transition states connecting the minim&inetics, which involves the crossing of higher barriers, gov-
makes possible an exploration of the systems kinetics by userns the intermediate and long time behavior of the system.
of the master equation approathRecently, a rather com- Experimental studies of protein kinetics, such as those of the
plete map of the minima and barriers of a tetrapeptide irfFraunfelder groufy=>> measure only certain basin-to-basin
vacuum was obtained by Czerminski and El5éf and a transitions, since they cannot resolve the individual localized
more limited study of transitions states in TIPS2 water wagninima.
performed by Tanaka and Ohmif. In the present work we use topology to define a map of
Experimental evidence concerning the complexity of thethe potential energy surface that emphasizeslitspeand

PES for a system with many degrees of freedom can beonnectivity and thus, offers a tool for a better understanding
obtained by the observation of a multiplicity of relaxation of the physical system. This map, which partitions configu-
times!® A particularly interesting study has been performedration space into energy or temperature-dependent basins,
by Frauenfelder and collaborat8¥s??of the complex kinet- generates a formal “disconnectivity” graph that is used to
ics of CO to myoglobin. The results have been explained ircharacterize the multidimensional potential surface. Com-
terms of the existence of a hierarchy of minima, referred tddined with an appropriate metric, this method can be applied
as “conformational substates” that are thought to be ario qualitative and quantitative studies of a variety of systems.
ranged in “tiers” corresponding to different energies andIn terms of kinetics, the topological connectivity is mani-
barriers. The question of the role of solvent in the observedested as basin-to-basin kinetics, which is used to reformu-
relaxation behavior has been raised recefitljhe substates late the transition matrix and master equation. To illustrate
were introduced to explain the different time scales on whictthe topological concepts, an application to the analysis of a
certain kinetic phenomena take place in this system. It watetrapeptide potential energy surface and its kinetic conse-
assumed that, in general, slower phenomena are associat@dences is presented. The results for the simple peptide are
with larger scale motions. These studies, which represent thésed to draw conclusions concerning the behavior of more
most detailed analysis of the dynamics of folded proteinscomplex systems.
have inherent in them the limitations of an experimental ap-  In Sec. Il several procedures are defined for mapping the
proach. Because only a few probes can be used to obtafverall potential energy surface on the set of local minima,
kinetic data, the interpretation is based on simplified model@nd in Sec. Il the resulting disconnectivity graph is defined.
and the specific connection between the dynamics and strué? Sec. IV this graph is related to the topography of the
ture is not clear; e.g., in a system as inhomogeneous as RPtential energy surface while Sec. V uses it to interpret
protein, very localized motions can have very high barférs. various physical phenomena. A detailed discussion of basin-
Peptides and proteins differ in an essential way from thdo-basin kinetics is given in Sec. VI. Section VII presents the
glasses usually investigated in studies of complex potentidetrapeptide example, which is followed by a discussion in
surfaces and multiple time scafe¥>?®The latter are inher- Sec. VIIL.
ently homogeneous; i.e., on an infinite time scale, each re-
gion of the usual glassy system is equivalent to every other
region. By contrast, a protein is inherently inhomogeneou§" MAPPING AND BASINS
due to the nature of the native structure and the amino acid A molecule composed df atoms has a§-dimensional
sequence of which it is composed. conformation space=(ry,...ry) eR°",?® where ther; are

~ Many terms have been used in describing various atthe vectors giving the position of atonisin the three-
tributes of complex potentla! energy surfaces. They includgyimensional space. The potential energy of the systenis
“funnels,” 22" “clusters of minima,"*®and “tendrils.” Al 3 function defined over the N&-dimensional conformation
these represent attempts to describe the gestigbeand  space d(r,,...r). The ® hypersurface has a multitude of
overall connectlwtythat characterize multidimensional PO- |ocal minima, which can be described as a discrete set in-
tential surfaces. Since the concepts of shape and connectivifjayed bya. The mapM d(r) from the N-dimensional con-
are within the realm of topology the present paper attemptgnyum 93N to the discrete set of minima, was introduced
to describe potential energy surfaces using a topological afby Stillinger and Webef;the notation we use is similar to
proach. that used by them. It is defined by direct minimization from

molecules, it is customary to focus on state-to-state transiycal minimum,

tions as the property of fundamental interest, although rate dr o ca3N

constants which represent averages over initial and final ME(r): R —{a}, @)
states are often us&dFor systems with many degrees of where thed superscripts stands fafirect minimization or
freedom there are alternative approaches for analyzing theirect “quenching.”

kinetics of the transitions among the multiple minima. Inrare  Following Stillinger and Webet let R(a) C%3N denote
gas cluster$'3and proteins, for example, where individual the set of system configurationsvhich map to a local mini-
states are usually clustered in “basins,” the interesting ki-mum «. R(a) is a connected set, since alk R(a) are con-
netics involves basin to basin transitions. The internal distrinected by a path through, and the differenR(«) are dis-
bution within a basin is expected to approach equilibrium orjoint. The significance of this mapping is that tf¥a)

a relatively short time scale, while the slower basin-to-basirpartition the 3N—6 dimensional configuration space into
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“attraction basins” around the minima. The boundaries of tion, defined as the time in which equilibrium among all of

these sets lay on th@N—7) dimensional bifurcation hyper- the « minima associated with an individuaR'(a') is

surface. The union of the boundaries constitutes a zero meaeached, the dynamics of the system at that temperatise

sure set in the configuration spa2€" for which the map-  sensitive only to transitions between differ@t(a’) basins,

ping MY is undefined. Since the boundaries are not include@nd not to the underlying structure within the basins them-

in the R(a) basins, they form open sets. selves; i.e., this time scale, which dependsToiis less than
When the potential energy surfaC@ES represents an the mean time for a dynamical trajectory to cross from one

ensemble of small moleculés.qg., a water clustgrthe num-  R'(a’) basin to another.

ber of distinct R(a) can be further reduced by forming From the above definitions it is clear that the direct mini-

equivalence classes from a@(a) sets which are identical mization mappingM%(r) is the T—0 limit of this more gen-

except for particle permutatiorisin this case a symmetry eral mappingM'(r); i.e.,

numbero is assigned to each equivalence class to account MY(r) = lim MT(r) =

for this grouping. If the potential energy surface represents a 10 ’

single macromolecule, such as a protein, the bonding con-

nectivity prevents such permutations. This is an aspect of the R™°(a’)=R(a), 5)

essential inhomogeneous character of the system mentioned

in the Introduction. For such systems edfw) basin is in {a’}r=0={a}.

an equivalence class by itself and the symmetry number ast the T— < limit, assuming that the physical system is well

sociated with it is unity(o=1). behaved(i.e., it does not have infinite barrigrsall of con-

d .y . .
Although theM®(r) map partitions the PES in a physi- figuration space is incorporated in a single super basin, and

cally meaningful way(i.e., it gives the relation between any ine o’ minima that corresponds to it is the global minieh
point in %3N and the nearest minimum), the information ie.

from this partition is limited. In particular, it does not contain
information about the barriers between the minima. For ex- R’ “(a’)=%%",
ample, the map is unable to distinguish between local
minima which account for small defects in an otherwise or-
dered crystal and the minima in the disordered matrix of @At this limit the system is ergodic and a dynamical trajectory
glass. This limitation arises from the fact that tRé&r) give  spans the full conformation space. In the present context,
dynamical information only at th& —0 limit, where any ergodicity is defined as being time scale dependent. Namely,
barrier, however small, traps the system in a given minimumit means that the system is not trapped in any subregion of
To account for the behavior of a system at finite tem-conformation space and that given a long but finite time, e.g.,
perature, it is useful to have a description that groups minima time longer than the length of a “long” molecular dynam-
which are connected by low barriers. This can be achieveits trajectory(~10 ng, any dynamical trajectory will span
by introducing “super basins” all of the available space. Exceptions to Eg). exist only in
RT(a')=UR(a), @ systems Wh?Ch hayg infinite barrier®*=c, and are thus
never ergodic. At finiteT, the system completely spans any
which are a union of all th&®(«) sets connected by barriers given R'(a’) on the specified time scale but not the whole
®* lower thankT (or some small multiple okT); i.e., a  space.
super basin implies that the system moves rapidly between Similar to theM'(r) mapping, which is formulated in
its component minima. ConsequentR] (') is defined as terms of thecanonicalensemble using the relative barriers
the unioin of allR(a) sets for which ma@*ij ,dbiji)sikT, <I>¢ij , amicrocanonicalmappingME(r) can also be defined
where®*;; is the barrier going from basipto i, and®™; is ) ,
the barrigr going from to j. We introduce both barrigrs to ME(r): 2% —{a'}e @)
implicitly take into account the energy difference betweenThis map uses the total ener§yrather than the temperature
basins. The symbok’ refers to the lowest minimum in T as the control parameter. The analogous microcanonical

(6)

{a'}ron=ad.

R'(); e, super basin®k¥(a’)=UR(«) are defined by the mapping
'—mi T 0 ME(r) as a union of elementary basins connected by barriers
o' =minf{a|aeR(a)CR(a")}- @ ®*<E, where ®* is the energy value of the barrier. The
We can define a new mapping procedMé(r) that will  significant difference between the two maps=(r) and

partition the 3N-dimensional configuration spa¢g®" into  M(r) is in the physical content of the result. The microca-
super basins at temperatufeand map it onto the smaller set nonical map is concerned with the absolute energies and re-
of minimum {a’}; defined by Eq(3) flects thetopographyof the potential energy surface, while
T/ N3N , the canonical map highlights the relative energies and re-

M) R —{e'}r “ flects thekinetic connectivityof the system. This difference
The resulting super basins are also disjoint open sets wheig interpretation is further discussed in Secs. IV and V.
the set{a’}; depends on the temperatuFe The significance An important aspect of potential energy surface is that
of the M T mapping is that it reflects the system connectivitythe dynamical system with a finite enerds<, is confined
at different temperatures. Assumingime scaleof observa-  to a subspacg of the full configuration spacd&,C9:>N. This
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subspace, which we name the “accessible configuration
space,” is strictly defined as the union of all configurations
which are accessible to the system at a given energy; i.e.,

I'(E)={r|®(r)<E}, )

whereE is the total energy of the systerhi.is bound by the
®=E isoenergy manifold, which is the classical “turning”
manifold of the system; i.e., the manifold on which any tra-
jectory (with total energyE) instantaneously has zero kinetic Roe)
energy. This corresponds to the use of constant energy con-

tours to characterize the PESThe disjoint setsR¥(«) R0
cover this accessiblE space since their union I, i.e., m T

I'(E)=URE(a’). 9

The accessible configuration spdc¢és more loosely de-
fined in the canonical representation, since the system hasR. 1. A sample disconnectivity graph of a potential energy surface. Each

o : vertex on this graph represents an attraction b&Sif’) [or R¥(a’)] and
nonzero(thoth often sma]lprobablllty for reaching every the successive horizontal levels correspond to the different temperdtures

p_omt 'r‘ Conf'gurfat'on space. The cgnoplcal ?.CCGSSIble Cor('energiesE) in which the mapping was performed. The arrows represent
figuration space is therefore the region in which the systemsiclusion relations between verticésasing.

spendsmostof its time [where the time scale was defined
following Eg. (4)]. We define this canonical accessible con-
figuration space as

R2(a)

Rl(o)

R%(0)

of these mapping procedures yields a different partitioning of
I'(T)={r|A®(r)<nkT}, (10) the potential energy surface, and the way these partitionings
change as a function of temperature or energy reveals the
underlying topography of the surface. Technically, this rela-
tionship can be described by a graph which is defined by the
inclusion relationship of the different basins, i.e., the way
smaller basins coalesce to form larger basins. An example of

Although the “ergodic "T“i.t" (as defined aboyes for- such a graph is given in Fig. 1. Each vertex on this graph
mally reached only a3 —x, it is expected to be reached at represents an attraction basii(a’) [or RE(’)] and the

finite temperatures in many physical systems. It is phySiC"""ysuccessive horizontal levels correspond to the partitioning

reasonable, therefore, to assumes that there is an “er,gc’d'cobtained from the map at different temperatufeéor ener-
temperaturel ;< for which all of the accessible configu-

. Yefined i fl but finite times gies E). Using common conventions, which represent the
_rat|on space(_ efined in te”'_‘s ot long ut finite timpss inclusion relationxDy by assigning an arrox—Yy to the
incorporated in a single basin; i.e.,

edges X,y) of the graph, we see that the graph in Fig. 1 has
Rfea( ') =T CR3N, (11)  a very well defined directionality associated with it. All the
arrows on this graph are directed downward, pointing in the
direction of splitting super basins into smaller sub-basins.
Therefore, we name this directed gra@{®), the “discon-
nectivity graph” of the potential energy surfade(in future

whereAd(r) is the potential energy atrelative to the global
minimum [A®(r)=d(r)—®(a%)], andn is a small number
(which depends on the particular time scale yséd T in-

creases the accessible configuration sgabecomes larger.

