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CHAPTER 1

Introduction

As much as the Sony PlayStation 3 (PS3) has a range of interesting features, its heart, the CELL

processor is what the fuss is all about. CELL, a shorthand for CELL Broadband Engine Architecture,

also abbreviated as CELL BE Architecture or CBEA, is a microprocessor jointly developed by the

alliance of Sony, Toshiba and IBM, known as STI.

The work started in 2000 at the STI Design Center in Austin, Texas, and for more than four years

involved around 400 engineers and consumed close to half a billion dollars. The initial goal was to

outperform desktop systems, available at the time of completion of the design, by an order of magni-

tude, through a dramatic increase in performance per chip area and per unit of power consumption.

A quantum leap in performance would be achieved by abandoning the obsolete architectural model

where performance relied on mechanisms like cache hierarchies and speculative execution, which

those days brought diminishing returns in performance gains. Instead, the new architecture would

rely on a heterogeneous multi-core design, with highly efficient data processors being at the heart.

Their architecture would be stripped of costly and inefficient features like address translation, instruc-

tion reordering, register renaming and branch prediction. Instead they would be given powerful short

vector SIMD capabilities and a massive register file. Cache hierarchies would be replaced by small

and fast local memories and powerful DMA engines. This design approach resulted in a 200 million

transistors chip, which today delivers performance barely approachable by its billion transistor coun-

terparts and is available to the broad computing community in a truly of-the-shelf manner via a $600

gaming console.

1
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CHAPTER 1. INTRODUCTION

As exciting as it may sound, using the PS3 for scientific computing is a bumpy ride. Parallel pro-

gramming models for multi-core processors are in their infancy, and standardized APIs are not even

on the horizon. As a result, presently, only hand-written code fully exploits the hardware capabilities

of the CELL processor. Ultimately, the suitability of the PS3 platform for scientific computing is most

heavily impaired by the devastating disproportion between the processing power of the processor

and the crippling slowness of the interconnect, explained in detail in section 9.1. Nevertheless, the

CELL processor is a revolutionary chip, delivering ground-breaking performance and now available

in an affordable package. We hope that this rough guide will make the ride slightly less bumpy.

UT Knoxville 2 ICL
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CHAPTER 2

Hardware

2.1 CELL Processor

Figure 2.1 shows the overall structure of the CELL processor. In the following sections we briefly

summarize the main features of its most important element: the Power Processing Element (PPE),

the Synergistic Processing Elements (SPEs), the Element Interconnection Bus (EIB) and the memory

system.

2.1.1 POWER Processing Element (PPE)

The Power Processing Element (PPE) is a representative of the POWER Architecture, which includes

the heavy-iron high-end POWER line of processors and as well as the family of PowerPC desktop

processors. The PPE consists of the Power Processing Unit (PPU) and a unified (instruction and

data) 512 KB 8-way set associative write-back cache. The PPU includes a 32 KB 2-way set associa-

tive reload-on-error instruction cache and a 32 KB 4-way set associative write-through data cache.

L1 caches are parity protected, the L2 cache is protected with error-correction code (ECC). Cache

line size is 128 bytes for all caches. Beside the standard floating point unit (FPU) The PPU also in-

cludes a short vector SIMD engine, VMX, an incarnation of the PowerPC Velocity Engine or AltiVec.

The PPE’s register fine is comprised of 32 64-bit general purpose registers, 32 64-bit floating-point

registers and 32 128-bit vector registers.

3
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CHAPTER 2. HARDWARE 2.1. CELL PROCESSOR
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Figure 2.1: CELL Broadband Engine architecture.

The PPE is a 64-bit, 2-way simultaneous multithreading (SMT) processor binary compliant with

the PowerPC 970 architecture. Although it uses the PowerPC 970 instruction set, its design is sub-

stantially different. It has a relatively simple architecture with in-order execution, which results in con-

siderably smaller amount of circuitry than its out-of-order execution counterparts and lower energy

consumption. This can potentially translate to lower performance, especially for applications heavy

in branches. However, the high clock rate, high memory bandwidth and dual threading capabilities

may make up for the potential performance deficiencies.

Especially important is the SMP feature, which to an extent corresponds to Intel’s Hyper-

Threading technology. The PPE seems to provide two independent execution units to the software

layer. In practice the execution resources are shared, but each thread has its own copy of the archi-

tectural state, such as general-purpose registers. The technology comes at a 5% increase in the cost

of the hardware and can potentially deliver from 10% to 30% increase in performance [1].

UT Knoxville 4 ICL



D
R
A

FT C
O

P
Y

CHAPTER 2. HARDWARE 2.1. CELL PROCESSOR

Clocked at 3.2 GHz, the PPE can theoretically deliver 2×3.2 = 6.4 Gflop/s of IEEE compliant dou-

ble precision floating-point performance from its standard fully pipelined floating point unit using fused

multiply-add (FMA) operation. It can also deliver 4× 2× 3.2 = 25.6 Gflop/s of non-IEEE compliant

single precision floating-point performance from its VMX unit using 4-way SIMD fused multiply-add

operation.

Although clocked at 3.2 GHz PPE looks like a quite potent processor, its main purpose is to serve

as a controller and supervise the other cores on the chip. Thanks to the PPE’s compliance with the

PowerPC architecture, existing applications can run on the CELL out of the box, and be gradually

optimized for performance using the SPEs (see next section), rather than written from scratch.

2.1.2 Synergistic Processing Element (SPE)

The real power of the CELL processor does not lie in the PPE, but the other cores, eight of which is

available in the current chip design, but only six enabled in the PlayStation 3. In the PlayStation 3,

one is disabled for wafer yield reasons (If one is defective it is disabled, if none are defective a good

one is disabled). The other is held hostage by the OS virtualization layer, the hypervisor, for internal

purposes. These cores were originally code-named Streaming Processing Elements (SPEs) because

of the suitability for steaming processing, and later renamed to Synergistic Processing Elements. The

SPEs consist of the Streaming Processing Unit (SPU), 256 KB of local memory for both code and data

referred to as local store (LS), and Memory Flow Controller (MFC). Figure 2.2 shows the structure of

the SPE.

The SPEs can only execute code residing in the local store and only operate on data residing in

the local store. To the SPE the local store represents a flat 18-bit address space. Code and data

can be moved between main memory and the local store through the internal bus (see next section)

using Direct Memory Access (DMA) capabilities of the Memory Flow Controller. In principle the SPEs

constitute a small distributed memory system on a chip, where data motion is managed with explicit

messaging. The DMA facilities enable perfect overlapping of communication and computation, where

some data is being processed while other is in flight.

The SPEs are short vector SIMD workhorses of the CELL. They possess a large 128-entry

128-bit vector register file, and a range of SIMD instructions which can operate simultaneously

on 2 double precision values, 4 single precision values, 8 16-bit integers or 16 8-bit chars.

Most of instructions are pipelined and can complete one vector operation in each clock cy-

cle. This includes fused multiplication-addition in single precision, which means that two float-

ing point operations can be accomplished on four values in each clock cycle, what translates

to the peak of 2×4×3.2 = 25.6 Gflop/s for each SPE, and adds up to the staggering peak of

6×25.6 = 153.6 Gflop/s for the PlayStation 3.

Unfortunately for scientific computing, equal emphasis was not put on double precision perfor-

UT Knoxville 5 ICL
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CHAPTER 2. HARDWARE 2.1. CELL PROCESSOR
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On-Chip Coherent Bus

Figure 2.2: Synergistic Processing Element architecture.

mance. Unlike the PPE’s VMV, the SPEs support double precision arithmetic, but the double preci-

sion instructions are not fully pipelined. In particular the FMA operation has a latency of seven cycles.

As a result, the double precision peak of a single SPE equals 2×2×3.2/7 = 1.8 Gflop/s what adds

up to the peak of almost 11 Gflop/s for the PlayStation 3, which is still not bad comparing to other

common processors.

SPEs have two pipelines with one being devoted to arithmetic and the other being devoted to

data motion. Both issue instructions in-order and, if certain rules are followed, two instructions can

be issued in each clock cycle, one to each pipeline.

2.1.3 Element Interconnection Bus (EIB)

All components of the CELL processors including the PPE, the SPEs, the main memory and I/O are

interconnected with the Element Interconnection Bus (EIB). The EIB is build of four unidirectional

rings, two in each direction and an arbitration mechanism playing the role of traffic lights. Channel

width and clock rates aside, each participant is hooked up to the bus with the bandwidth of 25.6 GB/s,

and for all practical purposes you can assume that the bus cannot be saturated - you will not run out

of internal bandwidth for any realistic workload.

UT Knoxville 6 ICL
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2.1.4 Memory System

The memory system is built of dual-channel Rambus Extreme Data Rate (XDR) memory. The

PlayStation 3 provides a modest amount of memory of 256 MB, out of which approximately 200 MB is

accessible to Linux OS and applications. The memory is organized in 16 banks. Real addresses are

interleaved across the 16 banks on a naturally aligned 128-byte (cache line) basis. Addresses 2 KB

apart generate accesses to the same bank. For all practical purposes the memory can provide the

bandwidth of 25.6 GB/s to the SPEs through the EIB, provided that accesses are distributed evenly

across all the 16 banks.

2.2 PlayStation 3

2.2.1 Network Card

The PlayStation 3 has a built-in GigaBit Ethernet network card. However, unlike standard PC’s Eth-

ernet controllers, it is not attached to the PCI bus. It is directly connected to a companion chip. Linux

as a guest OS has to use dedicated hypervisor call to access or setup the chip. This is done by a

Linux driver called gelic net. The network card has a dedicated DMA unit, which allows to make

data transfer without PPE’s intervention. To help with this, there is a dedicated hypervisor call to set

up a DMAC.

One of many advantages of GigaBit Ethernet is possibility of increased frame size – so called

Jumbo Frames. Many standard-compliant equipment pieces allow you to increase frame size from

1500 to 9000. It can increase available bandwidth by 20% in some case and significantly de-

creases processor load when handling network traffic. At this point, the PS3’s built-in GigaBit

NIC is limited by the kernel driver – the frame size can not be larger than 2308 bytes (see file

drivers/net/gelic net.c). It is not a recommended to change it from the default value of 1500

as it will not give enough performance increase to justify the hassle of configuring all the hardware

connected to the card (switches, NFS servers, etc.)

2.2.2 Graphics Card

The PlayStation 3 features special edition from NVIDIA and 256 MB of video RAM. Unfortunately, the

virtualization layer does not allow access to these resources. At issue is not as much accelerated

graphics for gaming as is off-loading of some of the computations to GPU and scientific visualization

with mutiheaded display walls.

UT Knoxville 7 ICL
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2.3 GigaBit Ethernet Switch

Making a cluster out of separate PS3s requires an interconnectoin network such as a switch. It is

possible to use a cheap switch to accommodate small number of units. However, PS3 features a

relatively good NIC and the switch can quickly become the bottleneck in the cluster performance.

Accordingly, a high-grade dedicated GigaBit Ethernet switch is recommended, which also gives the

opportunity to use Jumbo Frames, although there are difficulties with this solution (see section 2.2.1).

2.4 Power Consumption

An important aspect of a cluster installation is total power consumption and heat dissipation. The

nominal power consumption of PlayStation 3 (as quoted on the back of each unit sold in North Amer-

ica) is 3.2 A at 120 V which is 384 Watts. It is only an estimate: a distributed computing workload

(see section 8.3) uses about 200 Watts. This means that a standard electric outlet providing 20 A can

handle not more than 6 PlayStations and a switch. Larger installation will require separate circuits.

Similarly, heating is not a problem with small installations, but will likely become a consideration for

larger ones.

UT Knoxville 8 ICL
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CHAPTER 3

Software

3.1 Virtualization Layer: Game OS

Linux runs on the PlayStation 3 on top of a virtualization layer (also called hypervisor) that Sony refers

to as Game OS. This means that all the hardware is accessible only through the hypervisor calls. The

hardware signals the kernel through virtualized interrupts. They are used to implement callbacks for

non-blocking system calls. Game OS permanently occupies one of the SPEs and controls access to

hardware. A direct consequence of this is larger latency in accessing hardware such as the network

card. Even worse, it makes some hardware inaccessible like the accelerated graphics card.

3.2 Linux Kernel

At this point there are numerous distributions that have official or unofficial support for PS3. The

distributions that are are currently known to work on PS3 (with varying level of support and end-user

experience) include:

! Fedora Core 5 (section 4.1),

! YellowDog 5.0 (http://www.ydl.net/),

! Gentoo PowerPC 64 edition (http://whitesanjuro.googlepages.com/),

9
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CHAPTER 3. SOFTWARE 3.3. COMPILERS

! Debian/etch (http://www.keshi.org/moin/moin.cgi/PS3/Debian/Live/).

The Fedora Core 5 distribution for PS3 features kernel version 2.6.16. Unfortunately, the official

kernel has debugging enabled which results in a 30 MB kernel binary. The best advice is to recompile

the kernel to make it smaller. A strong advantage of this distribution is compatibility with IBM’s SDK

for the CELL processor. If what you need is paid support then YellowDog 5.0 is the right choice. The

distribution is specifically designed for PS3. It features the 2.6.16 kernel (already compiled without

debugging support). Gentoo PowerPC 64 edition can also be installed and run on the console.

Two hardware threads in the PPE should definitely help with Gentoo’s constant compilation process.

