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Abstract: Computer simulations can complement experiments by providing insight into molecular
kinetics with atomic resolution. Unfortunately, even the most powerful supercomputers can only
simulate small systems for short time scales, leaving modeling of most biologically relevant
systems and time scales intractable. In this work, however, we show that molecular simulations
driven by adaptive sampling of networks called Markov State Models (MSMs) can yield
tremendous time and resource savings, allowing previously intractable calculations to be
performed on a routine basis on existing hardware. We also introduce a distance metric (based
on the relative entropy) for comparing MSMs. We primarily employ this metric to judge the
convergence of various sampling schemes but it could also be employed to assess the effects
of perturbations to a system (e.g., determining how changing the temperature or making a
mutation changes a system’s dynamics).

1. Introduction

Molecular dynamics simulations are a powerful means of
understanding both the thermodynamics and kinetics of
molecular processes like protein folding and conformational
changes. Unfortunately, such processes are highly sensitive
to the underlying chemical details. For example, point
mutations in the amino acid sequence of a protein may have
significant effects on its kinetics,1 and a small number of
point mutations can even drastically change the native
structure.2 Thus, atomistic simulations are required to make
quantitative connections with experiments.3,4

Advances in computing have made it possible to rapidly
generate huge data sets even at this level of chemical detail;5,6

however, these data sets are still insufficient. A typical
computer can only simulate ∼5 ns/day of protein folding
and would thus take over 500 years to simulate one
millisecond, an average folding time typical of proteins.
Whether one is interested in dynamics or merely equilibrium
probabilities, a kinetic perspective on this problem that
explicitly considers the rate of equilibration reveals that

metastability, or the presence of long-lived states that act as
“traps”, is a common source of inefficiency.

One approach to dealing with this issue is to make
tremendous investments in specialized software and hardware
for generating long simulations.7 While theoretically sound,8

this serial approach often only results in simulations that are
long relatiVe to standard trajectories. However, a truly long
simulation must be orders of magnitude longer than the
slowest relaxation time so that the probabilities of all states
and pathways can be estimated accurately. Even if such a
simulation were possible, the task of analyzing the data
would still remain.7,9 Moreover, serial approaches are
inherently inefficient, both due to parallelization overhead
and, more importantly, the fact that they waste hundreds of
years of computing time waiting for rare events.

A statistical approach provides a fundamentally different
perspective on model construction. Rather than attempting
to generate one realization of an entire process, one instead
aims to generate an ensemble of events in parallel. For
example, a number of methods have been developed for
exploiting statistical mechanics to simulate protein folding
more efficiently.10-13 Most of these approaches rely on the
fact that, in two-state protein folding, the waiting time for
observing a transition is exponentially distributed but the
actual transition times are quite rapid.14 Thus, proteins often
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fold much faster or slower than the average folding time.
Such approaches are amenable to commodity hardware and
take far less wall-clock time than a serial approach with an
equivalent amount of sampling, particularly when combined
with grid computing.5 Unfortunately, these methods are
generally only applicable to two-state systems and may
require simulations of an unknown minimum length.15 Some
multistate generalizations exist16 but quickly become com-
putationally intractable.

Markov state models (MSMs) extend this work by
allowing for a tractable, multistate scheme that allows
efficient modeling of any system exhibiting metastability.17

A MSM is a network with nodes corresponding to metastable
states and edges describing the rates of transitioning between
pairs of states, akin to a map with cities connected by roads
labeled with speed limits. Rather than attempting to generate
one realization of an entire process, one can exploit the
decomposition of conformational space into multiple meta-
stable states to gather statistics on each step of the process
independently, allowing a problem to be broken up into more
manageable and trivially parallelizable pieces.

Mathematically, MSMs are represented as transition prob-
ability matrices, with the entry in row i and column j giving
the probability of transitioning from state i to state j within
a time interval called the lag time of the model. Building
MSMs is a challenging task, but significant progress has been
made over the past few years,18-21 leading to freely available
software for automatically constructing these models.18 While
MSMs could be used to analyze truly long simulations, their
ultimate value lies in their ability to facilitate efficient model
construction by allowing precise, parallel determination of
the transition rates between states by running many short
simulations from each of them.

