
J. Parallel Distrib. Comput. 69 (2009) 711–724
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A repartitioning hypergraph model for dynamic load balancingI

Umit V. Catalyurek a,b,∗, Erik G. Boman c, Karen D. Devine c, Doruk Bozdağ b, Robert T. Heaphy c,
Lee Ann Riesen c
a The Ohio State University, Department of Biomedical Informatics, Columbus, OH 43210, United States
b The Ohio State University, Department of Electrical and Computer Engineering, Columbus, OH 43210, United States
c Sandia National Laboratories, Department of Scalable Algorithms, Albuquerque, NM 87185, United States1

a r t i c l e i n f o

Article history:
Received 5 April 2008
Received in revised form
13 March 2009
Accepted 24 April 2009
Available online 12 May 2009

Keywords:
Dynamic load balancing
Hypergraph partitioning
Parallel algorithms
Scientific computing
Distributed memory computers

a b s t r a c t

In parallel adaptive applications, the computational structure of the applications changes over time,
leading to load imbalances even though the initial load distributions were balanced. To restore balance
and to keep communication volume low in further iterations of the applications, dynamic load balancing
(repartitioning) of the changed computational structure is required. Repartitioning differs from static load
balancing (partitioning) due to the additional requirement of minimizing migration cost to move data
from an existing partition to a new partition. In this paper, we present a novel repartitioning hypergraph
model for dynamic load balancing that accounts for both communication volume in the application and
migration cost to move data, in order to minimize the overall cost. The use of a hypergraph-based model
allows us to accurately model communication costs rather than approximate them with graph-based
models. We show that the new model can be realized using hypergraph partitioning with fixed vertices
and describe our parallel multilevel implementation within the Zoltan load balancing toolkit. To the
best of our knowledge, this is the first implementation for dynamic load balancing based on hypergraph
partitioning. To demonstrate the effectiveness of our approach, we conducted experiments on a Linux
cluster with 1024 processors. The results show that, in terms of reducing total cost, our new model
compares favorably to the graph-based dynamic load balancing approaches, and multilevel approaches
improve the repartitioning quality significantly.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

An important component of many scientific computing ap-
plications is the assignment of computational load onto a set of
processors. In the literature, a two-step approach is commonly
employed to perform this assignment: first tasks are partitioned
into load-balanced clusters of tasks; then these clusters aremapped
to processors [8,37]. In the partitioning step, for an application
where work and data dependencies are known, a common goal
is to minimize the inter-processor communication due to those

I The research was supported in part by the National Science Foundation
under Grants #CNS-0643969 and #CNS-0403342, Ohio Supercomputing Center
#PAS0052, and by the Department of Energy’s Office of Science through the
CSCAPES SciDAC Institute.
∗ Corresponding author at: The Ohio State University, Department of Biomedical
Informatics, 3190 Graves Hall, 333W10th Ave, Columbus, OH 43210, United States.
E-mail addresses: umit@bmi.osu.edu (U.V. Catalyurek), egboman@sandia.gov

(E.G. Boman), kddevin@sandia.gov (K.D. Devine), bozdagd@ece.osu.edu
(D. Bozdağ), lafisk@sandia.gov (L.A. Riesen).
1 Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin company, for the US Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

0743-7315/$ – see front matter© 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2009.04.011
dependencies, while maintaining a computational load balance
among processors. Partitioning occurs at the start of a computation
(static partitioning), but often, reassignment of work is done dur-
ing a computation (dynamic partitioning or repartitioning) as the
work distribution changes over the course of the computation. For
instance, a computational mesh in an adaptive mesh refinement
simulation is updated between time-steps. Therefore, after several
steps, even an initially balanced assignment of work to processors
may suffer serious imbalances. To maintain the balance in subse-
quent computation steps, a repartitioning procedure that moves
data among processors needs to be applied periodically.
Repartitioning is a well-studied problem [14,15,21,27,33,39–

41,44,46,47] that has multiple objectives with complicated trade-
offs among them:
(1) balanced load in the new data distribution;
(2) low communication costwithin the application (as determined
by the new distribution);

(3) low data migration cost to move data from the old to the new
distribution; and

(4) short repartitioning time.