M Terg(r) maps all configurations € R'ea(a’) = T to the
deepest minimumg'?, in the accessibl& space. Although
there is no guaranty thaf eI (i.e., that the global minimum

a9 is within the accessible configuration spddeit is likely references to this graph we omit the arrowigure 1 is one

ais0 assumes that b space 1 connecied. Again, his as. POSSIIE XApIe GB((); other examples may have iffer-
P - Again, F_nt branching characteristics.

sumptio_n is_ex_p ected to be met for most physical cases, a The disconnectivity grapks(®) has a natural hierarchy
though in principle there can be systems in whithecomes . . .
connected only aT—, when it becomes identical @3N, it (see Fig. 1 Egc_h vertex_ at a level of the. granh corre-

' sponds to a basiR!(a’) defined by the mappintyl '!(r) at a
temperaturdl; . All basins associated with an arbitrary “cur-
rent” temperatureor energy are indexed =0, i.e.,R%«’).

The map and its partitioning of configuration space intoAll “parent” basins, which belong to those levels of the
basins can be investigated further by use of topof3gs/ In graph associated with higher temperatuesergieg, are in-
particular, it allows us to use the set of local minifg, dexedR(a'),R%*(a’) etc., where larger indice§=1,2,...
instead of the continuouR(«) basins, in the analysis of the correspond to higher temperatur@nergies All “descen-
topology of the potential energy surface. Details of thisdent” basins, which belong to levels of the graph laying
analysis are given in the Appendix. below the current level, are index& *(a'),R™%(a’) etc.,

An interesting topological structure is obtained whenwhere smaller indiceg=—1,—-2,... correspond to lower tem-
considering the set-of-sets generated by applyingMHér) peratures(energies Thus, the graphG(d) preserves the
map or theME(r) map several times each at a different tem-temperaturegenergie¥ related connectivity information as
perature or energjthe setA; in Eq. (A4)]. Each application well as the minima information.

Ill. THE TOPOLOGICAL DISCONNECTIVITY GRAPH
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Another important characteristic of the gra@{®) is  energy hypersurfac®. Consequently, there is a relation be-
the number of edges originating at each vertex. This quantitjween the topography of the PES hypersurface and the struc-
is the main feature that distinguishes one graph from anotheture of its energy-parametrized disconnectivity gr&t®).

We call this branching number thmeultiplicity m of a vertex.  The feature of the graph that is sensitive to differences be-
Although G(®) does not contain information about the tween particular topologies is the multiplicity associated
size of a given attraction basin in theN3-6 dimensional with each vertex; i.e., the number of edges going out of each

conformation space, it does providejaalitative measure of  vertex.
the relative sizeof the attraction basins associated with the A Th :

\ . . o .~ A. The metric
graph’s vertices; i.e., the number of local minima included in
the basin. It is expected that often, though not always, basins Before using the disconnectivity gra@@(®) to classify
which include many minima will have a larger volume in PES topographies, it is necessary to define rtiedric that
configuration space than basins which include only fewwill be imposed on the abstract graph structure. The choice
minima. Thus, a qualitative measure is obtained from theof metric is essential, since the gra@{®) does not repre-
number of branches below a given vertex; i.e., the configusent a metric-independent topology but rather a specific re-
ration space volume of a basR'(«) is roughly propor- ducible basis of such a topology. It is not unique and there-
tional to the sum over the multiplicities of all the vertices fore depends on the metric used to generate it.
which are under the vertex of interest The metric used here has two features:

(1) It defines the discrete spacing between the levels of
the graph, i.e., sets the intervals of the energy or temperature
parameter with respect to which successive mappings are

f R'(a') « 1+E (m—1), (12 performed. The resulting set of parameters can be linear,

RN j logarithmic or obey other functional forms. This setting of
level spacing is essential and may significantly affect the
resulting graphGE(®) or GT(®). In the extreme case of an

wherem; is the multiplicity of a vertexj and thex= sign  infinite level spacindi.e., only E=0 andE=c (T=0 and
stands for proportionality. The term on the left is the con-T=2) are usedl the graph has the trivial structure of edges
figuration space volume of basR (o), and the summation connecting a single rodthe full configuration spageo the

on the right is over all the vertices of the graph which aremultitude of local minima. It has no more information than
under the vertex of interest. The “1” stands for the centralthe direct minimization magM®(r). In the other extreme,
branch and the(mj—l) summation counts the number of Where the parameter spacing is infinitesimally small, each
edges that branch off the main branch. The relation given ifndividual barrier will be represented as a vertex and the
Eq. (12) is not rigorous and there may be situations that dohotions of super basins and long range topographical features
not conform to it; e.g., a small rough region, with many localWill be lost. The graptG(®) that is generated in this limit is
minima, in an otherwise relatively smooth surface will beidentical to the local connectivity tree mention in Sec. IlI
overweighted by Eq(12). above. It is a graph where all local barriers are explicitly

The graphG(®), which highlights the basin structure of marked and every vertex has exactly two edges coming out
the PES, is related to the local connectivity tree, which repof it (like anirregular k=3 Bethe lattice
resents all the local barriers connecting two local minima on  (2) The second element of the metric, which is employed
the PES. In factG(®) can be considered to be a coarseonly for G5(®), is that the “dead branches” of the graph
grained version of this local connectivity tree. However, (i.€., edges that do not split any mpae drawn only down
while the latter is characterized by binary branching along 40 the energy of their lowest minima. In principle, the graph
continuous energy scalidicating the pairwise character of itself could be drawn with all dead branches going down to
the barriery, in G(®) the vertices have a higher multiplicity the baseline. The elimination of the dead branches, although
and are arranged on a discrete energy level. At any level diot essential, helps in visualizing the energy spectrum of the
the G(®) graph, all minima that are interconnected by barri-System.
ers lower than the energypr temperaturethat defines that
level are joint to a single vertex of the graph. Namely, any o
two minima that belong to the same vertéoasin are con-  B- Classification of PES
nected by a path with barriers not higher than the defining We now use th&E(®) disconnectivity graph to classify
energy(temperaturgof that level. some basic potential energy surface topographies. This clas-

sification is summarized in Table I. We assume that the met-

ric used has a level spacing which reveals the internal struc-
IV. PES TOPOGRAPHY AND THE GE(®) ture of the surface. In real physical systems one expects the
DISCONNECTIVITY GRAPH relevant energy spacing to be on the ordek®fi.e., on the

order of 0.5-2 kcal/mol at room temperature. Naturaly, in a

The disconnectivity grapiGE(®) generated by the mi- large multidimensional system a combination of several of
crocanonical mapME(r), which uses the absolute barrier these elementary topographic features will be needed for a
heights®*, reflects the underlying structure of the potential complete description of the surface.
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TABLE |. Classification of basic PES structures in terms of th@fi(®)
graphs(in terms of the microcanonical ensemble

d GE(®) m '
Potential energy surface Disconnectivity graph  Vertex multiplicity

Rough An ever branching graph. m>1 for all E

Single minimum A single nonsplitting branch m=1 for E>0
(with weak fluctuations (some splitting at lower end (m>1 for E—0)

Funnel A single splitting branch ~ Main branch:
i >
\éwtlntir:ar;lyoieid branches <C)Tr>1er1b];(:nilr|1ei' FIG. 3. A schematic representation of the PE@nd correspondinGE(d)
piitting ' (my=1 at highE graph for a single minima with weak noise.
m=1 at lowE
E—0+e wherem>1 (in fact one expects>1). This PES
1. A rough PES topography and the correspondi6g(®) graph are shown in

Many descriptions of the PES for a protein-forming Fig. 3.

polypeptide chain have assumed that it is “roughA
model of such a rough PES is the fractal structure of a Koch
curve?® i.e., each basin can be divided inkoequal sub- 3- A funnel shaped PES

basins, and so on, at all levels. For this simple case the mul-  The “funnel” structure, which has been postulated to be
tiplicity m of the vertices of the graph is fixed; i.em=k  important in protein folding®?’is related to the single mini-
=constantfor all vertices. The corresponding graph with mum potential; the role of such funnels in protein folding has
k=3 is shown in Fig. 2 along with a one-dimensional sche-yet to be confirmed® In both the funnel and the simple
matic cut through the 8—6 dimensional® hypersurface minimum potential there is a deep minimum flanked by
corresponding to it. In this case the graph is identical to gyeaker local minima. The main difference between the two
Bethe lattice of rank.*® In general, rough potential energy topographies is that in the funnel the flanking local minima
surfacegthough not necessarily fractal in fojrare expected  exist over a wide range of energies, and therefore appear on

to characterize glassy systems. all levels of the graph. As in the rough surface, each decrease
in the mapping parameter can split the basins and branch the
2. A single minimum PES with small fluctuations graph, but in a funnel most of these branches are expected to

Another possible shape for a PES is a surface with adie out” quickly; i.e., each branch reaches a local mini-
dominant single minimum that may have some small fluc-mum and appear in the"(®) graph as an unbranched de-
tuations in the neighborhood of the minimum. On such aScending line. Ideally, only one branch, which corresponds to
surface a decrease in the enef§yreduces the size of the the core of the funnel, continues to branch downEte0.
“accessible” surfacel’ but does not branch th&F(@®)  The graph of this topography, is therefore characterized by a
graph; i.e.,m=1 for all vertices. Only atE—0 the weak Single splitting branch which has an average multiplicity
variations that are expected to be present in complex systenf@rger than 1(m)>1) over the whole temperature range; an
like proteins*'® may become significant and the single de-averaggm) is used because there may be vertices where no
scending line will split at its lowest end into many small branching occurs due to the irregularity of the surface, al-
branches. In this case the multiplicity im=1 down to though the overall feature is of a branching branch. Other

branches may start witm=1 but then collapse to em=1
branch. Figure 4 presents a schematic picture of the funnel
o potential energy surface and its correspondBfg®) graph.
G@){
+2

+1

G(d) D

-1

FIG. 2. A schematic one-dimensional partial cross section through a rough
3N-dimensional potential energy hypersurfabgtriadic Koch curve. The
horizontal lines on the PE® correspond to the energies used by the map
M?2(r;E) to define theR(a) basins. These energies determine the corre-FIG. 4. A schematic representation of a funnel potential energy susbace
sponding levels on the disconnectivity grapf(d). and its correspondinG&(®) graph.
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(a) (b}

-1 FIG. 6. A “basin connectivity graph” schematically representing the con-
nectivity among the basins defined in Fig. & maximal connectivity
ithin the super basingp) minimal connectivity within the super basins.
ots indicate local minima, dashed lines are direct barriers between basins,
and the solid line is the level-2 barrier connecting super bRsamd super
basinP.

