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Abstract—Machine learning (ML)-based steering can improve
the performance of ensemble-based simulations by allowing for
online selection of more scientifically meaningful computations.
We present DeepDriveMD, a framework for ML-driven steering
of scientific simulations that we have used to achieve orders-of-
magnitude improvements in molecular dynamics (MD) perfor-
mance via effective coupling of ML and HPC on large parallel
computers. We discuss the design of DeepDriveMD and char-
acterize its performance. We demonstrate that DeepDriveMD
can achieve between 100–1000× acceleration for protein folding
simulations relative to other methods, as measured by the
amount of simulated time performed, while covering the same
conformational landscape as quantified by the states sampled
during a simulation. Experiments are performed on leadership-
class platforms on up to 1020 nodes. The results establish
DeepDriveMD as a high-performance framework for ML-driven
HPC simulation scenarios, that supports diverse MD simulation
and ML back-ends, and which enables new scientific insights
by improving the length and time scales accessible with current
computing capacity.

I. INTRODUCTION

The use of molecular dynamics (MD) simulations to ex-
plore complex biophysical phenomena such as protein folding
and protein-ligand/small molecule docking has transformed
understanding of fundamental biology and advanced important
applications such as drug design [1]. MD simulations evolve
the state of a molecular system by repeatedly computing
and updating the position and other properties of individual
atoms (or, in so-called coarse-graining methods, sets of atoms)
in response to forces imposed by other atoms. However,
conventional MD methods have, for many problems, reached
their limits, for two reasons: first, the speed at which even
a massively parallel MD code can evolve the state of a
particular molecular configuration (measured, for example, in
ns/day) is ultimately limited by communication costs (i.e.,
weak scaling constraints), and second, a simulation may have
to overcome local minima to allow the biological system to
sample “interesting events” which typically occur at much
longer, ms to s, timescales [1, 2].

Several approaches are used to overcome the sampling
limitations of conventional MD simulations. A brute-force
method would be to design a single-purpose, highly efficient
custom supercomputer (e.g., Anton [3]) that can access long
timescales in a single run. A second approach to overcoming
the limitations of conventional MD is to run multiple simula-
tions concurrently, each starting from a different initial state,
i.e., as ensembles [2, 4]. A combination of higher parallel effi-
ciency for individual simulations and the broader exploration
of conformational space due to multiple starting points can
make such ensemble methods more effective than conventional
MD [5, 6]. However, the problem of unproductive simulations
that fruitlessly explore uninteresting or already visited parts of
conformational space remains [2].

To understand how we might overcome this latter difficulty,
consider how a human expert might approach the problem
if they could monitor the progress of individual simulations.
Observing that one simulation is exploring an interesting tra-
jectory through conformational space, while a second is stuck
in an uninteresting local minimum and a third is mirroring
the trajectory of the first, the expert might decide to restart
the latter two simulations with different initial conditions.
Thus, there is an inherent trade-off between exploration (i.e.,
identifying new and biophysically relevant/ interesting con-
formational states explored by the MD simulations) versus
exploitation (i.e., leveraging discovered conformational states
for accelerating the simulation of biophysical phenomenon of
interest, such as protein folding).

Recent work on machine learning and artificial intelligence
(ML/AI)-driven MD ensembles aims, in effect, to use ML/AI
methods to emulate the behavior of the human expert [7–
12]. We see a broad spectrum of approaches in which, for
example, one or more ML models are trained once and then
used to guide simulations, or alternatively are retrained over
time to incorporate new knowledge of simulation progress.
Our concern here, however, is not the merits of specific ML
approaches, but rather with the methods used to organize ML-
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guided ensemble computations on large parallel computers
and, in particular, with approaches to link simulation, ML
training, and ML inference tasks so as to maximize both
parallel efficiency and the timeliness of ML guidance, and
ultimately the scientific value gained from an ensemble run.

Contributions: To this end, we present DeepDriveMD, a
framework that allows for the flexible specification of, and
scalable execution of, a range of ML/AI-driven MD ensemble
simulation strategies. Distinctive features include:

• Flexibility: DeepDriveMD supports the flexible construc-
tion of ML/AI-driven simulation systems that link popular
simulation engines (OpenMM [13], NAMD [14], and
AMBER [15]), ML training, and inference stages with
diverse back ends, including TensorFlow and PyTorch
(for deep learning), and scikit-learn (other ML tasks).

• Scalability: DeepDriveMD enables scaling of these sys-
tems to large numbers of ensemble members (both MD
and ML tasks) and to extremely large computers and
emerging heterogeneous systems. This is implemented by
leveraging RADICAL-Cybertools [16], which provides
a scalable framework to couple diverse simulation and
ML/AI back ends within modular workflows, while ab-
stracting the complexity to the application at hand.

• Online coupling: DeepDriveMD supports concurrent ex-
ecution of the different stages, with high-speed streaming
between stages leveraging the ADIOS platform [17], and
permits rapid and iterative feedback between simulation
and ML/AI models (entirely novel in this work).

DeepDriveMD supports, in particular, the computational
motif depicted in Fig 1. In this motif, MD simulation ensem-
bles are run from which distinct data ‘view’s are aggregated.
This aggregation step pre-processes the simulation data, such
as filtering only a subset of atoms of interest, or calculat-
ing physical parameters (e.g., root-mean squared deviations
(RMSD) to a protein’s native state, or more generally a
reaction coordinate/collective variable), or simply aggregat-
ing conformations from the simulations as they are running.
ML/AI techniques are then run across the aggregated data
(training). Once the ML/AI models are trained, they may be
run in inference mode to decide which simulations to run
next, and/or to terminate less productive MD simulations. (It
is also possible to substitute simulations with generative mod-
els [18], or with surrogate models that provide access to new
conformations from which simulations can be started.) The
resulting continual learning loop drives successive iterations
of DeepDriveMD simulations.

