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A lot of progress has been made in recent years in the devel-

opment of atomistic potentials using machine learning (ML)

techniques. In contrast to most conventional potentials, which

are based on physical approximations and simplifications to

derive an analytic functional relation between the atomic con-

figuration and the potential-energy, ML potentials rely on sim-

ple but very flexible mathematical terms without a direct

physical meaning. Instead, in case of ML potentials the topol-

ogy of the potential-energy surface is “learned” by adjusting a

number of parameters with the aim to reproduce a set of ref-

erence electronic structure data as accurately as possible. Due

to this bias-free construction, they are applicable to a wide

range of systems without changes in their functional form,

and a very high accuracy close to the underlying first-

principles data can be obtained. Neural network potentials

(NNPs), which have first been proposed about two decades

ago, are an important class of ML potentials. Although the first

NNPs have been restricted to small molecules with only a few

degrees of freedom, they are now applicable to high-

dimensional systems containing thousands of atoms, which

enables addressing a variety of problems in chemistry, physics,

and materials science. In this tutorial review, the basic ideas of

NNPs are presented with a special focus on developing NNPs

for high-dimensional condensed systems. A recipe for the con-

struction of these potentials is given and remaining limitations

of the method are discussed. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/qua.24890

Introduction

An accurate description of the atomic interactions is of vital

importance for carrying out reliable computer simulations in

chemistry, physics, and materials science. Using the Born-

Oppenheimer approximation,[1] various electronic structure

methods are available to directly calculate the potential-

energy and the atomic forces for a given nuclear configuration

based on the laws of quantum mechanics. Often, the

potential-energy of interest is the ground state energy,

although the methods discussed below can equally be applied

to excited state energies if they are available. The optimum

choice of the electronic structure method depends on the sys-

tem and typically requires to find an acceptable compromise

between efficiency and accuracy for the problem of interest,

as the exact solution of the Schr€odinger equation is impossible

for essentially all relevant problems. Each of these electronic

structure calculations then provides a specific point on the

multidimensional potential-energy surface (PES), which is in

general a real-valued function depending on all atomic coordi-

nates in the system yielding its potential-energy. In this review,

the terms PES and “potential” will be used synonymously for

this function.

For practical reasons, the number of electronic structure

energies that can be calculated and stored is limited. There-

fore, even in large data bases the energies and forces of most

configurations that are visited, for example, in molecular

dynamics (MD) simulations, will not be available beforehand.

Consequently, in ab initio MD[2,3] the energies and forces need

to be calculated “on-the-fly”, typically using density-functional

theory (DFT).[4,5] Alternatively, an analytic expression for the

PES can be constructed and used in the simulations, which

allows to perform MD simulations more efficiently as the eval-

uation of such expressions is much faster than solving the

quantum mechanical problem. Also this approach is justified

by the Born-Oppenheimer approximation, because the Hamil-

tonian and, therefore, also the ground state potential-energy is

completely defined by the atomic positions, the nuclear

charges, and the total charge of the system. Consequently, in

principle a well-defined relation between the atomic structure

and its potential-energy exists. Unfortunately, in most cases

the corresponding functional form is too complicated to be

derived analytically.

A pragmatic solution to this problem is the introduction of

approximate PESs, and there are two fundamental approaches.

In the conventional approach, the solution of the Schr€odinger

equation is replaced using a simplified energy expression

based on physical considerations and reasonable approxima-

tions. The accuracy of these “physical potentials,” which repre-

sent the vast majority of potentials in the literature, is thus
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limited by the imposed fixed functional form. Still, in most

cases the essential features of the PES are described correctly,

and reliable simulations can be carried out. There are many

different physical potentials of varying form and complexity,

ranging from classical force fields[6–10] in biochemistry to reac-

tive potentials in materials science.[11–13]

The central idea of classical force fields is the decomposition

of the total energy into low-dimensional bonding two-, three-,

and four-body terms representing covalent bonds, bonding

angles, and dihedral angles. In addition, electrostatic and van

der Waals interactions given by Coulombs law and the

Lennard-Jones potential, respectively, are used. In the low-

dimensional bonding terms, only the immediate environment

is taken into account. Since this approach would not be feasi-

ble based on the specification of the chemical elements alone,

as the bonding properties are strongly influenced by the posi-

tions of the neighboring atoms, additional information on the

bonding properties of the atoms is included via the introduc-

tion of atom types classifying the atoms according to func-

tional groups. In this way, total energy expressions with low-

dimensional, approximately additive energy terms can be

obtained. The most severe limitation of classical force fields,

that is, their inability to describe the making and breaking of

bonds, has been overcome in several reactive force fields, for

example, in the ReaxFF method.[14]

Most atomistic potentials in the field of materials science are

based on the concept of the bond order[15] to take into

account the effect of the atomic environments on the bonding

properties. This is of fundamental importance, as in many prob-

lems of materials science involving systems like metals and

alloys a good description of very different atomic environments

is mandatory due to the importance of many-body contribu-

tions to the potential-energy. These render a decomposition of

the potential into individual low-dimensional terms impossible.

Further, simulations of these systems involve significant atomic

rearrangements and thus require reactive potentials without the

definition of fixed atom types.

An alternative class of atomistic potentials employs very

flexible functions without a direct physical meaning. The aim

of these “mathematical potentials” or machine learning (ML)

potentials is to fit an analytic expression to a set of reference

data obtained in electronic structure calculations as accurately

as possible. These potentials are not yet widely distributed,

but a number of promising approaches have been proposed

in recent years differing in the types of functions that are

used. They comprise permutation invariant polynomials,[16,17]

the modified Shepard method using Taylor expansions,[18,19]

Gaussian processes,[20–24] interpolating moving least

squares,[25,26] artificial neural networks (NN),[27,28] and also sup-

port vector machines.[29] A more detailed discussion and com-

parison of these approaches can be found elsewhere.[30]

Although the construction and use of these potentials has to

be done with care to ensure that the correct physical shape of

the PES is obtained, they are numerically extremely accurate

and can be constructed even in difficult cases, for which no

reasonable approximate physical potential can be found.

Physical as well as mathematical potentials provide the

energy directly as a function of the atomic positions using

well-defined analytic functions. Therefore, they both represent

“atomistic potentials”, and using such potentials enables the

calculation of energies and forces many orders of magnitude

faster than by applying electronic structure methods. They are

particularly useful

! if long MD trajectories or extended Monte Carlo simula-

tions are required

! if many MD trajectories are needed to obtain statistically

converged results

and/or

! if the systems are too large for the application of elec-

tronic structure methods

In all these cases, they allow to extend the time and length

scales of computer simulations beyond the realm of ab initio

methods provided that a suitable functional form and a reli-

able set of parameters can be found, which is often a substan-

tial challenge.

Mathematical potentials like the neural network potentials

(NNPs) discussed in this review are capable of describing even

very complex PESs, for which physical potentials are difficult
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or even impossible to derive. Typical candidates for applica-

tions of such potentials are systems containing

! many different types of interactions, like covalent, ionic,

and metallic bonding as well as dispersion interactions.

! “unusual” atomic environments, for example, in amor-

phous systems, structures emerging during phase transi-

tions or being present in coordination chemistry.

! complicated reaction and transition paths involving the

making and breaking of bonds.

Artificial NNs[31,32] have been introduced in 1943 to model
and understand the signal processing in the brain,[33] and in
the following decades they have found wide use in many
fields of science[34] due to their pattern recognition and data
classification capabilities. There are many types of NNs with
different functional forms.[31,32] A general definition covering
all these types has been given by Kohonen [35]:

“Artificial neural networks are massively parallel intercon-

nected networks of simple (usually adaptive) elements and

their hierarchical organizations which are intended to interact

with the objects of the real world in the same way as biologi-

cal nervous systems do.”

In particular, multilayer feed-forward (MLFF) NNs have been
demonstrated to be useful for the construction of PESs due to
their ability to represent arbitrary functions. It has been pro-
ven independently by a number of researchers that MLFF NNs
are “universal approximators”,[36–40] that is, they enable
approximating unknown multidimensional functions to an, in
principle, arbitrary accuracy based on a set of known function
values:

“[. . .] standard multilayer feedforward networks with as few

as one hidden layer using arbitrary squashing functions are

capable of approximating any [. . .] function from one finite

dimensional space to another to any desired degree of accu-

racy, provided sufficiently many hidden units are available. In

this sense, multilayer feedforward networks are a class of uni-

versal approximators.”[37]

This is the theoretical foundation for using NNs to construct
atomistic potentials. However, in practice this formal proof is
of limited use as neither the number or distribution of training
points nor the required size of the NN for the representation
of these points is known. Still, the remarkable result is that
there is no fundamental restriction in the accuracy that can be
achieved when constructing NNPs, which is an important dif-
ference to physical potentials having intrinsic limitations due
to their rather inflexible functional forms.

In general, NNPs can be defined by three criteria: [41]

1. NNPs provide a direct functional relation between the

atomic configuration and the potential-energy employing

one or more artificial NNs.