FIG. 5. A schematic representation of kinetic transitions on a canonica
disconnectivity graptGT(d). 0—0 transitions are denoted by solid arrows,
0—1 transitions are denoted by dashed arrows.

V. THE RELATION BETWEEN PHYSICAL

=
PHENOMENA AND THE G '(®) GRAPH equilibrium. The transition rate between the 0-level vertices

While the microcanonicalenergy dependentdiscon- of G'(®) (i.e., super basins on the PEB related to the
nectivity graphGE(®) can be used to classify the shape andlocation of theirleast upper boundor join) on the graph,
the topography of potential energy surfaces, the canonicalhich in turn is proportional to the height of the lowest
(temperature depend@mtisconnectivity graplG'(®) is use-  barrier separating the two basins. The higher jtie (i.e.,
ful for describing the kinetics, both qualitatively and quanti- the higher the barrig¢r the slower the transition. Figure 5
tatively. In this section we present a qualitative descriptionillustrates kinetic transitions on the disconnectivity graph.
of the kinetics of the system in terms of the canonical dis-Transitions between 0-level basins with a join at levétié-
connectivity graphG'(®) and the super basin mapping pro- noted as 6-(1)—0 transition3 are expected to be faster than
cedureM '(r). In Sec. VI we present a quantitative treatmentthose between basins with a join at level(®2-(2)—1 tran-
of the kinetics based on the master equation. In general thisitions).
graph can also be used to discuss and describe other physical Another feature that influences the rate of transitions,
phenomena such as glass transitions and freezing. especially if the kinetic hierarchy is not strongly “sepa-

The disconnectivity grapt ' (®) at a temperatur€ par-  rated” (i.e., the energy differences between levels are not
titions the PES into a set dR'(«') basins. This offers a large, is the connectivity among the different basins. A
simple representation that can be used in a qualitative degiven transition probability depends not only on the barrier
scription of the kinetics of a complex system. We define aheight but also on the probability of reaching the vicinity of
“transition” as motion along a path that crosses a barrierthat barrier from different parts of the surface. In case of a
higher than the thermal energy. Since local states incorpotransition that crosses a level-2 barrier, it means that the
rated in a given basin are separated by barriers lower thaimternal connectivity within the level-1 super basins can ef-
kT, there are no formal “transitions” between these statesfect the rate. We use the(®P) graph(Fig. 5 to illustrate this
which are in rapid equilibrium. Therefore, the initial and point. Two R%«’) basins within a giverR(a’) super basin
final states in any kinetic transition are, in fact, not pureare directly connectedf the path connecting their two re-
“states” (local minima but collections of local minima that spectivea’ minima does not go through any othBf(a’)
belong to the same basin. Namely, basins, and not minimdasin. A limiting case is that of maximal connectivity within
the elements that define the kinetics of the system. Basina super basin, in which all possible pairs of basiféa’)
that are separated by low barriers have a high probability fothat belong to the same “parentR(a’) super basin are
transition between them and basins that are separated by higlirectly connected. For example, in the system shown in Fig.
barriers have low transition probabilities. 5 the maximal connectivity limit means that there is a direct

The disconnectivity graptG'(®) reflects this type of path connecting each of the three possible basin pairs: Ra—
kinetic connectivity(Fig. 5). In fact, the levels of the graph Rb, Ra—Rc, and Rb—Rc, that belong to the™‘super basin.
reflects &inetichierarchy. As described in Sec. Ill, we num- This is schematically represented in the “basin connectivity
ber the levels of the graph relative to the system temperaturgraph” of Fig. 6a), which shows the direct connections be-
which is assigned the index 0. All nodes on the 0-level of theween basins. In this case, all the level-0 bagRa,Rb,R¢
graph represent actual super-basins at this temperaturate not more than one basin away from the level-2 barrier,
These are denoted as Ra, Rb, Pa etc., and in many cases aiigich is located between Ra and Pb. If the internal connec-
connected to several sub-basins, which in turn are in rapitivity within super-basinR is less than maximalas illus-

J. Chem. Phys., Vol. 106, No. 4, 22 January 1997

Downloaded-07-Feb-2005-t0-128.125.4.122.-Redistribution-subject-to-AlP-license-or-copyright,~see=http://jcp.aip.org/jcp/copyright.jsp



1502 0. M. Becker and M. Karplus: Multidimensional potential surfaces

trated in Fig. 6b)] some basins are significantly further away A. The master equation
from the level-2 barrier.

It is useful to distinguish between a strong kinetic hier-
archy and a weak kinetic hierarchy:

(i) If there is a strong hierarchy, reflected in a large
energy separation between the levels of the graph, there is a dpi(t)
time separation between—§(1)—0 transitions, 6+(2)—1 T:z [Wijp;i (1) —W;jipi(t) ], (13
transitions etc(Fig. 5, which is essentially independent of !
the multiplicity of the connectivity. Before each-92)—1 whereW;; is the transition probability from stafeto statei.

transition there is sufficient time for equilibration among the Equation(13) can be rewritten in matrix form by defining the
O-level basins on the “reactant” side, and the rate of theyansition matrix elements as

0—(2)—1 transition will not depend on the 0-level connec-

tivity (within the level-1 reactant baginThis type of time

separation between-Q0 transitions andat least 0—1 tran- Wij=W;; — 4 ( zk: Wki) : (14

sitions was observed in simulations of the protein bovine

pancreatic trypsin inhibitofBPTI),*® and corresponds to the The matrixW has the properties that/;;=0 for i #j and

tier picture suggested by Frauenfelder and co-workers foghat the sum over each column is zero: iBW;; =0 for all

transitions in myoglobiri?~?? j. This last property is required for a closed system so that
(i) If the kinetic hierarchy is weak, as reflected in athe flux out of any given state remains within the system

small energy separation between levels on the graph, thefge., goes into the other states of the systemmatrix form
will not be a well-defined time separation between transi£q. (13) becomes

tions relating to the different levels. This means that internal

equilibration within the “reactant” super basin is not p(t)=Wp(t), (15
achieved before the higher order kinetic transitions take

place, and the reaction rate will depend on specific connedvhich has the formal solutiop(t) = €"/p(0); wherep(t) is
tivity among the reactant O-level basins. A graph of basinthe probability vector at time.

connectivity(as in Fig. 6 shows the internal structure of the

basin and helps in locating entropic contributions to the ki-

The master equation is a loss—gain equation which de-
scribes the time evolution of the probabiliy(t) for finding
the system in a staie'® The basic form of this equation is

nefics. S B. The transition matrix
In a similar way, the connectivity within the “product” . . )
RY(a') basin influences thehort-time nonequilibriundistri- We now consider the structure of the transition matrix

bution among final state(he final equilibrium distribution is W in the basin description given in Sec. Il. For the peptide

insensitive to this TheG(®) graph shows that a-0(2)—1 and protein systems of primary interest he.re', each state

transition starts at a level-0 basiwithin the reactant super C€Orresponds to one of the potential energy minimén such

basin, crosses a level-2 barri¢the join) and ends up in the SYStems thé;; transition probabilities are the state to state

level-1 “product” super basin. Although the system finally "at€ constantss; , for a transitionj —i. Given a knowledge

ends up with an equilibrium distribution among the various®f theé minima and transition states it would be possible to

level-0 product basinéa,Pb,Pk the GT(®) graph does not US€ transition state theory, for example, to evaluate the rate
L ) 7 .

reveal the kinetics of this distribution, especially on shortconstants? I this case, we have

time-scales. An insight into this process requires the “basin

H H 1 1 H 1 kT Q#
connectivity graph” described in Fig. 6. kij =W = 6'11 exp(—E;; /kT), (16)
VI. “BASIN-TO-BASIN” KINETICS wherek is the Boltzmann constarf, is the Planck constant,

. . Q; is the partition functions of the “reactant” statQiﬁ, is
The basin picture of the potential energy surface focuseﬁqe partition function of the transition state akg is the

on Fhe basins, and not the energy minima, as the el.em?ma%rrier height measured relative to stat®epending on the
entities that govern the behavior of the system. It highlights, e of the environment and the interest in more quantita-

the role of groups of states that are in rapi_d gqui'librium at giye kinetics, a stochastic descriptiqiramers theory or
given temperature. The focus basin to basirkinetics con- more accurate rate theory should be used instead of Eq.

trasts with thestate to statekinetics often employed in gas 16).38
phase and molecular beam reactfoos the complete aver- '
aging over initial and final states in solution reactions. In this
section we explore quantitatively the basin-to-basin kinetics Ej#E; for E#E;j, (17)
that was discussed qualitatively in the previous section. We

analyze the transition matrix for the system and introduce &o that the transition matri¥V is not symmetric, with
new representation of the master equation that reveals thé&;;>W;; in most cases iE;<E;. The diagonal matrix ele-
basin to basin kinetics by summing over the states that benents are assigned the valWg; = —3;;W;; to fulfill the
long to any given basiisee Sec. VI € requirement thak;W;; =0 for all j.