There also exists Live CD version of Debian/etch that can be installed on PS3 hardware.

All the distribution mentioned include Sony-contributed patches to the kernel to make it work on

PS3 hardware and talk to the hypervisor. However, the kernel version 2.6.20 has the PS3 support

already included in the source code without the need for external patches. Once this version of

the kernel becomes more widespread it will be possible to use virtually any distribution on the PS3

hardware. And conversely, some of the PS3 hardware, like the game controller, will be usable under

stock GNU/Linux installation.

3.3 Compilers

There is no compiler in existence today that will compile an existing C/C++ or Fortran code for parallel

execution on the CELL processor and take full advantage of its performance.

All Linux distributions that support PlayStation 3 include a set of compilers that allow development

in C/C++ and Fortran for execution on the PPE only. Fedora Core 5 comes with gcc version 4.1.0

which allows compilation of C (gcc), C++ (g++), and Fortran 95 (gfortran) programs. All these com-

pilers will generate code only for the PPE. Accessing SPE will require the IBM’s CELL SDK (section

5.1).

The Fedora Core 5 build of gcc 4.1.0 includes backport of OpenMP from version 4.2 of the gcc

compiler. This means that adding the -fopenmp option will make the compiler recognize OpenMP

directives and make the linker add the GOMP library to the binary. As mentioned earlier, PPE

has direct support for two threads in hardware. This means that setting the environment variable

OMP NUM THREADS to 2 will benefit some OpenMP-enabled codes. But OpenMP feature in the com-

piler will not use SPEs for computations. This can only be done by using IBM’s CELL SDK (see

section 5.1 for details).

In section 7 we discuss software technologies which allow for automatic parallelization of code

to take advantage of the multi-core nature of the CELL without requiring the programmer to man-

ually parallelize the code. However, right now, these efforts are still research projects rather than

deployable solutions.

UT Knoxville 10 ICL
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3.4 TCP/IP Stack

One way of accomplishing network programming on a cluster is by using the kernel’s builtin socket

interface. Without modifying the console’s hardware the TCP/IP stack will in fact be the fastest way to

communicate. Even programming interfaces geared more towards large scale parallel programming

have to use sockets as the communicating medium and so the TCP/IP API’s performance provides

the upper bound of what can be achieved in terms of bandwidth and latency. Testing the socket

interface is also probably one of the first things that can be done on a newly setup cluster.

The simplest TCP/IP network test can be performed using the ping(8) command. Here is an

output from the flood mode (ping -c 100000 -f host):

100000 packets transmitted, 100000 received, 0% packet loss, time 32707ms

rtt min/avg/max/mdev = 0.084/0.307/0.689/0.100 ms, ipg/ewma 0.327/0.230 ms

and the standard mode with one second interval between packets (ping -c 100 host):

100 packets transmitted, 100 received, 0% packet loss, time 98998ms

rtt min/avg/max/mdev = 0.239/0.249/0.463/0.030 ms

One thing to note is the relatively high latency – on the order of 250µs – as compared to 60µs

that can be obtained with the same NIC and GigE switch on a common x86 Linux machine. The main

contributor to such high latency is the virtualization layer (see section 3.1).

3.5 MPI

Predominant model for programming numerical applications in cluster environment is set by the Mes-

sage Passing Interface (MPI) standard. A few implementations of the standard are available in source

code. Most popular are MPICH1, MPICH2, and OpenMPI. Chapter 4.5 includes more information

about each of those packages along with installation instructions. Chapter 5.2 includes more infor-

mation about PS3 code development using MPI.

Figure 3.1 compares these libraries using NetPIPE version 3.6.2. The figure might not directly

indicate how each of the implementations will perform with a particular application but should give

a general sense of what to expect and serve as a reference point quick sanity check of a particular

installation.

UT Knoxville 11 ICL
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Figure 3.1: Comparison of various MPI implementations using NetPIPE 3.6.2.
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CHAPTER 4

Cluster Setup

4.1 Basic Linux Installation

The native operating system of the PlayStation 3 (Game OS) includes provisions for smooth installa-

tion of another operating system. As of today, a number of PowerPC Linux distributions are available

for installation on the PlayStation. Fedora Core, Gentoo and Yellow Dog can serve as examples. It is

possible to make a permanent installation, as well as boot the system from a bootable CD (live-CD).

We have successfully tried using Gentoo live-CD, as well as installing Fedora Core on the PlaySta-

tion’s hard drive. Notably, a hard drive installation does not wipe out the native operating system,

but enables coexistence of both systems in a dual-boot setup. If the PlayStation is meant for use in

a cluster installation, a permanent installation is the obvious choice. Since Fedora Core 5 is IBM’s

system of choice for the SDK 2.0, it is probably the safest choice of Linux for the PS3, especially if

the console will also host the development environment.

The Web contains plenty of resources for installing Linux on the PlayStation 3. However, we

would like to point to the CellPerformance Web page (http://www.cellperformance.com/) as an

excellent source of straightforward installation instructions, as well as a good starting point for further

searches. Here, we just summarize the basic steps of the installation. In order to install Fedora Core

5 on the PlayStation 3 you need to follow these simple steps:

! Make necessary downloads:
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" Download Fedora Core 5 DVD ISO image

FC-5-ppc-DVD.iso from a trusted mirror site, e.g. ftp://mirror.linux.duke.edu/

pub/fedora/linux/core/5/ppc/iso/, and burn it to a DVD.

" Download the PS3 add-on CD ISO image

CELL-Linux-CL 20061110-ADDON.iso available at ftp://ftp.uk.linux.org/pub/

linux/Sony-PS3/, and burn it to a CD.

" If you plan to recompile the kernel, which is recommended, you should also download

and burn the kernel source CD

CELL-Linux-CL 20061110-SRCCD.iso available at the same location.

" Copy the file /kboot/otheros.bld from the PS3 add-on CD to the location

/ps3/otheros/otheros.bld on a USB flash drive.

" Go to the PlayStation Open Platform Web page, and follow instructions to download

Other OS Installer otheros.self. Place it on the same USB flash drive in the location

/ps3/otheros/otheros.self.

! Prepare the PlayStation:

" Repartition and format the PlayStation’s hard drive by using the XMB (Cross Media Bar)

menu of the Game OS. Go to Settings → System Settings → Format Utility. Prefer-

ably pick 10 GB for the Game OS, and the rest for Linux. This will create a Linux partition

of around 43 GB in size.

" Put the USB flash drive into one of the USB ports. Go to Settings → System Settings

→ Install Other OS and follow the instructions. The files on the USB drive should be

detected automatically.

" Go to Settings → System Settings → Default System and change the default system

from PS3 to Other OS. Restart the system.

! Install Linux:

" When prompted by the kboot boot loader, type install-fc sda.

" When prompted, insert the Fedora Core 5 DVD, and hit Enter.

" When prompted, make the selection between the full and the minimal installation. Pick

the minimal installation to avoid installation of unnecessary components. This will dra-

matically decrease the amount of disk consumed by the system and the length of the

installation process.

" When prompted, replace the Fedora DVD with the add-on CD, and hit Enter.

" When prompted, enter the password for the root.
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" Type reboot and hit Enter.

! Start network services by issuing the following sequence of commands as the root and reboot

the system:

$ /sbin/chkconfig --level 345 NetworkManager on

$ /sbin/chkconfig --level 345 NetworkManagerDispatcher on

$ /sbin/service NetworkManager start

$ /sbin/service NetworkManagerDispatcher start

The PlayStation can be manually shut down at any time by pressing the power button for a couple of

seconds. When Linux is running, it will initiate a shutdown, as if the shutdown command was issued.

The PlayStation should never be powered down by using the switch on the back of the unit. Under

Linux, the PlayStation can be booted to the Game OS by issuing the command boot-game-os. Also,

pushing the power button for a couple of seconds (until the second beep) at the start time will boot

the Game OS and set it as the default operating system.

When Linux boots up, the session starts in a low resolution video mode. This can be changed

by using the ps3videomode command. For instance, issuing ps3videomode -v 3 -f will change the

video mode to 720p. The available video modes are: 480i (1), 480p (2), 720p (3), 1080i (4) and

1080p (5) for NTSC territories, and 576i (6), 576p (7), 720p (8), 1080i (9) and 1080p (10) for PAL

territories. The flag -f stands for full screen mode and it should be skipped if using it results in the

monitor cropping the edges of the screen.

4.2 Linux Kernel Recompilation

In principle, every Linux distribution should be capable of running on the PlayStation 3. Since the

operating system runs on the PPE and the PPE is binary compatible with the PowerPC processor,

any distribution that comes in a PowerPC flavor can be installed on the PS3. In order to have ac-

cess to the SPEs and to enable other devices, like the controller, a special, patched, Linux kernel

has to be used. The source files for the patched kernel can be found in the compressed archive

linux-20061110.tar.bz2 on the Fedora kernel source CD (SRCCD). The recent vanilla kernel, ver-

sion 2.6.20, provides full support for the CELL processor.

Since most of the common Linux distributions (apart from Gentoo) are based on binary packages,

the Linux kernel image comes precompiled when the operating system is installed, which potentially

relieves the user from the boring and sometimes complicated kernel configuration/compilation. Un-

fortunately, the recompilation is still necessary to enable features that are not included in the binary

package by default and to fine tune the system performance.
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Our experience in programming the CELL processor shows that using huge TLB pages improves

performance in most cases. This feature is not enabled in the binary kernel package provided with

any distribution for the PS3. By the same token, we have to reconfigure and recompile the kernel in

order to enable huge TLB pages. The configuration step is quite easy, since we can apply the same

configuration as was used for the binary package (usually saved in the /boot directory) and change

just what we need. Here is a quick procedure:

! Recompile the kernel with support for huge TLB pages:

" Take the kernel source from the Fedora kernel source CD (linux-20061110.tar.bz2).

" Unpack the archive to the directory /usr/src.

" Create the symbolic link to the directory containing the kernel source:

$ ls -n /usr/src/linux-20061110 /usr/src/linux

" Copy the kernel config file that comes with the Fedora installation to the directory

/usr/src/linux:

$ cp /boot/config-2.6.16 /usr/src/linux/.config

" Prepare for kernel configuration:

$ make mrproper

$ make oldconfig

In this step, the old configuration file is analyzed and you are prompted whenever an

option is encountered, which is not present in the old kernel. In this case the old and the

new kernel are exactly the same, and no prompts should appear.

" Enable huge TLB pages in the kernel configuration:

$ make menuconfig

Go to File systems → Pseudo filesystems and enable huge TLB pages by pressing

the space bar on the HugeTLB file system support option. Select ”exit” repeatedly and

answer ”yes” when asked to save the new kernel configuration.

" Compile the kernel and the modules, and install the modules (It will take around 20 min-

utes):

$ make all

$ make modules install

! Install the new kernel:

$ cp /usr/src/linux/vmlinux /boot/vmlinux-2.6.16_HTLB
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! Create a ramdisk image for the new kernel:

$ mkinitrd /boot/initrd-2.6.16_HTLB.img 2.6.16

! Tell the bootloader (kboot) where the new kernel is located:

$ vim /etc/kboot.conf

Add the following line:

linux_htlb=’/boot/vmlinux-2.6.16_HTLB initrd=/boot/initrd-2.6.16_HTLB.img’

If you want this kernel to be loaded by default, change the ”default” line into:

default=linux_htlb

! Instrument the boot process to include huge TLB pages allocation:

$ vim /etc/rc.local

Add the following lines:

mkdir -p /huge

echo 20 > /proc/sys/vm/nr_hugepages

mount -t hugetlbfs nodev /huge

chown root:root /huge

chmod 755 /huge

Be sure to change the ”chown” line according to your system settings.

! Reboot. During the boot process, when presented the ”kboot:” prompt you will be able to

choose your kernel using the ”tab” key.

! All the commands added to the rc.local file are executed at the end of the boot sequence. This

means that the allocation of the huge TLB pages is performed when plenty of system memory

has already been allocated to other processes. This results in allocation of only six or seven

huge pages. In order to obtain a few more huge pages (eight or nine), we have to move the

huge TLB pages allocation to an earlier stage in the boot sequence (i.e. to runlevel-1). In order

to do that, create the /etc/init.d/htlb script with the content shown in Figure 4.1 and add the

service to runlevel-1:

$ /sbin/chkconfig --add htlb
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#!/bin/sh

#

# htlb: Start/stop huge TLB pages allocation

# chkconfig: 12345 80 20

# description: My script to run at runlevels 1,2,3,4 and 5

#

. /etc/rc.d/init.d/functions

start()

{

mkdir -p /huge

echo 20 > /proc/sys/vm/nr_hugepages

mount -t hugetlbfs nodev /huge

chown root:root /huge

chmod 775 /huge

}

stop()

{

echo 0 > /proc/sys/vm/nr_hugepages

}

case "$1" in

start)

start

;;

stop)

stop

;;

restart|reload)

stop

start

;;

*)

echo $"Usage: $0 {start|stop|status|restart|reload}"

exit 1

;;

esac

exit 0

Figure 4.1: The /etc/init.d/htlb script.

Having huge TLB pages enabled can improve the performance of many applications. The reason

for this improvement lies in the ability to perform fewer translations of the virtual addresses into

physical addresses. In order to take advantage of this, memory as to be allocated in a special way.