2. NNPs are constructed using a set of first-principles data,

usually total energies and sometimes energy derivatives,

obtained from a single electronic structure method.

Experimental data cannot be used as experiments often

have uncertainties being substantially larger than the fit-

ting errors of NNPs. For the same reason, results from dif-

ferent electronic structure methods cannot be combined

as numerically inconsistent information must be avoided.

3. NNPs do not contain any approximations apart from the

intrinsic limitations of the chosen reference electronic

structure method. No other ad hoc empirical functional

components are included.

NNPs offer a number of advantages for the construction of

PESs:

! Energies can be fitted to high accuracy with very small

remaining errors compared to the underlying reference

data.

! NNPs can be calculated efficiently and require much less

CPU time than electronic structure calculations.

! No knowledge about the functional form of the PES is

required.

! The NN energy expression is unbiased, generally applica-

ble to all types of bonding and does not require system-

specific modifications.

Still, there are also disadvantages of NNPs that one should

be aware of:

! The evaluation of NNPs is notably slower than the use of

simple classical force fields.

! NNPs have no physical basis and only very limited extrap-

olation capabilities. Therefore, they can fail spectacularly if

they are not used properly.

! The construction of NNPs requires substantial effort, and

a large number of training points from electronic struc-

ture calculations is required.

! Currently, NNPs are limited to systems containing either

only a few different chemical elements but many atoms

or a small number of atoms with arbitrary nuclear

charges.

In the past two decades, NNPs have been constructed for

many types of systems. Initially, they have been restricted to

small molecules[42–46] and systems, whose complexity has

been strongly reduced by freezing a majority of the degrees

of freedom, like small molecules interacting with frozen metal

surfaces,[27,28,47–58] or extensions of water potentials to include

polarization effects truncated at low order while keeping the

water monomer geometries fixed.[59,60] A comprehensive sum-

mary of previous work on NNPs can be found in two recent

reviews.[61,62]

Only a few attempts have been made to date to construct

NNPs for high-dimensional systems. The term “high-

dimensional” has been used frequently and with different

meanings in the literature. Here, we consider a potential as

being high-dimensional if it is applicable to systems contain-

ing thousands of atoms and all their degrees of freedom

explicitly. One early approach to construct high-dimensional

NNPs by Smith and coworkers published in 1999[63,64] is

based on a decomposition of the system into chains of atoms

of increasing length, whose energies are constructed using a
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NN of variable size. Surprisingly, this promising idea has not

been further developed until 2007, when it was extended to

represent the PES of silicon using tight binding reference

data.[65] Since then, the only application of this method has

been the construction of the DFT PES of the same system in

2008.[66] Another very appealing approach introduced by

Manzhos and Carrington is based on a rigorous many-body

expansion of the potential-energy using redundant coordi-

nates and a high-dimensional model representation.[67–71]

Here, in essence, the potential-energy is expressed as a sum

of terms of increasing order in the spirit of a many-body

expansion, and it has been demonstrated that formally low-

dimensional NNs can be used if the input coordinates are

constructed as a function of the original atomic coordinates.

This method, which is very accurate and has no fundamental

conceptual limitations, has been applied to date only to

rather small molecules, as the number of NN evaluations

increases rapidly with system size making it very costly for

larger systems. Still, it is probably the most systematic

approach to construct NNPs.

In this tutorial review, the basic methodology of a NNP

approach, which has been introduced by Behler and Parri-

nello[41,72,73] to address high-dimensional systems, and its

extensions will be discussed with a focus on the construction

and applicability. To date NNPs based on this approach have

been constructed for various systems including silicon,[72,74,75]

copper,[76] carbon,[77,78] sodium,[79,80] zinc oxide,[81] copper

clusters supported at zinc oxide,[82] neutral[83–85] as well as

protonated water clusters,[86] and the phase change material

GeTe.[87–90] Many of the techniques described below are very

general and can be applied to all types of NNPs and even

beyond to other types of ML potentials.

Conventional NNPs

Most conventional NNPs use a single MLFF NN to construct a

direct functional relation between the atomic configuration

and the potential-energy. For this purpose, a number of artifi-

cial neurons is organized in several layers as shown in Figure

1. The potential energy E is obtained in the neuron, or node,

in the output layer. It depends on the atomic configuration

that is provided to the NN in form of a vector of input coordi-

nates G5 Gif g. The specific choice of input coordinates is a

crucial aspect of any NNP, as these coordinates need to fulfill a

number of requirements. In between the input and the output

layer there are one or more so-called “hidden layers.” As their

name implies, they have no physical meaning but define the

functional form of the NN and provide the required mathe-

matical flexibility to construct the functional relation between

the input and the output of the NN. The more hidden layers

are used and the more nodes are included in each hidden

layer, the more flexible is the functional form of the NN. A typ-

ical NN architecture contains two to three hidden layers and

up to typically about 50 nodes per layer. The entity of all

layers including the input and output layer as well as the num-

ber of nodes per layer defines the architecture of the NN. For

instance, the NN shown in Figure 1 can be described by the

short notation 3–5-5-1, where each number specifies the num-

ber of nodes in one layer starting from the input layer.

As indicated by the arrows in Figure 1 each node in each

layer is connected to the nodes in the adjacent layers by a

weight parameter, where the symbol akl
ij is used for the param-

eter connecting node i in layer k with node j in layer l with

l5k11. The input layer has the superscript 0 and the arrows

label the direction of the flow of information through the net-

work. Further, there is a bias node connected to all nodes in

the hidden layers and to the output node providing the num-

ber “one”, which can be scaled by a bias weight bj
i , where j is

the layer of the target node and i is its number within this

layer. The value yj
i of any node i in any hidden layer j can then

be calculated from the values of the Nj21 nodes in the previ-

ous layer and the connecting and bias weight parameters

according to

yj
i 5f j

i bj
i1
XNj21

k51

aj21;j
k;i " yj21

k

 !
: (1)

This equation is essentially a linear combination of the val-
ues of the nodes in the previous layer, which has been
shifted by the bias weight. As the topology of a PES generally
cannot be expressed as a simple linear combination, a nonlin-
ear function f j

i is applied, which is called “activation function”
or “basis function” of the NN. It has the purpose to provide
the capability of fitting arbitrary functions. As part of the NN
total energy expression the activation functions must be dif-
ferentiable to determine analytic forces and to calculate the
derivatives of the NN output with respect to the weight
parameters needed for the gradient-based optimization of

Figure 1. Schematic structure of a small feed-forward NN. The nodes are
arranged in layers and the goal is to establish a functional relation
between the energy output E and the structure described by a vector of
input coordinates Gif g. The functional form of the NN is given by eq. (2)
(Figure reproduced from the “J€ulich School on Computational Trends in
Solvation and Transport in Liquids,” Forschungszentrum J€ulich 2015, under
the CC-BY).
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the weights. In case that forces are used for the NN training
as well,[76,91,92] also second derivatives of the activation func-
tions are needed.

There are many possible choices for the activation functions.

They all have in common that they have a nonlinear region

and that they typically converge to 1, 21, or 0 for very large

and very small arguments. Frequent choices are the hyperbolic

tangent, the sigmoid function and Gaussians. Still, also peri-

odic activation functions, for example, trigonometric func-

tions,[93] or exponential functions[68] have been proposed. For

the node in the output layer, often a linear function is used to

avoid any restriction in the range of possible output values of

the NN. The complete functional form of the small example

NN in Figure 1 is a hierarchy of nested activation functions act-

ing on linear combinations of the values in the previous layer

given by

E5f 3
1 b3

11
X5

k51

a23
k1 " f 2

k b2
k1
X5

j51

a12
jk " f 1

j b1
j 1
X3

i51

a01
ij " Gi

 ! ! !

:

(2)

Starting from the left side of Figure 1, first the values of the

nodes in the first hidden layer are calculated, followed by the

nodes in the second hidden layer and so forth until the output

node is reached. The NN energy expression also provides

access to forces and higher derivatives. These should not be

fitted separately using additional output nodes as this neces-

sarily would result in numerical inconsistencies between the

energies and forces. Instead the forces can be calculated from

analytic derivatives as discussed below.

To obtain physically meaningful energy outputs, NNPs need

to be trained to a set of known reference points obtained

from electronic structure calculations. This is done by optimiz-

ing the weight parameters, which are initially chosen as ran-

dom numbers, iteratively to minimize the error of this training

set. This is often a very time-consuming step, as the training

data sets can become very large and also the number of

weight parameters Nw to be optimized can be substantial,

Nw5
XMHL11

k51

Nk21 " Nk1Nkð Þ ; (3)

where MHL is the number of hidden layers and Nk is the num-

ber of nodes in layer k including the output layer. NNPs con-

taining only a single feed-forward NN have been constructed

successfully for a number of low-dimensional systems contain-

ing up to about 12 degrees of freedom. A highly recom-

mended tutorial-style discussion of fitting simple model

functions by NNs can be found elsewhere.[91]

High-Dimensional NNPs

Using a single feed-forward NN for the construction of high-

dimensional NNPs is impossible for several reasons. First of all,

for each atom added to the system three new degrees of free-

dom need to be included in form of additional input nodes. If

the total number of input nodes becomes too large, the con-

struction of the NNP will be inefficient because there are too

many weight parameters to be determined in the fitting pro-

cess. Further, in applications of the NNP the calculation of the

output energy will be slow. Finally, constructing a sufficiently

dense set of training points becomes very challenging in a too

high-dimensional coordinate space both in terms of selecting

the points and in terms of CPU time.