Total application execution time is commonly modeled [31,39] as
follows to account for these objectives:
ttot = α(tcomp + tcomm)+ tmig + trepart . (1)

http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:umit@bmi.osu.edu
mailto:egboman@sandia.gov
mailto:kddevin@sandia.gov
mailto:bozdagd@ece.osu.edu
mailto:lafisk@sandia.gov
http://dx.doi.org/10.1016/j.jpdc.2009.04.011

712 U.V. Catalyurek et al. / J. Parallel Distrib. Comput. 69 (2009) 711–724
Here, tcomp and tcomm denote the application’s computation and
communication times, respectively, in a single iteration of the
application; tmig is the data migration time from existing to new
distribution; and trepart is the time to compute the new distribution
(also called repartitioning time, hence the name). The parameter α
indicates how many iterations (e.g., time-steps in a simulation) of
the application are executed between each load-balance operation.
The computation time tcomp of a parallel application is

minimized when the computational load is evenly distributed on
the set of processors. Since achieving load balance is the main
constraint on repartitioning algorithms, we can safely assume
that the computational load will be balanced; hence tcomp is
inherently minimized by the repartitioning algorithm. Further, we
will assume that the time required to produce a new partitioning
is much smaller than αtcomp. This is typical in scientific computing
applications, where often a linear or nonlinear solve is required
at each time-step; so tcomp is relatively large. (If explicit numerical
methods are used, tcomp is smaller but then usually alpha is large.)
As a result, tcomp and trepart in (1) can be ignored; the cost function
to be minimized by the repartitioning algorithm reduces to
costtime = αtcomm + tmig . (2)
Because time for communication depends on a number of archi
tecture-specific factors (e.g., network topology, message latency),
general partitioningmodels typically assume that the time spent in
communication is proportional to the ‘‘volume’’ of communication,
i.e., the amount of data being sent [23]. Thus, the cost function to
be minimized by the repartitioning algorithm becomes
costvol = αbcomm + bmig (3)
where bcomm is the amount of data sent in each iteration of the
application and bmig is the amount of data sent during migration.
The main contributions of this work are two-fold. First, we

present a repartitioning hypergraph model that minimizes the sum
of total communication volume in the application and migration
cost to move data, as stated in (3). Hypergraphs accurately model
the actual application communication cost and have greater ap-
plicability than graphs (e.g., hypergraphs can represent non-
symmetric and/or non-square systems) [11]. Therefore, the actual
value of bcomm is considered in the proposed model, rather than its
approximation as in the case of graph-based models [23]. Further-
more, in our repartitioning hypergraphmodel, communication and
migration costs are appropriately combined to allow reuse of ex-
isting hypergraph partitioners for repartitioning.
Second, we present a new hypergraph-based parallel reparti-

tioning tool. The new model can be realized effectively with a hy-
pergraph partitioning tool that provides hypergraph partitioning
with fixed vertices. Although serial hypergraph partitioners with
this feature exist ([3,12]), to the best of our knowledge our imple-
mentation in the Zoltan Dynamic Load Balancing Toolkit [18] is the
first parallel hypergraph partitioner that can handle fixed vertices.
Our repartitioning hypergraph model was first introduced in

our preliminary work in [10]. This current paper provides a more
detailed description of the repartitioning hypergraph model, as
well as background and the related work, and extends the expe-
rimental results significantly. In this paper,we also present reparti-
tioning results up to 1024 processors. In addition, we present
results from two real applications and include results for a new
variation of repartitioning not presented before.
The remainder of this paper is organized as follows. In Section 2,

we discuss previous work on dynamic load balancing. We present
preliminaries for hypergraph partitioning andmultilevel partition-
ing in Section 3. The details of the proposed repartitioning hyper-
graph model are presented in Section 4. Section 5 describes the
parallel hypergraph-based repartitioning algorithm developed
within the Zoltan toolkit. Section 6 includes a detailed empirical
comparison of various graph- and hypergraph-based repartition-
ing approaches. Finally, in Section 7, we give our conclusions and
suggest future work.
2. Related work