Suppose that four arrays have to be allocated each of size array_size; the code in Figure 4.2 shows

how to perform these tasks.
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#define FILE_NAME "/huge/hugefile"

#define HUGE_PAGE_SIZE 16*1024*1024

...

char* addr;

int fd, count, sv;

double *array_1, *array_2, *array_3, *array_4;

...

count = 4*array_size*sizeof(double);

count = (count + HUGE_PAGE_SIZE-1) & ˜(HUGE_PAGE_SIZE-1);

printf("=== Using hugetlbfs ===\n");

fd = open(FILE_NAME, O_CREAT|O_RDWR, 0755);

assert(fd != -1);

remove(FILE_NAME);

addr = (char *)mmap(0, count, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

assert(addr != MAP_FAILED);

array_1 = (char *)(addr);

array_2 = (char *)(addr+array_size);

array_3 = (char *)(addr+2*array_size);

array_4 = (char *)(addr+3*array_size);

...

Figure 4.2: How to allocate memory on Huge TLB pages.

4.3 IBM CELL SDK Installation

It is a remarkable fact that IBM provided the community with the CELL full system simulator [2, 3, 4],

which enabled running CELL binaries on a PowePC or x86 host, before wide availability of CELL-

based hardware. By the same token, the earliest method of CELL code development was cross-

compilation on a non-CELL host. Despite the availability of the hardware today, there seems to be

many advantages of being able to compile and build CELL code on a personal desktop or laptop. It

is our method of choice, which we highly recommend to others.

Today, the third installment of the Software Development Kit, SDK 2.0, is available, following

previous SDK 1.0 and 1.1. Although in principle the SDK can be used with any distribution of Linux,

Fedora Core is IBM’s distribution of choice. The initial version of the SDK required Fedora Core 4,

current version 2.0 requires Fedora Core 5. The installation process for Fedora Core 5 is the most

straightforward, and we also recommend it, especially for users without a thorough understanding of

the differences between Linux distributions.
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Over time, the installation process of the SDK simplified significantly. Software Development

Kit 2.0 Installation Guide [5] provides excellent instructions for installing Fedora Core 5 on a host

system, as well as instructions for installing the SDK 2.0 on the host system, and also the instructions

for installing Eclipse IDE, for those users who are interested. Below, we summarize the steps for

installing the SDK.

! Download the SDK ISO image CellSDK20.iso from the CELL SDK alphaWorks web site

(http://www.alphaworks.ibm.com/tech/cellsw/download).

! As root, create a mount directory and mount the disk image on the mount directory:

$ mkdir -p /mnt/cellsdk

$ mount -o loop CellSDK20.iso /mnt/cellsdk

! Go to /mnt/cellsdk/software. Invoke the installation script and follow the prompts:

$ cd /mnt/cellsdk/software

$ ./cellsdk/install

! Leave the mount directory and umount the disk image.

The last step is installing the libspe library on the PlayStation 3. Libspe is a PPE library for

launching SPE executables and communicating with SPE threads. Two versions of the library are

currently available, libspe 1.2 and libspe 2.0. The former is a must-have. It introduced the original

programming model for launching and controlling the SPE threads, and most of the code samples and

tutorials are based on this model. The latter introduced a new programming model and is currently

regarded as a prototype. We recommend that you install both libraries.

Both libraries are available on the web page of the Barcelona Supercomputer Center (BSC). Do

the following to install the libraries:

! Go to BSC Linux on CELL BE-based Systems web page (http://www.bsc.es/projects/

deepcomputing/linuxoncell/).

! Go to Programming Models→ Linux on Cell→ Cell BE Components→ libSPE. Download

libspe-1.2.0-0.ppc.rpm.

! Go to Programming Models→ Linux on Cell→ Cell BE Components→ libSPE 2. Down-

load libspe2-2.0.1-1.ppc.rpm.

! Move both RPMs to the PlayStation 3 and install them by issuing as root:

$ rpm -i libspe-1.2.0-0.ppc.rpm

$ rpm -i libspe2-2.0.1-1.ppc.rpm
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After this step the installation is complete and the PlayStation 3 is ready to run your CELL code.

Do not hesitate, however, to browse through the CELL repositories of the Barcelona Supercomputer

Center. It is an excellent resource for valuable CELL code and documentation.

4.4 Network Configuration

In principle, configuring a cluster made of PS3 nodes isn’t any different than configuring a cluster

made of other kind of nodes. Network configuration consists of a few simple steps that are well known

to anybody that has built a cluster at least once. Different approaches may be followed when building

a cluster depending on the size of the cluster itself, the availability of resources and of software. Our

choice is to put the cluster nodes behind a front-end machine (a regular Linux box). This will give us

a number of advantages such as:

! Better security. Security policies can be enforced on the front-end and, since access to the

nodes is only possible through the front-end, the whole cluster can be hidden from the rest of

the network.

! Cluster symmetry. All the services needed by the cluster can be run on the front-end instead

of one of the nodes. Services include shared volumes, Network Information Service, batch job

schedulers, etc.

The front-end node must have two network cards; one will serve as an interface to the external

network allowing users to remotely connect to the cluster, and the other will be connected to the

internal cluster network. In the cluster internal network, each node, including the front-end, will

have a static IP address. The network interface configuration can easily be done under Fedora

Core Linux by editing the /etc/sysconfig/network-scripts/ifcfg-eth0 file on each node;

this script will configure both the network interface and the routing table. The content of this file is

shown in Figure 4.3.

Once the /etc/sysconfig/network-scripts/ifcfg-eth0 file is filled with the proper infor-

mation, it is only necessary to edit the /etc/resolv.conf and the /etc/hosts files in order to set

a name server (DNS) and a list of the nodes’ hostnames. Since these files will be the same on every

node of the cluster, they can be created on one and then copied to the others. Finally, on each node,

the hostname must be set with the command $hostname node01 (where node01 must be replaced

with the proper hostname).

An easier and more scalable approach would be to use a router that is capable of doing

static DHCP. Once the router is configured, each node will acquire the IP address, hostname, and

DNS server directly from the router through the DHCP protocol. In this case the content of the

/etc/sysconfig/network-scripts/ifcfg-eth0 file becomes that in Figure 4.4.
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DEVICE=eth0

BOOTPROTO=static

HWADDR=xx:xx:xx:xx:xx:xx

IPADDR=192.168.1.10

NETMASK=255.255.255.0

NETWORK=192.168.1.0

BROADCAST=192.168.1.255

ONBOOT=yes

NAME=eth0

Figure 4.3: The /etc/sysconfig/network-scripts/ifcfg-eth0 script.

DEVICE=eth0

BOOTPROTO=dhcp

HWADDR=xx:xx:xx:xx:xx:xx

ONBOOT=yes

NAME=eth0

Figure 4.4: The /etc/sysconfig/network-scripts/ifcfg-eth0 script when DHCP is used.

Once the network is configured, it is possible to set up the services.

It is very important that all the users and user groups appear on every node with the same name

and ID (UID for users and GID for groups). This can be done manually but it is very inconvenient. In

fact, every time a new user must be added, his account has to be manually created on each node of

the cluster. An easier and much scalable solution is to use the Network Information Service (a good

alternative is LDAP). The NIS server has to be installed on the front-end node and a client will be

installed on each node. A good guide on how to set up the NIS server and the client can be found at

http://tldp.org/HOWTO/NIS-HOWTO/index.html. Once the NIS server and clients are set up,

new users need only be added to the front-end node (with a slightly different procedure than usual)

and they will be acquired by the nodes through the NIS service.

Another important service that is almost mandatory to set up in a cluster is the network file

system. Such service provides shared disk volumes to the cluster users. These volumes (that usually

correspond to the whole user’s home directory) are visible from any cluster node, front-end included,

and this means that if, for example, a file in this volume is edited, the changes do not have to be

replicated on each node. There are many network file systems available, but the most common

choice for small clusters is NFS. As for the NIS service, the NFS server has to be installed on the

front-end and the clients on each node. The fact that the NFS server is on the front-end node

also means that the shared volume has to physically be hosted there. Thus, the front-end must be
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$ env RSHCOMMAND=ssh ./configure --with-device=ch_p4 --without-romio

--disable-f77 --disable-f90 --disable-doc --disable-cxx

$ make -j2

$ make install

Figure 4.5: The commands we used to set up, compile and build the MPICH1 library.

equipped with a fast hard disk that is big enough to provide a reasonable quota to each user on the

system. A good guide for the configuration of the NFS service can be found at http://tldp.org/

HOWTO/NFS-HOWTO/index.html.

Finally, it can be a good choice to install a job scheduler. Job schedulers are used to manage

the usage of a cluster by different users through a number of queues where jobs can be submitted.

Once the job has been submitted, a priority is assigned to it based on the scheduler rules. The job

is executed only when no other jobs in the queues have higher priority. This avoids multiple jobs

running on the same node, which is a desirable condition in order to achieve high performance and

predictability. Job schedulers are almost necessary for big clusters that are accessed by a large

number of users but can give good advantages even on small sized clusters with few users. The

most common and widely adopted choice for commodity clusters is the OpenPBS scheduler that can

be obtained from http://www.openpbs.org/ along with documentation on how to set it up.

4.5 MPI Installation

4.5.1 MPICH1

MPICH1 from Argonne National Lab is a widely used implementation of the MPI 1.1 standard. The

MPICH1 library can be downloaded by following instructions provided at http://www-unix.mcs.

anl.gov/mpi/mpich1/. The version of the software that we tested was 1.2.7p1. It was released

in November 4th, 2005. The authors strongly encourage the use of MPICH2 instead of MPICH1 for

homogeneous clusters (such as a PS3 cluster). But for completeness, we decided to include our

experiences with MPICH1 in this writing.

Figure 4.5 shows the commands we used to set up, compile and build the MPICH1 software.

Since similar options and procedures apply to other MPI implementations, we give here a more

detailed description of the meaning of the installation steps. The env RSHCOMMAND=ssh makes sure

MPICH1 uses ssh(1) as the remote shell instead of the default rsh(1). Almost all Linux distribution

have better support for ssh(1) for security reasons. The options passed to the configure script

were:

! --with-device=ch p4 – selects TCP/IP for messaging between nodes

UT Knoxville 23 ICL

http://tldp.org/HOWTO/NFS-HOWTO/index.html
http://tldp.org/HOWTO/NFS-HOWTO/index.html
http://www.openpbs.org/
http://www-unix.mcs.anl.gov/mpi/mpich1/
http://www-unix.mcs.anl.gov/mpi/mpich1/


D
R
A

FT C
O

P
Y

CHAPTER 4. CLUSTER SETUP 4.5. MPI INSTALLATION

$ ./configure --enable-fast --disable-f77 --disable-f90 --disable-cxx

--disable-romio --disable-threads=single

$ make -j2

$ make install

Figure 4.6: The commands we used to set up, compile and build the MPICH2 library.

! --without-romio – disables ROMI/O – a well known implementation of the MPI I/O part of

the MPI 2 standard. If the use of parallel I/O is not intended, the feature can be disabled.

! --disable-f77 – disables FORTRAN 77 bindings.

! --disable-f90 – disables FORTRAN 90 bindings.

! --disable-cxx – disables C++ bindings.

! --disable-doc – disables installation of some of the MPI documentation.

The make -j2 can be used to take advantage of the two PPE hardware threads to speed up the

compilation process.

4.5.2 MPICH2

MPICH2 is an MPI implementation written by the same team of developers that created MPICH1.

It has many improvements over its predecessor with possibly only one drawback: lack of support

for heterogeneity. MPICH1 allowed for free mixing of computer architectures in a single cluster.

MPICH2 made a design decision to not support it which simplified the implementation and increased

communication performance. This is a welcome feature if you plan to use MPICH2 for a cluster of

only PS3s. Mixing PS3s and, say, PCs with x86 processors would require MPICH1 or Open MPI.

MPICH2 can be downloaded from http://www-unix.mcs.anl.gov/mpi/mpich2/. Just as

was the case with MPICH1, setup, compilation and installation are very simple. It is worth mentioning

that there is an option (--enable-threads) for the configure script that controls the threading

mode of MPICH2. Depending on threading levels in your current application, it might be worthwhile

to experiment with this option as there are two hardware threads on the PPE. Obviously, this option

will not use SPEs to run threads inside the MPI library.

One distinct feature of MPICH2 is ability to set up daemons that will make launching jobs

quicker (daemon support in MPICH1 was much more limited). Starting the daemons may be done

by the privileged user or the end user. The daemon interface is much improved from the previous

versions of MPICH and allows you to accommodate more than one MPI process per node.
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Figure 4.6 the commands we used for the setup, compilation and installation of MPICH2 on our

cluster. The options passed to the configure script were:

! --enable-fast – speeds up the build process for common configuration options

! --disable-f77 – disables FORTRAN 77 bindings.

! --disable-f90 – disables FORTRAN 90 bindings.

! --disable-cxx – disables C++ bindings.

! --disable-romio – disables ROMI/O – a well known implementation of the MPI I/O part of

the MPI 2 standard. If the use of parallel I/O is not intended, the feature can be disabled.

! --disable-threads=single – disables threading support: only a single threaded applica-

tions will be allowed to link against the resulting library

4.5.3 Open MPI

Open MPI was created when developers of FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI joined their

efforts and put together their experiences and invited contributors from other academic institutions,

government labs, and vendors. It is a modern MPI implementation that is fully compliant with the

MPI2 standard. It is available from http://www.open-mpi.org/. The older release (1.1.x series)

is still available but users are strongly encouraged to download at least version 1.2 or even the nightly

snapshots of the upcoming 1.3 release, as they are very stable.