AdaptiVe sampling algorithms for MSM construction take
this statistical approach a step further.22-24 In adaptive
sampling, one first obtains an initial model of the entire
process of interest by any means possible. One then
iteratively calculates the contribution of each step of the
process to uncertainties in some observable of interest via
Bayesian statistics and runs numerous parallel simulations
of the steps that can lead to the greatest increases in precision
until the desired level of statistical certainty is achieved. Such
an approach was recently shown to lead to dramatic
reductions in the statistical uncertainty in the observable of
interest relative to other refinement schemes.22

However, a number of important questions remain to be
answered. First, does adaptive sampling improve the global
model quality or just local components that are important
for the observable of interest? Exactly how much more
efficient is adaptive sampling? And finally, is adaptive
sampling capable of discovering previously unknown com-
ponents of a model, or is it only able to refine the initial
model it is given?

In this work, we address these questions using a MSM
for the villin headpiece (HP-35 NleNle) that was recently
constructed from atomistic simulations with explicit sol-
vent.19 We then move on to simple models, where the role
of the network is clear, to gain an intuition for our results
and test whether such methods could be more broadly

applicable to a wide class of different types of systems. These
analyses rely on a new distance metric for MSMs developed
in section 2.2, which should prove generally useful for
evaluating various sampling schemes and even assessing the
effects of perturbations to a system (like changes in tem-
perature or even mutations).

2. Theoretical Underpinnings

2.1. Adaptive Sampling. In adaptive sampling approaches
to MSM construction, simulations are run iteratively to
minimize uncertainties in some property of a model.22-24

In this work, adaptive sampling is performed as follows:
(1) Perform N simulations of L steps starting from a

particular starting state(s).
(2) Build a MSM only including those states identified so

far.
(3) Calculate the contribution of each state to uncertainty

in the slowest kinetic rate following ref 22.
(4) Start N new simulations of L steps distributed among

the states in proportion to their contribution to uncertainty
in the slowest rate.

(5) Repeat steps 2-4 for some number of iterations.
All the MSMs in this work were constructed and analyzed

with the MSMBuilder package (which is freely available at
https://simtk.org/home/msmbuilder/)18 modified such that
transition count matrices were not symmetrized by counting
the transitions that would have been observed if one watched
each simulation backward.

We note that, in the past, simulations in each round of
adaptive sampling were all started from the same initial state
(the one contributing most to uncertainty in the quantity of
interest).22 The intuition behind our alteration was that, as
the number of simulations (N) becomes large, starting all
the simulations from one state would be excessive as fewer
would be sufficient to drastically reduce the uncertainty.
Instead, it would be preferable to allocate some of these
excess simulations to reduce uncertainties in other states’
transition probabilities. Indeed, we have found that our
modified procedure yields better results for sufficiently large
N on reasonably complex networks and gives equivalent
results for simple networks and small N.

To demonstrate the utility of this algorithm, we carried
out adaptive sampling with synthetic trajectories generated
from transition count matrices. To generate synthetic simula-
tions from a transition count matrix, we first normalize each
row to obtain a transition probability matrix. At each time
step (or each lag time), the next state is chosen according to
the distribution of transition probabilities for the current state.
The prior described below is not used for these calculations,
so the matrices used to generate trajectories tend to be sparse.

2.2. Quantifying the Similarity between MSMs. In order
to monitor the convergence of any sampling scheme, it is
important to first develop a similarity metric that is capable
of measuring the global quality of a test model relative to
some reference model. Such a metric would also have broad
usefulness, as there are several reasons for comparing MSMs
quantitatively. For example, this metric could be used to
compare MSMs generated by two different simulation
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methods, allowing one to directly compare the resulting
dynamics. Alternatively, one could compare MSMs generated
by two somewhat different, but related systems, such as
comparing the simulations of the dynamics of two point
mutants of a given protein.

We have developed such a distance metric for MSMs that
is based on the relative entropy, which is a common measure
of the distance between two probability distributions in
information theory25 with important physical implications.26

The relative entropy between two normalized distributions
P and Q, over a common set of outcomes, is

where Pi is the probability of outcome i, P is a reference
distribution, and Q is some test distribution.