Another fundamental problem, which is present even for

small molecules, is related to the symmetry of the NN. For a

water monomer, which can be described by three interatomic

distances, both OH bonds are chemically equivalent. If the

positions of both hydrogen atoms are exchanged, the atomic

configuration must still have the same potential-energy since

chemically the structure has not changed. As the connecting

weights of a NNP all have numerically different values, chang-

ing the order of the input coordinates, that is, the sequence of

the two OH-bond lenghts, will result in a numerically different

energy output. This problem has been recognized very early,

and a solution has been proposed already in 1998 by Gassner

et al.[60] Instead of using a set of interatomic distances a sym-

metrization step corresponding to a transformation of the ini-

tial internal coordinates is introduced in this approach.

Consequently, chemically equivalent atoms lose their identity

and all possible representations, that is, orders of the atoms,

yield the same NN input vector. Therefore, the same output

energy is obtained as it should be. Unfortunately, this method,

which has also been extended to the scattering of molecules

at solid surfaces,[48] is applicable only to very small systems, as

the complexity of the symmetrization step increases rapidly

with the number of atoms. Even this simple example illustrates

the crucial importance of the choice of input coordinates, and

this topic will be discussed in more detail below.

Figure 2. Illustration of the atomic environment defined by a cutoff radius Rc

in a periodic system containing two different elements (white and black
circles). In high-dimensional NNPs, all atoms inside the cutoff sphere determine
the energy contribution of the central atom to the potential-energy (Figure
reproduced from the “J€ulich School on Computational Trends in Solvation and
Transport in Liquids,” Forschungszentrum J€ulich 2015, under the CC-BY).
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Finally, any NNP consisting of a single NN is only applicable to

the system size that has been used for its construction, which is

another severe problem. If an atom would be added when apply-

ing the potential, the connecting weights for the additional input

nodes would not be available. If, conversely, an atom would be

removed, its NN input coordinates would be ill-defined, and using

simply a set of zero input values for these nodes is not possible

because these numbers would change in frequently used prepro-

cessing steps of the input coordinates (cf. below).

A solution to all these problems is to construct the energy

Es of the system as a sum of Natom atomic energy contribu-

tions Ei, which are provided by a set of individual atomic NNs,

Es5
XNatom

i51

Ei: (4)

The atomic energy contributions depend on the local chemi-

cal environments up to a cutoff radius Rc as shown in Figure 2.

This cutoff radius, which typically has a value between 6 and 10

Å, is a convergence parameter and needs to be tested to ensure

that all energetically relevant interactions are included. The posi-

tions of the neighboring atoms within the resulting cutoff

sphere are then described by a set of many-body symmetry

functions. They serve as a structural fingerprint and are supplied

to the atomic NNs as vectors containing usually between 20 and

100 function values. The structure of the atomic NNs is essen-

tially identical to the structure of the single-NN NNPs discussed

in the previous Section (cf. Fig. 1) with the only difference that

the output is now just a part of the total energy.

The resulting high-dimensional NN approach is shown sche-

matically in Figure 3 for a system consisting of N water mole-

cules. For each atom, there is a separate line starting from the

Cartesian coordinate vector R of the atom. In the next step, a

vector of many-body symmetry functions G is constructed for

each atom, which describes the arrangement of all atoms in

the chemical environment. Consequently, the symmetry func-

tion values depend on the Cartesian coordinates of all other

atoms as indicated by the grey arrows. This vector of symme-

try function values is the input for the atomic NN yielding the

energy contribution of the atom. Once each atomic energy

contribution has been determined, the total energy Es is

obtained by summing all contributions.

It should be noted that although the atomic NNs provide

“atomic energies”, no information about partitioned atomic ener-

gies is required and the weight parameters can be determined

using total energies from electronic structure calculations only.

The condition of permutation invariance of the total energy with

respect to the order of the atoms is automatically satisfied in this

method as the order of the summation does not change the

resulting total energy. For each element, like oxygen or hydrogen,

there is a separate type of atomic NN with its own architecture

and set of weight parameters, but for a given element all atomic

NNs are identical. Different atomic energy contributions arise only

because of the different NN input vectors reflecting the different

environments. As a result, the high-dimensional NN method is

also applicable to systems of different size, in the training of the

NNP as well as in its application. If an atom is added, the scheme

in Figure 3 is extended by another line of the respective element.

If an atom is removed from the system, its line is deleted.

In summary, using the energy expression in eq. (4) the most

severe problems of conventional NNPs can be solved:

! The introduction of a cutoff reduces the effective dimen-

sionality to the energetically relevant interactions, which

allows to use NNs of tractable size. Still, the remaining

atomic environments often contain up to 100 neighbor-

ing atoms or more enabling the inclusion of high-order

many-body effects.

! The total energy is invariant with respect to the order of

the atoms.

! The NNP is applicable to systems containing different

numbers of atoms without the need to determine a dif-

ferent set of weight parameters for each system size.

In the original high-dimensional NNP method of Behler and

Parrinello,[72] all interactions between atoms separated by

more than the cutoff radius are truncated. Still, there might be

interactions beyond this radius that should be included, like

rather long-ranged electrostatic interactions. For this purpose,

it is possible to extend the total energy expression in eq. (4)

by an additional electrostatic term[81,83] Eelec,

E5Es1Eelec5
XNatom

i51

Ei1Eelec: (5)

The electrostatic energy is calculated using either Coulombs

law or an Ewald summation,[94] that is, no spatial truncation is

applied. The required charges are constructed as environment-

dependent atom-centered charges expressed by a second set of

atomic NNs in the same way as the (now “short-ranged”) energy

contributions in Figure 3. Like atomic energies, atomic charges

are no quantum mechanical observables, but still applying

Figure 3. Schematic structure of a high-dimensional NNP for a system con-
taining N water molecules. First, for each atom the Cartesian coordinate
vectors R are transformed to symmetry function vectors G, which describe
the atomic environments and serve as input for the atomic NNs providing
the atomic energies. Finally, the atomic energy contributions are added to
yield the short range energ Es (Figure reproduced from the “J€ulich School
on Computational Trends in Solvation and Transport in Liquids,” For-
schungszentrum J€ulich 2015, under the CC-BY).
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charge partitioning methods is much more common than using

energy partitioning schemes.[95,96] We have therefore chosen to

use Hirshfeld charges[97] obtained in electronic structure calcula-

tions to determine the weight parameters of the atomic charge

NNs. In principle, however, it would also be possible to couple

the fitting of the weight parameters of the short-range energy

and the charge NNs and to determine the charges under the

only constraint that the best possible total energy is obtained.

This, however, is computationally substantially more demanding.

Also higher electrostatic multipoles can be represented by NNs,

as has been demonstrated by Popelier and co-workers.[98,99]

It should be noted, however, that according to our experi-

ence including long-range electrostatic interactions does only

marginally improve the description of the PES for most systems

as all electrostatic interactions within the cutoff region can be

described as well by the short range part of the NNP, which

does not distinguish between electrostatic and nonelectrostatic

interactions. Consequently, the electrostatic NN is only relevant

for electrostatic interactions of atoms separated by more than

the cutoff radius. Including electrostatics explicitly requires to

separate the reference total energies into an electrostatic and a

short range contribution before the fitting to avoid a double

counting of the electrostatic part. Because of the singularity of

the Coulomb interaction at short distances, removing the elec-

trostatic energy from the total energy can even give rise to an

increased corrugation of the remaining short range part of the

potential. This complicates the fitting and can be avoided by

screening the electrostatic interactions at short distances.[83]

This screening has no consequences for the accuracy of the

potential as the screened part of the electrostatic energy is by

definition compensated by the short-range energies.