Dynamic load balancing approaches can be classified into three
main categories: scratch-remap, incremental and repartitioning. In
scratch-remap methods, the computational model representing
themodified structure of the application is partitioned from scratch
without accounting for existing part assignments. Then, old and
new partitions are remapped to minimize the migration cost
[33,40]. In incremental methods, existing part assignments are
used as initial assignments and incrementally improved by using
a sub-optimal cost function that minimizes either data migration
cost (diffusivemethods) or application communication cost (refine-
ment methods). In repartitioning methods, existing part assign-
ments are taken into account tominimize both datamigration cost
and application communication cost as stated in (3).
Another way of classifying dynamic load balancing methods

is with respect to the computational models they use. There are
three computational models commonly used in the literature.
These are coordinate-based, graph-based and hypergraph–based
models. Table 1 summarizes properties of dynamic load balancing
approaches in each category.
Some of the early dynamic load balancing techniques are

coordinate-based approaches such as Recursive Coordinate Bisec-
tion [4] and Space-Filling Curves [34,36,45]. These approaches can
be applied either from scratch or incrementally. They require geo-
metric coordinates and do not model communication or migration
costs explicitly. Still, due to the structure of the application data,
they often work reasonably well for mesh partitioning.
Diffusive methods have been one of the most studied incre-

mental dynamic load balancing techniques in the literature [14,
27,38,44,46]. In diffusive load balancing, extra work on overloaded
processors is distributed to neighboring processors that have less
than average loads. This strategy inherently limits data migration
cost. Some diffusivemethods explicitly try tominimize application
communication cost using an approximation model (e.g., [38]);
however, since each minimization is done independently, these
methods are not equivalent to global minimization of total costs
in (3).
Even though scratch-remap schemes achieve low communica-

tion volume, they often result in high migration cost. On the other
hand, incremental methods result in low migration cost, but they
may incur moderate to high communication volume. In dynamic
load balancing, it is desirable that the repartitioning algorithm is
sensitive to the iteration parameter α, so that the relative weight
of communication cost to migration cost in (3) can be adjusted by
the application developer. Skewed Graph Partitioning introduced
by Hendrickson et al. [26] gives such a control to the application
developer, by giving each vertex a desire to stay in its current pro-
cessor. Schloegel et al. [39] proposed a parallel adaptive reparti-
tioning scheme, where the relative importance of migration time
against communication time is set by a user-provided parameter.
Their work is based on themultilevel graph partitioning paradigm,
and this parameter is taken into account in the refinement phase
of the multilevel scheme. Aykanat et al. [2] proposed a graph-
based repartitioning model, called RM model, where the original
computational graph is augmented with new vertices and edges
to account for the migration cost. Then, repartitioning with fixed
vertices is applied to the graph using RM-METIS, a serial reparti-
tioning tool that the authors developed, by modifying the graph
partitioning toolMETIS [29]. Although the approaches of Hendrick-
son et al. [26], Schloegel et al. [39] and Aykanat et al. [2] attempt
to minimize both communication and migration costs, their ap-
plicability is limited to problems with symmetric, bi-directional
dependencies. A hypergraph-basedmodel is proposed in a concur-
rent work of Cambazoglu and Aykanat [9] for the adaptive screen
partitioning problem in the context of image-space-parallel direct

U.V. Catalyurek et al. / J. Parallel Distrib. Comput. 69 (2009) 711–724 713
Table 1
Classification of dynamic load balancing approaches, with their relative migration costs, application communication costs, and communication model.

Category Property Coordinate-based Graph-based Hypergraph-based

Migration cost High High High
Scratch-remap Communication cost High Low Low

Communication model None Approximate Accurate

Migration cost Moderate Low Low
Incremental Communication cost High Moderate Moderate

Communication model None Approximate Accurate

Migration cost n/a Low Low
Repartitioning Communication cost n/a Low Low

Communication model None Approximate Accurate
volume rendering of unstructured grids. Despite the fact that the
limitationsmentioned above for graph-basedmodels do not apply,
their model accounts only for migration cost since communication
occurs merely for data replication (migration) in that problem.