A MSM consists of one normalized distribution per state,
which gives the probability of transitioning to each other
state within one lag time. We define the relative entropy
between a reference and test MSM, with transition matrices
P and Q respectively, as

where Pi is the equilibrium probability of state i, Pij is the
probability of transitioning from state i to state j during one
lag time, and N is the number of states. Intuitively, our
relative entropy metric is the sum of the relative entropies
between the transition probability distributions for each state
weighted by their stationary probabilities.

One may derive our relative entropy metric for MSMs
more formally by considering that the entropy (H) of a
sample path of a stochastic process, normalized by its length,
is also called the entropy rate. An important theorem in
information theory is the following:

Theorem. For an ergodic stochastic process, X1, ..., Xn

For a Markov Chain, the right-hand side takes a very
simple form, because the conditional entropy only depends
on the previous step, which converges to the stationary
distribution.

In the following, we prove a similar statement for the
relative entropy between the paths of two Markov chains as
n goes to infinity. For two Markov chains p and q with state
space Ω, we would like to compute:

For simplicity, let us define lowercase xn ) {X1, ..., Xn}.
Then, by the chain rule for the relative entropy, we get

Equation 2.65 in Cover and Thomas27 defines the condi-
tional relative entropy above as the expectation of the relative
entropy between the conditional distributions of Xn given
xn-1, with respect to the distribution of xn-1. This means that

where we have grouped terms with the same final state in
the “history” y, which have the same relative entropy factor,
and summed their probabilities to obtain the marginal
probability over Xn-1.

Repeating the step that led to eq 2 many times yields

If the initial state is deterministic, the last term is just zero.
As for the first term, as n goes to infinity, the distribution of
Xm-1 goes to the stationary distribution of p, which we call
µ. Then, using the equation for the conditional entropy,

Since the terms in the series converge to a limit, their
Cesaro means converge to the same limit, so

The terms p(Y|Z) and q(Y|Z) are just the elements of the
transition matrices of p and q, respectively; so this is
equivalent to eq 1.

2.3. Prior for Relative Entropy and Adaptive
Sampling. There is always some probability of transitioning
between every pair of states, though these probabilities may
be low enough that no actual transitions are observed. To
account for this, as well as to reflect our lack of prior
knowledge about the transition probabilities, we add a
pseudocount of 1/N to every element of the transition count
matrix, where N is the number of states, before normalizing
each row to find the transition probability matrix, as in refs
22 and 28. The intuition behind this choice is that for a state
to exist we must observe at least one count in that state, but
before observing any real data the probability of this count
leading to any other state is equal. From a Bayesian
perspective, these pseudocounts equate to a uniform prior.
These pseudocounts also prevent the relative entropy metric
from becoming infinite whenever a zero is encountered in a
MSM’s transition probability matrix. It is often the case that
certain transitions are not observed, so this correction is of
great practical importance.

2.4. Villin Simulations and MSM. The simulation details
for the original ∼450 villin simulations are described in detail
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in ref 29. In short, ∼450 constant temperature molecular
dynamics simulations with explicit solvent and up to 2 µs
in length were run from nine initial configurations drawn
from high temperature unfolding simulations at 373 K. Ref
19 describes the construction of a 10 000 microstate MSM
that faithfully reproduces the raw simulation data. For the
purposes of this work, we lumped these 10 000 microstates
into 500 macrostates exhibiting metastability and having an
equivalent Markov time (15 ns). This lumping was done with
the MSMBuilder package.18 The macrostates containing the
nine initial configurations used during the real simulations
were used as the starting points for adaptive sampling.
Simulations of just 30 ns were used for adaptive sampling.

2.5. Simple Models. The transition count matrices for
simple models S and P (CS and CP respectively) are

and

where the entry in row i and column j gives the number of
transitions observed from state i to state j.

Mean first passage times were calculated following ref 28.
The mean first passage times for S and P are ∼13 000 and
∼5000 steps, respectively. Other equilibrium properties can
be obtained by normalizing each row to obtain a transition
probability matrix and then solving for the eigenvalues and
eigenvectors of this matrix. For example, normalizing the
first eigenvector (e.g., the one corresponding to an eigenvalue
of 1) gives the equilibrium probabilities of each state.
Subsequent eigenvalue/eigenvector pairs give kinetic rates
and the states involved in these transitions, respectively.17

Once again, the MSMBuilder package18 was used for
analysis of these models.