In the usual case of nondegenerate states
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From the formulation of the potential energy surface in . PA(t)
terms of temperature dependent basR5(a), (Sec. 1) all . Pg(t)
barriers that connect minima that belong to the same basin . Pu(t)
are lower thark T. Therefore, transitions within such a basin | p | = A
have a high probabilityrelative to inter-basin transitions p(t)= p,. B ' (19
and there is rapid equilibration. As a result the physically *

interesting kinetics of such systems is best described in terms

of basin to basirtransitions and nagtate to stateransitions. ° Pr(t)

To introduce this behavior into the master equation, we reynerep,(t), Pg(t) etc. are vectors which incorporate all the

write the transition matrixV in block form states that belong to a given badin B, etc.; i.e., each of
these vectors are defined

Wan Wpg Wice o Wyr ¢

P()=| pi(D) |, iel. (20)
W: . . . e o0 . , (18) .
Wra Wig Wie eeoe Wipp With this definition of basin vectors, the master equation
[Eg. (13)] can be rewritten in terms of thes®(t) as
dP t ~ ~
where theW,, , Wegg,... blocks along the diagonal include %:g [W3P (1) —W;,Pi(1)] (21

the transitions within a giveR"(«') basin while the off-
diagonal blockde.g.,W g, Wga), include the transition el- or
ements between two such basins. g, , Wgg,... blocks
may be rearranged, without loss of generality, so that the E:v”\/i:?, (22

deepest minimumy’ of the basin corresponding to block ~ L . . .
W pis deeper than the deepest minimun?of thegbasin Correwhere thew matrix is in the basin-block form introduced in
A o

sponding to blockWgg, etc. In the last block along the di- Sec. .Vl B. The new equatlc_)ns, qul) and(22), which are
agonal, denoted here by (for “transient”), we include cast in terms of conformation basins, are a compact and fo-
i TT 1

all the high energy states; th¥ block is somewhat loosely cused form of the master equatitq. (13)]. In addition, we

defined and is introduced for completeness. It includes afan define a new probability vectd¥ (t) which gives the

states with a very small input flux and a very large Outputaccumulated probability of finding the system in a given ba-

flux; the fact that it could be further partitioned is unimpor- S',n’ rather thqn in a given state. The scalar eIemI_éh(tS) of
tant for the present discussion. P’(t) are defined as the sum over the probabilities of the

The definition ofW;; [Eq. (16)] implies thatall ofi-  Individual states in basih,

diagonal terms are nonzero. This means that, in genéfal, .

cannot be decomposed into block diagonal form and the Pl(t):izEI pi(t). (23

equilibrium distributionp() is expected to be spread over a

large portion of state space. However, since states may n&incep(t) is normalizedP’(t) is also normalized; i.e.,

be connected directlias was discussed in Sec),\nany of

the off-diagonal terms in Eq18) are expected to be very > PI()=2 > pi(Hh=1. (24)

small. At short and intermediate time scales these terms can ' borel

often be neglected leading to a simpler description of the The time evolution of this probability vector is given by

kinetics of the system. the transition matrix in the block form of Eq18). In Sec.
VII D, we examine the transition matrixX¥ and the time
evolution of the basin probability distributioR’(t) for the
specific case of the tetrapeptide I1AN.

C. Basin population probabilities and master
equation VII. AN EXAMPLE: THE IAN TETRAPEPTIDE

To focus on the basin populations and inter-basin transi- The topological analysis in Sec. Il C and subsequent dis-
tions, it is useful to transform the master equafigq. (15)]. cussions are based on tMe" and ME maps of the multidi-
Instead of expressing the probability vecfi{t) on a state- mensional potential energy surface. Constructing a Null
by-state basis, Eq15) can be rewritten by introducing basin map, is a time-consuming task for a complex system. At
probabilities in the form each of the temperatures it is necessary to generate a long
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1504 0. M. Becker and M. Karplus: Multidimensional potential surfaces

rations resembling am-helix and apB-sheet, respectively,
T and then recursively determined alternative paths between

Me Me H any two minima encountered during the sedrch Each
path calculation involved several refinement steps and the

\ o 1/N?\ 3 \ search was ended when no new minima were found. The
N;C\Nﬂ & ff\N" ™ / resulting 139 minima are a good representation of the impor-

i j tant portions of the vacuum potential energy surface, al-
Me Me o though some high energy minima are probably missing.
~ ~ Since the search was biased towardsdHeelix and3-sheet

like conformation, it is possibf& that some structures were
missed. The 139 minima were connected by 502 direct tran-
FIG. 7. The tetrapeptide IANisobutyryl{ala):-NH-methyl. The soft tor-  Sition states, i.e., barriers that connect two minima without
sions(¢,) are on each side of the J(carbons. intermediates. Of the 502 barriers, only 393 were barriers
that define connectivity between different minima. The other
109 barriers were either self-connecting pdites, paths that

dynamics trajectory that samples the conformation spacgtarts ata given minimum, crosses a saddle point and returns
which is accessible at that temperature. It is then necessary & the other side to the same minimui@0 barrierg] or
perform “finite time” simulated annealing for many confor- correspond to higher-lying saddle points between already
mations along the trajectory. Because of the difficulty of ob-connected minima89 barriers. When two minima were
taining complete results by this approach even for relativelyconnected by more than one path, we used the lowest tran-
small systemg{e_g_, rare gas clusters of 15 or more atomS'Sition state to describe the connectivity and the basin kinet-
peptides of 10 or more residyespproaches based on statis- iCS-

tical sampling have been introducEtHowever, if the sys- Figures 8 shows the energy disconnectivity gr@gi®)

tem is simple enough, it is possible to determine the minimdor the tetrapeptide IAN on different scales. The energy is
and local barriers directly and to construct the disconnectivrelative to the global minimée=0), and the point where the

ity graphsG(®) from them. A molecule for which the nec- branches terminate are the exact energies of the correspond-
essary information about the minima and barriers is availabl€'g minima (Sec. IV A (except for some high lying

is the tetrapeptide isobutyryhla);-NH-methyl (IAN) in  minima). In Fig. 8a) the levels of the graph are separated by
vacuum (Fig. 7), which was studied by Czerminski and AE=1 kcal/mol. Since each vertex of the graph corresponds
Elber!"'8This peptide, which is a derivative of tetra-alanine, 0 a basin on the PE&Sec. Il)), the vertices at leveE=6

is the simplest model system that can form a fulhelical ~ kcal/mol represent basins which include minima connected

turn, including the stabilizing hydrogen bond between theby barriers no higher than 6 kcal/mol, while vertices at level
first and the fourth amide plane. E=5 kcal/mol represent basins with barriers not higher than
In the polar hydrogen representatibhwith methyl 5 kcal/mol. Figures @) and 8c) are the corresponding
groups treated as single extended carbon atoms, IAN has@"(®) graph with different level spacing; Fig(i is on the
72-dimensional conformation space, excluding overall transscale ofAE=0.5 kcal/mol and Fig. &) is on the scale of
lation and rotation. However, the conformational transitionsAE=2 kcal/mol. While all three graphs correspond to the
of the peptide are well described in terms of a much smallefame system, they show that the impression obtained from
coordinate manifold. It consists of the seven soft torsionsthe graph depends on the choice of energy scale. In particu-
corresponding to the dihedral anglésand ¢ (Fig. 7). Czer-  lar, Fig. 8b) shows that, although the funnel structure can
minski and ElbeY18located 139 local minima and 502 bar- Still be recognized even at higher resolution, the more de-
riers on the potential energy surface of this tetrapeptidetailed branching picture makes it harder to identify global
With this information they looked at the barrier spectrum andfeatures. The more coarse graph in Fi¢)&hows the fun-
found a possible pathway from amna*helix” conformation ~ nel, but misses some of the interesting features in Fig, 8
to an extended f8-sheet” conformation. They also calcu- a@s described below. Thus, it is important to use several dif-
lated the relaxation times for the system using the masteferent scales in constructing disconnectivity graphs to obtain
equation formulatiort® We use the data for IAN, which they a full understanding of a given system.
kindly made available to U to construct the disconnectiv- The graph in Fig. &) has one main central bran¢ver-
|ty graph and in\/estigate the topography of this potentia]tiCESA—B—C—D); i.e., the overall structure of the potential
energy surface. We then examine its basin-to-basin kinetic&nergy surface is that of a multidimensional “funnefSee
The present results provide a viewpoint that complementSec. IV B and Fig. 4 There is only one relatively large side

the work of Czeminski and Elber and present a clear illusbranch indicated in Fig. (& as vertex E. It is significantly
tration of the utility of the formulation. smaller than the main branch and ends at an energy above

the global minimum. All 10 lowest minima and 14 out of the

15 lowest minima are inside the main funnel. The 20 lowest

minima are numbered in Fig.(& and their energies are
The search algorithm used by Cerminski and Elbergiven in Table II.

started with the minimum energy path between two configu-  As the energyE of the ME(r) map decreases, the “size”

1 3

A. Potential energy surface topography and
disconnectivity graphs
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0. M. Becker and M. Karplus: Multidimensional potential surfaces 1505

of the basin, which is related to the configuration space volSignificant splitting occurs at the next le@=4 kcal/mo),
ume, of the main funnel also decreases. The size of a basimhere three identifiable sub-basins D, G, and H, are formed.
can be described by the number of minima incorporatedhe central basin D, which leads down to the bottom of the
within it [see Eq(12) and Sec. Il abovk As we move down funnel, has 14 minima, including 5 of the lowest 10 minima.
from higher energies towards vertex{Asing the notation in Basin G incorporates 8 minim@cluding 4 of the lowest 10
Fig. 8@)], we find that initially only few high laying minima minima) and basin H has only 2 minima including the ex-
become disconnected from the main basin, and that no sigended “8 strand” structure. From this level down it is hard
nificant splitting is observed. Vertex A, defined at thee7  to identify a central funnel as multiple branching occurs,
kcal/mol level of the graph, corresponds to a basin of sizewith two different branches containing the lowest and next to
103; i.e., 103 out of the 139 minima are incorporated withinlowest minimum.

it (and connected by barriers lower than 7 kcal/mék one In Fig. 8b) with an energy spacing of 0.5 kcal/mol, all
level down(E=6 kcal/mo), the A basin has split into three the branches are shown down to their lowest minfia in
sub-basins B, E, and F plus many smaller basin “fragments’Fig. 8@)]. At this “finer” resolution the splitting of vertex A
which include only a single minimum. Of the three main to three sub-basing is preserved;EBt6.5 kcal/mol, there
sub-basins, vertex B incorporates 55 minima, vertex E incorare 63 minima under vertex B, 21 under vertex E and 7 under
porates 17 minima and vertex F has only 3 mini@aatio of  vertex F[a ration of 1:0.33:0.11, similar to that obtained
1:0.31:0.0%. The structure under vertex E is not that of afrom Fig. 8a)]. Note, that the additional minima, now incor-
funnel, but rather a region on the PES where a group oporated in basin F, were classified in Figa8under basin A.
minima of similar energy are separated by relatively highOf interest in this more detailed graph is that the basin which
barriers. As the energy is reducedde-5 kcal/mol, the main  corresponds to vertex H is larger than shown in Fi@);8
A—B-C branch shrinks further in volume and incorporatesi.e., it includes more local minima than appear in Fi(g)8

39 minima at vertex C, with only very minor side branches.This basin splits from the main branch of the funnel at

E
b

o @ L ®
11 \ 11
10 10
9 9
8 8
7 [ ;

/4
6 B 6

5 g 5
3 ’ 3
2 2

19'20
14 4 15 18 4517
11413 @ 12110

8 7
1 { 1
4 6 3 5

FIG. 8. Disconnectivity graph65(®) of IAN: (a) mapped using a level spacing &E=1.0 kcal/mol. The overall structure approximates that of a funnel,

though there are additional features outside the funnel. The humbers indicate the ordering of the 20 lowest minima on the potential energy surface. The energy
scale is set relative to the lowest minima, i.e., the energy of minima #1 is 0 kcal/mol and the energy of minima #20 is 1.902 kcal/mol. For clarity, branches
leading to high lying minima were drawn only down to the next level of the graph. Other branches were drawn down to their respective minima. Low lying
minima were drawn down to their respective minimum energy. The letters A—I indicate vertices of interest. The number of minima below each of these

vertices are: A-109; B-55; C-39; D-14; E-17; F-3; G-8; H-2; I-2. The symhoblnd g indicate minima closest to the-helix and 8-sheet conformations,
respectively(b) The same wittAE=0.5 kcal/mol,(c) the same witlAE=2.0 kcal/mol.
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1506 0. M. Becker and M. Karplus: Multidimensional potential surfaces