3. Preliminaries

In this section,wepresent a brief description of hypergraphpar-
titioning with fixed vertices as well as the multilevel partitioning
paradigm.

3.1. Hypergraph partitioning with fixed vertices

Hypergraphs can be viewed as generalizations of graphs where
an edge is not restricted to connect only two vertices. Formally, a
hypergraph H = (V ,N) is defined by a set of vertices V and a set
of nets (hyperedges) N , where each net nj ∈ N is a non-empty
subset of vertices. A non-negative weight wi can be assigned to
each vertex vi ∈ V . Similarly, a non-negative cost cj can be assigned
to each net nj ∈ N .
P = {V1, V2, . . . , Vk} is called a k-way partition of H if each part

Vp, p = 1, 2, . . . , k, is a non-empty, pairwise-disjoint subset of V
and ∪kp=1 Vp = V . A partition is said to be balanced if

Wp ≤ Wavg(1+ ε) for p = 1, 2, . . . , k, (4)

where part weight Wp =
∑

vi∈Vp
wi and Wavg =

(∑
vi∈V

wi

)
/k,

and ε > 0 is a predetermined maximum tolerable imbalance.
In a given partition P , a net that has at least one vertex in a part is

considered to be connected to that part. The connectivity λj of a net
nj denotes the number of parts connected by nj under the partition
P of H . A net nj is said to be cut if it connects more than one part
(i.e., λj > 1).
Let CutCost(H, P) denote the cost associated with a par-

tition P of hypergraph H . There are various ways to define
CutCost(H, P) [32]. The relevant one for our context is known as
connectivity-1 (or k-1) metric, defined as follows:

CutCost(H, P) =
∑
nj∈N

cj(λj − 1). (5)

We prefer this cost metric because it exactly corresponds
to communication volume in parallel computing for important
operations like matrix-vector multiplication [11]. The standard
hypergraph partitioning problem [32] can then be stated as the
task of dividing a hypergraph into k parts such that the cost (5)
is minimized while the balance criterion (4) is maintained.
Hypergraph partitioning with fixed vertices is a more constrained

version of the standard hypergraph partitioning problem. In this
problem, in addition to the input hypergraph H and the requested
number of parts k, a fixed part function f (v) is also provided as
an input to the problem. A vertex is said to be free (denoted by
f (v) = −1) if it is allowed to be in any part in the solution P , and
it is said to be fixed in part q (f (v) = q for 1 ≤ q ≤ k) if it is
required to be in Vq in the final solution P . If a significant portion of
the vertices are fixed, it is expected that the partitioning problem
becomes easier. Clearly, in the extreme case where all the vertices
are fixed (i.e., f (v) 6= −1 for all v ∈ V), the solution is trivial.
Empirical studies of Alpert et al. [1] verify that the presence of
fixed vertices canmake a partitioning instance considerably easier.
However, to the best of our knowledge, there is no theoreticalwork
on the complexity of the problem. Experience shows that if only a
very small fraction of vertices are fixed, the problem is almost as
‘‘hard’’ as the standard hypergraph partitioning problem.

3.2. Multilevel partitioning paradigm

Although graph and hypergraph partitioning are NP-hard [22,
32], several algorithms based on multilevel paradigms [7,25,28]
have been shown to compute high quality partitions in reasonable
time. In addition to serial partitioners for graphs [24,29,43] and
hypergraphs [12,30], the multilevel partitioning paradigm has
been adopted by parallel graph [43,31] and, quite recently, hyper-
graph [17,42] partitioners as well.
Multilevel partitioning consists of three phases: coarsening,

coarse partitioning and refinement. Instead of partitioning the
original hypergraph directly, a hierarchy of smaller hypergraphs
that approximate the original one is generated during the
coarsening phase. The smallest hypergraph obtained at the end of
the coarsening phase is partitioned in the coarse partitioning phase.
Finally, in the refinement phase, the coarse partition is projected
back to the larger hypergraphs in the hierarchy and improvedusing
a local optimizationmethod. The same procedure applies to graphs
as well.
In Section 5, we describe a technique for parallel multilevel hy-

pergraph partitioningwith fixed vertices [10]. The implementation
is based on the parallel hypergraph partitioner [17] in Zoltan.