Installation of Open MPI is also very simple. There is an option for enabling a set of features at

configuration time like detailed debugging support (so that the application stack trace will be printed

upon program failure without the need for a debugger) and threading support (to support threaded

applications and have a progress thread inside the library for better support for non-blocking commu-

nication).

Launching of jobs is also simple. The start up is very fast with use of daemons (similarly to

MPICH2) but the daemons are managed transparently by Open MPI without requiring any user inter-

vention.

We tested two different builds of Open MPI:

! Version with debugging symbols and

! Version without debugging symbols.

The exact optioned that were used for both of these versions are given in Figure 4.7.

For completeness, here are the Open MPI equivalents of the options we mentioned while de-

scribing both MPICH implementations (with default values given in parentheses) as well as additional

options that are specific to Open MPI:
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Build with extensive debugging support:
$ ./configure --with-platform=ps3 --enable-debug --enable-picky

$ make -j2

$ make install
Build without debugging support:

$ ./configure --with-platform=ps3 --disable-debug --enable-picky

$ make -j2

$ make install

Figure 4.7: The commands we used to set up, compile and build two configurations of the Open MPI library.

! --disable-mpi-f77 (default: enabled) – disables FORTRAN 77 bindings.

! --disable-mpi-f90 (default: enabled) – disables FORTRAN 90 bindings.

! --disable-mpi-profile (default: enabled) – disables MPI’s profiling interface.

! --disable-mpi-cxx (default: enabled) – disables C++ bindings.

! --disable-mpi-cxx-seek (default: enabled) – disables some C++ bindings related to I/O.

! --enable-mpi-threads (default: disabled) – enable threading support in the Open MPI li-

brary.

! --enable-progress-threads (default: disabled) – enable use of a separate thread for han-

dling asynchronous communication.
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CHAPTER 5

Development Environment

5.1 CELL Processor

The CELL SDK provides the development environment for programming the CELL processor. The

current release of the SDK is a great package offering a range of software tools including: a suite

of compilers and debuggers, SIMD math libraries, parallel programming frameworks, full system

simulator and Eclipse IDE.

As valuable as all those components are, the compiler suite is of the greatest importance to get

you started running code on the CELL processor. Since the PPE and the SPEs are different archi-

tectures with disjoint address spaces, they require two distinct toolchains for software development.

The most important component of the toolchains is the compiler suite including both the GNU GCC

and the IBM XLC compilers. The compilers for both architectures produce object files in the stan-

dard Executable and Linking Format (ELF). A special format, CBEA Embedded SPE Object Format

(CESOF), allows SPE executable object files to be embedded inside PPE object files.

Standard compilation steps include:

! Compilation of the SPU source code using either the GNU spu-gcc compiler or the IBM spuxlc

compiler.

! Embedding of the SPU object code using the ppu-embedspu utility.
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! Conversion of the embedded SPU code to an SPU library using the ppu-ar utility.

! Compilation of the PPU source code using either the GNU ppu-gcc compiler or the IBM ppuxlc

compiler.

! Linking the PPU code with the library containing the SPU code and with the libspe library, to

produce a single CELL executable file.

For example, given two source files ppu code.c and spu code.c, containing the PPU code and

SPU code accordingly, the executable cell prog can be built with the toolchain 3.3 by using the rudi-

mentary makefile from Figure 5.1.

TOOLCHAIN = /opt/cell/toolchain-3.3

SPU_GCC = $(TOOLCHAIN)/bin/spu-gcc

PPU_GCC = $(TOOLCHAIN)/bin/ppu-gcc

PPU_MBD = $(TOOLCHAIN)/bin/ppu-embedspu

PPU_AR = $(TOOLCHAIN)/bin/ppu-ar

all:

$(SPU_GCC) -O3 -c spu_code.c

$(SPU_GCC) -o spu_code spu_code.o

$(PPU_MBD) -m32 spu_code spu_code spu_code_embed.o

$(PPU_AR) -qcs spu_code_lib.a spu_code_embed.o

$(PPU_GCC) -m32 -O3 -c ppu_code.c

$(PPU_GCC) -m32 -o cell_prog ppu_code.o spu_code_lib.a -lspe

Figure 5.1: Rudimentary CELL makefile.

At this point, the development environment is still evolving, and writing your own makefile jeopar-

dizes the portability of your compilation process to the next release of the SDK. IBM promotes the use

of portable makefiles based on samples provided with the SDK. The samples, which can be found

in the directory /opt/ibm/cell-sdk/prototype/src/samples/, use the same makefile structure, where the

main directory contains the main makefile and two subdirectories, ppu and spu for the PPU code and

the SPU code, respectively. These subdirectories contain appropriate makefiles for compiling the

PPU code and SPU code. The makefiles have a very simple structure, where the user’s responsi-

bility is to provide a few basic definitions and include the file /opt/ibm/cell-sdk/prototype/make.footer,

which handles aggregation in order to create one CELL executable.
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Figure 5.2: Compilation/building.

5.2 PlayStation 3 Cluster

The essential part of a cluster development environment is MPI. In a standard setting, an MPI imple-

mentation ships with a specialized command called mpicc. It invokes a standard compiler with extra

flags that allow inclusion of the standard MPI header file mpi.h. But the mpicc command can also be

invoked to link MPI programs. In this mode, mpicc adds additional flags to the real linker invocation to

add libraries that implement the MPI standard. This is a sample sequence of commands to compile

an MPI program from the file foo.c:

$ mpicc -c foo.c

$ mpicc -o foo foo.o

This is the preferred way of developing MPI applications, as it is independent of the MPI implemen-

tation being used as long as the right mpicc command gets invoked which can be adjusted with the

PATH environment variable.

On a PlayStation 3 cluster, this mode of operation breaks down if IBM’s CELL SDK is combined

with MPI and they are not installed on the same machine (especially in cross-compiling scenario).

In this case, standard CELL SDK tools should be used with additional options added to make them

aware of location of files required by the MPI implementation. Unfortunately, this will make the pro-

cess dependent on a particular MPI implementation and its supporting libraries. But once setup

properly, it will work just as well as it would with the mpicc command.

To have the MPI header files available on the development machine they need to be copied from

the include directory where the MPI implementation was installed. For MPICH1, the header files

are mpi.h, mpidefs.h mpi errno.h, mpio.h, and mpi++.h (the last two only if support for MPI

I/O and MPI C++ bindings were enabled during the setup). For MPICH2 the header files are mpi.h,
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Feature MPICH1 MPICH2 OpenMPI

mpi.h mpi.h mpi.h

C API mpidefs.h

mpi errno.h

MPI I/O mpio.h mpio.h

C++ API mpi++.h mpicxx.h openmpi/

Table 5.1: Header files required for compilation using various MPI implementations.

Feature MPICH1 MPICH2 OpenMPI

C API libmpich.* libmpich.* libmpi.*

C++ API libmpich++.* libmpichcxx.* libmpi cxx.*

FORTRAN API libfmpich.* libfmpich.* libmpi f77

Miscellaneous libopen-pal.*

Support libopen-rte.*

Table 5.2: Library files required for linking with various MPI implementations.

mpio.h, and mpicxx.h (the last two only if support for MPI I/O and MPI C++ bindings were enabled

during the setup). For Open MPI, only the mpi.h file needs to be copied unless MPI C++ bindings

are to be used, in which case the contents of the openmpi subdirectory should be copied as well.

Table 5.1 summarizes the information on the header files.

Just as it is the case during compilation, linking MPI programs requires extra flags. The com-

mon command line flags to use for virtually all MPI implementations is the flag that adds a path

to MPI libraries at link time and runtime so they can be found by the static and dynamic linker, re-

spectively. The link time flag is -L for the static linker and an example use is -L/path/to/mpi,

whereas to pass the path to the dynamic linker (usually referred to as a runtime path) so it can

search for dynamic libraries at runtime one uses -Wl,-rpath,/path/to/mpi. As an alternative to

the latter, the LD LIBRARY PATH environment variable can be set prior to running the program. Af-

ter the path flags come the extra libraries to link. In MPICH1 and MPICH2, the library file is called

libmpich.a and it can be linked in with -lmpich flag. In addition, if Fortran or C++ bindings are

required, -lmpich++ (-lmpichcxx in case of MPICH2) and -lfmpich have to be added. Open MPI

link flags should include -lmpi for MPI C binding, -lmpi cxx for MPI C++ binding, and -lmpi f77

for MPI Fortran binding. In addition, libopen-pal.* and libopen-rte.* will be linked into the

executable and so they should be copied to the development environment machine. Table 5.2 sum-

marizes the linking information for the three MPI implementation that were used.

To run an MPI application on a cluster, the mpirun or mpiexec commands should be used.
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MPICH1 uses ssh(1) or rsh(1) commands for launching processes on the nodes of the cluster.

The RSHCOMMAND environment variable controls which remote shell is used, but in general ssh(1)

should be a preferred solution. The selection of nodes on which to run an MPI application, is done

with a machine file. The default machine file usually resides in the installation directory called share

but it can also be specified upon invocation of the mpirun command. The contents of the file for four

PS3 nodes (whose IP names are node1, node2, node3, and node4, respectively) might look like

this:

node1:2

node2:2

node3:2

node4:2
The :2 suffix on each line indicates that there are two processors available on each node: this refers

to the fact that the CELL processor’s PPE has two hardware threads. With this file it will be possible

to launch 8 MPI processes, two on each PS3. Since most of the work is usually done by the SPEs,

it is enough to use only one MPI processes per PS3. Accordingly, the machine file for the sample 4

PS3 cluster will usually look like this:

node1

node2

node3

node4

The most common way of running MPICH2 applications is by launching an MPI daemon (mpd)

on each node. Once the daemons are started, there is no need to specify a machine file any more

because the mpirun (and mpiexec) command from MPICH2 will communicate to the daemons to

discover the nodes and number of processes to spawn on each.

Open MPI also uses a machine file, but it has a slightly different syntax for this file. Here is a

sample corresponding to the example given for MPICH1:

node1 slots=2

node2 slots=2

node3 slots=2

node4 slots=2
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CHAPTER 6

Programming Techniques

6.1 CELL Processor

There is no substitute for getting your hands dirty with CELL programming, and unfortunately many

people find the learning process to be quite hard at the beginning. Fortunately, the amount of high

quality CELL programming literature freely available on the web today is quite impressive. Basically,

there is at least one solid publication devoted to each major topic of CELL programming. The reader

can choose from a big selection of guides, reference manuals, as well as very approachable beginner-

level tutorials.

In this chapter, we will highlight the most important aspects of developing software on the CELL

and point the reader to the appropriate literature where in-depth information can be found. Here we

attempt to emphasize the aspects that distinguish the CELL processor from the majority of processors

on the market today. This chapter is meant for newbies rather than seasoned veterans.

6.1.1 Short Vector SIMD’ization

The power of the CELL is in its SPEs. The SPEs are inherently vector processors, probably the

most powerful short vector SIMD engines in existence today. At the same time they do not efficiently

implement scalar (non-vector) operations. Non-vector operations are implemented using a so-called

preferred slot, which is a location within a vector, which can be operated upon in a non-vector fashion.
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Using the preferred slot requires the extra operations of shifting the element to the preferred slot and

then shifting it back to its original location, which introduces costly overheads.

As a result, great speeds can be achieved using vectorization, and very poor performance can

be expected when programming the SPEs using standard, scalar, C code. However, the fact that a

standard C code will compile and run on the SPE gives the programmers a great starting point and

allows for applying optimizations in a gradual manner.

Going to the level of assembly is not required. C language extensions, called intrinsics, are pro-

vided for convenience. Along with the intrinsics come vector type definitions and vector literals. Most

of the intrinsics have a one to one translation to assembler instructions. Coding using the intrinsics

is very close to coding in assembly, while leaving room for the compiler to do instruction reordering

and register coloring. The Cell Broadband Engine Programming Tutorial [6] is an excellent place to

start learning vectorization. C/C++ Language Extensions for Cell Broadband Engine Architecture [7]

is the ultimate reference. The SPU Assembly Language Specification [8] can occasionally come in

handy as well.

The goal of vectorization is to eliminate scalar operations, which means eliminating insertions and

extractions of elements to and from a vector. This goal can be achieved by using shuffle operations to

rearrange elements within a vector. The dual issue pipelines of the SPE enable performing shuffles

in parallel with arithmetic operation, which minimizes their impact. In many situations, shuffles can

be almost completely hidden behind arithmetic.

The technique of loop unrolling goes hand in hand with vectorization. Compilers can do a great

job scheduling operations and optimizing for dual issues, if they are provided with many independent

operations. Independent is the keyword here, since inexperienced programmers tend to attempt un-

rolling by putting a number of instructions in the loop, which carry dependencies from one instruction

to another. As always, loop unrolling also plays its traditional role of minimizing the overhead of loop

branches.

Unroll heavily. Take advantage of the enormous set of 128 vector registers at the SPE’s disposal.

Create big chunks of straight line code (big basic blocks). Keep your source small and readable by

using defines and nested defines. Big basic blocks are a common practice for implementing fast

Fourier transforms (FFTs), where such chunks are called codelets. There is a limit to the usability of

the technique. At some point you can exhaust the register file and experience a performance drop.