(in basin A and the other three branch off at the very top of
12 (©) the graph. Table 1l summarizes the data in terms of charac-
teristic angles for each basin. From the data one sees that,
» while some dihedral angles have essentially unique values in
a given basin(e.g., the central angl®,, which has the range
—70°+20° in basin D and 58?7° in G), others exhibit a
number of alternative values.
The central funnel beginning with basin B and extending
downward in energy, includes a wide range of dihedral angle
values. The anglé; is negative for all structures and mainly
7 in the neighborhood of-70°+20°, although basin D shows
) a wider range of values. Fab;, the basingE,F,|) outside
the funnel all haveb; values of 60%2°.
The split of the funne{basins B and Cinto its two main
S components, basins D and G, is defined mainly by the two
‘ i “central” dihedrals ¥, and®,. Their values lead to a bend
s that is common to basins D and[6ee Fig. 9a) and 9b)]. In
D this bend is similar to a type | tur(®,~—-60, ¥,~—30
4 D] and d;~—90, with W5 variable for the lowest energy struc-
tureg. The N-terminal dihedral{®,,¥,) seem less signifi-
3 cant. Structure 16, which is described as a standainelix
by Czerminski and Elber deviates significantly from an

a-helix, in terms of its dihedral angles and its hydrogen bond
(1-3 rather than 194

Minima #34 and #36grouped under “C(not in D, G,
H)”, which are the conformations that form a bridge be-
0 2 tween basin D and basin @ig. 10c)], correspond to a
mixture of the two basin structures. They are similar to the D
basin in two dihedral§®, and¥,) and to basin G in two
other dihedral§{®, and ¥,); ®; is common to both basins
and the terminal dihedrals are less specific. Similar behavior

E=4.5 kcal/mol and carries with it a cluster of 8 minima. is found in the minima grouped under “Bot in CJ". Here
The “additional” 6 minima, with respect to Fig.(8), are dihedrals®, and ¥, are similar to basin D while dihedrals

relatively high in energy; they rank between number 36 andP2 and¥; are like basin G.
52 and were included in vertex C in Fig(e8 Basin H, which also is part of the central funnel, exhibits
As discussed abovéSec. Il)), a continuous mapping an extended conformatios-strand typg very different
with infinitesimal level spacingA E—0) will result in a pic- ~ from the “bent” conformations of basins D and[Gee Figs.
ture of the local connectivity. Such a continuous mapping of(@ and 9c)]. It has been noted recerfththat the minima of
IAN for a small portion of the PES can be found in Ref. 18. Such extended strands are nde=70°, ¥=75°, instead of
the “ideal” values in the neighborhood ofb=-140°,
¥=140°. The conformations of basin H differ from those of
basin G by only two dihedrals; they a®,=-70° and
An important question is the extent to which connected¥,=70° in basin H, vgb,=55°-65° and¥,=—-50°——70°
configurations are near each other in conformation spacén basin G. From Fig. &) one sees that basin H splits from
and whether the similarity decreases as the location of ththe central funnel at a higher level than basins D and G,
join increases in energy. In other words, how similar areindicating that a higher barrier is associated with the change
conformations that according to th&(®) graph belong to of dihedral angles.
the same basin. We use ti@&®) graph in Fig. 8 and Although the nonfunnel basins share the same
analyze the structures of the 45 lowest minima, plus several-terminal dihedral angleéb; and ¥5), they differ in the
of the high energy minima. To do the analysis we make us®ther angles. An interesting characteristic of basin E is that
of the seven mainchain dihedral angles of the tetrapeptidevhile all its minima share angle®,, ®;, and¥; (-70°—
shown in Fig. 7. They are thé and ¥ angles of the three —90°; 60°; —60°, respectively they can have one of two
alanines and¥,, the dihedral angle of theé\ terminal values for¥, (70 and—20). This results in conformations
C(CHj5) group. Table Il lists the energies and dihedral angleghat look very different from each othé¢see, for example,
of the 45 lowest minima of IAN grouped according to the Figs. 9d) and 9e)].
basins depicted in Fig.(8). The three high energy minima, The energetic effect of th&l-terminal dihedralVy is
plus minimum 44, are not associated with any of these bavery small. Its variation consistently leads to changes of
sins. In particular, minimum 44 branches of above basin Babout 0.05—-0.10 kcal/mol for pairs of minima such as those

FIG. 8. (Continued)

B. Conformations and basins

J. Chem. Phys., Vol. 106, No. 4, 22 January 1997

Downloaded-07-Feb-2005-t0-128.125.4.122.-Redistribution-subject-to-AlP-license-or-copyright,~see=http://jcp.aip.org/jcp/copyright.jsp



0. M. Becker and M. Karplus: Multidimensional potential surfaces 1507

TABLE II. The energies and dihedral angles of the lowest 45 minima of IAN grouped together according to their basin assignment. A few high lying minima
are added for comparison. The energies, in kcal/mol, are given relative to the lowest minima on the surface.

No. Energy v, [N v, [OR v, [0 v,
Basin D[including a-helix (#16)]
1 0.000 -60.54 50.97 —71.95 —-88.03 -31.32 —76.49 73.28
6 1.021 —58.18 44.91 —83.68 —67.18 —25.82 —94.16 12.62
2 0.109 103.73 48.93 —-72.11 —-93.29 —28.75 -77.33 71.62
4 0.959 109.94 41.02 —84.71 —66.82 —25.73 —99.05 14.45
8 1.291 125.10 —52.35 —32.95 —70.74 —22.19 —101.86 —32.52
13 1.546 124.70 —48.23 —34.14 —58.25 —20.63 —84.38 —6.84
15 1.748 118.00 57.84 —62.81 —75.16 70.10 —72.85 72.12
18 1.828 —-59.73 58.10 —62.88 -75.21 69.92 —-72.92 72.09
16 1.750 —62.53 —53.37 —31.78 —69.52 —22.31 —-102.81 —32.63
17 1.776 —62.14 —49.16 —-32.84 —58.16 —20.18 —83.54 —7.50
29 2.526 125.06 —51.69 —22.03 —72.90 -20.39 —77.06 67.36
33 2.773 —62.36 —52.56 —20.87 —72.29 —20.19 —76.83 67.58
35 2.958 128.58 —-56.15 —48.83 —79.15 45,11 —-167.12 —48.84
37 3.211 —62.83 —59.36 —-50.19 —79.28 48.31 —-167.12 —49.09
Basin G
3 0.897 —-63.61 —-72.79 80.81 64.56 —56.64 -72.91 74.95
5 0.969 126.71 -71.21 81.63 64.92 —55.89 —72.69 74.94
7 1.161 —62.00 —73.40 78.46 55.03 -69.37 —93.85 —23.99
10 1.360 126.60 —71.42 81.35 56.59 —68.68 —-92.31 —24.64
12 1.427 124.40 —56.55 124.51 63.21 —47.31 —69.99 —25.06
23 2.103 —64.62 —58.34 124.23 63.17 —47.65 —69.69 —24.76
32 2.720 120.23 —86.48 66.18 62.32 -54.11 —82.86 146.25
38 3.225 —83.00 -90.72 60.56 60.75 —55.00 —83.97 151.61
42 3.710 —56.68 —71.83 145.28 51.06 —69.00 —88.47 -19.79
Basin H[including g-strand(#11)]
9 1.344 —61.34 —73.90 72.91 —72.14 71.31 —72.43 72.46
11 1.386 122.05 —73.50 72.56 —72.28 71.27 —72.44 72.46
Basin C(outside of sub-basins D, G,H
34 2.957 —61.33 —74.95 70.27 —53.39 —22.61 —77.43 —11.99
36 3.012 122.17 —74.57 69.88 -53.59 —-22.50 —77.46 -11.99
45 3.863 —61.33 —74.44 72.67 —68.85 —28.09 —-75.21 69.90
Basin B (outside of sub-basin)C
26 2.414 118.58 58.64 —62.13 57.97 —60.69 —74.56 71.68
27 2.482 —59.98 58.82 —62.23 57.97 —60.69 —74.56 71.68
30 2.618 118.50 58.67 —61.25 49.73 —70.30 94.43 —21.56
31 2.683 —59.95 58.87 —61.33 49.77 —70.30 —94.48 —21.56
Basin E
14 1.703 115.31 56.07 —67.34 —79.15 69.12 60.40 —-61.14
19 1.873 —57.55 57.25 —66.47 —78.49 70.30 60.97 —60.69
20 1.902 —61.33 —73.74 73.20 —-72.41 74.64 61.79 —59.42
21 1.943 122.04 —73.34 72.84 —72.56 74.59 61.78 —59.43
22 1.966 116.76 48.80 —-71.88 -90.42 —-23.41 59.74 —-59.93
24 2.274 —-57.85 50.45 —-71.87 —89.03 —24.86 59.67 —59.82
41 3.544 124.84 —-52.59 —22.87 —75.29 —-15.19 58.86 -61.14
43 3.711 —-62.41 —53.49 —21.95 —-74.72 —15.55 58.87 —-61.14
Basin F
25 2.410 -61.77 —73.74 77.04 61.91 -60.21 59.26 -59.99
28 2.492 123.43 —72.97 77.29 62.06 —60.12 59.28 —59.99
Basin |
39 3.359 118.57 58.71 —62.02 58.19 —-61.27 58.96 -60.21
40 3.428 —59.97 58.89 —62.11 58.21 —61.27 58.96 —60.21
Some minima outside all of the above basins
44 3.792 123.53 —69.67 70.38 176.43 —40.67 —104.01 —34.30
127 9.330 125.98 —-67.91 —20.55 —143.31 144.46 —143.67 147.80
128 11.475 116.45 43.44 34.61 48.28 29.09 58.76 17.03
137 11.675 —72.68 —143.39 102.60 47.99 53.34 5453 —74.75
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TABLE Ill. Characteristic dihedral angles of the different basfbased on the lowest 41 minima specified in Tab)e Aingles are rounded to the closest
multiple of 5. The numbers in parentheses indicate the percentage that a specific angle range appears within the basin.