Plots of the average relative entropy as a function of
simulation number and length were generated by running
600 simulations of 5000 steps for each model. Average
relative entropies over 10 random samples of N trajectories
from this pool were then calculated and plotted. Similar plots
for our adaptive sampling scheme were also generated by
averaging over 10 independent runs.

3. Results and Discussion

3.1. Application to Villin MSM. With these tools in
place, we are now in a position to assess the efficacy of
adaptive sampling using a previously calculated MSM for
the villin headpiece19 as a model system. In particular, we
would like to assess two types of efficiency. First, given our

desire to push the envelope of what is possible in a reasonable
amount of time, can adaptive sampling reduce the wall-clock
time necessary to achieve a given model quality? Second,
given our desire to mitigate negative impacts on the
environment, can adaptive sampling reduce the amount of
resources (in this case computer time) necessary to achieve
a given model quality?

To address these questions, we have performed adaptive
sampling with a variable number of simulations per iteration
generated from our villin MSM. We then assume each
simulation progresses at a rate of 5 ns/day, a typical value
for modern personal computers, and compare the conver-
gence of our adaptive simulations to the gold-standard model
from ref 19 (that was validated by comparison to both the
raw simulation data and experiments) with the convergence
of a single long reference simulation to the same gold
standard. Convergence to the gold-standard model is mea-
sured with our relative entropy metric for MSMs (described
in section 2.2).

Figure 1A shows that the wall-clock time efficiency of
adaptive sampling scales linearly up to 5000 simulations per
iteration. That is, adaptive sampling with N simulations per
iteration can reduce the wall-clock time necessary to achieve
a given model quality by a factor of N for N as high as 5000.
Using more simulations will help but will only reduce the
wall-clock time by a factor of RN, where R < 1. The crucial
result, however, is that one can reduce a calculation that
would take decades to run with traditional methods to a
calculation that can be run in a matter of days with adaptive
sampling.

Adaptive sampling can also greatly reduce the resource
requirements for achieving a given model quality. For
example, Figure 1B shows the computer time necessary to
achieve a given model quality for one long simulation and
adaptive sampling with a varying number of simulations per
iteration. This figure shows that adaptive sampling requires
about half as much computer time to achieve the same model
quality as one long simulation. Once again, the relative
efficiency of adaptive sampling begins to fall off beyond
some optimal number of simulations per iteration.

3.2. Application to Simple Models. To gain intuition for
the applicability of adaptive sampling to other systems, we
have also applied it to two classic network topologies, shown
in Figure 2A and defined more thoroughly in section 2.5.
These models are representative of problems with metasta-
bility; their equilibrium properties can be derived analytically
and used as an unambiguous reference, and truly long
simulations are feasible.

Both models have states with approximately the same
equilibrium and transition probabilities, such that differences
between their behaviors can be attributed to differences
between their topologies. More specifically, states 1-6 have
equilibrium populations of 6%, 1%, 1%, 1%, 1%, and 90%,
respectively. Drawing an analogy to protein folding, state 1
is the unfolded state, state 6 is the folded state, and the
remaining states are intermediates. Thus, S has a single
folding pathway, and P has parallel folding pathways.

The reduced connectivity in S results in longer time scale
transitions relative to P. In fact, the mean first passage time

CS ) [6000 3 0 0 0 0
3 1000 3 0 0 0
0 3 1000 3 0 0
0 0 3 1000 3 0
0 0 0 3 1000 3
0 0 0 0 3 90 000

]
CP ) [6000 2 2 0 0 0

2 1000 0 2 2 0
2 0 1000 2 2 0
0 2 2 1000 0 2
0 2 2 0 1000 2
0 0 0 2 2 90 000

]
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(MFPT) between states 1 and 6 is about three times longer
in S than in P, making S considerably harder to sample. In
addition, such linear models are often cited as a case where
the holistic, long-trajectory approach is absolutely necessary;
nevertheless, adaptive sampling is able to learn the network
more efficiently than traditional approaches, as shown in
Figure 2B. This figure shows how close various schemes
can approach the true model for S given a set amount of
wall-clock time and starting from state 1 to mimic the
practice of starting protein folding simulations from an
arbitrary conformation in the unfolded state.