Finally, also van der Waals terms can be added to NNPs. Con-

ceptually, there is no need to add these terms as all kinds of inter-

actions are treated by NNPs on an equal footing and the most

relevant part of van der Waals interactions is included inside the

cutoff radius. Still, DFT calculations are frequently used to train

NNs and depending on the choice of the exchange correlation

functional DFT often provides a poor description of van der Waals

interactions, which is a well-known deficiency of GGA functionals

that has received a lot of attention in recent years.[100] A number

of correction schemes have been proposed to improve the

description of van der Waals interactions. In case of NNPs in par-

ticular the D3 method by Grimme[101] has been found to be use-

ful,[84] because the NN energies are numerically very close to the

DFT energies. Consequently, the D3 correction can equally be

applied to the NN energies after the evaluation of the NNP. Alter-

natively, the corrections can be applied to the training set before

fitting the NN parameters, which reduces the computational costs

of the NNP to that of standard high-dimensional NNPs. This also

enables using other correction schemes.[102]

Symmetry Functions

Properties of symmetry functions

Having established the structure of high-dimensional NNPs,

one of the most important decisions to be made concerns the

description of the atomic configurations using a suitable set of

coordinates. Cartesian coordinates cannot be used at all,

because their numerical values are not invariant with respect

to translations and rotations of the system. Since, conversely,

the structure of a system and thus its energy remains

unchanged upon these operations, so must be the set of input

coordinates. In case of NNPs, many different types of coordi-

nates have been used over the years like interatomic distan-

ces,[59] symmetrized distances,[60] functions including the

symmetry of surfaces,[28,48] complex combinations of coordi-

nates in a many-body expansion,[69] and many others.

In this review, the transformed coordinates, which are many-

body functions of all atomic positions inside the cutoff spheres,

will be called “symmetry functions” for historic reasons. The term

“symmetry” does not refer to the point group or the space group

of the system, but to the basic requirement that structurally equiv-

alent representations of the system must give rise to the same set

of coordinate values. The most common but also the most critical

operation is the permutation of atoms, that is their order in the

structural description, since the order of the atoms is arbitrary. Any

exchange of atoms of the same element, which is not at all

restricted to positions being equivalent by symmetry, must not

affect the vector of symmetry function values. Constructing such

permutation invariant input coordinates, which is a common prob-

lem for all ML potentials,[103] has been a major challenge in the

advent of NNPs. Symmetries in the traditional meaning of symme-

try operations do not play an important role, since they are

included as a special case in the permutation symmetry and since

in most applications like MD simulations at finite temperatures sys-

tems possess only C1 symmetry.

For high-dimensional NNPs using a cutoff radius to define

the energetically relevant atomic environment it must be

ensured that the number of symmetry functions does not

depend on the number of atoms inside the cutoff sphere, as

this can change in the course of MD simulations. Another

obvious criterion for the choice of the symmetry functions is

their ability to distinguish different atomic environments and

to provide similar coordinate values for similar atomic configu-

rations to facilitate the fitting process. Contradictory data,

which emerge if two different structures with different ener-

gies have closely resembling symmetry function values, must

be avoided as this strongly hampers the determination of the

NN weight parameters. Finally, we note that even complicated

functional forms of the symmetry functions are acceptable,

since the transformation of the coordinates does not need to

be inverted. In both cases, in the training of the NNP as well

as in its application, the transformation is starting from the

Cartesian coordinates to obtain the symmetry functions. A

transformation in the opposite direction is not required.

In summary, a set of symmetry functions for the construction

of high-dimensional NNPs must have the following properties:

! rotational and translational invariance

! invariance with respect to the permutation of atoms of

the same element

! provide a unique description of the atomic positions

! constant number of function values independent of the

number of atoms in the cutoff spheres
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In the following section, the functional forms of several

types of symmetry functions suitable for the construction of

high-dimensional NNPs will be discussed. Further details and

additional functions can be found elsewhere.[73]

The Functional Form of the Symmetry
Functions

An important component of all symmetry functions is the cut-

off function fc defining the atomic environments. Two possible

choices are the function

fc;1 Rij

! "
5

0:5 " cos
pRij

Rc

# $
11

% &
for Rij % Rc

0:0 for Rij > Rc ;

8
><

>:
(6)

which is essentially the monotonically decreasing part of a

cosine function whose domain has been rescaled from p to Rc

and the function

fc;2 Rij

! "
5

tanh 3 12
Rij

Rc

% &
for Rij % Rc

0:0 for Rij > Rc:

8
><

>:
(7)

Both functions decrease with increasing distance Rij

between the central atom i and its neighbor j, which reflects

qualitatively the reducing strength of the interactions

between the atoms. At the cutoff radius Rc both functions

have zero value and slope as shown in Figure 4. This is

important for the calculation of the forces, which require the

determination of the derivatives of the symmetry functions

with respect to the atomic Cartesian coordinates. Addition-

ally, in case of cutoff function fc;2 Rij

! "
also the second deriva-

tive is zero at Rc. Formally, this is important to avoid

discontinuities in the change of the forces when atoms enter

or leave the cutoff spheres in MD simulations as this can pos-

sibly result in problems to achieve energy conservation. We

found that as long as sufficiently large cutoff radii are used,

that is, 6 Å or more, also function fc;1 Rij

! "
provides an excel-

lent energy conservation. In the symmetry functions dis-

cussed in the remaining part of this Section, the function fc

can be either of these two functions.

Based on the cutoff function as a central component, several

types of many-body symmetry functions can be constructed.

There are two classes of symmetry functions: “radial” symmetry

functions, which describe the radial distribution of neighbors up

to the cutoff radius, and “angular” symmetry functions specifying

their angular arrangement. All symmetry functions have in com-

mon that each of them depends on the positions of all atoms

inside the cutoff spheres. Therefore, in contrast to internal coor-

dinates like bond lengths, their numerical values are not always

easy to illustrate. Apart from facilitating the description of many-

body contributions to the potential another important reason to

use symmetry functions depending on all neighboring atoms is

to obtain a constant number of function values independent of

the number of atoms in the cutoff spheres. It is neither possible

nor desirable to use a separate symmetry function for each

neighboring atom, like a distance, because then the number of

input nodes of the atomic NNs would change with the number

of atoms in the cutoff spheres and the use of a single atomic

NN per element would be impossible.

The most basic radial symmetry function describing the

environment of atom i is simply a sum of the cutoff functions

for all neighboring atoms j inside the cutoff sphere,

G1
i 5
XNatom

j51

fc Rij

! "
: (8)

Consequently, a single number is obtained, which can be

interpreted as a coordination number up to the cutoff radius.

This single number is of course not sufficient to describe the

radial arrangement of the neighboring atoms. This can be

achieved by using a set of these functions with different spa-

tial extensions given by different cutoff radii as plotted in Fig-

ure 5a. Still, this function type needs to be used with care as

too short cutoff radii can give rise to artefacts in the forces

close to the cutoff radius. A detailed discussion of this aspect

can be found elsewhere.[73]

Figure 4. Plot of the cutoff functions fc;1 and fc;2 and their derivatives as defined in eqs. (6) and (7), respectively, (Figure reproduced from the “J€ulich School
on Computational Trends in Solvation and Transport in Liquids,” Forschungszentrum J€ulich 2015, under the CC-BY).
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A better choice to describe the radial arrangement of atoms

in the cutoff sphere is a sum of products of Gaussians and the

cutoff function,

G2
i 5
XNatom

j51

e2g Rij2Rsð Þ2

" fc Rij

! "
: (9)

Here, for all functions the same large cutoff should be used

to obtain reliable forces for all interatomic distances. Instead,

the effective radial extension of the symmetry functions can

be controlled by the parameter g, which defines the width of

the Gaussians (cf. Fig. 5b). In this way, a strict decay to exactly

zero in value and slope at too short radii can be avoided while

still different radii can be probed by the symmetry functions

using different values of g.[73] For nonzero values of the shift-

ing parameter Rs the center of the Gaussians can also be dis-

placed to certain radii resulting in spherical shells of a width

given by g as shown in Figure 5c to improve the sensitivity of

the symmetry functions at specific radii.

Describing the radial distribution of neighboring atoms is

not sufficient to obtain a suitable structural fingerprint of the

atomic environments. This can be achieved by using additional

angular functions depending on the angle hijk, which is cen-

tered at the central atom i and is enclosed by the two intera-

tomic distances Rij and Rik. As the potential is periodic with

respect to this angle, instead of hijk its cosine is used. A suita-

ble angular symmetry function can then be defined as a sum

over all cosines with repect to any possible pair of neighbors j

and k, which are multiplied by Gaussians of the three intera-

tomic distances in the triplet of atoms and the respective cut-

off functions,

G3
i 5212f

X

j 6¼i

X

k 6¼i;j

½ 11k " cos hijk

! "f " e2g R2
ij 1R2

ik1R2
jkð Þ " fc Rij

! "
" fc Rikð Þ

" fc Rjk

! "
( (10)

This functional form ensures that G3
i approaches zero if the dis-

tance between any two atoms in the triplet becomes larger than

the cutoff radius, as in this case the triplet is not completely

included within the cutoff sphere of all three atoms. Again, the

width of the Gaussians g needs to be specified to take into account

that the importance of the angle depends on the atomic separa-

tions. The distribution of angles can be probed by using different

exponents f as shown for the plot of the angular part of G3
i in Fig-

ure 5d, and the normalization factor 212f ensures that the range of

values is independent of the actual choice of exponent. The param-

eter k, which can have values of 1 1 or 21 can be used to invert

the shape of the cosine function to obtain a good description at

Figure 5. Plot of the radial symmetry functions G[1] and G[2] [panels (a)–(c)] and of the angular part of the angular symmetry function G[3] [panel (d)]. For
G[2] a cutoff radius of 6 Å has been used. (Figure reproduced from the “J€ulich School on Computational Trends in Solvation and Transport in Liquids,” For-
schungszentrum J€ulich 2015, under the CC-BY).
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different values of hijk. While for k 5 1 the maxima of the cosine

terms are at hijk50
)
, for k521 they are located at hijk5180

)
.