Basin ¥, (o 2% D, v, (Y ¥,
D 100 to 125(50%) 40 to 60(43%) —20to -85 —60 to —90 —20t0—30(71% —70 to —100 (86%) 70 (43%)
(14 minima —60 (50%) —50t0—60(57% (—20 to —35) (43%) 70 (14%) —165(14%) 15 (14%)
(—50 to —85) (57%) 45 (14%) —10 (14%)
—30(14%
—50 (14%)
G 120 to 125(44%) —55t0 —90 60 to 80(67%) 50 to 65 —50to —-70 —70 to —90 150(22%)
(9 minima —55 to —65 (44%) 125 (22%) 70 (22%)
-85 (11%) 145 (11%) —20 to —25(56%)
H 120 (50%) -75 70 -70 70 -70 70
(2 minima —60 (50%)
C (not D,G,H 120 (33%) -75 70 -50to—70 —20to—30 -75 —10 (66%)
(3 minima —60 (66%) 70 (33%)
B (not in O 120 (50%) 60 -60 50 to 60 —60 to —70 —75t0—-95 70(50%)
(4 minima —60 (50%) —20 (50%)
Summary of 12047%) —50to —95 (66%) —20to—85(60% —55t0—90(60% —20to—70(80%) —70to—100(94% —10 to—30(40%)
basin B —60 (53%) 40 to 60(33%) 60 to 80(33%) 50 to 65(40%) 45 to 70(20%) 150/70/15/+-50
(32 minimag
E 115 to 125(50%) 50 to 55(50%) —70 (75%) —70 to —90 70 to 75(50%) 60 —60
(8 minima —60 (50%) —50 to —70 (50%) —20 (25%) —15 to —25 (50%)
F 120(50%) —-70 80 60 —60 60 —60
(2 minima —60 (50%)
| 118 (50%) 60 —60 60 —60 60 —60
(2 minima —60 (50%)

of basins H, F, and I. On the other hand, the energy barrieinside a basin are highly connected to each other due to the
associated with this simple 180° dihedral angle fiptween  presence of multiple paths or whether they have only the
two values:—60° and+120°) is rather high, typically 2 to 3 minimal internal connectivity needed to define a basin. This
kcal/mol. difference, which is of importance for understanding the ki-
The high energy minima listed in Table Il are quite dif- netics can be addressed by using the basin connectivity graph
ferent from any of the low energy structures; e.g., minimumintroduced in Sec. (Fig. 6). This graph shows the direct
127 has most of the dihedral angles, ¥,, @3 in the ideal  connectivity within a given basin at a given total enefgy
pB-strand region, which is higher in energy than the actual  Figure 10 shows graphs of the internal connectivity at
strand minimum, as described above. different energy levels of the 39 minima of IAN that are
The basin designated by vertex H is particularly interestincjuded in basin C, which corresponds to the “center” of
@ng. A_s already mentioned, the confor_mati_ons_ incorporatedhe funnel [Fig. 8@]. The graph is a projection of the
in basin H are extended. However, FigaBindicates that  iyima from the 3-dimensional conformation space onto a
this basin is part of the central fun.nel_, which otherwise 'n'plane. Each point in this graph is one of the 39 minima
corporates nonextended conformatigfRigs. 9a) and 9b)]. belonging to vertex @numbered according to their enejgy

TP;S hd'ffeer{:rn;; dc\?/ir;hbg ;Eg;;rsr:g??e;gmkg;e g(rg]? (2 and each edge represents a direct pathway between two
graph g ) 9. ' minima that is lower than the energy value that defines that

this resolution one sees that the H basin branches off from ) . . .
the central core of the funnel &=4.5 kcal/mol, 0.5 kcal/ graph; the different symbols for the points and lines are de-

mol above the point where the D and G branches separat _cribed in the caption. The projection was arranged so that
ere would be as few line crossings as possible. As a result,

The difference between the folded D-vertex configurationst

and the extended H-vertex configurations shows that conne€ONNeCtivity is related to proximity. However, due to the
tivity is not always simply related to conformational similar- reduction in dimensionality, line crossings cannot be avoided
ity. altogether. Further, as no special optimization was per-

formed, the relative position of the minima give only a quali-
tative indication of the connectivity shown explicitly by the
pathways.

The G(®) graph(Fig. 8 shows the splitting of confor- Figures 10a)—10(d) can be used to follow the creation
mation space into smaller basins as the total en&gje- of basins of increasing size in this region of the PES. At
creases. It does not indicate, however, whether the minim&=3.5 kcal/mol three small basins are obserjfig. 10a)],

C. Details of connectivity
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(@ GV

(b) ©

FIG. 9. A sample of IAN conformations from different regions of the potential energy surface, classified according to the vertex that defines the basin to which
they belong. Dashed lines indicate hydrogen bof@sVertex D: minima number 1bold), 2, 4, 6, and 16 « (bold dashej (b) Vertex G: minima 3(bold)

5, 7, and 10{c) Vertex H: minima 9 and 1% (bold dashef (d) Vertex E: minima 14(bold) and 19;(e) Vertex E: minimum 20{f) Vertex F: minima 25

(bold) and 28.

each centered around one of the three lowest minima and Increasing the energy tB=4.5 kcal/mol results in an
including 3 to 4 other minima. The basins around minimaincrease in size of all three basins with basins D and G be-
number 1 and 2 are associated with vertex D and the basicoming connected to form basin[€ig. 10(c)]. Although the
around minimum number 3 belongs to vertex G. The internatonnectivity within D and G increases, the connection be-
connectivity of these basins is nearly minimal; i.e., with onetween them to form basin C is rather weak. In fact, there is
exception(4, 8, 13 each minimum is connected only to two only one connecting path through a relatively high lying
others. As the total energy increasesite4 kcal/mol[Fig.  minimum (number 34. This type of connectivity is indica-
10(b)] the basins around minima 1 and 2 increase in size antve of an “entropic” barrier, which may disappear at higher
becomes connected to forms the core of the furimeitex  energies as more pathways become available. There is a
D). The G basin around minimum number 3 also increases isimple “star-shape” connectivity within basin H. A& =5

size, and a new basin is beginning to form around minima %cal/mol [Fig. 1Qd)] basin H is integrated into basin C.
and 11(vertex H. The interconnectivity within basins D and While the internal connectivity within the D and G sub-

G has increased considerably; there is a square at the centmasins continues to increase, the connectivity between basins
of D connecting its four lowest minim@umbers 1, 2, 4, and D, G, and H is still weak and involves few pathways through
6), with each connected to several other minima. high lying minima. Thus, the “entropic” barrier encountered

J. Chem. Phys., Vol. 106, No. 4, 22 January 1997
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FIG. 10. Basin connectivity graphs showing the internal connectivity between the 39 minima that are included within[Fagir8@)] at different energy
levels. (a) At total energyE=3.5 kcal/mol;(b) E=4 kcal/mol; (c) E=4.5 kcal/mol, andd) E=5 kcal/mol. The minima are numbered according to their
energy(the global minimum is number) &nd the two-dimensional arrangement was chosen to minimize the complexity of the(igoagecial optimization
was performefl The dashed regions indicate connected sub-basins at the given energy, and the sub-basins are labeled C, D, G, and H according to the notation
in Fig. 8(a@). The lines connecting two minima indicate that there is a pathway with a barrier below a given energy. Thick botB*r@& kcal/mol; bold
lines: 3.5 kcal/mok®*<4 kcal/mol; dashed bold lines: 4 kcal/mob*<4.5 kcal/mol; dashed lines: 4.5 kcal/mob*<5 kcal/mol. The filled-in circlegl, 2,
and 3 correspond to the minimum within a given sub-basin on Figal0

in Fig. 10c) is somewhat weakened but does not completely  The finding that the connectivity within a basin is sig-
disappear. The weak connectivity between these three subificantly greater than that between basins supports the con-
basins reflects the fact that their conformations are distinceept of basin-to-basin kinetigSec. VI above When com-
tively different[Figs. 9a)—9(c)]. bined with the lower energy barriers within a basin, it should
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FIG. 11. TheG"(®) map for IAN. Shown are minima with absolute energy lower that kcal/mol (lowest 91 minima The level spacing in this map
correspond to a relative barrier height of 1.5 kcal/mol. The lowest 30 minima are numbered. The letters correspond to the basin assignments defined in Fig.
8(a) and the numbers next to them to the numbers of the minima in the sesntext

lead to faster transitions within a basin and slower transitiongty within the sub-basins at the bottom of the funnel, but as
between basins. Thus, the slower, larger-scale transforma@ne goes up in energy and includes more branches the struc-
tions correspond to basin-to-basin kinetics. tural diversity increases and becomes significant even within
From the connectivity data it is possible to locate thethe main funnel. There is high degree of internal connectivity
shortest path between any two minima. It is defined in termsvithin sub-basins at the bottom of the funnel, but the inter-
of the number of transitions required to go from one mini-connectivity between these sub-basins is low. This finding is
mum to another. There are often several possible paths b@& accord with the observed conformational diversity.
tween two minima, even without taking into account that  Although the expected relation between connectivity and
there can be more than one path between directly connectestructural similarity(especially within local basinss often
minima; the latter were not included in the graphs for sim-present, it does not always hold. In some cases connected
plicity (see Sec. VIl A. For example the shortest path be- conformations exhibit structural similarity, but very dissimi-
tween the a-helix configurations(minimum 16 and the lar conformations can show a high degree of connectivity.
B-sheet configurationminimum 13, involves four local Thus, the graph provides information that is not evident from
transitions. It can be written as 16-8-13-47{Lk., a move simplify looking at the structures.
from minimum #16 to minimum #8, then through minima
#13 and #47 to reach minimum #1 this path was discussed
in Ref. 18. Three of the barriers crossed along this path arg Basin-to-basin kinetics
higher than 4 kcal/mol. An alternative path of equal length is™
16-17-13-47-11, which has a corresponding set of barrier We now focus on the basin-to-basin kinetics of the IAN
heights; this was not considered in Ref. 18. It is possible thapeptide and make use of the appropriate master equation for
the slightly longer patti16-6-4-13-47-11is preferentialor = a semiquantitative analysis. Qualitative aspects of the kinet-
at least competitivesince only two of its five barriers are ics of the system are revealed by t6d(®) graph, which
higher than 4 kcal/molsee Sec. VII . Similar arguments indicates which minima are kinetically connected; i.e., it
can be made within the framework of the canonical enshows that the “relative” barriers separating them are lower
semble, in which absolute barrier heights are replaced bthan a certainkT value. Figure 11 shows the canonical
relative values. G'(®) graph of IAN using a barrier height separation of 1.4
The INA example has shown that the disconnectivitykcal/mol. As this is a “relative” energy scale, all the local
graphGE(#) can be used to reveal the underlying structureminima are placed at zero and the nodes of the tree represent
of the PES. The overall shape of the potential energy surfactne height of the barriers connecting them. This construction
is that of a funnel, although at least one relatively large sidés different than that used with th@5(®) graph that is de-
branch exists. Close to its bottom, the funnel splits to severdined with respect to an absolute energy scale. We take the
sub-basins somewhat obscuring the funnel’s core. The funnédrger of the two relative barrierd)*,g for A—B and®*g,
is centered around the global minimum of this surface. Al-for B— A, to define the kinetic connectivity. Although the
most all the deep minima are in or close to the core of theGE(®) graph and the kinetic connectivity gragh' (®) do
funnel. There exists a high degree of conformational similarnot necessarily have to resemble each other, Fig. 11 shows
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that the basin structure, which is evident in B&®) graphs

in Fig. 8, is also reflected in the kineti@"(®) graph. A e -_ b "0
significant difference between the two graphs is that the re {5y Jew el _' l.:,{
lationships between some of the minima in the B basin art i I, - 08
slightly altered in theGT(®) graph. 101 = L
The information provided by the canonidal (@) graph 4] l| -' 1 |
can be used to transform the system’s transition matfix g, S 06
into the basin block form of Eq18). To analyze the result- -, s
ing kinetic behavior, we use aapproximateform for the 61
transition rates. It is assumed that all transitions have thi [ t ! 0.4
same characteristic frequency factor, which for this vacuun . 1 /]
system, we set equal to the standard vatdéh. With this g
assumption Eq(16) reduces to 5i 02
where at 300 K, the frequency factor=kT/h=6x10%2s%,  (a) T T Ay m E A 00
which corresponds to approximately 200 ¢mUse of Eq.
(25) instead of Eq.(16) for evaluating the transition rates k0
corresponds to a one-dimensional approximation for the trar
sition and assumes that the basins all have the same shape 2!
is used here to simplify the calculation of the kinetics but has 08
not been employed in constructing the potential surface
Thus, the differences in rates from one minimum to anothe 65
arise only from the connectivity and from the barriers along 817 '
each of the paths. Czerminski and Elber in Ref. 18 use(
complete transition state theory rate expressions; in mos 61 04
cases, the effect was smélizerminski, private communica-
tion) and is not important for the present analyses. 4
0.2
21
1. Qualitative features of kinetics 3 -