Also, the code size may become an issue due to the size of the local store. Nevertheless, do not be

shy when unrolling. Do not unroll just a few iterations. Unroll tens of iterations. In case of nested

loops, think if it is feasible to unroll the inner loop completely. If such techniques seam odd to you,

look at the file /opt /ibm /cell-sdk /prototype /src /workloads /matrix mul /spu /block.c or /opt /ibm

/cell-sdk /prototype /src /workloads /FFT16M /spu /fft spu.c.

If you are new to the concept of vectorization in the SIMD sense, optimize your code gradually

following this simple scheme:
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! Start with implementing your computation on the SPE by writing a standard (scalar) C code.

! Start gradually introducing vector operations. You can freely mix vector and scalar code. Cre-

ate vector aliases to your scalar data structures, e.g., declare a vector pointer and assign it the

beginning of your scalar array. Use that pointer to implement some of your computation.

! Over time try to eliminate scalar operations completely. Eliminate extractions and insertions of

vector elements by using shifts, rotations and shuffles.

! Unroll loops. This step takes some experience, since the right amount of unrolling is a function

of the algorithm being implemented, size of the register file and desired size of the binary code.

The good news is that even a moderate amount of effort will result in satisfactory performance

in most cases.

A.0 A.1 A.2 A.3

B.0 B.1 B.2 B.3

+ + + +

C.0 C.1 C.2 C.3

VA

VB

VC

add VC, VA, VB

Figure 6.1: SIMD processing.
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Figure 6.2: Shuffle.
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6.1.2 Intra-Chip Communication

The CELL processor provides three basic methods of communication - DMA transfers, mailboxes and

signals. The Cell Broadband Engine Programming Tutorial [6] is good starting point to learn about

the CELL communication mechanisms. The Cell Broadband Engine Programming Handbook [1] is

the ultimate reference. Here we will focus on the first two mechanisms, DMAs and mailboxes, since

these are most useful in programming any kind of numerical applications. DMA transfers are the most

important means of communication on the CELL processor, facilitating both bulk data transfers and

synchronization. In case of SPE to SPE communication, the other two communication mechanisms

are actually implemented by means of multiple DMA transfers. Nevertheless, the most important

function of DMAs is bulk data movement, equivalent to message passing with MPI. Here we briefly

summarize the capabilities of DMA transfers:

! DMA transfers enable exchange of data between the main memory and the local stores of the

SPEs, as well as transfers from one local store to another.

! The messages can be of size 1, 2, 4, 8, and 16 bytes, and multiplicities of 16 bytes up to

16KB. Source and destination addresses of messages 16 bytes and larger have to be 16 bytes

aligned, and addresses of messages shorter than 16 bytes require the same alignment as the

message size. Additionally, messages of subvector sizes (less than 16 bytes) have to have the

same alignment of source and destination addresses within the vector.

! Messages larger than 16KB can only be achieved by combining multiple DMA transfers. DMA

lists are a convenient facility to achieve this goal, as well as to implement strided memory

access. A DMA list can combine up to 2048 DMA transfers.

! DMA transfers are most efficient if they transfer at least one cache line and if they are aligned

to the size of a cache line, which is 128 bytes.

! By default, DMA messages are not ordered. Ordering of DMAs can be enforced by the use

of barriers and fences. A barrier orders a message with respect to messages issued before

as well as after a given message. A fence orders a message only with respect to messages

issued before the given message (Figure 6.3).

! DMA transfers are non-blocking in their very nature. While DMAs are in progress, the SPE

should be doing some useful work and only check for DMA completion, when it comes to

processing of the transferred data.

! DMA engines are parts of the SPEs. Each SPE can queue up to 16 requests in its own DMA

queue. Each DMA engine also has a proxy DMA queue, which can be accessed by the PPE

and other SPEs. The proxy queue can hold up to eight requests.
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Figure 6.3: Barrier/fence.

Both the SPEs and the PPE are capable of initiating DMAs, but the SPE-initiated DMAs are

more efficient and should be given preference over the PPE-initiated DMAs. Nevertheless, if the

need arises to use the PPE-initiated DMAs, it can be accomplished by means of the MFC SPE

proxy command functions described in SPE Runtime Management Library, chapter SPE MFC Proxy

Command Functions.

Although each single SPE has a theoretical bandwidth of 25.6 GB/s, which is equal to the peak

bandwidth of the main memory, a single SPE will have a hard time saturating this bandwidth. In order

to get good utilization of the bus, you should initiate many requests from many SPEs, and also restrain

from ordering the messages, if possible, to give the arbiter the most room for traffic optimization.

An important aspect of the CELL communication system is the efficiency of local store to local

store communication. The main memory offers considerable bandwidth of 25.6 GB/s. At the same

time, however, the bus connecting the PPE, the SPEs and the main memory possesses much greater

internal bandwidth. Different numbers are reported by different sources. Commonly, the bus is

rated at 204.8 GB/s. The important aspect here is that the bus is almost impossible to saturate by

communication between the interconnected elements. It means that the SPEs, when accessing the

main memory heavily, will exhaust the memory bandwidth. At the same time, when communicating

between one another, they will never encounter a communication bottleneck. By the same token, if an

application has the potential for SPE to SPE communication, such communication should definitely

be given preference over main memory communication. An example of such patterns would be

stream processing, where data is passed from one SPE to another in a pipeline fashion. Although
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local store to local store transfers may seem a little less straightforward than main memory transfers,

in practice they are not difficult to implement at all. Given that the CELL processor implements a

global addressing scheme, in which each local store can be accessed by its effective address, local

store to local store communication can be implemented as follows:

! The PPE retrieves the effective address of each local store by calling the spe get ls() function.

! The PPE passes the list of addresses of all local stores to all SPEs, through a DMA transfer.

! On the SPE side, a communication buffer is declared as a global variable and as a result has

the same physical addresses within the local store on all SPEs.

! An SPE sums the physical buffer address with the effective address of the local store of another

SPE to get the address of the remote buffer. It uses this address as the source address to pull

data from the other SPE, or as a destination address to push data to the other SPE.

Local store to local store communication may prove invaluable not only for bulk data transfers, but

also for synchronization between SPEs. One thing to remember here is the subvector alignment of

source and destination for subvector length transfers.

Mailboxes are a convenient mechanism for sending short, 32-bit messages from the PPE to the

SPEs and between the SPEs. The mailboxes are First-In-First-Out (FIFO) queues, meaning the

messages are processed in the order of their issue. Each SPE has a four-entry mailbox for receiving

incoming messages from the PPE and other SPEs, and two one-entry mailboxes for sending outgoing

messages to the PPE and other SPEs - one of which serves the purpose of raising an interrupt on

the receiving device. Mailbox operations have blocking nature on the SPE. An attempt to write to a

full outbound mailbox will stall until the mailbox is cleared by a PPE read. Similarly, an attempt to

read from an empty inbound mailbox will stall until the PPE writes to the mailbox. The same does

not apply to the PPE. Neither an attempt to write to a full mailbox nor an attempt to read an empty

mailbox will stall the PPE. Mailboxes are useful to communicate short messages, such as completion

flags or progress status. They can also serve the purpose of communicating short data, such as

storage addresses and function parameters.

The blocking nature of the mailboxes on the SPE side makes them perfect for the PPE to initiate

actions on the SPEs. However for two reasons they should not be used by the SPEs to acknowledge

completion of operations to the PPE. DMA completion has a local meaning on the SPE. In other

words, completion of a DMA on the SPE means that the local buffers are available for reuse, but not

that the data made it to the memory. If a DMA transfer is immediately followed by an acknowledgment

mailbox message, the message can make it to the PPE before the data. Also, the PPE continuously

reading the SPE’s outbound mailbox will flood the bus causing loss of bandwidth. A better way of

acknowledging completion of an operation or a data transfer from an SPE to the PPE is to use an

acknowledgment DMA protected by a fence with respect to the data transfer DMA. The PPE can
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periodically test the memory location (variable) written to by the SPE, or even spin (busy wait) on the

variable, whichever is appropriate. You should remember to declare the variable as volatile to prevent

the compiler from optimizing it out.

A standard communication scenario could have the following structure:

! The PPE sends a mailbox message to the SPE, waiting on a mailbox.

! The SPE receives the mailbox message and interprets the command.

! The SPE pulls data for processing from the main memory, performs appropriate actions, and

returns the result to the main memory.

! The SPE sends an acknowledgment message to the PPE by placing a value in the acknowl-

edgment variable in the main memory.

! The PPE tests the acknowledgment variable and receives the completion notification.

6.1.3 Basic Steps of CELL Code Development

A programmer who takes one of the SDK samples and introduces changes by taking a random walk

through the code is doomed to failure and endless hours of debugging. The most effective method

of debugging is to not produce bugs. We recommend that you take CELL programming step-by-step

and follow these simple stages of code development:

! Start by working in 32-bit mode. In this mode, addresses can be cast to unsigned integers and

easily operated upon. They can also be passed around as single mailbox messages. There is

no system in existence today possessing more memory than can be addressed by 32 bits. In

particular, the 256 KB of the PlayStation 3 can be addressed by 32 bits. In scientific parallel

computing, you are supposed to be getting more memory by grabbing more processors, not

trying to plow through endless amounts of memory on a single CPU.

If you really need 32/64-bit portability, keep in mind that SPEs always treat effective memory

addresses as 64-bit values. When the PPE is running in 32-bit mode the upper 32 bits of an

effective address must be set to zero. Also, the long type is not portable between addressing

modes. Use int or unsigned int to always get 32-bit values, and long long or unsigned long long

to always get 64-bit values.

! Save yourself the time of learning how to vectorize your code on the AltiVec/VMX and porting

it to the SPE. Code for the SPE right away. It is the real thing. It has a massive register file and

a range of powerful instructions. Its dual-issue capability will allow you to get close to the peak.

The indispensable spu-timing tool will let you understand exactly what is going on in your code.

All you have to do is to compile the SPE code to assembly by adding the -S flag to the usual
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set of compilation flags, and then run the spu-timing tool on the assembly file. The tool will

produce an output file containing the scheduling information for the SPE code.

! Perform all your initializations and setup on the PPE. Prepare your data for processing on

the SPE in a continuous memory buffer. There is a caveat to this approach, which is that

initializations performed by the PPE will move the data to the L2 cache, which slows down the

access by the SPEs. Ignore this fact when learning the ropes of CELL programming.

! Write a simple DMA. Implement a copy operation. Make the SPE read a chunk of data from

one place in main memory to another. Verify the operation for correctness on the PPE.

! Introduce a processing stage on the SPE between the read and write operation. Do not vec-

torize yet, but use standard, scalar, C code. It will compile and run out of the box. Copy-paste

the same code in the PPE correctness check code. Do not expect bit-wise correctness. SPEs

do not implement IEEE compliant floating point arithmetic. In most cases, expect errors on the

order of the precision used (machine epsilon).

! Start vectorizing the SPE code. Keep checking for correctness against the scalar code on the

PPE. Learn the process gradually. Introduce more and more vectorized code, while keeping

some scalar code.

! Start measuring your execution time on the SPE by using the decrementer. Start looking at the

output of the spu-timing tool. Your ultimate goal is to eliminate loop overhead via unrolling and

maximizing the dual issue rate by mixing arithmetic and data manipulation instructions.

! Try to introduce double-buffering to hide the communication. It is analogous to the similar

technique in computer graphics, where the contents of one frame is being displayed, while

another is being produced in the memory. Fetch the data for the upcoming loop iteration N + 1

while processing the data in the current loop iteration N.

! Devise a data or work partitioning strategy, and distribute your task to many SPEs. At the

beginning you can use the PPE to synchronize the SPEs. Later on you can try to make the

SPEs synchronize between each other. The main synchronization mechanisms are mailboxes,

DMAs and signals.

One straightforward method of synchronization is a DMA transfer of a single variable, which can

be polled by the PPE or the SPE in order to determine if an operation completed. Remember

to declare such synchronization variables as volatile to avoid the compiler optimizing them out.
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Figure 6.4: Double buffering.

6.1.4 Quick Tips

In this section we give a few more programming tips that you may find useful:

! Tweak performance using static analysis and the decrementer. Traditionally, programmers

rely on performance counters to identify performance problems. The values typically measured

include cache misses (L1, L2, ...), TLB misses, and the number of floating point operations.

From the SPE standpoint, there is little use in trying to measure these values. Cache misses

are nonexistent, TLB misses can be eliminated by using huge TLB pages, and since the SPE’s

pipelines implement in-order execution, code behavior is precisely defined by the object code.

By the same token, the performance of the SPE code operating on the local store can be

analyzed by looking at the object/assembly code. The spu-timing comes in handy here.

If you desire to measure the actual execution time, or measure time of operations that exhibit

variable performance, like DMA data transfers, the indispensable tool is the SPE decrementer,

a hardware register that ticks with a fixed frequency, which can be read and written by the user.

! Do not use PPU for computational tasks. The AltiVec/VMX engine on the PPU may ap-

pear to you as having the power of a ninth SPE. Do not be misled. The unit will not deliver

performance equivalent to the SPE because of the combined effect of two factors: unlike the
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Figure 6.5: Software pipelining.