4. Repartitioning hypergraph model

In this section, we present our novel hypergraphmodel and ex-
plain how it accounts for the trade-off between communication
and migration costs due to different values of α. By representing
these costs appropriately in a repartitioning hypergraph, the pro-
posed approach allows the use of existing hypergraph partitioning
tools to optimize the composite objective defined in (3).
We call the period between two subsequent load balancing

operations an epoch of the application. An epoch consists of
one or more computation iterations. The computational load and
data dependencies of an epoch are known at the beginning of
the epoch and can be accurately modeled with a computational
hypergraph [11]. Even though computations in the application are
of the same type, a different hypergraph is needed to represent
each epoch due to changes in the structure of the hypergraph
across epochs. We denote the hypergraph that models the jth

714 U.V. Catalyurek et al. / J. Parallel Distrib. Comput. 69 (2009) 711–724
epoch of the application by H j = (V j,N j) and the number of
computation iterations in that epoch by αj.
Load balancing for the first epoch is achieved by partitioning

H1 using a static partitioner. For the remaining epochs, data
redistribution cost between the previous and current epochs
should also be includedduring load balancing. Therefore, the actual
cost (3) is the sum of the communication cost bcomm forH j with the
new data distribution, scaled by αj, and the migration cost bmig for
moving data between the distributions in epochs j− 1 and j.
Our new repartitioning hypergraph model appropriately cap-

tures both application communication and datamigration costs as-
sociated with an epoch. To model migration costs in epoch j, we
construct a repartitioning hypergraph H̄ j = (V̄ j, N̄ j) by augment-
ingH j with k new vertices corresponding to each of the k parts, and
|V j| new hyperedges using the following procedure:

• Scale each net’s cost (representing application communication)
in N j by αj while keeping the vertex weights intact.
• Add a new part vertex ui with zero weight for each part i, and
fix those vertices in respective parts; i.e., f (ui) = i for i =
1, 2, . . . , k. Hence V̄ j becomes V j ∪ {ui|i = 1, 2, . . . , k}.
• For each vertex v ∈ V j, add a migration net nv between v and
ui if v is assigned to part i at the beginning of epoch j. Set the
migration net’s cost cv to the size of the data associated with v,
since this migration net represents the cost of moving vertex v
to a different part.

Once the new repartitioning hypergraph H̄ j that encodes
both communication and migration costs is constructed, the
repartitioning problem reduces to hypergraph partitioning with
fixed vertices using the connectivity-1 metric (5).
Let P̄ = {V̄1, V̄2, . . . , V̄k} be a valid partition of H̄ j. Since

fixed part vertices have zero weights, part weights are equal
to the sum of the computational vertices’ weights. Therefore,
maintaining the balance criterion (4) in this partition corresponds
to having a balanced computation in epoch j. Minimizing the
connectivity-1 cost metric (5) exactly corresponds to minimizing
the repartitioning cost costvol in (3). That is, for epoch j,

costvol = CutCost(H̄ j, P̄ j). (6)