We use three scientific use cases to demonstrate various
DeepDriveMD capabilities and to quantify the benefits that
result from its scalability and online coupling. The first
use case involves a protein folding simulation, namely that
of fast-folding the ββα (BBA) canonical fold engineered
protein, FSD-EY [19], and demonstrates how DeepDriveMD
provides 100×-1000× acceleration, measured in simulation
end points/time-to-solution, in sampling low RMSD states
that correspond to its fully folded state. We also show that
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Fig. 1: The computational motif implemented by DeepDriveMD
to support ML/AI-coupled simulations comprises four stages.
Simulation: Simulations are used to explore possible trajectories
of a protein or other biomolecular system; Aggregation: Simula-
tion results are preprocessed for training. Training: Aggregated
trajectories are used to train one or more ML models. Inference:
Trained ML models are used to identify conformations for
subsequent iterations of simulations.

DeepDriveMD can sample 80% of the BBA folding landscape
four orders of magnitude more efficiently than conventional
MD simulations. The second use case examines the diversity
in MD simulations, typically captured within protein-ligand
complexes (PLC). Here, we demonstrate that DeepDriveMD
overheads on a large number of compute nodes are minimal,
and that the system can thus scale to approximately one quarter
of the Summit supercomputer, 1020 of the 4608 full nodes.
The third use case demonstrates that DeepDriveMD can scale
to large (O(107 − 108) atoms) systems and can be more
effective than conventional MD in capturing ‘rare’ events, such
as spike protein attaching to host receptor binding domain [20].
Taken together, these three use cases demonstrate how Deep-
DriveMD provides a flexible and scalable framework for
supporting ML/AI-coupled ensemble MD simulations while
highlighting the performance tradeoffs involved in supporting
these use cases.

II. RELATED WORK

Ensemble MD sampling methods have recently been aug-
mented with ML/AI techniques [9, 21–24], including rein-
forcement learning and other complementary approaches [25].
However, these previous studies have focused primarily on
prototypical systems such as small peptides/proteins to demon-
strate this general workflow’s feasibility.

Previous tools for building ML-coupled simulation work-
flows have focused on integrating popular ML backends,
TensorFlow and PyTorch, with simulation toolkits [26–28].
These frameworks mainly provide a configurable API to
specify workflow parameters that optimize the use of parallel
computing resources. Parallel scripting systems have also been
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used [29]. Tools such as SmartSim [30] incorporate an HPC
job scheduler to orchestrate task assignment and resource al-
location through Slurm, Cobalt, or PBSPro. Within multiscale
biomolecular simulations, the recently developed MuMMI [31]
framework uses ML techniques to link multi-scale models
while simultaneously optimizing HPC resource utilization.
Other frameworks, such as NVIDIA SimNet [32] enable AI-
driven acceleration of forward and inverse problems in multi-
physics (e.g., turbulence), with a particular focus on solving
partial differential equations. Tools such as Proxima [33] and
Colmena [34] also represent advances in managing large AI-
enabled HPC workflows. Many recent developments focus
on accelerating drug discovery workflows [35–38]. There are
three distinct computationally expensive phases: (1) generating
the simulation data, (2) training the model, and (3) using the
model to guide simulations to generate scientifically mean-
ingful data. The cost of the first dominates in the use cases
that we consider in this paper, but in other cases, powerful
ML training tools such as KubeFlow [39], MLFlow [40], and
LBANN [41] are available.

III. OUR SCIENCE DRIVERS

We provide more details on the science use cases intro-
duced earlier. Each involves a real scientific problem that the
DeepDriveMD team and its collaborators have studied while
developing methodology and infrastructure; each also permits
evaluation of a different aspect of DeepDriveMD performance.

UC1: Protein folding: Protein folding refers to the process
by which a protein chain is translated to its native three-
dimensional structure. Despite recent advances in purely ML-
based structure prediction [42], computationally demanding
simulation methods remain important to characterize the par-
tially folded or misfolded intermediate states (so that these
states can be targeted via small molecules for drug discovery).
To evaluate to what extent our ML techniques can accelerate
simulations by enabling more effective sampling of folding
events, we apply DeepDriveMD to the problem of folding
FSD-EY (PDBid: 1FME), a small (505 atom, 28 amino-acid
residue) protein that adopts a canonical ββα (BBA) fold.
We choose FSD-EY because we can compare the scientific
performance of our ML-integrated workflow, measured in
terms of the fraction of sampled states visited per unit time,
against long-timescale simulations with Anton-1 [3] hardware.

UC2: Protein Ligand Complex: Protein ligand complex
(PLC) computations are used to evaluate whether and how a
small molecule (a ligand) may bind with a protein. In this use
case, we perform PLC simulations for multiple ligands against
the papain-like protease (PLPro) binding site of the SARS-
CoV-2 virus. The solvated PLPro system has ∼132K atoms
and 309 residues. These simulations are performed within a
single DeepDriveMD run, with all simulation results aggre-
gated to train a single ML model as a shared representation of
the entire ligand search space. (This application is part of an
ongoing computational campaign that aims to discover novel
molecules that can inhibit SARS-CoV-2. If a specific ligand

stabilizes the protein when bound, then scientists can conclude
that it may interact with, and potentially inhibit, PLPro.)