SPE, the VMX resides on top of cache hierarchy, not its private local store, and the data traffic

through the cache levels will be limiting the performance (the memory wall). This effect will

be aggravated by the tiny size of the VMX register file of 32 versus the mighty SPE with 128

registers. Your number crunching code will be subjected to OS jitter and similar phenomena

absent on the SPE.

Leave the PPE free from computational tasks and utilize it to your benefit for handling the MPI

communication between the PlayStations. It is almost like having a dedicated communication

processor.

! Avoid the operating system. Maintain processor control and avoid passing it to the operating

system by using convenient OS facilities. The operating system code may not necessarily

be optimized for performance, and you have to keep in mind that the PPE is two orders of

magnitude weaker than the combined power of the SPEs. Usually innocent tasks can introduce

unpleasant overheads.
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! Avoid TLB misses - use huge TLB pages. You pass the control to the OS when incurring

a TLB miss. On the SPE, a TLB miss will be caused by a DMA transfer involving an effective

memory address of a page not present in its TLB. For those users who hope to get close to the

peak performance, we recommend the use of huge TLB pages. With huge pages and for the

memory sizes offered by today’s hardware, once touched, the address will never be paged-out

from the TLB. It should be also pointed out that local store to local store transfers are performed

using effective addresses and are subject to TLB misses as well.

! Avoid UNIX timers. Other operating system tools not to be trusted are standard Unix time

facilities. We highly recommend that you use SPE decrementer to measure time. It is extremely

straightforward to use, under direct control of the user, and has just about perfect granularity

for most computational tasks. One thing to be pointed out is that the decrementer ticks with

different frequencies on a CELL blade (around 14 MHz) and on a PlayStation 3 (around 80

MHz).

! Do not debug using printf() in the SPU code. The text will travel to the screen by a DMA

transfer and potentially introduce false synchronization that alters your program behavior. Addi-

tionally, the code of the standard C library will have to be linked into your SPE code, consuming

plenty of local store and leaving little space for your code.

! Be ready for compiler oddities. The compilers for the CELL processor have not fully ma-

tured yet. In the earlier versions, serious bugs were quite common. Although the situation has

improved, it is still likely to encounter issues. In particular, throughout the text we recommend

practices like mixing scalar and vector code, the use of explicit type casts, and explicit pointer

arithmetic on scalar and vector pointers - techniques which we experienced that choke compil-

ers. Fortunately, there are two compilers available, the XLC and the GCC, and when one has

problems with a particular piece of code, the quick workaround is to try the other.

The same applies to performance. There can be serious performance differences between

XLC and GCC. There can also be serious performance differences between compilers in dif-

ferent releases of the SDK, unfortunately often meaning worse performance in the newer ver-

sions. Those who do not have access to the older versions can hope for the situation to improve

in the future. Also, one should not blindly believe that compiling with the -O3 flag will always

deliver the best results. Quite often, -Os (optimization for object code size) performs better.

! Use Unholy Practices. Forget what they taught you in freshmen programming courses, and

throw political correctness out the window when getting up to speed on the CELL. You want to

write code that is well structured, readable, and maintainable, but do yourself a favor and free

yourself from the burden of thinking about portability at this time. Portability is a feature of well
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established programming models defined by standardized APIs, which are in their infancy on

the CELL processor.

In particular:

" Use explicit type casts. Save yourself the effort of creating unions to operate on array

elements in a vector as well as scalar way. Explicitly cast vector and scalar types to

each other. Do not be intimidated by casting addresses (pointers) in 32-bit mode to

unsigned integers. They are both just numbers. That is why you can pass them around

in mailboxes. The CELL architecture keeps you conscious about type sizes anyway by

enforcing alignment and size restrictions on DMA communication.

" Use pointer arithmetic. Pointer arithmetic is a common practice when programming for

performance and indispensable with aggressive loop unrolling. Pay attention to the type

when incrementing a pointer. Incrementing a vector pointer by one moves it forward by a

number of scalar elements (e.g., four floats).

6.2 PlayStation 3 Cluster

Distributed memory programming on a cluster of CELL/PS3 is not conceptually different than pro-

gramming for any other cluster. MPI is always the method of choice for the SPMD programming

paradigm. The most important difference comes from the fact that, locally, computations are of-

floaded to the SPEs. In order to take advantage of this situation, it is worth making a distinction

between two cases:

1. The PPE is absolutely not involved in local computations: this is usually the case where ele-

mentary operations are submitted to the SPEs.

2. The PPE is involved in local computations: this is the case where, for example, complex local

computations have to be performed, and the PPE has to schedule the elementary tasks that

compose the operation.

In both cases, it is possible to overlap MPI communications with local computations but different

approaches have to be used.

Let us start with the easiest case where PPE is not involved. In this case the PPE is idle while

the SPEs carry on the local computations and thus can take care of performing the MPI commu-

nications. Take as an example the simple code in Figure 6.6. This code contains a simple loop

where some data is copied inside a buffer by means of the copy_into_buf. Then a communication

is performed (the MPI_comm routine denotes a general MPI communication routine), once the data
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has been sent/received, the local computations are started on the SPEs with the start_SPEs rou-

tine; the last step of the loop consists of waiting until the SPE computations are completed in the

wait_SPEs_compl routine.

...

for(i=0; i<n; i++){

copy_into_buf(buf, data[i]);

MPI_comm(buf,...);

start_SPEs(buf,...);

wait_SPEs_compl();

}

...

Figure 6.6: MPI example code.

Overlapping communications and computations in this case can be done using a method that

is conceptually equivalent to applying the double-buffering technique (well known to CELL program-

mers) at a higher level. In order to achieve this overlapping we need to take advantage of MPI

non-blocking communications and double the number of buffers needed for the communications.

The general idea is that, while the SPEs carry on the computations related to step N of the loop, the

PPE performs the communications related to step N + 1. The code in Figure 6.6 is transformed into

the code in Figure 6.7

In the case where the PPE is involved in local computations, it is still possible to (partially) hide

MPI communications. In fact, it is possible to take advantage of the fact that the PPE is a two-way,

hyperthreaded processor. It is thus necessary to create two threads on the PPE, one that exclusively

manages MPI communications while the other handles the local computations.
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...

copy_into_buf(buf1, data[0]);

MPI_Icomm(buf1,...);

for(i=0; i<n-1; i++){

copy_into_buf(buf2, data[i+1]);

MPI_Icomm(buf2,...);

start_SPEs(buf1,...);

MPI_wait_on_buf(buf2,...);

wait_SPEs_compl();

swap_buffers(buf1, buf2);

}

start_SPEs(buf1,...);

wait_SPEs_compl();

...

Figure 6.7: MPI example code with communication/computation overlapping.
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Programming Models

The basic taxonomy for the CELL programming models was introduced by Kahle et at. [9]. Six models

were distinguished, some of which can be qualified as PPE-centric and some as SPE-centric:

Function offload model is one where the main application executes on the PPE and offloads

performance-critical functions to the SPE by using calls to a library, possibly provided by a

third party.

Device extension model is a form of the function offload model, where the SPE provides services

previously delivered by a device or acts as an intelligent front-end for a device.

Computational acceleration model is an SPE-centric model, where standard parallel program-

ming techniques are used to implement most computationally intensive sections of code on

the SPEs and the PPE acts mostly as a system service facility. Both shared and distributed

memory programming techniques apply here.

Streaming model is one where the SPEs are arranged in a pipeline, where each of them applies a

particular computational kernel to the data that passes through it. The model is very attractive

due to the fact that the internal bandwidth greatly exceeds the main memory bandwidth. Load

balancing may become an issues if the pipeline stages do not have a near equal amount of

work.
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Shared memory multiprocessor model can be utilized thanks to the DMA cache coherency capa-

bilities. A conventional shared memory store is replaced by a combination of a store to the local

store and a DMA to shared memory with the PPE and all SPEs assigned to the same address

space. Atomic update primitives can be used by utilizing the DMA lock line commands.

Asymmetric thread runtime model is extremely flexible and widespread on conventional SMPs.

On the SPEs, however, it would be very costly to implement full preemptive task switching, and

some other model would have to be implemented, e.g., FIFO run-to-completion.

Aside from this taxonomy, it is important to notice that the advent of a multi-core processor brings

different communities together. In particular, the CELL processor seems to ignite similar enthusiasm

in both the HPC/scientific community and the DSP/embedded community. By the same token, the

world of programming techniques proposed for the CELL is as diverse as the involved communities

and includes shared-memory models, distributed memory models, and stream processing models,

to name the most prominent ones. In this chapter, we present a brief overview of a few emerging

frameworks for programming the CELL processor.

7.1 Octopiler

The Octopiler [10] is a code name for a compiler research project at IBM (http://www.research.

ibm.com/cellcompiler/) targeted for the CELL processor. The two most important features of

the Octopiler is automatic SIMD’ization of code and automatic user-directed exploitation of shared-

memory parallelism. The compiler is capable of generating, within single compilation, the code for

both the PPE and the SPEs. The PPE path includes VMX support and tuning for the PPE pipeline.

The SPE path supports specific architectural features of the SPEs, including automatic exploitation

of their vector architecture.

The compiler employs established methods in the area of automatic SIMD’ization. The unroll-and-

pack and loop-based approaches are combined in order to extract both SIMD parallelism within basic

blocks (e.g., manually unrolled loops), as well as between loop iterations (by using loop blocking).

The compiler also attempts to minimize data reorganization due to compile-time or run-time data

misalignment. Strong emphasis is put on efficient instruction scheduling with the goal of minimizing

the length of the critical path, and the technique of bundling is utilized to satisfy constraints to enable

dual issue. Special attention is devoted to specific architectural constraints of the SPEs. One example

is the prevention of the instruction fetch starvation due to the fact that a single local memory port is

shared between memory instructions and instruction fetch. Another example can be efficient branch

hinting with constraints on the distance between the hint and the branch.

The compiler relies on the existing infrastructure of the IBM XL compiler and includes a high-level

optimizer called the Toronto Portable Optimizer (TPO), which applies both intraprocedural optimiza-
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tions and interprocedural optimizations. Automatic parallelization is based on the OpenMP program-

ming model, which provides the programmer with the abstraction of single shared-memory address

space. OpenMP directives can be used to identify parallel code regions, and the compiler takes

care of producing code sections for the PPE and the SPEs. The PPE executes the OpenMP master

thread, which uses the runtime library to distribute the work to the SPEs. The SPEs use DMAs to

fetch tasks from a queue. The compiler-controlled software cache mechanism is utilized to improve

performance of the single shared-memory abstraction. Automatic code partitioning and the mecha-

nism of overlays are employed collaboratively by the compiler and the runtime environment to reduce

the impact of local store limitations.

7.2 RapidMind

Both the RapidMind [11, 12] and PeakStream [13] (see next section 7.3) development environments

provide extensions to common programming languages like C or C++ for the development of high

performance applications that can be run on multi-core processors like the CELL Broadband Engine,

GPUs, etc. The source code that makes use of the provided APIs is translated by means of a Just-in-

Time compiler into a parallel program that is capable of exploiting the multiple execution units present

on the target host.

RapidMind provides a software development platform that allows the developer to use standard

C++ programming to create high performance and massively parallel applications that run on the

GPU, the CELL BE and multi-core CPUs. The RapidMind platform acts as an embedded program-

ming language inside C++. It is built around a small set of types that can be used to capture and spec-

ify arbitrary computations. Arbitrary functions, including control flow, can be specified dynamically.

Parallel execution is primarily invoked by applying these functions to arrays, which generates new

arrays. Access patterns on arrays allow data to be collected and redistributed. Collective operations,

such as scatter, gather, and programmable reduction, support other standard parallel communication

patterns and complete the programming model.

The RapidMind platform includes an extensive runtime component as well as interface and dy-

namic compilation components. The runtime component automates common tasks such as task

queuing, data streaming, data transfer, synchronization, and load-balancing. It asynchronously man-

ages tasks executing on remote processors and manages data transfers to and from distributed

memory. This runtime component provides a framework for efficient parallel execution of the compu-

tation specified by the main program.
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7.3 PeakStream

PeakStream [13] is a comprehensive application development platform designed to maximize the

floating point power of multi-core processors, such as the CELL Broadband Engine. It consists of

four major components: the PeakStream APIs, the PeakStream VM, the PeakStream Profiler and

the PeakStream Debugger. The application is coded to use the PeakStream APIs and linked against

the PeakStream Virtual Machine (VM) libraries. The libraries handle all of the interaction details with

the processor. When the application uses the PeakStream APIs to perform mathematical operations,

e.g., addition or use of math library functions like exp, those API calls are processed by the Virtual

Machine. The Virtual Machine then creates optimized parallel kernels that are executed on the pro-

cessor on a Just-in-Time (JIT) basis. The application must use explicit I/O calls (read and write) to

move data into and out of the VM. Use of arrays as the fundamental data type in the PeakStream

Platform, coupled with dynamic translation of programs, has the effect of decoupling the application

programming model from the programming model of the processor being used. The VM has de-

tailed knowledge of the specific processor being used (GPU/CELL/CPU). It performs optimizations

necessary to make the application’s array-based code perform well, providing results with adequate

precision and accuracy.

The PeakStream Platform supports use of the C and C++ languages for application development.

Language bindings to platform operations are provided by a set of header files and shared libraries.

7.4 MPI Microtask

The MPI Microtask [14] is a research project at IBM. The approach is based on the fact that the MPI

message passing model expresses parallelism (both data and pipeline parallelism) through messag-

ing and allows identification of tasks and their dependencies by analyzing communication patterns.