Sincewe obtained H̄ j by augmentingH j we can further expand this
formula as

costvol = αjCutCost(H j, P j)+
∑

nv∈(N̄ j−N j)

cv(λv − 1), (7)

where P j = {V1, V2, . . . , Vk} is the same as P̄ j except that it does
not contain part vertices. In the first term of (7), CutCost(H j, P j),
corresponds to the amount of data sent in each iteration of the
application [11] (i.e., bcomm in (3)) and the second term corresponds
to the amount of data sent during migration (i.e., bmig in (3)).
Assume that a vertex v is assigned to part p in epoch j − 1

and part q in epoch j, where p 6= q. Then, the migration net nv
between v and up that represents the migration cost of vertex
v’s data is cut with the connectivity of λv = 2 (note that up is
fixed in part p). Therefore, the cost of moving vertex v from part
p to q, cv , is appropriately included in the total cost. If a net that
represents communication during the computation phase is cut,
the cost incurred by communicating the associated data in all αj
iterations in epoch j is also accounted for since the net’s weight has
already been scaled by αj. Hence, our repartitioning hypergraph
accurately models the sum of communication during computation
phase and migration cost due to moved data.
Fig. 1(a) illustrates a sample computational hypergraph H j

at the beginning of epoch j. The corresponding repartitioning
hypergraph H̄ j is displayed in Fig. 1(b). A nice feature of our
model is that no distinction is required between communication
and migration nets as well as computation and part vertices.
However, for clarity in this figure, we represent computation
vertices with circles and part vertices with octagons. Similarly,
application communication nets are representedwith squares, and
migration nets are represented with diamonds. In this example, at
the beginning of epoch j, there are twelve computation vertices
with various computational loads (represented by the numbers
inside the circles). Computational load is initially in three highly
imbalanced parts. Three cut nets represent data that need to
be communicated among the parts. Two of these nets have
connectivity λ = 3 and one has λ = 2. Assuming unit cost for
each net, the total communication cost (5) is five. In other words,
if the application chooses to continue with this partitioning, each
iteration of epoch j incurs a communication cost of five units.
In Fig. 1(b), to construct the repartitioning hypergraph H̄ j from

H j, three part vertices u1, u2 and u3 are added and net weights inH j
are scaled by αj. Then, each of the twelve computation vertices is
connected via a migration net to the part vertex associated with
the part to which the computation vertex was assigned at the
beginning of epoch j.
Two balanced sample solutions for the repartitioning problem

are depicted in Fig. 1(c) and (d). Assume that the sizes of the
data associated with each computation vertex and application
communication net are the same; i.e., communication and
migration nets have unit costs. In Fig. 1(c), two vertices with
weights three and six are migrated from part 1 to part 2, resulting
in migration cost of two and communication cost of four units
at each iteration, due to four cut nets with connectivity two.
In Fig. 1(d), while two vertices with weights three and six are
migrated from part 1 to part 3, two vertices of part 3 are
migrated to part 2. This distribution results in a migration cost
of four and a communication cost of three units at each iteration.
These two solutions present an example of the trade-off between
communication andmigration costs in the repartitioning problem.
Assume that the epoch j consists of only one iteration (αj = 1).
Then the solution presented in Fig. 1(c) is better than the solution
presented in Fig. 1(d), because the former has a total cost of six,
whereas the latter has a total cost of seven. However, if epoch
j consists of ten iterations (αj = 10), the solution presented in
Fig. 1(d) is better because it has a total cost of 34, whereas that in
Fig. 1(c) has a total cost of 42.With the user-specifiedαj parameter,
our repartitioning hypergraph model accurately accounts for this
trade-off.

5. Parallel repartitioning tool

The dynamic repartitioning model presented in the previous
section can be implemented using parallel hypergraph partitioning
with fixed vertices. In such an implementation, the multilevel
algorithms commonly used for hypergraph partitioning (as des-
cribed in Section 3) are adapted to handle fixed vertices [3,12].
In each phase of the multilevel partitioning, the fixed part
constraints defined by f (v) must be maintained for each vertex v
and its resulting coarse vertices. In this section, we describe our
approach for parallelmultilevel hypergraphpartitioningwith fixed
vertices [10].We first assume thatwepartition directly into kparts,
and later discuss how fixed vertices are handled when recursive
bisection is used to obtain k parts.
Our implementation uses the parallel hypergraph partitioner

[17] in the Zoltan Dynamic Load Balancing toolkit. Zoltan is a
toolkit supporting parallel dynamic, adaptive and/or unstructured
applications [18]. It includes dynamic load balancing, data migra-
tion, graph coloring, graph ordering, and unstructured communi-
cation tools. Hypergraph-based, graph-based, and geometry-based
partitioners are available in Zoltan, as well as interfaces to parti-
tioning packages PT-Scotch [35] and ParMETIS [31]. The new hy-
pergraph repartitioning algorithm described here is available in
Zoltan v3 [5].

