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The accurate description of chemical processes often requires the use of computationally demanding
methods like density-functional theory (DFT), making long simulations of large systems unfeasible. In
this Letter we introduce a new kind of neural-network representation of DFT potential-energy surfaces,
which provides the energy and forces as a function of all atomic positions in systems of arbitrary size and
is several orders of magnitude faster than DFT. The high accuracy of the method is demonstrated for bulk
silicon and compared with empirical potentials and DFT. The method is general and can be applied to all
types of periodic and nonperiodic systems.
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The reliability of molecular dynamics (MD) or
Monte Carlo (MC) simulations depends crucially on the
accuracy of the underlying potential-energy surface (PES).
Ab initio methods based on density-functional theory [1]
(DFT) provide accurate PESs for many systems, but they
are computationally very demanding and even on the most
advanced platforms ab initio MD simulations are limited to
tens of picoseconds and a few thousand atoms. This is the
reason for the continuing popularity of empirical potentials
which provide fast access to energy and forces. However
the construction of reliable empirical potentials is a diffi-
cult and lengthy process which usually relies on fitting the
parameters of a guessed, physically motivated simple func-
tional form for the interaction potential. This can lead to
qualitatively wrong results when used in circumstances in
which the assumed functional form is not appropriate. The
database used in the fitting can include experimental or
theoretical data and even the forces obtained in an ab initio
MD run [2–4].

In this Letter we present a generalized neural-network
(NN) method for constructing DFT-based PESs which have
ab initio accuracy and are capable of describing all types of
bonding. The method overcomes the limitations that have
so far restricted the use of NNs to low-dimensional PESs
[5,6]. This is achieved by combining NN precision and
flexibility with a PES representation that is inspired by
empirical potentials. The resulting many-body potentials
are a function of all atomic coordinates and can be used in
systems of arbitrary size. We apply our ideas to the con-
struction of an NN-based many-body potential for bulk
silicon. Constructing an empirical potential for Si that is
valid across the phase diagram has proven to be a frustrat-
ing challenge for conventional empirical potentials. Our
potential works well in the solid semiconducting and in the
liquid metallic phases. In addition we can reproduce the
small energy differences between the different high-
pressure phases of crystalline Si.

Neural networks are biology-inspired algorithms that
provide an accurate tool for the representation of arbitrary
functions. Given a number of points in which the value of

the function is known, the parameters of the NN are
optimized in order to reproduce the input data in a ‘‘train-
ing’’ process and then used to evaluate the function else-
where. For the representation of PESs DFT calculations are
generally used to provide the training data set. Once
trained, the atomic coordinates are given to the NN and
the potential energy, from which also forces can be calcu-
lated analytically, is received [5,6].

The structure of a simple NN as it has hitherto been used
to represent PESs is shown schematically in Fig. 1 for a
two-dimensional PES. In the nodes of the input layer the
two generalized coordinates G1

i and G2
i that determine the

energy of configuration i are provided. The node in the
output layer yields the associated energy Ei. In between the

 

FIG. 1. Example of a standard neural network employed for
fitting potential-energy surfaces [5,6]. The node in the output
layer yields the energy Ei, which in this case depends on the
values of the two input nodes, G1

i and G2
i . In between the input

and the output layer there is a hidden layer with three nodes
represented by the circles. The arrows correspond to the 13
weight parameters wk

ij, which connect node j in layer k with
node i in layer k! 1. The bias node is used to adapt the
nonlinearity region of the activation functions. The functional
form of this small network is given in Eq. (1).
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input and the output layer are one or more ‘‘hidden layers,’’
each with a certain number of nodes. All nodes in each
layer are connected to the nodes in the adjacent layers by
real-valued weight parameters, which initially are chosen
randomly. For a given set of coordinates the output of the
NN is then given by the expression

 Ei " f2a
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Here, wk
ij is the weight parameter connecting node j in

layer k with node i in layer k! 1, and wk
0j is a bias weight

that is used as an adjustable offset for the activation func-
tions fka. Activation functions are typically nonlinear func-
tions that introduce the capability to fit nonlinear functions
into the NN [5,6]. In the present work the hyperbolic
tangent has been used as an activation function in the
hidden layers, and a linear function for the output layer.
Since the weight parameters initially are chosen randomly,
the output of the NN does not correspond to the correct
total energy, but since the latter is known for a set of points
from DFT calculations, an error function can be con-
structed and minimized to optimize the weight parameters
in an iterative way. The optimized set of weights obtained
can then be used to calculate the potential energy for a new
set of coordinates.

This NN structure has several disadvantages that hinder
its application to high-dimensional PESs. Since all weights
are generally different, the order in which the coordinates
of a configuration are fed into the NN is not arbitrary, and
interchanging the coordinates of two atoms will change the
total energy even if the two atoms are of the same type.
Another limitation related to the fixed structure of the
network is the fact that a NN optimized for a certain
number of degrees of freedom, i.e., number of atoms,
cannot be used to predict energies for a different system
size, since the optimized weights are valid only for a fixed
number of input nodes. Thus, in order to represent PESs
useful for all system sizes, a new NN topology has to be
introduced.