The system consists of a preprocessor and a runtime environment, where the preprocessor responsi-

bilities include task graph generation, task clustering, and scheduling of clusters of tasks. At the same

time, the runtime environment takes care of synchronization, context switching and message buffer

management. The model allows the preprocessor and runtime system to optimize the scheduling of

computation and communication by taking advantage of the communication explicitly expressed in

the code.

The MPI Microtask approach eliminates the burden of managing the local store and only requires

the programmer to partition the application into a collection of small microtasks that fit into the local

store. A microtask can be compared to a virtual SPE, which uses the MPI to communicate with

other microtasks. The execution of microtasks is optimized by exploiting the explicit communication

of the MPI model. A special, supportive microtask runs on the PPE, where code size restrictions are

nonexistent, and calls supportive OS services, like I/O operations. The dynamic process model of
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MPI-2 is adopted, where the supportive microtask spawns smaller microtasks in a recursive process,

until the microtasks fit into the local store. MPI communicators are used to identify communication

contexts.

The model also introduces the concept of a basic task, which is a unit of computation that causes

communication only at its beginning and end, and corresponds to a computation kernel in stream

programming languages. Basic task is analogous to the concept of a basic block, which is a portion

of code with no jump or jump target in the middle. It is the preprocessor’s responsibility to divide

each microtask into a collection of basic tasks and group basic tasks with strong dependencies

together in clusters in an attempt to minimize the number of context switches. The system implements

a static scheduling algorithm with a dynamic programming method. A task precedence graph is

constructed in the form of a direct acyclic graph (DAG), where nodes represent basic tasks and edges

correspond to pairs of sends and receives. The scheduler identifies basic tasks that can be executed

independently (in parallel) by examining their dependencies and then applies various optimizations.

7.5 Cell Superscalar

Cell Superscalar (CellSs) [15] is a framework being developed at the Barcelona Supercomputer Cen-

ter (http://www.bsc.es/cellsuperscalar) and is a derivative of a former project, Grid Super-

scalar, targeted for Grid computing and a precursor for a companion project, SMP Superscalar aimed

at generic, multi-core architectures.

CellSs employs techniques borrowed from the field of computer architecture, such as data de-

pendency analysis, data renaming and locality exploitation, to perform automatic parallelization of

sequential code at the time of execution. The programmer writes sequential code, where SPE func-

tions are annotated with compiler directives (pragmas - somewhat similar to OpenMP), which identify

input and output arguments. The execution environment consists of a source-to-source compiler and

a runtime library. Execution is based on a data dependency graph, where each node represents

an instance of an SPE function and edges denote data dependencies. At runtime, the PPE takes

care of task generation by completely unrolling the loops in the code and dynamic scheduling of the

tasks. Parallelism is exploited by scheduling independent nodes to different SPEs at the same time.

Dependent tasks are scheduled to the same SPE to facilitate data reuse. Priority hints can be used

to help identify the critical path for more efficient scheduling and tasks are scheduled in batches to

enable communication overlapping by double buffering.

The CellSs tool does not perform automatic SIMD’ization of the SPE code. Other tools have to be

used for this purpose, like the Octopiler. Manual SIMD’ization is another option. CellSs also enables

for collection of execution traces and their visualization using the Paraver package.
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7.6 The Sequoia Language

Sequoia [16] is a programming language whose goal is portable programs that can efficiently use

various memory hierarchies. Program execution is prescribed in the form of tasks that are to be im-

plemented as functions. Parallel execution happens at special loop constructs that map the execution

to smaller tasks. A task is associated with a node of the memory hierarchy tree. And invoking a task

makes a copy of data between levels of the hierarchy, which is the only way that tasks communi-

cate with each other. The memory hierarchy can be presented to the Sequoia compiler as having

virtual levels not present in the actual hardware. This allows adding additional channels of commu-

nication between tasks. Such could be the case for distributed memory systems, which need explicit

message passing to communicate data. Adding a virtual global shared memory in the Sequoia’s hi-

erarchy allows generation of the runtime code that explicitly exchanges messages rather than make

local memory copies.

Sequoia has an implementation for the IBM CELL blade. The CELL hardware is presented to the

Sequoia compiler as a three-level hierarchy with main memory, local stores and the register file. The

computational kernels such as SGEMM, FFT3D, GRAVITY, and HMMER scale relatively well with

the number of SPEs. And bandwidth intensive kernels such as SAXPY and SGEMV scale with the

available bandwidth. The CELL implementation of these kernels uses the SPE intrinsincs for efficient

vectorization.

7.7 Mercury Multi-Core Framework

The Mercury Multi-Core Framework (MCF) library [17] is an API for programming the CELL proces-

sor using the function offload engine (FOE), with emphasis on exploiting data parallelism. The PPE

plays the role of the manager responsible for running the control plane code, while the SPEs are the

workers responsible for running the processing plane code. The SPEs run a tiny 12KB kernel, which

facilitates synchronization, communication, shared allocations, and quick loading of worker tasks.

The processing units are organized into a network represented by a network handle and consist of

one manager and a set of workers. The network handle is a container for tasks, plugins, messages,

queues, allocations, teams, and synchronization objects. The members of the network can be parti-

tioned into teams, represented by a team handle. An MCF team of workers can be directed by the

manager to perform a task. A worker can only perform a task upon the manager command. Form

the manager standpoint, tasks are non-blocking. After launching a task, the manager is free to per-

form other activities while the workers perform their assigned tasks. Workers, however, run tasks to

completion, and each worker may perform only one task at a time. Plugins, on the other hand, are

functions that cat be dynamically loaded, run, and unloaded by a worker without any interaction from

the manager. Also, plugins can be loaded in a non-blocking fashion, which allows for communication
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and computation overlapping for code in the same way as it is usually applied to data. In other words,

the technique of double buffering can be applied to code as well. Workers can be synchronized using

barriers or semaphores. Bulk data transfers are facilitated by the DMA API, similar to the one in the

standard SDK. MCF also provides mailbox messages and message queues, implementing two-sided

communication similar to the MPI model. An interesting concept in the library is the channel abstrac-

tion, which significantly simplifies DMA communication by relying on simple put and get operations

and automatically takes care of tiling the data in any number of dimensions as well as facilitating dou-

ble buffering at the same time. MCF includes a classic histogram profiling mechanism for collecting

execution statistics. It also facilitates collection of execution traces, which can be visualized using

Mercury’s tool, TATL.
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Application Examples

8.1 CELL Processor

8.1.1 Dense Linear Algebra

A fundamental capability of computers is to solve dense systems of linear equations. Also, it is

the established way of benchmarking most powerful computers, which are currently ranked on the

TOP500 list (http://www.top500.org/) according to their score on the Linpack benchmark [18],

a linear system solver based on Gaussian elimination with partial pivoting. Unfortunately for the

CELL processor, Linpack is defined in double precision, where the CELL delivers respectable but

not astonishing performance. Results for the initial implementation of the Linpack benchmark in

double precision were reported by Chen et al. [19]. For a matrix of size 2Kx2K they achieved 11.05

Gflop/s, which is around 75% of the double precision peak. They have also implemented a single

precision version of the code, which achieved 155 Gflop/s (again around 75%efficiency) for a matrix

of size 4Kx4K. Unfortunately, a single precision algorithm does not legitimately implement the Linpack

benchmark,. This is where the idea of iterative refinement comes into play.

Iterative refinement is a well known method for improving the solution of a linear system of equa-

tions of the form Ax = b. First, the coefficient matrix A is factorized using LU decomposition into the

product of a lower triangular matrix L and an upper triangular matrix U . Partial row pivoting is used

to maintain numerical stability resulting in the factorization PA = LU , where P is the row permutation
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matrix. The system is solved by solving Ly = Pb (forward substitution) and then solving Ux = y (back-

ward substitution). Due to the roundoff error, the solution carries an error related to the condition

number of the coefficient matrix A. In order to improve the computed solution, an iterative refinement

process is applied, which produces a correction to the computed solution, x, at each iteration, which

then yields the basic iterative refinement algorithm (Algorithm 1).

Algorithm 1 Iterative refinement of the solution of a system of linear equations using

MatlabTMnotation.
repeat

r = b−Ax
z = L\(U\Pr)

x = x + z
until x is accurate enough

The algorithm can be modified to use a mixed-precision approach. The factorization PA = LU
and the solution of the triangular systems Ly = Pb and Ux = y are computed using single precision

arithmetic. The residual calculation and the update of the solution are computed using double pre-

cision arithmetic and the original double precision coefficients. The most computationally expensive

operations, including the factorization of the coefficient matrix A and the forward and backward sub-

stitution, are performed using single precision arithmetic and take advantage of the single precision

speed. The only operations executed in double precision are the residual calculation and the update

of the solution. It can be observed that all operations of O(n3) computational complexity are handled

in single precision, and all operations performed in double precision are of at most O(n2) complexity.

The coefficient matrix A is converted to single precision for the LU factorization. At the same time,

the original matrix in double precision is preserved for the residual calculation.

Our initial implementation of the mixed-precision Linpack benchmark [20] placed the CELL pro-

cessor on the Linpack Report [21] with performance close to 100 Gflop/s (Figure 8.1). More recently,

we have implemented a similar mixed-precision solver based on the Cholesky factorization for sym-

metric positive definite systems, where both the computation intensive steps of the factorization, as

well as the memory intensive steps of the refinement, were much better optimized and achieved

performance in excess of 155 Gflop/s (Figure 8.2).

8.1.2 Sparse Linear Algebra

The CELL processor is not best suited for sparse matrix operations. These operations are memory

bound. This means that the computational power of the processor cannot be fully exploited. In

this respect, the CELL is not different than any other processor since, on modern architectures,

the bus bandwidth still represents a major bottleneck. This is the reason why it is not possible to
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Figure 8.1: Mixed-precision solver based on LU factorization.
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Figure 8.2: Mixed-precision solver based on Cholesky factorization.

achieve high performance even for BLAS-2 dense operations (though they are relatively much easier

to implement).

The phenomenon that makes the dense operations run close to the peek floating point perfor-

mance is the surface-to-volume effect. Typically, in case of a dense problem of size n, n3 operations

are performed on n2 amount of data. If only the problem size is large enough, the communication

will take less time than the computation, and can be completely hidden. Unfortunately, the surface-
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to-volume effect does not apply to sparse operations.

Since, for sparse operations, communication is more expensive than computation, a perfectly op-

timized code will only run, at most, at the speed of the memory bus. In a sparse matrix-vector product

operation 2 ·nnz floating-point operations are performed (where nnz is the number of nonzeroes in the

matrix) and nnz + O(n) values are transferred from memory to the processor (the O(n) value comes

from the movement of the source and destination vectors). Thus, assuming that the CELL bus speed

is 25.6 GB/s and that a single precision floating-point value is four bytes, the upper-bound speed for

this operation is:

per f =
2 ·nnz

(nnz + O(n)) ·4/25.6
< 12.8G f lop/s

This upper bound means that, at best, it is possible to achieve an efficiency of

12.8/204.8$ 0.06 = 6%. For other standard architectures (like the x86 family), the efficiency can

be 30% or more. It is, of course, a higher fraction of a much lower peak.

Even though 12.8 Gflop/s is a remarkable speed (higher than conventional processors), in prac-

tice the maximum possible performance can be much lower because, in general, the O(n) term is not

negligible at all. Moreover, it is very difficult to transfer and crunch the data at full speed because it

can be very hard to apply the programming rules described in section 6.1. The main problems come

from:

! Vectorization: It is a pretty hard task to vectorize operations on sparse data. Conventional

approaches are the usage of block storage formats (like BCSR), diagonal storage formats (like

JAD), or the use of techniques like the segmented scan. In the first case, there is substantial

overhead due to the presence of fill-in elements that have to be introduced when the matrix

does not have an intrinsic block structure. The diagonal storage formats and the segmented

scan technique rely on the availability of gather operations in the ISA that are not included in

the CELL instruction set.

! Memory alignment: The highest transfer rates are achieved on a CELL platform only when

both the source (on the global storage) and destination (on the SPE local storage) addresses

are 128-bit aligned and when the size of the transfer is a multiple of 128 bits. Because of the

sparse nature of the data, and of the heavy use of indirect addressing, it is very hard to follow

a regular access pattern to memory on aligned locations.

! Double Buffering: Due to the nature of the data, it is not possible to know a priori how much

data will be moved from the global memory to the SPE local memory at each step of an

algorithm/operation, and in the general case this quantity will be different at every step. This

may result in poor overlapping between communications and computations.

! Unrolling: In the general case, it is not possible to know the length of loops, which makes it

hard to unroll them.
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! Reduction of the number of branches: It is not always possible because of the use of indirect

addressing.

There are some lucky cases, like tridiagonal matrices (see Figure 8.3), where it is possible to

follow a very regular memory access pattern and, thus, reduce all the problems listed above. In this

case, the O(n) term is not negligible since nnz$ 3n. However, when implementing an algorithm like

the Preconditioned Conjugate Gradient (PCG), it is possible to group operations in order to reuse

the data that has been fetched into the SPEs local memories, which increases the ratio between

floating point operations and data movement. Based on this approach, we developed a version of the

PCG algorithm, with Jacobi preconditioner, for tri-diagonal matrices capable of running at around 6.6

Gflop/s.
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Figure 8.3: A tridiagonal (sparse) matrix.