In Sec. VI B we discussed how the full transition matrix ® 1~ 2t 4 & 8 101 42

W can be rewritten in a block form, based on the basin

. T " . FIG. 12. The transition matri¥V of the tetrapeptide IAN in a basin-blocked
assignment of the individual states. Any transition matrix CaNtom [similar to Eq.(28)] at two temperaturesa) KT=3.0 kcal/mol, (b)

be rearranged so that all the staiegal minima that belong  k1=3.5 kcalimol. Each block contains all the statéscal minima that
to a given basin appear next to one another in the matrix. Thielong to the same basias defined by the canonic mapping at that specific
nature of the blocks depends on the temperature at which tH@mperatur}a Th_e _blocks themselves are arranged in the matrix in order_(_)f
. . L. . their deepest minima. The gray scale is proportional to the average transition
mapping was dor?e' Figure 12 shows the transition méi_\hx . probability in that block[as defined in Eq(27)] and the darker points
of 1AN, at two different temperatures, after rearranging itindicate the actual transition elements.
into a block form similar to Eq(18). As described in Sec.
VI B, the blocks themselves are arranged so that the first
block corresponds to the basin which includes the deepest From Fig. 12 one sees that the block partitioning of the
minimum on the surface, the second block corresponds to thigansition matrix reflects the kinetic character of the system.
basin with the lowest minimum among all the remaininglt also highlights how this character changes with tempera-
basins, etc. The size of the block is determined by the numture (also seen in Fig. 11 As expected, blocks along the
ber of minima included in the associated basin at the givemain diagonal, which represent intrabasin transitions, have a
temperature. Thus, in Fig. (&, the minima between 1 and dark shade reflecting the high probability of intrabasin tran-
38 all belong to the same basin, to which the global mini-sitions. There are many off-diagonal terms which are white,
mum also belongs. The next block, between 39 and 47, inindicating that the two corresponding basins are kinetically
cludes states connected with the “second deepest” basirgompletely disconnected; i.e., a transition between two such
etc. In Fig. 12b) the first (and largestblock is associated basins can occur only via a third basin. A closer look at the
with the B basin and the second block with the E batie  figure reveals that, while almost all basins have transition
“side-branch”). The gray level of eackV,; block (using the  elements connecting them to the main funiitde large
terminology of Sec. VI B is proportional to theaverageof  square at the bottom lgftthe connectivity among the rest of
the individual transition probabilities included in that block the system is much less pronounced. It is particularly small
(excluding the terms along the diagonahd the dark points for the high-layingtransientbasins(the lower right corner of
indicate the location of the actual nonzero terms. the matrices in Fig. 12 There are a few high-laying basins
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that are not directly connected to the main funtietlicated  Applying the transformation, E¢28), to the probability vec-
by white “stripes” in the leftmost column We also see that tor p(t) results in a transformed probability vector
the transitions in the “lower” triangle of the matrix, from q(t)=[P®% ¥?p(t), which obeys the master equatifiq.
basins with lower minima to basins with higher minima, are(15)] with the symmetric transition operatdf; that is
smaller on the average than transitions in the upper triangle .

(indicated by their lighter shades of gjayhis last observa- 9 =Vva(t). (29)
tion indicates that, fomtermediatetimes, when small prob- As in Eq. (26), the solution of Eq(28) can be cast in
ability transitions can be neglected, only the upper triangle oferms of the eigenvectors; and eigenvalues; of the V
the matrix is kinetically significant. At these times the tran- matrix: that is

sitions from the “higher” basins to the “lowest” basiftthe
central funnel dominate the kinetics. This results in an over-
all flow of probability from higher areas of the PES to the
central funnel(and the native conformatipnThe reverse

transitions become significant at longer times when equilibWith C/ = [ua(0)]. Solving for Eq.(30) and transforming
rium is established. back to Eq.(26), we get the time evolution of the probability

q()=g°+ X, Cluett, (30)
Ki<0

ThekT values used in Fig. 12 were chosen because they/€CtorP(t),

make a difference in the observed structure. Due to the na-

ture of the specific system, which is reflected in Fig. 11, the  p(t)=p®+ >, C/[P*9Y2ueMt, (32

interesting kinetic structuring occurs around 3.0 kcal/mol. At %<0

lower kT values(e.g., 1.0 kcal/mgl the system is almost ith C! = [ui|[P*~¥2p(0)]. In the final form of Eq.(26)

entirely kinetically disconnected, while at higher valées).,  the coefficients are given b, =[s|[P*Y *p(0)], where

4.5 kcal/mo) the system is almost entirely connected into[pe9~1 js the normalization factor of thg vectors.

one or two basins. In performing the calculation we proceeded as follows:
First we found the eigenvalues of the nonsymmefviana-
trix using standard techniguése., we transformed to Hes-

2. Quantitative features of kinetics senberg form and then found the eigenvalues using the QR

algorithnf?). The equilibrium vectorp® was obtained

through LU decomposition and “inverse iteration” starting

from the \;=0 eigenvalué? Then theW matrix was trans-

formed to the symmetric fornv [Eq. (27)] and solved for

eigenvaluess; and eigenvectorg; by reducing it to tridiago-

nal form and then applying the QL decomposition

algorithm?2 Finally the time evolution of the population vec-

To follow the time development of the basin probability
vectorP’(t) it is necessary to solve the master equafiegs.
(15 or (22)]. A convenient way of solving Eq(15) is by
expanding the probability vectq(t) in terms of the eigen-
vectors and eigenvalues of the transition matix If 5 are
the eigenvectors an; are the corresponding eigenvalues,
the time evolution of the probability vectp(t) can be writ-

ten adé tor p(t) was obtained by solving E¢31).
Figure 13a) shows the time evolution of the population
_ neq et probability P;(t) [Eq. (20)] for several basins atT=3.0
P(H=p +Mz<o Cise™, (26 kcal/mol, starting from uniform distribution. Figure (3

shows the same results but the basin probabilities are divided
by the number of minima in the basin to correct for size
effects. The time is given in terms of the characteristic vi-
brational period used in Eq.(25; i.e., m=1/v=h/
kT=1.6x10"* s. Equilibrium is reached after about 60
terms decay to. Z€ro. . o time units. The “kinetic basins” are indicated by letters,
BecauséV is a nonsymmetric matrix, it cannot be guar- which correspond to the notation usedGh(®) and G (®)
anteed that it has a complete set of eigenvectors spanning i[tlgigs. ga) and 11, and by numbers, which indicate size of

space. However, with the condition of detailed balance,,qin The “kinetic basin” D-38defined by the mam ) in

08 — W i ' ) .
(Wi pj™ = W;ipi"), there exists a symmetry transformation .., qe< most of basins D and H of Fig(aB (the ME map;

that transforma into a real symmetric matriy/,*® basin D-6 is also a part of basin D of FigaB The nota tion

V= Pea]~ YAn[ peajii2, (279  T-7 and T-6 indicates groups of high-lying transient states
[not really a basin in the strict sense; T stands for trans ients,
as in Eq.(18)].

The flow of probability in Figs. 1&) and 13b), which
starts with a uniformly distributed probability over all states
of the system, clearly shows the tendency towards the central
funnel on the PES. One sees that the probability of finding
he system in the central basins increases both in absolute

value and on a per minimum bagisasins D-38, D-6, and
u=[ P&~ Y% (28)  G-9). The probability of finding the system in high-lying

where the coefficien€;=[s|p(0)] is determined by the ini-
tial distribution,p(0). Since all\;<0, the equilibrium distri-
bution p*?is the eigenvector that correspondsiie=0; i.e.,

ast approaches infinityp(t) approachep®and all the other

with [P®9] a diagonal matrix with the equilibrium vectpf9
along its diagonal. The symmetrié matrix can be easily
solved with standard methods to obtain its eigenvectprs
and eigenvaluesg; . Due to the nature of the transformation,
the V and the W matrices have the same eigenvalues
k;=A\;, and their eigenvectors are related by the transform
tion operator used in Eq27); i.e.
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1514 0. M. Becker and M. Karplus: Multidimensional potential surfaces

04 : : L D-6). This is due to the fact that the larger D-38 basin in-
. D-38 cludes alongside the lowest minima some local minima that
0337 I are slightly higher in energyon the slopes of the funnel
o 031 - These reduce the equilibrium “per minimum” values. This
= phenomenon is less significant in the smaller G-9 basin.
§ . I Folding model.There is considerable interest in the ki-
g o2 s netics of protein folding® The present technique can be ap-
o O U U o S plied to this problem, in principle, by starting from the very
= 0.15 4 - G-9 I ; i
S : large basin of “unfolded” states and following the system
0.1 1 ﬁ - until it coalesces into the thermodynamically stable basin
005 | D6 | corresponding to the native state. Although the tetrapeptide
;:j:::r____,:,:2___,:::7.7_7.7_».7_:;‘.:7,::::}:;7_7.: is cIe_arI;_/ too small to represe_nt the _folding behavior of a
0 . : . - . N . proteln,_ it can b(_—:- used as an interesting model ;ystem. We
) recast its behavior as a folding problem by making certain
(@) Time (t/7) assumptions concerning the nature of the basins. We distin-
0.016 : : guish three groups of statésee Fig. 1L
g 0.014 < (i) Folded statesThe 53 local minima that are included
‘g in the central funnel on the surfadeasin B in Fig. 8.
E i This group of states includes the global minimum and
8 o0 D38 | both the “a-helical” conformation and the so-called
2 = e “ B-sheet” conformation.
| | (i)  An “intermediate” or “trap” basin: This is basin E
S o005 - in Fig. 8, which is outside of the main funnel; it in-
§~ oo | | cludes 17 local minima.
'z T M DA * (i) “Unfolded” states The rest of the system, which
Mmooy~ U = consists of 69 local minima.
0 w r ‘ . ‘ Figures 14a) shows the time evolution of the population
0 5 10 15 20 25 30

probability P}(t) [Eq. (20)] of IAN at kT=3.0 kcal/mol,
starting from a distribution in whicbnly the unfolded states
FIG. 13. The time evolution of several basin population probabilitiesa're populat'ed with ?qual prob§b|'l|(.jd.1e prOba,blllty of the
P}(t) at kT=3.0 kcal/mol, starting from uniform distribution. The time is folded and mterm(_adla_te states Is |n|t|ally z)arﬁlgure 14b)
given in terms of the characteristic vibrational period used in the approxi-shows the same kinetics corrected for size efféats, where
mﬁt‘t'gnbOfl Ettq-(3ft3:]: 't-e-:Ithlt/V:ﬂ?/kTT1t_-6X1Cf’:;S)BTh§ baS'ES are 'h”_dr'{ the basin probabilities are divided by the number of minima
cated by letters that relate to the notation of Fig) 8and numbers, which . : : s .