The main idea is to represent the total energy E of the
system as a sum of atomic contributions Ei, an approach
that is typically also used in empirical potentials

 E "
X
i
Ei: (2)

The general structure of this new network topology is
shown schematically in Fig. 2 for a system consisting of
three atoms and all associated degrees of freedom. The
fR"

i g represent the Cartesian coordinates " of atom i. In a
first step these coordinates are transformed into a set of
symmetry function values fG!

i g for each atom i. These
symmetry function values describe the energetically rele-
vant local environment of each atom and are subsequently
used as input for the NN. They depend on the positions of
all atoms in the system, as indicated by the dotted arrows.

For each atom in the system there is now a ‘‘standard’’ NN
(cf. Fig. 1), which we call subnet Si and which after the
weight optimization yields the energy contribution Ei to
the total energy E. Summing these energy contributions
then finally yields the total energy of the system. To ensure
the invariance of the total energy with respect to the
interchanging of two atoms the structure of all subnets
and the values of the weight parameters are constrained
to be identical in each Si.

The crucial point is the introduction of a new type of
symmetry function. While other types of symmetry func-
tions have been used before [5], in our approach the
symmetry function values of each atom reflect the local
environment that determines its energy; i.e., two structures
with different energies must yield different sets of symme-
try function values, while identical local environments
must give rise to the same set. Furthermore, the symmetry
function values must be invariant with respect to a rotation
or translation of the system. Finally, the number of sym-
metry functions must be independent of the coordination of
the atom, because the coordination number of an atom can
change in a MD simulation, while the structure of the
subnets must not be changed if the NN is to remain
applicable generally.

Symmetry functions can be constructed from atomic
positions in a way similar to empirical potentials. But
while in the latter case these terms are used to construct
directly the total energy of the system, in the case of the
NN they are used only to describe the structure. The
assignment of the energies to the structures is done in a
second step by the NN.

In order to define the energetically relevant local envi-
ronment we employ a cutoff function fc of the interatomic
distance Rij, which has the form

 fc$Rij% "
8<
:
0:5&

h
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%
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&
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for Rij ' Rc;

0 for Rij > Rc:
(3)

 

FIG. 2. Structure of the neural network as applied in this Letter
to a system containing three atoms. The Cartesian coordinates of
atom i are given by R"

i . These are transformed to a set of !
symmetry function values G!

i describing the local geometric
environment of atom i, which depends on the positions of all
atoms in the system as indicated by the dotted arrows. The
symmetry function values of atom i then enter the subnet Si
yielding the energy contribution Ei of atom i to the total energy
of the system E. The structure of the subnets corresponds to the
neural network shown in Fig. 1.

PRL 98, 146401 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
6 APRIL 2007

146401-2



At interatomic separations larger than the cutoff Rc this
function yields zero value and slope. The cutoff has to be
sufficiently large to include several nearest neighbors, and
in the present Letter a cutoff of 6 Å has been used.

Radial symmetry functions are constructed as a sum of
Gaussians with the parameters $ and Rs,

 G1
i "

Xall

j!i
e!$$Rij!Rs%2fc$Rij%: (4)

The summation over all neighbors j ensures the indepen-
dence of the coordination number.

Angular terms are constructed for all triplets of atoms by
summing the cosine values of the angles %ijk " Rij(Rik

RijRik

centered at atom i, with Rij " Ri !Rj,
 

G2
i " 21!&

Xall

j;k!i

$1# ' cos%ijk%&

& e!$$R2
ij#R2

ik#R2
jk%fc$Rij%fc$Rik%fc$Rjk%; (5)

with the parameters ' $" #1;!1%, $, and & . The multi-
plication by the three cutoff functions and by the Gaussian
ensures a smooth decay to zero in the case of large inter-
atomic separations. We note that the G!

i in Eqs. (4) and (5)
depend on all atomic positions inside the cutoff radius and
thus represent ‘‘many-body’’ terms. Several functions of
each type with different parameter values are used. The
choice of symmetry functions and their parameters is not
unique nor does it need to be, and many types of functions
can be used, as long as the set of function values is suitable
for describing the environment of an atom.

To demonstrate the capability of the method we calcu-
lated the PES of bulk silicon using DFT in the local density
approximation (LDA). The system used for the optimiza-
tion of the NN parameters contains 64 atoms yielding 64
atomic environments per calculation. The calculations
were carried out employing the plane-wave pseudo-
potential method as implemented in PWSCF [7]. A cutoff
of 20 Ry was applied in combination with an ultrasoft
pseudopotential [8]. A mesh of 3& 3& 3 k points was
used. To improve the convergence of the metallic phases a
Fermi smearing of 0.1 eV was employed.