UC3: Many-Atom Multiscale System: The need to study
increasingly complex biological systems has also motivated
the development of multi-scale simulations, where information
from one simulation scale (e.g., atomistic) is transferred to
a different scale (e.g., coarse-grained), or between different
spatial scales (e.g., individual spike protein vs. spike proteins
embedded within a whole virus). These simulations also use
ML methods to transfer information across scales; however,
given the many simulations to be carried out, and the large
expense of simulating these O(107 − 108)-atom biomolecular
systems, we did not use this workflow as a formal use-case
but proffer it as an illustrative example [20]. For UC3, we
present a vignette of performance analysis from this illustrative
example [20], where we examine the performance trade-
offs involved in simulating a fairly large biological system,
consisting of the SARS-CoV-2 Spike protein (approximately
2 million atoms).

IV. DEEPDRIVEMD DESIGN AND IMPLEMENTATION

We now describe how the ML-coupled-with-HPC simula-
tion motif of Fig 1 is realized within DeepDriveMD, describ-
ing first the overall design and then the implementation.

A. Design

DeepDriveMD is intended to serve as a general and ex-
tensible framework for the scalable, high-performance ML-
guided simulation of proteins and other biomolecular systems.
Any DeepDriveMD application, including those constructed
to address our use cases UC1, UC2, and UC3, combines MD
simulations, ML training, and ML inference components (the
Simulation, Training, and Inference stages in Fig 1); it may
also include an optional Aggregation stage. Typically, these
stages execute repeatedly, with results from each new set of
simulations used to (re)train ML models that are then used to
establish the next simulations. As we discuss in the following
subsection, the stages can be run sequentially (one after the
other), but in general we want them to run concurrently so
as to maximize concurrency and timeliness of the information
used for ML training.

DeepDriveMD can thus support a wide variety of appli-
cations, each of which may employ a different MD code,
ML model, and ML training method (each with potentially
widely varying computational and data requirements) and run
at different scales (e.g., from a handful to thousands of nodes
on an HPC system). It must deal with a large dynamic range in
the (1) number and scale of the simulations to be run, including
the substitution of simulation codes by less expensive ML
surrogates, and (2) frequency and degree of coupling between
simulations and ML models. DeepDriveMD can also operate
on a variety of different HPC platforms and integrate MD and
ML codes implemented with different technologies, including
OpenMP and MPI, while also allowing for scaling via large-
scale task parallelism, for example when running multiple
concurrent MD, ML training, and ML inference tasks.
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To support this diversity of requirements, DeepDriveMD is
implemented as an extensible software system that supports
the generalized coupling of ML with HPC simulation tasks
for a range of frequencies and volumes. Thus the user can
specify, for example, the number of ligands; the number and
type of MD simulations; the number and type of ML models to
train on simulation outputs; and the methods used to feed data
to ML models, to make inferences via one or more of those
models, and to use inference outputs to drive MD simulations.
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Fig. 2: DeepDriveMD architecture. In blue are DeepDriveMD
components; green are tasks, managed by RCT; red are ADIOS
streams; yellow is the file system. All tasks run concurrently.

B. DeepDriveMD Implementation

The DeepDriveMD implementation uses the RADICAL-
Cybertools (RCT) Python packages to initiate and manage
the execution of the various tasks that comprise the different
components. RCT components [43] provide powerful methods
and tools that abstract many details associated with mapping
many-task applications onto heterogeneous computing sys-
tems, for example by enabling interoperability across hetero-
geneous distributed infrastructures, and implementing pilot job
mechanisms that allow users to submit pilot jobs to computing
infrastructures and then use the resources acquired by the pilot
to execute workloads [44].

Specifically, DeepDriveMD uses the RADICAL-Ensemble
Toolkit (EnTK), designed to support the programming of
applications comprised of ensembles of tasks. Tasks may
be grouped into stages and stages into pipelines, and EnTK
executes tasks concurrently or sequentially, depending on their
priority relations. Tasks managed by EnTK may be algorith-
mically heterogeneous (e.g., simulation, aggregation, training,
inference); use different parallel computing methods (e.g.,
threads, OpenMP, MPI, process pools); require different types
and amounts of resources (e.g., CPU cores, GPUs, amount of

RAM or file system space); and take different amounts of time
to execute.

Using the EnTK programming model, we have developed
two implementations of DeepDriveMD: (1) DeepDriveMD-F
used for performance characterization, and (2) DeepDriveMD-
S, an optimized version for which we report scientific val-
idation of UC1 and UC2 as well as performance analysis.
DeepDriveMD-F executes the four stages shown in Fig 1
in sequence, with each completing before the next begins;
DeepDriveMD-S runs them continuously and asynchronously,
constrained only by data flow synchronization. Thus: (a)
the Simulation component performs simulations and streams
results to the Aggregation component (as shown in Fig 2,
these two components comprise N and M EnTK Tasks,
respectively; invariably, N > M and each simulation task
is linked to one Aggregation task); (b) each Aggregation task
collects preprocessed data from its subset of simulation tasks
and streams it to the Training component; (c) the Training
component receives any pending data from the Aggregation
component, (re)trains its ML model(s) in an online fashion
with the latest data, and communicates updated model weights
to the Inference component; and (d) the Inference component
uses data from the Aggregation and Training components
to make decisions as to whether to continue or terminate a
running simulation from the ensemble, and assign the initial
configurations for new simulation tasks in the Simulation com-
ponent. Each component thus has its own independent runtime
loop, and is terminated only when runtime is exhausted.