indicate size of basin. Basins D-38, D-6, and G-9 are part of the centran the bafc’”)!' A,S be,fore’ the, time is Q'Ve” In termls Of_ the
funnel, basin E-17 is a side branfgee Fig. 8)] and basins T-7 and T-6 are  Characteristic vibrational period used in the approximation of
high laying transient basingentered around minima that rank 66 and 117 Eq. (25), i.e., =1/v=h/kT=1.6X 10 13 s. Equilibrium is

on the scale of 139, respectivelya) Actual basin population probabilities,  yaached after about 60 vibrational periods,; only the first 20
(b) basin population probabilities divided by the number of minima in each iod h | both fi h h
basin, to account for size effects. The horizontal bar orytheis represents perioas are_ S an.. In generg, oth figures show the _eX'
the initial uniform probability of 1/139 per minima. pected folding kinetics. There is an overall flow of probabil-
ity from the unfolded states to the folded states as the system

approaches equilibrium. Due to the small size of the system

transient T basins decreases rapidly with tiffie7 is a seven and the approximate character of the transition probabilities,
membered basin whose lowest minimum ranks 66 on théhe probability of occupying unfolded states does not vanish
scale of 139 minima; and T-6 is a six membered basin witrgt equilibrium. It can be seen in Fig. (1 that the global
a lowest minimum ranking 137 The behavior of the side Minimum has the largest probability.
branch E-17basin E in Fig. 8)] is interesting. The results The most interesting aspect of the kinetics is the time
indicate an initial flow of probability into this basin which is evolution of the intermediate basin. As is seen in Figbl4
later depleted in favor of the central basins; the depletion i¢he curve describing the probability per minimum of finding
related to the approach to equilibrium, since the minima ofthe system in these states first increases and then decreases
basin E are higher in energy than some of the basins in of theomewhat. The behavior is commonly referred to, in protein
main funnel. Other small basing.g., D-§ also exhibited folding as well as in general kinetics, as a “kinetic interme-
nonmonotonic kinetics with either an initial decrease or ardiate.” However, the group of states are not kinetic interme-
initial increase in probability followed by the opposite trend diates which have a positive role in the folding process, but
in approaching equilibrium. rather traps outside of the main folding pathway. These
The probability per minima of the G-9 basin in Fig. states interfere with the folding process rather than helping
13(b) is higher than that of the main D bagimoth D-38 and it, as has often been assum&drhis result is similar to the

(b) Time (t/1)
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1 s underlying structure of the surface, while an upward look
towards its root reveals the structure of the transitions.

The topological analysis can be applied to the glass tran-
sition and the concept of freezing, which have been dis-
3 cussed in terms of the structure of the potential energy
08 % ouged | surface>®® It is generally assumed that above the fluid—
' solid transition temperaturel", most physical system are
04 | ergodic; i.e., they are not trapped in any subregion of the
T "Unfolded” configuration space and, given a reasonable time, any dy-
namical trajectory will span all of the available space. “Rea-
21 e o g meermediate® ¢ sonable time” in this context may be considerably longer
s than the length of a “long” molecular dynamics trajectory
0 ; , ‘ (1-10 ng. This means that fof, >T" all of the PES is

0 5 10 15 20 incorporated in a single basR'eo(a’) = T [Eq. (11)]. Be-
(a) Time (t/7) low the transition temperaturd@", a glass forming material
is trapped in one of its many disordered conformation. This

0.08 indicates that the corresponding PES is very rough, and that
the roughness starts immediately bel®tv The nature of the
glass transition is reflected in Fig. 1, which shows the topo-
logical graph of such a potential energy surface. AbdVe
the system is ergodi@here is only one node, i.e., a single
ergodic basin, at levels 2, 3, and 4 of the grapbt below
the transition temperature, which is at level 2 of the graph,

"Folded” there is significant splitting which indicates that trapping oc-
‘‘‘‘‘ 1 curs in subregions of the PE&vels 1, 0 etc. of the graph

Upon cooling a glass forming material below the glass
transition temperaturel _<T", the system that starts at a
random configuratiom €I” is trapped in one of the many
branches of the graph and is likely to end up in a configura-
tion that is significantly different from the global minimum;

(b) Time (t/1) i.e., upon cooling, the system descends along the branches of
the disconnectivity graplG'(®) and, as the ergodic basin
FIG. 14. The “folding kinetics” of alanine tetrapeptide. Defined are three RTefg(a’) splits into smaIIeRT*(a’) basins, the system gets

groups of states: folded, intermediate, and unfol@es text. Shown is the . . . .
time evolution of the population probabiliy;(t) of these states &T=3.0 trapped in a localized region of the PES. Correspondlngly, at

kcal/mol, starting from an initial distribution in whicbnly the unfolded ~ any givenT_ temperature, thév1 T-(r) mapping will result
states are populated with even probabilitye probability of the folded and  in a large set of«’} minima [Eq. (3)]. The difference be-
intermediate states is initially zeroThe time is defined as in Fig. 18)  tween the basin structure of a crystal and that of a glass can
Actual basin population pr'opab|l_|t|esb) basm_ population probab_|||t|es di- be related to the way in which tH@T(a') sets become dis-
vided by the number of minima in each basin, to account for size effects.

connected as the temperature drops. In contrast to the graph

for a glass described above, the dominant features of the PES
conclusion reached by Wolynes and co-workers from analyzfor a crystal forming substance are expected to be similar to
ing an analytic folding moded’ those of a single minimum with small fluctuations, as in Sec.
IV B.
VIIl. CONCLUDING DISCUSSION As an @Ilustration of the approach, we _have applied_ it tc_)

the potential energy surface of the alanine tetrapeptide in

The multidimensional potential energy surfaces of com-vacuum, which is the smallest peptide that can form a single

plex systems are difficult to interpret and there is widespread-helical turn. The analysis was based on 139 local minima
interest in simplified representations that preserve the esseand 502 barriers determined by Czerminski and Etéf.
tial features. In this paper we have defined a procedure thalthough there are only seven significant dihedral angle de-
maps the potential energy surface onto the set of locajrees of freedon{®; through®; and ¥, through¥), the
minima. Disconnectivity graphs that describe the results of‘disconnectivity” graph exhibits some interesting features.
this mapping procedure were used to analyze the nature df has a funnel-like structure that encompasses many minima,
the potential surface. The map differs from the direct mini-including the global minimum. Analysis of the detailed con-
mization maps used previously in that it preserves the temnectivity of the minima and the kinetics of transitions be-
perature dependent picture of “attraction basins” and retainsgween them showed the complexity present in this very small
information about the connectivity of the surface, includingsystem.
the barriers between minima. From any given basin, a down- The topological mapping analysis presented in this paper
ward “look” along the branches of the graph reveals thecan be compared with a recent statistical analysis by Kunz

0.8 % L

Total Probability

global minimum |

Probability per minima

“Unfolded"
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and Berry of the potential surface for a 19-atom Lennardfunnel and are separated by relatively low barriers. The con-
Jones clustel® The two analyses share many concepts, informational similarity was generally correlated with connec-
that they both characterize the surface by the basin structurgyity and with spatial proximity in configuration spadal-
highlighting the connectivity between the basins and follow-though there are exceptions to this Afje Configurations

ing the basin-to-basin kinetics. Nevertheless, there are sevhat were far away on the surface were also generally dis-
eral significant differences. The study of Kunz and Berry issimilar. Thus, a requirement of the metastability hypothesis
closely related to the work of Stillinger and Web&tand  (that there exist similar structures in remote regions of con-
otherst'~° |t differs from the earlier papers in that its em- figuration spackis not supported by the tetrapeptide results.
phasis is more on connectivity and kinetics than on thermoFurther, similar energies are not necessarily related to simi-
dynamics. The paper determines minima sampled along higlarity in structure.

temperature dynamical trajectories with the connectivity, in-  The basin picture used in the analysis highlights the
cluding saddle points determined for successive coordinati&ct® that at physiological temperatures the tetrapeptide, like
sets along a given trajectory. These results in a “linear’a protein, is not confined to a single minimum but rather is
connectivity map, which is equivalent to a one-dimensionamoving freely within the attraction basin, which corresponds
cut through the multidimensional surface. The topologicalto the accessible multiminimum potential surface at that tem-
mapping presented here analyzes the full multidimensiongperature. Although it includes the global minimum, a dy-
surface, without first reducing its dimensionality. It provideshamical trajectory can glide over the low barriers and ex-
information regarding the overall structure of the entire surplore a large part of the basin, without being sensitive to the
face and the multidimensional connectivity between the dif-details of the underlying structure.

ferent basins as represented in the disconnectivity graph. In  Although the tetrapeptide is a minimal system, it is suf-
the specific examples, it is interesting to note that, althougHiciently complex to show features that may be of interest for
the number of particle€6 in the peptide; 19 in the clusjer larger polypeptides and stable proteins. To test this possibil-
the number of minim#139 for the peptide, 299 for the clus- ity, @ similar topological study of the potential surface of a
ten, and the number of barriet502 for the peptide and 461 protein is being madgO. M. Becker(in preparatio].

for the cluster are similar, the former correspond essentially

to the entire set of minima and most of the barriers, while theACKNOWLEDGMENTS

latter is a trajectory-based sample out of an estimated

500 000 minima:® no estimate of the number of barriers was . We thank Ron Elber and Ryszard Czerminski for mak-
. g ) _~ . ~ing their data on IAN available to us, and thank Eugene
given. The smaller number of minima in the peptide is a H

: O Shakhnovich and Andrejdl for helpful discussions. This
direct consequence of the bonded connectivity of the atoms, -+ has been supported in part by a grant from the National
Although the tetrapeptide is a very simple system, theScience Foundation
properties of its potential surface can be used to comment on '

guestions raised for proteins. One question in protein foldin
%PPENDIX: TOPOLOGICAL CHARACTERISTICS OF

concerns the relative importance of pronounced local minim HE MAP

versus an overall funnel-like structure of the potential energy
surface. In the tetrapeptide these two features are coupled Since all theR(a) andR"(a)[RE(a')] basins are open
and the largest funnel is centered around the global minisets they can, in principle, form a topological space. We
mum. The deep minimum can be viewed as a “vortex” per-begin by defining theuniversal set X{aq,...,a;, "},
turbing the surface around it to form a funnel; the deeper thavhich contains all the local minima on the PES Each of
minimum the larger the funnel is expected to be. Thus, it ighese ¢; minima correspond to a uniquBR(a) basin (or
possible that in proteins the thermodynamic requirement foequivalence class é>1). The mapping procedurdg®, M7,
folding (a deep global minimuinis coupled to a kinetic so- andMF partition the universal seX in different ways. The
lution to the search probleifthe funne). This picture is the direct minimization mapV%(r) partitionsX into small sets,
opposite extreme from the “golf-course” potential, in which each consisting of a single local minimum, i.¢}. The
the deep global minimum does not influence the rest of théM(r) map, on the other hand, partitiosinto « sets[or
surface. of sets forME(r)] that may include more than a single local
Another question concerning proteins is the existence ominimum. The members of a sef are all the local minima
metastable states. These correspond to minima that may hawgincluded inR™(a/), i.e.,
very different structures and energies. They are assumed to 1 T
be separated by barriers that cannot be overcome on biologi- & ={ajlejeR(e)) CR ()} (A1)
cal time scale¥*so that the protein can be trapped in one of This partition depends parametrically on the mapping tem-
the minima during the folding process. This requires that theperatureT (or energyE).
potential energy(or free energy surface of a protein is Since a topological structure is the relationship between
ragged and glass like. As has been pointed®®uijthout a  open sets, we now define the sets-of-sets to be investigated.
unique metastable state, folding would be ineffective be-We focus on the properties of three different sets-of-8ets
cause the same sequence could yield functional and nonfunesich are defined through the different mapping procedures:
tional folded polypeptide chains. In the trapeptide, almost all (i) The set of all sets generated by the direct minimiza-
the deep minima are located close to each other in the maition mapM¢(r)
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