An alternative angular function is given by

G4
i 5212f

X

j 6¼i

X

k 6¼i;j

11k " cos hijk

! "f " e2g R2
ij 1R2

ikð Þ " fc Rij

! "
" fc Rikð Þ

h i
: (11)

Here, the Gaussians and cutoff functions with respect to Rjk

have been omitted. This modification has two consequences.
First, the numerical values of G4

i are generally larger than of G3
i ,

since e2gR2
jk and fcðRjkÞ are both lower than one, making this

function more useful for larger atomic separations. Second, it is
possible to take into account atomic triplets in which j and k
are both in the cutoff sphere of atom i but separated by more
than Rc. As the maximum possible distance between j and k

inside the cutoff sphere is 2 " Rc, a significantly larger number of
angles is thus included in the summation resulting in very dif-
ferent values compared to angular function G3

i . Further types of
radial and angular symmetry functions and a discussion of their
properties can be found elsewhere.[73] The ability of these sym-
metry functions to describe and distinguish different atomic
environments can also be used for the classification of struc-

tures, as has been demonstrated by Geiger and Dellago.[104]

Several comments should be made on the definition of the

symmetry function set. First, the parameters Rc, g, Rs, f, and k
define the spatial shape of the symmetry functions. Conse-

quently, they are not optimized but remain fixed during the

determination of the weights of the NN. In this sense, they are

similar to basis functions in electronic structure calculations. We

found that the specific values of the symmetry function parame-

ters are surprisingly transferable from one system to another as

the resulting symmetry functions even for very different systems

have to cover a similar region in space. Second, as the NN

weights have been obtained for a specific set of input symmetry

functions, these functions need to be known when applying the

NNP in simulations. Consequently, the symmetry functions can

be considered as a part of the NNP. Finally, the number of sym-

metry functions grows rapidly with the number of elements in

the system. For instance, for each value of g there is one func-

tion of type G[2] for each element in the neighborhood and for

each element of the central atom. As the atomic NNs are sepa-

rated and independent from each other, the different possible

central elements are not relevant. Still, the combinatorial increase

of the radial and in particular of the angular functions for a

given central atom is currently limiting the number of elements

that can be included in high-dimensional NNPs. It has also been

demonstrated that high-dimensional NNPs can be constructed

using environment-dependent atom-pair contributions to con-

struct the potential-energy,[105] but this method is computation-

ally more demanding than the atom-based approach, since the

number of possible pairs is substantially larger.

Construction of Symmetry Function Sets

The choice of symmetry functions is a very important step for

the construction of high-dimensional NNPs, as a reliable dis-

tinction of different structures is mandatory. If this distinction

is not possible, for example, if too few symmetry functions are

used, different reference structures with differing energies and

forces give rise to the same set of symmetry function values.

Consequently, these structures are identical for the NN, the

PES is not defined as a unique function of the atomic configu-

ration, and there may be different energies for “the same

structure,” which results in poor fits.

Although the construction of the symmetry function sets

still is to some extent empirical, there is a number of analyses

that can be carried out to investigate if a vector of symmetry

functions is appropriate for the construction of a NNP:

! The symmetry functions should cover the configuration

space in an unbiased way. A reasonable initial choice is to

use, for example, an equidistant set of radial functions as

shown in Figure 5b. The spatial extension of the function

with the smallest effective range should be selected

based on the shortest interatomic distances present in

the data set. It must be avoided to include symmetry

functions, which have a value of zero for all atoms and as

a rule of thumb the turning point of the Gaussian with

the largest g value should correspond to the shortest

bond for the respective neighboring element. Conse-

quently, for different neighboring elements, the symmetry

function parameters may differ.

! For each symmetry function the range of values present

in the data set should be analyzed. If the range of values,

that is, the difference between the smallest and largest

function value, is too small, the symmetry function is not

contributing to the distinction of different structures and

should be removed from the symmetry function set. Fur-

ther, also the normalized range of values obtained

through dividing by the standard deviation of the func-

tion values should be reasonable to ensure that the range

of values is not dominated by a few outliers. If the differ-

ence between the symmetry function values is too small,

the fits might become numerically unstable as the NN

will try to assign substantial energy changes to tiny differ-

ences in the symmetry functions.

! To test if the symmetry functions allow to distinguish dif-

ferent structures, the data set should be investigated for

contradictory data. In particular, the atomic forces repre-

sent a valuable test case, as they provide local atom-

specific information about the PES. If, for example, the

magnitude of the forces is very different for two atoms,

they must have a different chemical environment, and

consequently also the symmetry function vectors must be

different. If the data set is searched systematically for

pairs of atoms having similar symmetry function vectors

but experiencing different forces, as discussed in Ref. [73],

inappropriate symmetry function sets can be identified

and augmented by further functions until different atomic

environments can be distinguished.

! The set of symmetry functions should be kept as small as

possible to increase the efficiency of the calculation of

the NN energy output. This can be investigated by deter-

mining the correlation between the values of a given sym-

metry function for all atoms in the reference set. If there is
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a high correlation, the symmetry functions are (close to)

linearly dependent and essentially no additional informa-

tion is provided by using both instead of only one of these

symmetry functions. This analysis can also be used to con-

struct symmetry functions in a systematic way. For

instance, to find the g values for a set of G2 functions, first

a function with g 5 0 is constructed, which has the largest

possible spatial extension. For the next function, the g
value is increased, that is, the Gaussian is contracted, until

the correlation of the obtained function values to the val-

ues of the first function decreases below a certain thresh-

old value, for example, 90 %. Then, the next function is

added and g is further increased until the correlation to

the other two functions is below this threshold and so

forth. The set of G2 functions is then complete, if an g
value is reached, for which the range of values of the new

symmetry function approaches zero.

All these tests for identifying a suitable set of symmetry func-

tions depend on the specific composition of the available refer-

ence data set. Consequently, as the data set is typically increased

step by step during the construction of a potential, several sub-

sequent adjustments and refinements of the symmetry function

set will be required. Usually it is not possible to use a large set

of symmetry functions initially, since the small reference sets in

the early stages of the construction of the NNP often only cover

a part of the relevant configuration space. Functions, which ena-

ble to distinguish structural feature not present in this set may

thus not have a sufficiently wide range of values. Conversely, the

small symmetry function sets used for limited initial data sets will

not allow to distinguish data entering this set at a later stage.

Consequently, an extension of the set of symmetry functions will

be required while the reference set is increasing.

Preconditioning the NN

To obtain a NNP, which is able to represent a given reference

set with small errors, the fitting capabilities of NNs have to be

exploited in an efficient way. This can be facilitated by precon-

ditioning the atomic NNs in two different ways: concerning

the input symmetry function values as well as concerning the

initial values of the weight parameters.

By construction, the individual symmetry functions can have

very different ranges of values, and a symmetry function with

very large absolute values will have a siginificant impact on the

value of the nodes in the first hidden layer, while symmetry

functions with small absolute values will only play a minor role.

The importance of the different symmetry functions can be bal-

anced by rescaling the range of values for each symmetry func-

tion to the same interval,[60] for example, 21; 1½ (, by applying

Gscaled
i 5

2 Gi2Gi;min

! "

Gi;max2Gi;min
21; (12)

where Gi;min is the smallest value of function Gi and Gi;max its

largest value in the data set. It is often useful to center the

range of values around 0, as this is the center of the nonlinear

regions of most activation functions. Alternatively, this can also

be achieved by shifting the center of mass of all symmetry

function values to zero. In addition to rescaling the symmetry

functions, it is also possible to normalize the linear combina-

tions at each node in the NN by dividing the sum by the num-

ber of nodes in the previous layer. This procedure has the

advantage that it is applicable to arbitrary hidden layers and

does not only refer to the first hidden layer. Further, even if

the symmetry functions have been scaled, still the linear com-

bination of symmetry function values can result in large num-

bers depending on the size of the NN, which is unfavorable as

the subsequently applied activation functions are not used in

their nonlinear region but in their saturation region. Also this

problem can be solved by normalizing the linear combination

before applying the activation functions.