To facilitate communication between components, the
DeepDriveMD-S implementation uses the Adaptable Input
Output System (ADIOS) [17]. ADIOS enables interprocess
communication via file or network without changing the ap-
plication code. The native storage format used by ADIOS is a
binary-packed (BP) file, similar to HDF5 [45]. When commu-
nicating via network, the Sustainable Staging Transport (SST)
protocol supports blocking and non-blocking communication.
In this work, we used blocking communication with a fixed
size buffer to force producers to wait for consumers to read
data before writing more. In UC1 and UC2, we used network
communication between simulation and aggregation tasks and
file communication from aggregation tasks to training and
inference tasks. However, to optimize performance in UC3, we
switched to network communication between all components.
To backup simulation data for post analysis, we use BP files.

C. MD Implementations

We use OpenMM [13], running on GPUs, to perform all
MD simulations described in this paper.

The BBA protein of UC1 is set up with the Amberff99SB-
ILDN force field [46], using the implicit GBSA-OBC solvation
model [47], while the PLpro protein of UC2 is set up with the
Amberff14SB force field [48], using the TIP3p water model.
Other details of the simulation set up are provided in prior
publications [37, 49].

The simulation set up for UC2 was identical to [50]. A
total of 120 top-ranking ligands from a high-throughput virtual
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screening campaign [51] was used to start of the simulation
campaign. However, as the simulations progress, the ML
method (see below) can automatically pick up “interesting”
conformations that correspond to increasing the protein-ligand
heavy-atom contacts. The increase in the number of contacts
usually implies that the ligand is stabilized within a binding
pocket of the protein, which is a property of interest for
designing small molecule inhibitors.

D. ML Implementations

We use an unsupervised ML model, namely, the con-
volutional variational autoencoder (CVAE) [52] written in
Keras/TensorFlow 2.1.2 [53, 54]. The CVAE automatically
reduces the high dimensional MD trajectory data into a latent
vector representation in which similar energetic and structural
states cluster together.

The CVAE views the MD trajectory as a contact matrix
of Cα atoms (within 8 Å cut-off) at each frame, and learns
to represent this matrix in a latent space [52]. The model
architecture consists of a symmetric encoder/decoder pair
with four convolutional layers. We adjust the convolutional
layers based on the size of the system. For smaller systems
(e.g., contact maps of size 28×28) we use 64 filters with
a kernel size of three for all layers, and a stride of two in
the second layer whereas for large systems (e.g., 309×309
contact maps), we use strided convolutions in all layers and
32 filters with a kernel size of five in the first layer. We then
follow the convolutional layers with a single linear layer of
128 neurons and dropout of 0.4. The latent space is fixed
at 10 dimensions and the decoder, composed of transposed
convolution operators, reconstructs the input contact matrix.
We define the loss function as the sum of the binary cross
entropy reconstruction and KL divergence to an isotropic
Gaussian prior N (0, 1). This loss function is optimized using
RMSprop with learning rate 0.001, ρ = 0.9, and ε = 1e− 08.

E. Inference/ Outlier detection

The purpose of the Inference component is primarily to se-
lect interesting conformations to restart new simulations from.
Traditionally, this selection constitutes a biophysical quantity
of interest, i.e. a reaction coordinate, that can be tracked as
the simulations run [55]. However, such reaction coordinates
are generally system specific and not always known a priori.
To circumvent this issue, we opt to use the CVAE approach to
embed the conformations in a low dimensional manifold. As
we have demonstrated before, these embeddings can capture
biophysically relevant reaction coordinates [52].

In order to search for undersampled regions of the confor-
mational space, we use traditional outlier detection methods on
the latent embeddings produced by the CVAE. Since the CVAE
tends to form well-defined clusters, we found it best to use
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [56], as implemented in RAPIDS [57], to discover
outlier points away from the main clusters. These points
represent potentially rare conformations which, if sampled
with more MD simulation, could advance the search space.

To further refine these outliers, we then employ any known
biophysical reaction coordinates to optimize the selection, thus
combining the data-driven choice with expert knowledge.

For UC1, we chose the root mean squared deviation
(RMSD) to the native state of the protein as a reaction
coordinate to track the progress of our simulations and filter
the outlier selection. The native state represents a structure,
determined experimentally via either X-ray crystallography or
nuclear magnetic resonance (NMR), against which simulation
progress is usually measured. For the BBA-fold, the NMR
ensemble has an average RMSD of 1.3 ± 0.5 Å, representing
a narrow definition of the native state for this protein.

For UC2, we expected that at the end of the DeepDriveMD
run, the outlier selection would automatically ‘learn’ to keep
only stable ligands within the binding pocket of the protein
while getting rid of others that are not as stable. To filter
the set of DBSCAN outliers, we use the Local Outlier Factor
(LOF) [58] algorithm, as implemented in scikit-learn [59], to
pick the most distant outliers returned from DBSCAN.

V. SCIENTIFIC VALIDATION

In light of the methodological novelty of ML-driven ensem-
ble simulations, we are concerned to assess the biophysical
(scientific) validity of our results.