To provide some intuition for our distance metric, Figure
3 shows the evolution of the relative entropy and the
estimated free energy of each state in S during adaptive

sampling. Adaptive sampling was carried out by running 10
simulations from state 1 and then repeatedly building a MSM
and starting 10 new simulations from the state contributing
most to uncertainty in the slowest process. Small jumps in
the relative entropy are found each time a state with a low
population is discovered (or, equivalently, when a new path
is discovered for this model), and a very large jump is evident
when the most populated state, state 6, is discovered. Slow
decay occurs between these jumps. Thus, our metric is most
sensitive to state and path discovery but still captures
improvements in estimates of the transition probabilities
along known paths. Such behavior is desirable as models
that miss important states or paths should be penalized more
than ones with imperfect transition probabilities.

Figure 4 shows a more thorough comparison of adaptive
sampling and reference simulations with an equal amount
of sampling for various numbers and lengths of simulations.
Evaluation of the reference simulations for both S and P
demonstrates that achieving a reasonable model quality by
naively starting simulations from state 1 requires simulations

Figure 1. Scaling for adaptive sampling of villin as the
number of parallel simulations (N) used during each round is
varied. (A) Wall-clock time scaling as N is varied. The black
line is a best fit to the linear portion of the data (circles), which
extends up to 5000 simulations per iteration. (B) Computer
time required to achieve a given model quality (relative
entropy) for various sampling schemes. L refers to one long
trajectory, and the numbers refer to the number of parallel
simulations used in each iteration of adaptive sampling. All
results come from averaging over 10 independent runs. Each
step equates to 15 ns.

Figure 2. (A) The two models, S and P. (B) Distance from
the true model (measured via the relative entropy) as a
function of wall-clock time for adaptive sampling versus one
long simulation of S (assuming 5 steps/day to mimic 5 ns/
day in protein folding simulations). The lines are one long
simulation (dashed line) and adaptive sampling with 10
simulations of 20 steps (solid line), 10 simulations of 200 steps
(dotted line), 100 simulations of 20 steps (dash-dot line), and
1000 simulations of 20 steps (black squares) per iteration.
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of some minimal length, though this minimal length is shorter
for P than S in terms of the absolute number of steps.
Moreover, adaptive sampling is able to gain valuable
information from much shorter and fewer simulations
regardless of the topology of the network, that is, whether
there is a single folding pathway or multiple pathways. This
figure also shows that adaptive sampling generally benefits
from using more parallel simulations but not longer ones.
An important point is that each data point in Figure 4B and
D depends on the data points to its left. For example, to fill
in the row corresponding to simulations of length 100, 10
independent adaptive sampling runs of 50 iterations were
performed. The first round of each adaptive sampling run
was used to compute average relative entropies for 1-10
simulations, the first and second round of each run (which
depends on the first round) for 11-20 simulations, and so
forth. As a result, there is some horizontal streakiness in these
figures. We also note that adaptive sampling results in smaller
uncertainties in the relative entropies shown in Figure 4 (see
Figures S1 and S2, Supporting Information).

Finally, we find that the scaling of adaptive sampling of
our simple networks is similar to that found for villin, as
shown in Figure 5. One noteworthy difference is that our
simple models saturate (i.e., fall short of linear scaling as
additional parallel simulations are run) earlier than villin.
Comparison of the two simple models also shows that S
saturates before P. For S, adaptive sampling scales linearly
up to 150 parallel simulations. For P, adaptive sampling
scales linearly up to 500 simulations. The improved scaling
for P is the result of the increased complexity of the network
topology of P compared to S. Each node in P has more

connections to learn, and the algorithm benefits from doing
this in parallel. Indeed, the complexity of our villin model
is much greater than either of these simple networks, and as
discussed previously, villin scales linearly up to 5000
simulations per iteration. Thus, we expect that we can achieve
linear scaling well beyond 5000 simulations per iteration for
systems that are more complex than the villin MSM that we
sampled from.