Apart from preconditioning the symmetry function values,

also the initial choice of the weight parameters is very impor-

tant. They can be chosen simply as random numbers, but a

decision has to be made on the type of distribution as well as

on the range of values. Further, there is a number of proce-

dures that have been proposed in the literature to determine

an optimum set of initial weight parameters, like the scheme

of Nguyen and Widrow.[106]

Finally, the initial errors of the training points can also be

strongly reduced by preconditioning the weights. This primarily

concerns the standard deviation and the center of mass of the

output energies. The center of mass of the initially random energy

outputs of the NNP can be aligned with the center of the target

energies by adjusting the bias weight of the output node, which

corresponds to a simple shift of the average output energy. The

standard deviation of the NN output energies and of the energies

in the training set can be matched by modifying the connecting

weights between the last hidden layer and the output layer. By

this simple procedure, the average initial errors of the NNP can

often be reduced by one or two orders of magnitude.

Symmetry Functions and Forces

The availability of forces is crucial for many applications of

NNPs like MD simulations and geometry optimizations. Since

NNPs have well-defined functional forms, analytic derivatives

are readily available by applying the chain rule to take into

account the initial transformation of the atomic Cartesian coor-

dinates onto the many-body symmetry functions. In general,

the force with respect to some atomic coordinate a is the sum

of the short range force Fa;s and the electrostatic force Fa;elec,

Fa5Fa;s1Fa;elec52
@Es

@a
2
@Eelec

@a
: (13)

The short-range component of the force is then given by

Fa;s52
@Es

@a
52

XNatom

j51

@Ej

@a

52
XNatom

j51

XNsym;j

l51

@Ej

@Gjl
" @Gjl

@a
;

(14)

where Nsym;j is the number of symmetry functions of atom j.

The first term in the product is given by the architecture of
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the NN and contains also the weight parameters, while the

second term depends on the definition of the symmetry

functions.

The electrostatic force contribution can be calculated by

Fa;elec52
@

@a
1

2

XNatom

i51

XNatom

j51;j 6¼i

QiQj

Rij
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XNatom
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2R2
ij
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Rij2QiQj

@Rij

@a

% &
:

(15)

Here, it is important to note that in addition to the usual

derivative of Coulombs law that is used in many force fields

using fixed atomic charges there are two additional terms tak-

ing into account the environment-dependence of the atomic

charges Qi and Qj. After some rearrangements, regrouping of

indices and considering the transformation of the Cartesian

coordinates to symmetry functions we finally obtain

Fa;elec5
XNatom

j51

XNatom

i51;i 6¼j

Qi

Rij
" 1

2

Qj

Rij

@Rij

@a
2
XNsym;j

k51

@Qj

@Gjk

@Gjk

@a

" #
: (16)

In principle, also higher derivatives can be calculated, but

due to the complex nested functional form of the NN this can

become rather complicated. Also other physical properties

including gradients like the stress tensor of solids are

accessible.[73]

It should be mentioned that the force acting on an atom

depends on the positions of the atoms being as far as 2 " Rc

away. At first glance, this seems odd, because the atomic

energy contribution is determined only by the atoms inside

the cutoff sphere. Still, this is fully consistent with the NN total

energy expression, as the force with respect to a coordinate a
of an atom i is the derivative of the energies Ej of all atoms j

inside the cutoff sphere of i. In turn, the Ej depend on the

positions of all atoms in their respective environments, and

these atoms can be up to 2 " Rc away from atom i. As the posi-

tions of all atoms in the environment of j determine Ej, even

an atom k being outside the cutoff sphere of atom i affects

the contribution of atom i to Ej. Still, in practice this large

effective range of the forces is not very important, since the

effective physical range of the atomic interactions is usually

much shorter than twice Rc * 12220 Å.

Training NNs

Selecting the training data

In contrast to conventional physical potentials NNs have a very

flexible functional form without a physical origin. Although

this is the reason for the high accuracy that can be obtained

in fitting the reference set, it can also give rise to large errors

if NNPs are used to predict the energies for structures, which

are very different from the configurations included in the train-

ing set.

There are two situations, when this can happen. First, NNs

have very limited extrapolation capabilities, that is, they usu-

ally fail outside the range of input values spanned by the

training data. This concerns even very basic properties of the

PES like the strong repulsion of atoms at very short distances,

which needs to be learned from example structures in the

data set. It is often found in early stages of the NNP construc-

tion that structures collapse and adopt unphysically short

interatomic distances or “explode.” In general, these extrapola-

tion cases are easy to identify. This is done by comparing the

symmetry function vector of each atom in the structure with

the minimum and maximum values of each symmetry function

in the training data for the respective element. If a coordinate

value is outside the range of validity of the potential, a warn-

ing can be issued and the simulation can be stopped.

Although this should not happen in the final application of

the completed NNP, this warning turns out to be very useful

during the construction of the NNP as it is possible to search

systematically for such extrapolating structures to extend and

improve the reference set.

The other situation is more difficult to identify. Here, the

energy is requested for an atomic configuration, which is

within the range of validity of the symmetry functions, but still

the structure is located in a part of the configuration space

that is not well represented in the training set. Uncontrolled

errors can be present for such NN energies and forces. In case

they are still in the expected order of magnitude, this is very

difficult to detect. The reason for these errors is the high flex-

iblity of NNs, which can cause strong artifacts in between

sparsely distributed training points. This is the well-known

“overfitting” problem, which is essentially a much better repre-

sentation of the points in the training set than of the struc-

tures in between.

If the reference data set covers all parts of configuration

space but is just too sparse, there is a simple recipe to detect

overfitting, which is called the “early stopping” method. Here,

the available reference data set is split into the training set,

which is used for the optimization of the weight parameters,

and an independent test or validation set, whose error is

monitored during the fit but which is not used in the weight

optimization. If the errors of the training and the test set are

similar, the NNP has good generalization properties and it is

applicable also to structures not included in the training set. If,

on the other hand, the error of the test data is significantly

larger than the error of the training set, overfitting is present

and more training data is required. The typical evolution of a

fit exhibiting overfitting is shown in Figure 6. In the first itera-

tions the errors of both the training and the test set decrease,

because the NN learns the overall shape of the PES. Then, the

error of the test set reaches a minimum and starts to increase

again slowly. At this stage, the NN is learning the fine details

of the training points at the expense of a larger error of the

test set, which is not visible to the NN optimization algorithm.

Therefore, the best set of weight parameters corresponds to

the epoch with the smallest test set error.

Unfortunately, the early stopping method is not generally

applicable and is particularly problematic in case of high-

dimensional PESs. Problems can arise, if there are parts of the

configuration space in which no reference data are present at
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all, since in this case failures of the NNP would not be

detected by a high error of the test set. Still, there is a possi-

bility to check and improve the NNP also in this situation with-

out the need to carry out costly electronic structure

calculations for many structures just to validate the potential,

which is anyway impractical in a systematic way for high-

dimensional PESs. This validation is done by first fitting several

NNPs to the same training set. These NNPs must have different

functional forms, which can be achieved, for example, using

atomic NNs with different architectures. Then, several NNPs of

comparable quality are selected, which are apparently all

equally applicable and accurate. Then a large number of struc-

tures is generated using one of these NNPs, for example, by

running NN-driven MD simulations. Afterwards, the obtained

trajectory is recalculated using the other NNPs and the ener-

gies along the trajectory are compared as shown in Figure 7.

In panel (a), only a few structures representing the target func-

tion are used in the training and both NNPs agree well with

the this function shown as black line close to these points. Far

away from these points, however, the energy predictions of

both NNPs are more or less random. This can be detected by

comparing the predictions of several NNs. If there is a signifi-

cant deviation between the predictions of the available NNPs

for a given structure, then this structure is too far away from

the training points, an electronic structure calculation should

be carried out and it should be included in the training set to

refine the NNP. The result is shown schematically in panel (b)

of Figure 7. Here, the number of training points is increased

while the region in which both NNPs deviate from each other

is strongly reduced. After further improvements both NNPs

agree well with the target function in panel (c) over the whole

range. This multiple-fit validation should be carried out for the

same simulation type and under the conditions of the

intended applications of the NNP to ensure that the relevant

part of configuration space is validated. As long as structures

are found for which different fits having similar errors for the

training set predict different energies or forces for some struc-

tures, the potential needs to be improved by adding further

training structures to refine the values of the weight parame-

ters. As soon as no problematic structures are found anymore,

the NNP is reliable and the potential is ready for use. Still,

ideally the final simulations should be carried out independ-

ently by different NNPs for validation.

Typically, the resulting reference data sets for the construc-

tion of NNPs are very large, starting from about 1000 struc-

tures to get an approximate PES for low-dimensional systems

containing only a few atoms, up to several tens of thousands

of structures for high-dimensional condensed systems. This

poses some restrictions on the possible choice of the refer-

ence electronic structure method. To date, in most cases DFT

has been employed, in particular for large systems, but for

small molecules also a variety of higher-level wave function-

based methods has been used. The reference method is very

important for the scientific problem to be solved, as NNPs can-

not provide better results than the underlying electronic struc-

ture method.