A. Validation of UC1

For UC1, we measure the convergence to the folded state,
or how well DeepDriveMD-S simulations access the final
folded state(s) of the protein as defined in §IV-B. As the
ML progressively learns a latent representation (based on
the CVAE) and guides the selection of conformations to be
simulated next through successive iterations, we posit that
the RMSD of the conformations selected by Inference must
progress towards lower RMSDs.

However, an important question is to examine whether
DeepDriveMD-S simulations benefited by the ML approach at
all. We therefore performed 10 trials of each of the following
experiments (120 parallel simulations for 12 hours duration):
(a) ML, no RMSD considered: Here, a purely data-driven

strategy is employed with no regard to the biophysical
reaction coordinate. Conformations for the next round of
simulations are selected based on ML alone, meaning
that outliers, found by DBSCAN, are selected without
considering the RMSD to the native state.

(b) No ML, greedy selection by RSMD: Here, only the
biophysical reaction coordinate is used and no aspect of
the data-driven steering is employed. In this experiment,
conformations for the next round of simulations are
selected greedily, based only on RMSD. No outliers are
used and only the 120 conformations with the smallest
RMSD among the last 20,000 conformations are selected.

(c) ML + RMSD: This experiment uses both the progress
coordinate and the ML-based approach to characterize
the sampling process. Conformations for the next round
of simulations are selected on the basis of both outlier
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(a) ML, no RMSD considered (b) no ML, greedy RMSD (c) ML + RMSD

Fig. 3: Comparing BBA folding pathways via the RMSD (Å) to native state evolution over each iteration of DeepDriveMD,
progressing from purple/early iterations to yellow/late iterations, when using three different outlier detection methods. For (a), we
see no distribution shift towards smaller RMSD values, as would be indicative of BBA folding; ML without RMSD is not effective.
In (b) and (c), we see a clear distribution shift, with (c) performing the best, ultimately achieving a minimum RMSD of 1.55 Å.

search (with DBSCAN) and then a greedy selection of
the best outliers by RMSD.

Since there is some randomness in the pipeline, the best
observed RMSD varies between trials. Thus, we ran methods
(b) and (c) for 12 hours, 10 times each, with results summa-
rized in Table I. Both the mean and minimum RMSD achieved
by (c) are significantly lower than those for (b), leading us to
conclude that the ML approach followed by a greedy selection
of outliers based on the RMSD reaction coordinate does help
in comparison with the pure greedy selection by RMSD.

TABLE I: Best RMSD (Å) in 10 trials for strategies (b) no ML,
greedy RMSD and (c) ML + RMSD.

(b) no ML, greedy RMSD (c) ML + RMSD
mean 2.37±0.30 1.81±0.21
min 1.85 1.55
max 2.93 2.20

We next examined the histograms of the RMSDs from
the Inference stage of the simulations, with a color scheme
corresponding to the successive iterations of our continual
learning loop, with purple representing earlier iterations and
subsequent iterations progressing towards green and yellow
colors (Fig 3). As we observe from the plot, ML + RMSD
simulations achieve the lowest RMSD, while the others sample
subtantially larger RMSD values, indicating the effectiveness
of using the learned latent space representation and a biophys-
ically relevant reaction coordinate in driving the sampling of
more productive trajectories.

B. Validation of UC2

In contrast to UC1, for which we have access to long time-
scale simulations of protein folding, there are currently no
baseline simulations against which we can compare the PLC
simulations of UC2. Hence, we provide here only a qualitative
evaluation of UC2, in which we assess the effectiveness of
conformational sampling by examining how DeepDriveMD-
S ‘prunes’ unproductive simulations based on the criterion
of protein-ligand interaction stability. As each iteration of
DeepDriveMD-S proceeds, one would expect that productive
trajectories would improve the stability in binding—thus,
pruning away PLCs that exhibit weak (or no) interactions.
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Fig. 4: Top panel: DeepDriveMD-S successfully filters the initial
set of 120 ligands to approximately 60 based on the uniqueness of
the conformational states sampled from each of the independent
simulations. The outlier selection strategy prefers ligands that
induce stable interactions with PLPro, which is learned by the
CVAE. DeepDriveMD-S focuses on the most impactful ligands,
and brings back more candidates once the current samples are
sufficiently examined. Bottom panel: DeepDriveMD-S iterations
highlighting the selections of subsequent sets of ligands for a small
subset of ligands (ids 5–15) of the 120 original ligands). Each bar
is colored uniquely according to the ligand id. Note how the states
selected constitute only ligands 7 and 9 in iteration 2, whereas at
the end of iteration 10, ligands 9 and 12 are selected as part of
the sampling, thus pruning out unproductive trajectories from
previous iterations.

We utilize a similar model, namely the CVAE that learns to
represent salient features implicated in PLPro-ligand binding.
We initially started with 120 ligands (extracted from a virtual
screening study), whose effects on PLPro are initially unclear.
We expect that after the first round of learning, inference, and
simulation restarts, DeepDriveMD-S will be able to filter out
ligands that do not potentially interact with PLPro. The outlier
detection method, in this case a combination of DBSCAN
and LOF, works to pick out and rank the data points that
are farthest from the mean interaction profile for the PLCs.
These points in latent space represent the novel states that
are less sampled by MD simulations. From them, we spawn
new simulations to enhance sampling around these areas of
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conformational space, and at the same time identify the ligands
that can improve the stability of interactions with PLPro.