3.3. Applicability. The adaptive sampling algorithm
employed here was developed for application to MSMs with
metastable states. That is, it assumes that every state has a
self-transition probability greater than 0.5 such that a
simulation in one state is more likely to stay there than to
transition to a new state. This property helps to ensure a
separation of time scales (fast intrastate transitions, slow
interstate transitions) and, therefore, that the model is
Markovian because a simulation can lose memory of its
previous state before transitioning to a new one. Thus, the
procedure for ab initio adaptive sampling is (1) run some
initial simulations, (2) cluster all the simulation data into
microstates, (3) lump these microstates into metastable
macrostates, (4) calculate the contribution of each macrostate
to uncertainties in the slowest rate (or some other observable),
(5) start new simulations from each state in proportion to its
contribution to the overall uncertainty, and (6) repeat steps
2-5 until the desired level of statistical certainty is achieved.

Figure 3. Relative entropy (top) and free energy of each state
in kcal/mol (bottom) as a function of the adaptive sampling
iteration on model S.

Figure 4. Distance from the true model (measured via the
relative entropy) as a function of the number and length of
simulations averaged over 10 independent samples. (A)
Reference distribution for S, (B) adaptive sampling of S, (C)
reference distribution for P, and (D) adaptive sampling of P.
All simulations for the reference distributions started from state
1. The first 10 simulations for adaptive sampling started from
state 1, and subsequent batches of simulations started from
the state contributing most to uncertainty in the slowest
process. Black lines are contours of equal amounts of data.
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In the future, it will be interesting to explore whether this
adaptive sampling algorithm is equally applicable to more
fine grained divisions of conformational space (e.g., at the
microstate level) as the lumping stage would no longer be
necessary. In addition, recent work has shown that more fine
grained MSMs are better for obtaining quantitative predic-
tions of experimental observables,19,30,31 so it could be
advantageous to do refinement at this level.

The relative entropy metric assumes that the two models
being compared have the same state space. Comparing two
simulation data sets therefore requires the following steps:
(1) define a state space common to both data sets (i.e., by
using both data sets for clustering to define microstates and,
optionally, lumping to define macrostates), (2) compute
transition probability matrices for each data set indepen-
dently, and (3) compute the relative entropy between these
matrices.

4. Conclusions

Together, our results with villin and fundamental model
systems demonstrate the tremendous value of adaptive
sampling. Since model quality has been assessed with a
global metric and shows strong agreement between adaptive
sampling results and the true model, we can conclude that
adaptive sampling to minimize uncertainties in the slowest
kinetic rate improves the global quality of a model. More-
over, adaptive sampling is significantly more efficient than
a single long simulation, both in terms of the wall-clock time
and resources required to achieve a given model quality, up
to some saturation point. In fact, adaptive sampling with N
parallel simulations requires about a factor of 2 less
computer-time and a factor of N less wall-clock time.
Considering that N can easily be as large as 10 000 (or
more),5 this can be a truly dramatic advantage in wall-clock
time, turning calculations normally requiring decades into

Figure 5. Scaling for adaptive sampling of our simple models as the number of parallel simulations (N) used during each round
is varied. (A and B) Wall-clock time scaling as N is varied for simple models S and P, respectively. The black line is a best fit
to the linear portion of the data (circles). (C and D) Computer time required to achieve a given model quality (relative entropy)
for various sampling schemes applied to S and P, respectively. L refers to one long trajectory, and the numbers refer to the
number of parallel simulations used in each iteration of adaptive sampling. All results come from averaging over 10 independent
runs.
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routine calculations on the time scale of days. Finally, since
our simulations started from just a couple of states, we can
conclude that adaptive sampling is capable of discovering
new model components giVen no prior knowledge of the
system and is thus useful for model construction in addition
to model refinement.

The adaptive sampling method described here may be
directly applied to learn models from simulations of meta-
stable phenomena, leading to significant resource and time
savings in fields like molecular and quantum mechanics, but
is not limited to these applications. Given a means to prepare
samples within a given state, it could be applied equally well
to experimental techniques, such as single molecule FRET
and force extension experiments. More broadly, minimizing
uncertainties in a model is likely to prove valuable even when
metastability is not present. Similar methods may also be
useful for understanding other complex network dynamics,
as in signaling pathways.
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