8.1.3 Fast Fourier Transform

One way of looking at the CELL processor is to treat it as eight digital signal processors (DSP),

augmented with a control processor, on a single chip. Along with the fact that the processing units

are interconnected with an extremely powerful bus, the features make it ideal for signal processing

applications, which mostly translates to fast Fourier transform (FFT) code.

An early implementation of an FFT algorithm was reported by IBM for a fixed size input data set

of 16 million (224) single precision complex samples [22]. The algorithm used is a modified stride-

by-1 algorithm, proposed by David Bailey in 1986 and based on Stockham self-sorting FFT. The
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stride-by-1 approach allows for natural partitioning of the array without data rearrangement, which

simplifies parallel execution by SIMD instructions. Performance relies on SIMD’ization and manual

unrolling. The transposition needed in the algorithm is performed with a combination of shuffles and

DMAs. Double buffering is used to hide communication latencies. The performance of 46.8 Gflop/s

was reported using the standard 5 N logN metric. The code is distributed along with the SDK and

resides in the location file:///opt/ibm/cell-sdk/prototype/src/workloads/FFT16M/spu.

Mercury Computer Systems investigated an implementation of an FFT algorithm of a fixed size

of 64K complex elements [23, 24]. The size was chosen such that the data set does not fit in a

single local store, but does fit in all the local stores combined. The algorithm is based on a classic

2D decomposition of a 1D FFT, where an N-element FFT is viewed as an 2D NR×NC matrix. NC
NR-point column FFTs are followed by element-wise multiplication by an NR×NC matrix of twiddle

factors, NR NC-point row FFTs, and a transposition of the NR×NC matrix to the NC×NR matrix.

Each SPE processes a 256×32 region with a SIMD-vectorized code. First, 32 column FFTs are

performed. Then each 32×32 tile is multiplied by the twiddle factors and transposed, with the twiddle

factors generated on the fly. Processing of the 32× 32 tiles is pipelined, so that communication

between SPEs is overlapped with computation. Then, 32 row FFTs are performed. At the end,

the output dataset is assembled in the main memory, also subject to overlapping of processing and

communication.

Using the 5 N logN metric, the theoretical model of the algorithm estimates performance of the

algorithm for almost 60 Gflop/s in the sense of latency (single computation from the beginning to the

end) and 100 Gflop/s for the throughput (consecutive execution of many repetitions). In an actual run,

the throughput of 90 Gflop/s was achieved, which means around 30 times higher speed than can be

achieved by a standard processor.

8.2 PlayStation 3 Cluster

8.2.1 The SUMMA Algorithm

The SUMMA [25, 26] algorithm for parallel matrix multiplication is very flexible and very effective.

Since SUMMA can be defined as a block algorithm, high performance is achieved using BLAS-3

operations to carry out local computations (in particular using the _GEMM operation). Block-cyclic

storage formats can be used with SUMMA, which allows a better exploitation of the fast BLAS-3

operations on each node. Moreover, communication and computation can be easily overlapped,

providing even more performance and scalability. In the following discussion, we are assuming a

non-cyclic but block storage for the matrices. In fact, even though the block storage is not a strict

requirement on standard architectures (but is still recommended to achieve higher data locality and,

thus, higher performance), it is almost mandatory on the CELL since non-block storage may result is
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quite poor performance.

The SUMMA algorithm proceeds through successive steps, where at step i the block column A∗i
and the block row Bi∗ are multiplied in order to update C. The steps of the SUMMA algorithm are

described in Algorithm 2.

Algorithm 2 SUMMA

1: for i = 1 to n/nb do

2: if I own A∗i then

3: Copy A∗i in buf1

4: Bcast buf1 to my proc row

5: end if

6: if I own Bi∗ then

7: Copy bi∗ in buf2

8: Bcast buf2 to my proc column

9: end if

10: C = C + bu f 1×bu f 2

11: end for

The performance of the SUMMA algorithm can be greatly improved by overlapping communica-

tions with computations. On each node (each PlayStation) all the computation is offloaded to the

SPEs. By the same token, the PPE (otherwise idle) can be devoted entirely to handling the commu-

nication. An almost perfect overlap can be achieved by means of a simple double buffering where,

the data for step N + 1 of Algorithm 2 are broadcast in advance at step N.

Our implementation of the SUMMA algorithm offloads the local computation at step 10 of Algo-

rithm 2 to the SPEs. The local computation scales almost linearly with the number of SPEs, and

achieves more than 97% of the peak of all six SPEs. While the local _GEMMs for step k of the algo-

rithm 2 are executed on the SPEs, the PPE handles the communication broadcasting the data needed

for step k + 1. This yields an almost perfect overlapping of communications and computations, what

allows to hide the less expensive of the two phases.

Figure 8.2.1 shows part of the execution log for the SUMMA algorithm on a 2x2 processors grid

for problem size n = 6144. The blue blocks show the MPI data exchange steps while the yellow blocks

are the local _GEMM operations; arrows show the message flows in the processors’ grid. From this

figure it is possible to see that, thanks to the overlapping technique implemented, the less expensive

of the communication and computation phases can be completely hidden. For the problem size

represented in Figure 8.2.1, the local computations cost (i.e. the yellow blocks) can be hidden since

communications are almost three times more expensive (see Figure 8.5 (right)).

Since the algorithm is very simple, it is possible to easily produce a very accurate performance
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Figure 8.4: Gantt chart of the execution of the SUMMA algorithm on a four PlayStation 3s using a 2×2 proces-

sor grid and six SPEs per node.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

100

200

300

400

500

600

problem size

G
flo

p/
s

SUMMA on a 2x2 ps3 grid − 1 SPE

Memory limit

Linear speedup

Model
Measured

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0

100

200

300

400

500

600

problem size

G
flo

p/
s

SUMMA on a 2x2 ps3 grid − 6 SPEs

Memory limit

Linear speedup

Model
Measured

Figure 8.5: The measured performance for the SUMMA algorithm on a 2× 2 PlayStation 3 processor grid. A

comparison is made with the results obtained from a theoretical model.

model under the assumption that, if many decoupled communications are performed at the same

time, they do not affect each other performance-wise. Figure 8.5 shows the experimental results

obtained running our SUMMA implementation on a 2×2 PlayStation 3 processor grid. A comparison

with the model that we developed is presented in the case where one SPE is used for the local
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computations (left) and in the case where all six available SPEs are used (right). The cost of the local

computations is very small when all six SPEs are used; this means that the surface-to-volume effect

only comes into play for very big problem sizes (see Figure 8.5 (right)). Due to the system limitations

in memory (only 256 MB available on each node), it is not possible to have matrices bigger than 6144,

which is pretty far from the point where linear speedup can be achieved (around 16000). When only

one SPE is used on each node, the cost of the local computations is relatively much higher (a factor of

six), and thus the surface-to-volume effect is reached at problem sizes within the limits of the system,

as shown in Figure 8.5 (left). Since the CELL processor can perform double precision arithmetic at a

much lower rate than single precision (a factor of 14), it is possible to achieve linear speedup within

the system memory limits with a double precision SUMMA implementation. Figure 8.5 also shows

that the model is very accurate.

8.3 Distributed Computing

8.3.1 Folding@Home

Folding@Home is a distributed computing project that simulates protein folding in order to understand

and find cures for many well known diseases. One way of joining the Folding@Home effort is to

upgrade the PS3 firmware to version 1.6. The upgrade creates a Folding@Home icon in the Network

column of the PS3 menu. Clicking on the icon will setup the client and perform computations when

the console is idle. Much more information about the project can be found on their website (http:

//folding.stanford.edu/). PS3 is a good fit for such a project. At the time of this writing PS3

consoles accounted for as much as 75% of the combined computational power (measured in Tflop/s)

donated to the project.

Obviously, in the context of distributed computing, a cluster of consoles is better than a single

console as far as computational power is concerned. However, it can become a problem if not

automated. The Folding@Home website currently does not provide an automated way of enabling

the computation on the entire cluster with a single step – each console in the cluster has to be enabled

manually. Also, the Folding@Home client for PS3 does not run on Linux.
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Summary

9.1 Limitations of the PS 3 for Scientific Computing

Although the PlayStation 3 seems to be an attractive solution for high performance computing due to

its high peak performance and low cost (close to $4 per Gflop/s), there are many serious limitations

that have to be taken into account. We list some of the difficulties in achieving high performance.

Main memory access rate. The problem applies to the CELL processor and frankly speaking most

modern processors, and is due to the fact that execution units can generate floating point re-

sults at a speed that is much higher than the speed at which the memory can feed data to

the execution units. The main memory of the CELL processor is capable of a 25.6 GB/s peak

transfer rate, while each SPE has a peak performance of 25.6 Gflop/s in single precision. For a

4 byte long single precision floating point value, a single SPE has to perform four floating point

operations in order to hide the communication. If six SPEs operate concurrently, 4× 6 = 24

operations have to be performed on each single precision value in order to hide the communi-

cation. As explained in section 8.1.2, the ratio cannot be achieved for sparse operations, which

can be performed, at best, at the speed of the memory, which results in the efficiency of only

12.5% of the theoretical peak.

Network interconnect speed. The PlayStation 3 is equipped with a GigaBit Ethernet network in-

terface. The capacity of this interconnect is out of balance if compared with the theoretical
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peak performance of each node. Let us assume that: the theoretical peak performance (153.6

Gflop/s in single precision using the 6 available SPEs) can be achieved on each node, the

full network bandwidth (1 Gbit/s = 0.125 GB/s) can be achieved between the nodes, and it

is possible to completely overlap communication with computations. Linear scaling can be

obtained when local computations are more expensive than network communications. Under

these assumptions, this will only happen when:

n =
153.6∗4

0.125
= 4915.2

floating point operations are performed on every single precision word (four bytes of data)

that is sent/received by a node. This limitation is further exacerbated by the fact that only a

poor fraction of the bandwidth can be achieved. See section 8.2.1 for a practical example.

The bottom line is that only computationally intensive applications can benefit from connecting

multiple PS3s together to form a cluster. Computation, even as floating point intensive as

dense matrix multiply, cannot be effectively parallelized over many PS3s.

Main memory size. The PlayStation 3 is equipped with only 256 MB of main memory. This rep-

resents a serious limitation when combined with the slowness of the network interconnect.

As an example, consider the SUMMA parallel algorithm for dense matrix-matrix multiplication

described in section 8.2.1. If n2 is the number of matrix elements, then n3 operations are per-

formed. It turns out that, in order to achieve linear speedup, the size of the local matrix on

each node has to be at least 4915.6 (see previous bullet). In perfect circumstances this would

require around 288 MB of memory per node (see section 8.2.1 for details).

Double precision performance. Peak performance of double precision floating point arithmetic is

a factor of 14 below the peak performance of single precision. Computations which demand

full precision accuracy will see a peak performance of only 14 Gflop/s, unless mixed-precision

approaches can be applied.

Programing paradigm. One of the most attractive features of the CELL processor is its simple ar-

chitecture and the fact that all its functionalities can be fully controlled by the programmer. In

most other common processors performance can only be obtained with a good exploitation of

cache memories whose behavior can be controlled by the programmer only indirectly. As a

result, the performance of applications developed for the CELL architecture is very predictable

and straightforward to model; it is possible to get very close to the peak performance of the

processor, much more than what can be done on cache based processors. This high per-

formance and predictability, however, comes at a cost. Writing efficient and fast code for the

CELL processor is, in fact, a difficult task since it requires a deep knowledge of the processor

architecture, of the development environment and some experience. High performance can

only be achieved if very low level code is produced that is on the border line between high
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level languages and assembly. Besides requiring a lot of effort, source code developed for the

CELL processor is not portable at all on other architectures. Even though higher level program-

ming models have been proposed for the CELL processor (see section 7), it is only possible to

achieve a small portion of the processor’s performance relying on them.

The bottom line is that the PlayStation 3’s attractiveness for scientific computations will depend

on the application’s characteristics. For many applications, the limitations noted above will render the

PlayStation 3 ineffective for clustering and severely limited for many scientific computations.

9.2 CELL Processor Resources

9.3 Future
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APPENDIX A

Acronyms

BLAS Basic Linear Algebra Subprograms

CBE CELL Broadband Engine

CISC Complex Instruction Set Computer

DMA Direct Memory Access

EIB Element Interconnect Bus

Gflop/s Giga floating-point operations per second

GPR General Purpose Register

GPU Graphics Processing Unit

FFT Fast Fourier Transform

IEEE 754 IEEE Standard for Binary Floating-Point Arithmetic

ISA Instruction Set Architecture

MFC Memory Flow Controller

MMU Memory Management Unit
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MPI Message Passing Interface

NFS Network File System

NIC Network Interface Card

NUMA NonUniform Memory Access

PPE Power Processor Element

PPU Power Processor Unit

PS3 PlayStation 3

PTE Page-Table Entry

RAM Random Access Memory

RISC Reduced Instruction Set Computer

SDK Software Development Kit

SMT Simultaneous MultiThreading

SPE Synergistic Processing Element

SPU Synergistic Processing Unit

SUMMA Scalable Universal Matrix Multiplication Algorithm

TLB Translation Look-aside Buffer

VLIW Very Long Instruction Word

XDR high-performance RAM from Rambus (also: eXternal Data Representation)
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