The top panel in Fig 4 provides an illustration of how the
initial 120 ligands are pruned to the top 40 within the first
two iterations of DeepDriveMD-S. In successive iterations,
DeepDriveMD-S automatically reevaluates and extends the
search space by suggesting restart points from the previously
ignored ligands, increasing the number of simulated ligands
back to approximately 60. To provide an illustration of this
pruning process, we consider a subset of about 10 ligands in
the bottom panel of Fig 4. For example, amongst ligands 5–15,
8 out of 10 ligands are sampled after iteration 1. The workflow
then hones in on ligands 7 and 9 at iteration 2, and then returns
to consider ligands 5 and 12 in the later iterations. However, at
the end of iteration 10, only two ligands remain, indicating that
these constitute the most interesting PLCs within this subset.
While we note that this provides a qualitative evaluation
of DeepDriveMD-S in UC2, our results reinforce that using
ML/AI-driven techniques can filter potentially unproductive
trajectories, maintaining a balance between exploration vs.
exploitation. In §VI, we present results in characterizing the
performance of DeepDriveMD-F, where a slightly modified
version of the CVAE is used, namely the three-dimensional
adversarial autoencoder (3dAAE) [20]. This model allows us
to overcome implementation challenges (since the CVAE’s
space and time complexity is quadratic in the number of
amino-acid residues, whereas the 3dAAE is linear) while being
able to test the performance of the ML/AI approach on the
ORNL Summit system.

C. Scientific Performance

We measure the sampling effectiveness as the fraction of the
total population explored—with and without ML approaches—
as a function of time [60]. To achieve this, we selected the
states sampled at some time and compare it against all states
obtained with respect to reference simulations. For UC1, we
compare our simulations to O(100 µs) simulations of the
BBA system performed with the Anton-1 hardware, providing
extensive information on all possible states sampled for its
folding process [3]. The conformers from the these simulations
are embedded into a 10-dimensional CVAE latent space. These
embeddings are then clustered with MiniBatchKmeans, with
k=500. This setup allows us to compare the states sampled
by each simulation, while keeping a consistent definition of
the conformational states sampled. In Fig 5, the ratio of
sampled states in a simulation at a time T is defined as the
number of clusters that the simulation has traversed by that
time, divided by the total number of clusters (500) [60]. A
potential limitation of this approach is the constrained total
number of states considered. Usually, the conformational states
in a simulation are aggregated (typically by using clustering
approaches to merge smaller/ less-populated states) to describe
a compact representation of the sampled landscape [61]. In
the work reported here, however, we discretized the states to a
number of clusters that reflects a tradeoff between aggregating

too many states (that are much smaller in population) versus
breaking up larger ones.

Fig 5 indicates that our ML-driven methods enhance sam-
pling by a factor of more than 1000: It takes the ML-driven
ensemble around 10 ns of aggregate simulated time (over 120
simulations) to cover 80% of the 500 conformational states,
while the Anton simulations take at least 100 µs to cover
a somewhat lower fraction. To provide a comparison with
similar hardware (i.e., similar GPUs used for simulations and
same simulation conditions), we observe that a single MD
simulation executed on the same GPU for 12 hours (blue lines;
MD-BBA-1 and MD-BBA-2) sample less than 20% of the
states; whereas an MD ensemble (no ML, no RMSD based
selection; light pink line) run on 120 GPUs samples close to
50% of the states.
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Fig. 5: Sampling ratio of BBA conformational states as a function
of simulation time. DeepDriveMD samples conformational states
more effectively than free MD simulations (including those run on
Anton-1). When RMSD is used to filter the ML-selected outliers,
sampling performance is better than when using either RMSD
or ML alone. Compared to the Anton simulations, the ML +
RMSD strategy (for which uncertainty from 10 trials is shown
in light red) reaches 80% sampling more than 1000× faster.

Fig 6 provides further evidence that DeepDriveMD’s ML-
driven strategy accesses folded state conformations similar in
quality to those identified by the Anton-1 simulations, despite
running for only 12 hours. The DeepDriveMD simulations
access the shaded region, representing intrinsic conformational
diversity as revealed by experiment, when using the ML +
RMSD strategy, and comes very close when using the no ML,
greedy RMSD strategy. The latter quickly filters out the high-
RMSD conformations to reach low-RMSD states, but without
the access to underlying conformational information about
sampled states, cannot filter out the local minima in the energy
landscape, which curbs its sampling efficiency due to trapping
in some intermediate states; thus, it is eventually overtaken by
the ML + RMSD strategy. This result supports the idea that
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ML + RMSD-based sampling provides a significant boost to
the overall sampling process.
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Fig. 6: Lowest RMSD to BBA’s folded state sampled, as a function
of simulation time. The gray shaded area depicts the intrinsic
conformational diversity in the NMR ensemble (average RMSD
1.3 ± 0.5 Å). Each of the three DeepDriveMD variants, and
the MD ensemble, runs for 12 hours on 120 Lassen nodes.
DeepDriveMD accelerates sampling along the RMSD progress
coordinate, compared to free MD simulations (including those
run on Anton). The No ML, greedy RMSD strategy quickly
filters out the high RMSD states, but its subsequent sampling is
stagnant. The ML + RMSD approach proceeds more consistently
and eventually overtakes the greedy strategy.

VI. PERFORMANCE CHARACTERIZATION

We use our three use cases to evaluate various aspects of
DeepDriveMD computational performance.