Concerning the composition of the training sets for high-

dimensional NNPs, it is possible to combine different types of

structures including periodic and nonperiodic systems and

configurations with different numbers of atoms. Due to the

reduced computational costs it is often helpful to start the

NNP development with a set of structures for very small sys-

tems like thermally distorted crystal unit cells to get a first

rough estimate for basic features of the PES like prefered

interatomic distances and lattice constants. Then, as soon as

NN-based simulations of these small systems work reliably, the

size of the system can be increased step by step until the limit

of what can be addressed by the reference electronic structure

calculations has been reached. Still, often it is required to vali-

date the potential also for systems that are much larger. In

this case the effective reduction of dimensionality by the sym-

metry function cutoff can be exploited by cutting clusters cen-

tered at atoms that are not reliably represented by the NNP.

These clusters, which can be identified, for example, by the

multiple NNP method and investigating the forces as local

probes of the PES, can then be recalculated by the reference

method to include the environments of these atoms in the

training set. In principle, it is sufficient to include the configu-

rations that can be realized within the cutoff spheres in the

training set to obtain a NNP that can be applied to systems of

arbitrary size. Finally, electronic structure calculations for clus-

ters can also be employed to directly validate the NN PES for

very large systems using the forces. If the clusters are suffi-

ciently large, which can be checked in convergence tests, the

forces acting on the central atoms obtained in electronic struc-

ture calculations should be very similar to the NN forces for

the full system, and this has indeed been found for several

systems.[76,82]

In summary, the determination of the reference set can be

done in a self-consistent way according to the following

procedure:

1. Select an electronic structure method, which is suffiently

fast to carry out the required number of reference

Figure 6. Illustration of the early stopping method. Initially, the errors of
the training and the test set decrease as the NN learns the overall shape of
the PES. Then, the test error reaches a minimum and starts to increase
slowly, which labels the onset of overfitting (Figure reproduced from the
“J€ulich School on Computational Trends in Solvation and Transport in
Liquids,” Forschungszentrum J€ulich 2015, under the CC-BY).
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calculations and which is accurate enough to describe

the physical properties of interest reliably.

2. Define a first set of structures and determine the refer-

ence energies and forces.

3. Construct a first preliminary NNP.

4. Carry out simulations using this NNP to find structures,

which give rise to extrapolation warnings or unphysical

geometries.

5. Determine the electronic structure energies and forces of

these structures, include them in the training set and

improve the NNP.

6. Improve the NNP systematically and self-consistently by

running NNP-based simulations to find missing structures

using the multiple-NNP method. Carry out electronic

structure calculations for these structures, refine the fit

and start again running extended simulations at the con-

ditions of the intended applications.

7. As soon as no further problematic structures can be iden-

tified, the NNP is ready for use.

There is some flexibility in the choice of the first set of struc-

tures. In a “puristic” approach it is possible start with random

structures to obtain an unbiased initial data set. This is more

demanding as random structures typically have a high energy

and will not be relevant in the final converged data set. Still,

starting with such structures it is possible to improve the

potential step by step until the correct structures are found.

We have tested this for boron. Finally, after several iterative

improvements employing metadynamics simulations,[107] we

have obtained a potential suitable to identify the correct crys-

tal structure of a-boron (Morawietz and Behler, unpublished).

In a more “pragmatic” approach, which uses some knowledge

about the system, the number of electronic structure calcula-

tions can be reduced by starting from reasonable atomic con-

figurations. Further, also other types of potentials like classical

force fields could be used to run the first simulations. In the

later stages of the iterative refinement of the potential, it is

still crucial to run simulations using the NNP itself to find

problematic configurations like “holes” in the PES.

The large number of training points is one of the main

remaining challenges of constructing NNPs. Still, there is some

guidance how an excessive growth of the training set can be

avoided. First of all, only the part of configuration space, which

is accessible in MD simulations is relevant and needs to be

mapped. Consequently, calculating the data on a regular grid

is not required and is unfeasible anyway in high-dimensional

systems as the number of points grows exponentially with the

number of dimensions. Also using a metric to determine posi-

tions of candidate structures is not a promising approach as

the “distance” between structures depends on the choice of

Figure 7. Illustration of the systematic improvement of the training set using the multiple-fit procedure. In panel (a), only a few training point of the target
function (black line) are available and in between these points different NNs can predict very different energies Erel . As more training points are added
[panel (b)], the representation of the energy function becomes more reliable until a good fit is obtained over the full range in panel (c) (Figure reproduced
from the “J€ulich School on Computational Trends in Solvation and Transport in Liquids,” Forschungszentrum J€ulich 2015, under the CC-BY).
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coordinates and can be very different in real space and in the

symmetry function space. Further, this approach is sensitive to

the preprocessing steps of the symmetry functions like scaling

and centering. In general, as much information as possible

should be extracted from each electronic structure calculation.

Although there is just one total energy value, there are 3

"Natom force components containing valuable information

about the local topology of the PES. This can be used to

reduce the training set size significantly. It has also been pro-

posed to employ the symmetry, for example, of single crystal

surfaces,[49] but this is possible only in special applications as

in general there is no symmetry left in MD simulations at finite

temperatures.

Determination of the Weight Parameters

Once a set of reference data from electronic structure calcula-

tions is available, the central step in constructing a NNP is the

determination of the numerical values of the weight parame-

ters, which enable to reproduce these data as accurately as

possible. In “supervised learning,” which is the standard proce-

dure in the training of NNPs, the output of the NN for each

structure is compared to the known “true” answer from the

reference calculations. In general, this corresponds to a mini-

mization of an error function C, which is given as the sum of

squared errors of the Nstruct individual members of the training

set,

C5
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XNstruct
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Ei
NN2Ei
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If also the forces are used for the weight optimization, a

modified error function,
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can be used, which contains a loop over all X, Y, and Z force

components of all atoms. The relative influence of the energies

and forces can be balanced by the parameter b, as the num-

ber of force components is much larger than the number of

energies. The value of b can be set to the inverse of the num-

ber of force components for each structure to take into

account structures with different numbers of atoms, or to a

predefined fixed value. Alternatively, we have found it useful

to first update the weights using the error of the energy, fol-

lowed by one update per force component. After each of

these force updates the energy update is repeated to stress

the importance of a correct representation of the energy.

The optimization of the weight parameters is done iteratively,
and one iteration, which is often called “epoch” in the context
of NNs, corresponds to a cycle through the full data in the
training set. In “batch learning,” which is also called offline
learning, the weights are updated only once per iteration, while
in “online learning” there is one weight update after the pre-
sentation of each piece of information, like energies or force

components. Although online learning is computationally more
demanding, in this procedure the fit is less likely to get trapped
in local minima. This is an important advantage since there are
typically several thousand parameters, and there is no hope to
find the global minimum in this very high-dimensional optimi-
zation space. Still, usually many sufficiently accurate local min-
ima are found, which provide a reliable description of the PES.

A wide range of optimization algorithms can be used to

determine the weight parameters, and the standard procedure

is to use gradient-based approaches. The most basic method

is called “backpropagation” in the NN community,[108] which

refers to the recursive calculation of the derivatives of the

error function with respect to the weights starting from the

output layer and proceeding to the input layer in the inverse

order of the calculation of the NN output. In essence, the

backpropagation algorithm corresponds to a steepest descent

optimization of each weight w, which can be a connecting

weight a or a bias weight b. For an iteration t 1 1, the updated

weights are obtained according to

wðt11Þ5wðtÞ2g " @C
@wðtÞ : (19)

Here, g is the learning rate, which can also be adapted dur-

ing the progress of the fit. More advanced optimization algo-

rithms that are frequently used for the determination of NN

weights are the Levenberg-Marquardt algorithm[109] and in

particular the global extended Kalman filter,[91,110–112] which

we use for the development of high-dimensional NNPs. A dis-

cussion of the details of these optimization algorithms is

beyond the scope of this review.

Regardless of the specific choice of optimization algorithm,

for each energy the derivatives of the error function with

respect to the connecting weights and the bias weights need

to be determined for each atomic energy, as the reference

energy is a constant and thus independent of the weights.

Similar derivatives also need to be calculated for each force

component. This has to be repeated after each weight update

since the derivatives with respect to the weights depend also

on their numerical values.

During the optimization, the quality of the fit is measured

by determining the root mean squared error (RMSE) of the

energies and forces in the training and the test set in each

iteration using
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In particular, in case of large data sets including very differ-
ent systems like cluster and bulk data, a global RMSE is not
very helpful in understanding how accurate a fit will be in
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which situation. For a more detailed analysis, the data set

should be split in meaningful groups, like subsets of structures
with the same number of atoms, and the error of each group
should be determined for a given fit. To obtain a meaningful
measure of the accuracy of the fit, the RMSE should also be
normalized per atom to enable a comparison of different types
of structures. Additionally, also points with particularly large
errors should be identified and analyzed to understand the

reason why they are not well-represented. A possible reason
could be for instance an insufficient set of symmetry functions
or problems in the underlying reference data. If specific parts
of the configuration space, like transition states and local min-
ima are of special interest, it is also possible to increase their
impact on the fit,[28,49] but in many situations this distinction
of the PES in more and less important parts is not
straightforward.