Since the functional form of the NN has no physical
motivation, the construction of an optimized NN requires
special care. The structures used to train the NN [9] were
initially taken from crystal structures including high-
pressure phases [10] and MD simulations at different pres-
sures and temperatures. Starting from this data set a series
of fits was generated employing different NN topologies,
i.e., numbers of hidden layers and nodes per hidden layer.
The best fits can then be used to optimize the NN in a self-
consistent way by performing MD, hybrid Monte Carlo
[11,12], and metadynamics [13,14] runs based on these fits
and subsequently recalculating several hundred represen-
tative structures with DFT. If the root mean square error

(RMSE) is larger than the error of the fit, the DFT calcu-
lations are added to the training set and new fits deter-
mined, which are used to generate more structures, and so
forth.

In total about 9000 DFT energies were calculated, 8200
of which were used for optimizing the NN and 800 as an
independent test set to investigate the predictive capability
of the NN for structures not included in the optimization
set. The RMSE of the optimization set is typically 4–
5 meV per atom, the RMSE of the test set 5–6 meV. For
the NN atomic forces we found a RMSE of about
0:2 eV= !A with respect to DFT. The subnet employed con-
sists typically of 2 hidden layers, each of which has about
40 nodes. In total 48 symmetry functions, i.e., input nodes,
with different values of $, Rs, and & have been used
resulting in a few thousand fitting parameters for the NN.

As a first test of the NN potential we calculated the
energy vs volume curves for the different crystal structures
of silicon [10]. It is well known that empirical potentials
are not able to describe the correct energetic sequence of
the various phases [15] while DFT is in good agreement
with the experimental data [10]. The NN potential accu-
rately reproduces the curves and the transition pressures of
DFT. To test the ability of the NN potential to describe also
disordered structures we calculated the radial distribution
function (RDF) of a silicon melt at 3000 K. The result is
shown in Fig. 3 and compared to other potentials of varying
form and complexity [15–17]. The MD simulations were
run for 20 ps (8 ps in the case of DFT [18]). The RDF
obtained from the NN is very close to the DFT data, while
there are significant deviations for the empirical potentials.
The origin of the small difference between DFT and the
NN is probably due to the fact that in the ab initio MD only
the " point has been used to sample the Brillouin zone,
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FIG. 3 (color online). Radial distribution function (RDF) of a
silicon melt at 3000 K as obtained using a cubic 64 atom cell
(a " 20:526 bohr). The curves shown were obtained from the
Bazant [17,19], the Lenosky [15,19], the Tersoff [16,20], a
neural network (NN) potential, and from density-functional
theory (DFT) [18].
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while the NN is trained to reproduce the energetics of a
converged k point mesh.

The accuracy of the NN energies has been checked in
various way. Here we report the result of a metadynamics
simulation [14] which involves strongly disordered non-
equilibrium structures due to the change in shape and
volume of the cell during the simulation. The details of
the simulation are given in Fig. 4. The comparison of the
NN predictions to recalculated DFT energies shows that in
each metastep the potential is accurately described.

Compared with empirical potentials the number of DFT
calculations required to optimize the NN parameters is
rather large because of the very flexible functional form.
This, however, has the advantage that no modifications to
the NN are required if new DFT data are included. The
accuracy of the NN is limited only by that of the training
data. Here we have used DFT and an approximate
exchange-correlation functional, but the NN is by no
means restricted to fit DFT potentials. The method is
general and can be applied to all types of periodic systems
such as crystals, liquids, and surfaces as well as to non-
periodic systems. A limitation of the NN is the lack of
extrapolation capability to structures very different from
the structures included in the training set. We thus do not
expect our current parametrization for bulk silicon to yield
good results for silicon clusters. However, the potential can
be systematically improved by properly extending the
training set. Because of the cutoff applied to the symmetry
functions, long-range interactions are not included in the
present implementation. Inclusion of these effects is never-
theless possible by adding the corresponding potential
terms. For a 64 atom system the NN is currently about 5

orders of magnitude faster than the DFT calculations, and
in contrast to DFT the NN scales linearly with system size
and is easily parallelized. An extension to multicomponent
systems is straightforward, but requires the incorporation
of the corresponding cross terms in the symmetry functions
and an extended set of DFT energies.

In summary, we have introduced a fast way to represent
high-dimensional PESs based on neural networks taking
into account the positions of all atoms in systems of
arbitrary size, which significantly extends the applicability
of NNs to study chemical processes. The capability of the
method, which is intended for long MD and Monte Carlo
simulations of large systems, has been demonstrated for
bulk silicon. For all phases examined, the accuracy of the
description of all investigated properties is basically the
same as that of the underlying DFT data and is superior to
all tested empirical potentials.
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FIG. 4 (color online). Difference between the energies pre-
dicted by the neural network (NN) and recalculated energies
obtained from density-functional theory (DFT) for the initial and
final structures in each step of a metadynamics simulation [14] of
bulk silicon. Each metastep involves a molecular dynamics
simulation of 2 ps. The metadynamics simulation for the 64
atom cell starts from the (-tin structure with a pressure of
15 GPa at 300 K.
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