A. Sequential vs. Concurrent Execution of Components

The DeepDriveMD framework makes it straightforward
to switch from file-based, sequential composition of stages
(good for debugging) to stream-based, concurrent compo-
sition (typically more efficient). To explore the impact of
these two implementation approaches, we compare the per-
formance of two alternative implementations, one sequential
(DeepDriveMD-F) and one concurrent (DeepDriveMD-S). We
show in Table II the parameters used for UC1 experiments
that measure the scaling behavior of the two variants on
LLNL Lassen, when folding the BBA protein on 30 and
33 compute nodes, with DeepDriveMD-F and DeepDriveMD-
S respectively. Measuring overheads and resource utilization
for both experiments enables a direct comparison between
the performance of the file- and streaming-based coordination
patterns for UC1. We see clear indication that DeepDriveMD-
S outperforms DeepDriveMD-F, producing 1.5X more MD
data per hour and running 8.4X and 74.9X more training and

inference iterations per hour, respectively. The concurrency of
DeepDriveMD-S therefore allows the model to learn more (50
training epochs vs 20) from generated data, and make online
decisions to steer sampling with a larger and more current
pool of outliers (1000-5000 vs 500-700) than DeepDriveMD-
F, closing the continual learning loop as fast as possible.

As DeepDriveMD-S uses streaming communication, it en-
ables increased concurrency among tasks and avoids I/O
bottlenecks due to concurrent tasks writing files. In contrast,
within DeepDriveMD-F, each simulation task writes two files,
one containing the simulation trajectory and one for prepro-
cessed data, creating pressure on the network file system which
increases with the number of concurrent simulation tasks, thus
not being able to accommodate larger simulation systems as
a consequence of the I/O overheads.

In the Simulation stage of both implementations, 120 MD
simulation tasks run in parallel. However, as one can see
from Fig 7, in DeepDriveMD-S simulations run continuously
without gaps, while in DeepDriveMD-F the Simulation stage
is sequentially followed by a Training stage (every other
iteration) and an Inference stage. As a result, DeepDriveMD-
S performs 1.5 times more simulations per unit of time than
does DeepDriveMD-F (orange bars in Fig 7).

While DeepDriveMD-F avoids executing Aggregation tasks
given a feature which makes this optional, Fig 7 clearly
shows that DeepDriveMD-S executes many more Simulation,
Training, and Inference tasks in the seven-hour period than
does DeepDriveMD-F. In addition to enabling simulation tasks
to run continuously, DeepDriveMD-S permits the analysis
of partial simulation data to proceed while simulations are
executing, further speeding up the execution of the overall
workflow compared to DeepDriveMD-F.

DeepDriveMD-S therefore uses computing resources more
effectively than DeepDriveMD-F, which periodically leaves
some nodes idle. For example, while DeepDriveMD-F runs
120 simulation tasks concurrently on 120 GPUs during the
Simulation phase, it only uses one GPU for the training task,
thus leaving 119 GPUs idle during that stage. Furthermore,
DeepDriveMD-S can avoid saving intermediate data to disk
by using the network via ADIOS SST to communicate among
its components. For UC1, DeepDriveMD-S avoids writing
∼50GB to disk by streaming data among the concurrently
executing tasks. This is especially important for larger and
more complex biological systems [20, 62], such as UC3, where
data from large simulations across ∼100 nodes would create
an I/O bottleneck without this streaming capability.

We estimate the overall percentage of time spent on ADIOS
I/O to be 0.8%, by adding ADIOS I/O times from all tasks and
dividing it by the total wall time over all the tasks. Moreover,
most of this time is hidden from the end user due to the
fact that the components run concurrently. While the ADIOS
overhead in simulations is 0.3%, the benefit of continually
running the simulations greatly outweighs the communication
cost. In addition, the performance of the other components
might affect the sampling efficiency but not the total number
of executed simulations, due to the loose coupling of tasks.
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Fig. 7: Task execution timeline when running UC1 on Lassen. Each bar corresponds to one iteration of a Simulation, Aggregation,
Training, or Inference task. DeepDriveMD-F runs training after every other iteration while DeepDriveMD-S runs each type of
task concurrently and without gaps. In DeepDriveMD-S, every second iteration is shown on a different line to distinguish between
different iterations. For clarity, only 1 of 120 Simulation tasks and 1 of 10 Aggregation tasks are shown for DeepDriveMD-S.

TABLE II: DeepDriveMD-F (“F”) and DeepDriveMD-S (“S”) performance and resource utilization for UC1 on Lassen. The
application executes on 30 (for F) or 33 (for S) compute nodes. Both run 120 10 ns Simulation tasks on 30 nodes, each using
1 CPU and 1 GPU. S runs 10 Aggregators on one node, with each using 1 CPU; F has no Aggregator. Both run one Training task
that uses 1 CPU and 1 GPU, on a separate node for S, and on a Simulation node for F. Both run one Inference task that uses 39
CPUs and 1 GPU on a separate node for S, and 1 CPU and 1 GPU on a Simulation node for F. “It”=iteration.

System Simulation Aggregation Training Inference
time iter/h time it/h tasks time it/h sample/it epochs time it/h sample/it outliers

F 591 s 3.9 N/A N/A N/A 282 s 2.0 24K; 48K 15; 20 111 s 3.7 24K; 48K 500–700
S 576 s 5.9 3.2 s 1091 10 216 s 16.7 20K 50 13 s 277 20K 1000–5000

B. DeepDriveMD-F performance

Table III shows the parameters used for the UC2 scaling
study. These experiments show the overheads and resource uti-
lization of DeepDriveMD-F when varying four configuration
parameters: (1) the HPC platform; (2) the number of ligands;
(3) the number of tasks executed; and (4) the amount of
resources requested. Experiments PLC-1–4 evaluate between
one and eight ligands, using between 120 and 960 GPU
devices on Summit and Lassen. Experiment PLC-5 evaluates
51 ligands, using 6120 GPUs (1020 nodes) on Summit, while
experiments PLC-1e and 4e use 120 and 960 GPUs (20 and
160 nodes) to evaluate 120 and 960 ligands, respectively.