Apart from the selection of the optimization algorithm, a

number of additional choices have to be made to construct a

specific NNP. First of all, the architecture of the atomic NNs

has to be determined. This is still an empirical component of

the NNP development, since the most efficient way to identify

a suitable number of hidden layers and nodes per layer is sim-

ply to carry out a number of fits and to select the one with

the lowest errors of the energies and forces in the test set. In

general, the architecture of the NN determines its flexibility.

Consequently, if the NN is too small, some features of the PES

may not be resolved as shown in Figure 8a. This is visible in

the RMSEs as a notable error in the training and the test set.

If the flexbility of the NN is increased by using more nodes

and possibly an additional hidden layer, the representation of

the PES will improve, as demonstrated in Figure 8b, resulting

in lower errors of the training and the test data. If the NN is

too large, it becomes too flexible and overfitting can occur,

which is illustrated in Figure 8c and can be identified by an

increased error of the test set data compared to the error of

the training data. The tendency for overfitting can be

reduced significantly, if also forces are used for the training,

because a correct representation of the gradient of the PES

close to the training points will improve the description of

neighboring structures.

Other choices in the fitting process can have a strong influ-

ence on the CPU time requirements. In particular, if also forces

are used for the determination of the weight parameters, very

large data sets often containing millions of pieces of informa-

tion have to be processed in each iteration. This comprises

first the determination of the error of each energy and force

component, followed by the calculation of the derivative of

this error with respect to each weight parameter and finally

the update of the weights, which, for example, in case of the

Kalman filter involves demanding matrix operations. Conse-

quently, it should be avoided to perform unnecessary weight

updates, for example, if an energy or force is already well rep-

resented. This can be done be introducing error thresholds

and only if the error of an energy or force is above this thresh-

old a weight update will be carried out. This threshold is usu-

ally coupled to the RMSE of the present iteration and,

therefore, decreases along with the overall error of the NNP.

Another possibility to reduce the fitting effort is to use only a

random subset of the forces in each iteration or to average

the weight derivatives for several energies and/or forces and

to perform a joint weight update after a certain number of

weight derivatives has been accumulated.

Once the weights have been determined, the NNP is ready

for use, and it is not relevant for the application how the

weights have been obtained. Still, it is important to be aware

that the “NNP” not only consists of the values of the weight

parameters. Additionally, information about the architecture of

the NN, the type of activation functions, the types and param-

eters of the symmetry functions, and possibly also scaling

information for the preconditioning of the NN input nodes are

required to apply a NNP in simulations. Ideally, the same NN

software should be used for the simulations that has also

been used for the construction of the NNP, since many subtle

details of the implementation may complicate the transfer of

this information from one code to another.

Discussion

Having reviewed the structure of high-dimensional NNPs, the

functional form of the symmetry functions and the

Figure 8. Influence of the flexibility of the NN on the fit quality. In panel
(a), a very small NN is used, which is not flexible enough to resolve all fea-
tures of the energy surface. In (b), the shape of the energy surface is well
represented using a large NN, while in (c) overfitting is present as can be
seen by the presence of artificial wiggles in between the training points
(Figure reproduced from the “J€ulich School on Computational Trends in
Solvation and Transport in Liquids,” Forschungszentrum J€ulich 2015, under
the CC-BY).
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determination of the training sets as well as of the weight

parameters, some comments should be made concerning the

general applicability and performance of high-dimensional

NNPs. Like other ML methods, NNPs can be numerically very

accurate and the typical RMSEs for the high-dimensional NNP

method presented here are less than 10 meV/atom for

potential-energies and between 50 and 200 meV/Bohr for the

atomic forces. For energy differences, which are most impor-

tant for the investigation of chemical and physical processes,

the error can be even about one order of magnitude smaller.

This has the consequence that replacing electronic structure

methods like DFT in MD simulations by NNPs does not give

rise to significant additional errors, which is crucial as substan-

tial uncontrolled errors arising from the fit would not be

acceptable. Conversely, the low RMSEs of NNPs pose stringent

conditions on the convergence level of the training data, as

any noise in the reference calculations would complicate the

optimization of the weight parameters. As a rule of thumb,

the convergence error of the energies and forces should be

one order of magnitude smaller than the intended final RMSEs

of the NNP. Another measure for the quality of NNPs is the

comparison of observables related to the PES, like global and

local minima[74,84] as well as vibrational frequencies,[83] to the

underlying electronic structure method or even to experiment.

Like for the energy, a very close agreement can be obtained.

Concerning the efficiency, NNPs are superior to any electronic

structure method, and since there is one atomic NN per atom,

the method scales linearly with the number of atoms. Further, it

is straightforward to implement in parallel computer codes. On

current desktop computers, depending on the complexity of

the selected symmetry functions, the energies and forces of

about 200 atoms can be calculated per second and per com-

pute core. Still, this is substantially slower than the evaluation

of basic classical force fields. NNPs, however, are no direct com-

petitors of classical force fields due to their different applicabil-

ity. NNPs are currently restricted to systems containing about

three to four elements because of the rapidly increasing struc-

tural variety that would give rise to too many symmetry func-

tions for systems consisting of more elements. This restriction is

not present for force fields, which use only very low-

dimensional additive terms. NNPs, conversely, are clearly supe-

rior to force fields concerning the numerical accuracy and their

ability to work even in case of most complex geometries. Fur-

ther, they are able to describe the making and breaking of

bonds, which is a severe problem for most force fields. Like

electronic structure methods, the input of NNPs consists of a

description of the chemical elements and the atomic positions,

but no classification of atoms according to functional groups or

the definition of bonds is required. In contrast to common

belief, also the number of fitting parameters in classical force

fields can be very large taking into account the interaction

between all the different atom types and bonds.

A clear drawback of NNPs is the nonphysical functional form,

which does not allow for a physical interpretation. Still, this seems

to be the price to be paid for obtaining potentials with a high

numerical accuracy. Consequently, NNPs must be constructed and

used with care. Since the functional form is not transparent to the

user, NNPs should not be used as black box method but must be

routinely tested using the methods described above.

There is still a number of open problems concerning the

construction and application of high-dimensional NNPs. First,

as the development of NNPs currently requires very large

training sets, a major goal is to reduce the number of required

reference data. One step in this direction is the use of forces

apart from total energies only, which provide a lot of addi-

tional information about the local shape of the PES. Neverthe-

less, there is certainly room for a better and more selective

choice of reference structures, although still all relevant parts

of configuration space need to be mapped, which is posing a

boundary on the minimum number of structures that need to

be included. The limitation of NNPs to a few elements can be

partially overcome by sacrificing the full generality of NNPs. If,

for instance, it is known that certain bonds do not participate

in chemical processes, the NNPs does not need to be able to

describe the breaking and making of these bonds. Finally, also

the fitting process itself can be very time consuming and most

efficient online-learning algorithms like the Kalman filter can-

not be parallelized well yet.

To date, NNPs have been applied successfully in different

types of simulations like Monte Carlo,[59,60] MD,[28] metadynam-

ics[74] and replica exchange MD simulations,[84] and it can be

anticipated that the use of ML potentials and in particular of

NNPs will rapidly increase in the near future.

Summary

In this tutorial review, a method to construct high-dimensional

atomistic potentials employing artificial NNs has been presented

and discussed. In contrast to conventional, low-dimensional

NNPs, the potential-energy of the system is not represented by

a single feed-forward NN. Instead, there is one separate NN for

each atom in the system providing the contribution of that

atom to the total energy. These atomic energy contributions

depend on the local chemical environment defined by a cutoff

radius resulting in atomic spheres containing up to about 100

atoms. The positions of these atoms with respect to the central

atom are described by a vector of many-body symmetry func-

tions serving as input for the atomic NNs. In addtion to this

short-range energy also long-range electrostatic energies can

be included based on environment-dependent charges repre-

sented by another set of atomic NNs.

The method is applicable to a wide range of systems and

very low errors with respect to the underlying electronic struc-

ture data can be obtained. The evaluation of the NNP is several

orders of magnitude faster than DFT even for systems of mod-

erate size and scales linearly with the number of atoms. Still,

due to the very flexible functional form of NNs the construction

of the PES requires care and the obtained NNP must be thor-

oughly validated. The determination of the training set, which

usually consists of tens of thousands of structures, is computa-

tionally demanding. An important limitation of the method is

its current restriction to a few elements, although a large num-

ber of atoms of each element can be present, because of the

rapidly increasing structural variety in the atomic environments,
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which needs to be mapped by electronic structure calculations

and has to be described by the symmetry functions.

Since NNPs are equally applicable to all types of bonding

and even complex atomic environments, they are particularly

useful for large-scale MD and Monte Carlo simulations of com-

plex systems in materials science, at interfaces like the solid-

liquid interface, and for studying solvation processes.
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