In the PLC experiments, we count as overhead all time
spent not executing any workflow task when resources are
available; this includes the time taken by DeepDriveMD-F and
RADICAL-Cybertools to resolve task dependencies, prepare
the execution environment, and submit tasks for execution. We
observe that overhead is relatively independent of the number
of ligands analyzed, averaging ∼310 seconds across the PLC-
x experiments. As the PLC-x experiments have different total
execution times, we conclude that overheads are also invariant
of the time taken by all workflow tasks to execute. We also

TABLE III: Configuration & overhead for UC2 experiments.
Overheads are always low relative to a typical 12-hour runtime.

Exp. Ligands GPUs Tasks Platform Overhead

PLC-1 1 120 250 Summit 334.2 s
PLC-2 1 120 250 Lassen 302.3 s
PLC-3 8 960 2000 Summit 265.1 s
PLC-4 8 960 960 Lassen 314.8 s
PLC-5 51 6120 6120 Summit 254.0 s

PLC-1e 120 120 120 Summit 325.8 s
PLC-4e 960 960 960 Summit 376.0 s

observe that overheads are comparable between Summit and
Lassen, suggesting that they are not platform-dependent. These
observations suggest that DeepDriveMD-F scaling behavior is
decoupled from the configuration of the use cases it supports,
the time taken to execute the workflows, and the HPC platform
on which it executes. The ∼310 seconds of overhead are
insignificant relative to the 12 hours runtime of a typical
DeepDriveMD UC2 run. Furthermore, these overheads all
but vanish for DeepDriveMD-S, since once its tasks are
launched they execute continuously through the duration of
the workflow.
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TABLE IV: Average read times per iteration in Training and
Inference components (seconds) for UC3, before and after opti-
mizing contact map compression and communication methods.

Before After
Training 1464 ± 78 s 9 ± 4 s
Inference 2239 ± 20 s 12 ± 2 s

C. DeepDriveMD-S I/O performance

The BBA and PLPro biomolecular systems analyzed in
UC1 and UC2 are relatively small: just 28 and 309 residues,
respectively. The much larger 3375 residue SARS-CoV-2 spike
protein system studied in UC3 results in the communication
time between the Aggregation component and the Training and
Inference components becoming prohibitively large, in some
cases even exceeding computation time. Thus we made two
small modifications to DeepDriveMD-S to optimize I/O for
large biomolecular systems. First, we converted the ADIOS
BP file to network communication between components. This
change was simple, requiring just a change to the ADIOS
XML configuration file and minimal modifications to the code
(recall that simulations and aggregators were already com-
municating via ADIOS network streams). Second, we turned
off compression of contact maps. Because the contact maps
produced by the simulations are large, by default we com-
press them in the Simulation component and, after transfer,
decompress them in the Training and Inference components.
However, while we are able to achieve a lossless compression
factor of 16, the costs of compression and subsequent decom-
pression were (at least in our implementation) inordinately
high in the 3375 residue case.

Using network communication and avoiding compression
delivered dramatic improvements in I/O performance, as sum-
marized in Table IV. Comparison of time reductions achieved
by each of the two modifications in turn show that it is the
second, eliminating compression, that delivers the largest time
reduction. We leave further optimization and analysis of UC3
to future work.

VII. CONCLUSIONS

We have described DeepDriveMD, a general-purpose and
extensible framework for implementing ML/AI-driven simu-
lation applications. We used three biophysical MD modeling
applications to evaluate its design, implementation, and per-
formance, and demonstrate that by driving ensembles of MD
simulations with ML approaches, DeepDriveMD can achieve
between 10–1000x improvement in time-to-solution relative to
non-ML-driven approaches. For a protein folding simulation,
DeepDriveMD achieves 1000× acceleration, while covering
the same conformational landscape as quantified by the states
sampled during a simulation. For UC2 and UC3, we presented
insights into the performance trade-offs involved in managing
such diverse workloads.

DeepDriveMD uses RADICAL-Cybertools abstractions and
mechanisms to manage challenging workloads, involving di-
verse mixes of simulation and AI phases, on some of the

largest HPC platforms available. Its support for concurrent
execution of different phases, with streaming of data between
components implemented with ADIOS, permits high paral-
lel efficiency and performance. By insulating both scientific
practitioners and scientific algorithms and methods developers
from important but otherwise irrelevant details, it allows
domain scientists and methods developers alike to advance
scientific discovery on high-performance platforms.

ML methods play an increasingly visible and important
role in computational modeling due to their ability to en-
able smarter computational campaigns and thus accelerate
scientific discovery. Such methods are successful because
they offer simple, scalable, and fairly general means to deal
with high-dimensional, potentially high volume and velocity
scientific datasets—a capability that is particularly important
when working with biomolecular systems due to the high
dimensionality of the simulation datasets. As recent applica-
tions also make clear [62], the ability to interface emerging
AI-hardware with ensemble MD simulations promises even
greater benefits for accessing time- and length-scales longer
than conventionally possible. DeepDriveMD thus unifies and
permits the large-scale use of ML-driven simulation methods
for such applications.
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