U.V. Catalyurek et al. / J. Parallel Distrib. Comput. 69 (2009) 711–724 715
(a) Comp. hypergraph at epoch j. (b) Repart. hypergraph at epoch j.

(c) A solution for αj = 1. (d) A solution for αj = 10.

Fig. 1. A sample illustrating the construction of repartitioning hypergraph, with two possible repartitioning results showing the application communication vs migration
trade-off. (a): A sample computational hypergraph representation at the beginning of epoch j. Nets are depicted as squares and vertices are depicted as circles. The numbers
inside the circles are the computational loads of each vertex. (b): Repartitioning hypergraph for epoch j; for simplicity in the presentation, migration nets are depicted as
diamonds and part vertices are depicted as octagons. (c) and (d): Two alternative sample solutions with bcomm = 4, bmig = 2, and bcomm = 3, bmig = 4, respectively, under
the assumption that the migration cost of each computation vertex and the application communication cost per net are one (i.e., each net’s cost is one).
5.1. Coarsening phase

In the coarsening phase of the multilevel algorithms, we
approximate the original hypergraph with a succession of smaller
hypergraphs with similar connectivity and equal total vertex and
edge weights. Coarsening ends when the coarsest hypergraph is
‘‘small enough’’ (e.g., it has fewer than 2k vertices) or when the last
coarsening step fails to reduce the hypergraph’s size by a specified
amount (typically 10%). To reduce the hypergraph’s size, we
merge similar vertices, i.e., vertices whose hyperedge connectivity
overlaps significantly. In this paper, we use an agglomerative
matching technique that has been called as heavy-connectivity
clustering in PaToH [12,11].
Parallel matching is performed in rounds. In each round, each

processor broadcasts a subset of candidate vertices that will be
matched in that round. Then, all processors concurrently compute
their best match for those candidates and the global best match for
each candidate is selected. In agglomerative matching, candidate
vertices are allowed to join already matched vertices to form a
larger cluster as long as the final cluster’s size is not larger than
a quarter of a target part size.
For fixed vertex partitioning, we constrain matching to pro-

pagate fixed vertex constraints to coarser hypergraphs so that
coarser hypergraphs truly approximate the finer hypergraphs and
their constraints. We do not allow vertices to match if they are
fixed to different parts. Thus, there are three scenarios in which
two vertices match: (1) both vertices are fixed to the same part,
(2) only one of the vertices is fixed to a part, or (3) both are not
fixed to any parts (i.e., both are free vertices). In cases 1 and 2, the
resulting coarse vertex is fixed to the part in which either of its

716 U.V. Catalyurek et al. / J. Parallel Distrib. Comput. 69 (2009) 711–724
constituent verticeswas fixed. In case 3, the resulting coarse vertex
remains free.

5.2. Coarse partitioning phase

In the coarse partitioning phase, we construct an initial pa-
rtition of the coarsest hypergraph available. If the coarsest hyper-
graph is small enough, we replicate it on every processor. Each
processor then runs a randomized greedy hypergraph growing
algorithm to compute a different partition into k parts, and
the partition with the lowest cost is selected. If the coarsest
hypergraph is not small enough, each processor contributes to
the computation of an initial partition using a localized version
of the greedy hypergraph algorithm. In either case, we maintain
the fixed part constraints by assigning fixed coarse vertices to their
respective parts.

5.3. Refinement phase

In the refinement phase, we project our coarse partition to
finer hypergraphs and improve it using a local optimization
method. Our code is based on a localized version of the successful
Fiduccia–Mattheyses [20] method, as described in [17]. The
algorithm performsmultiple pass-pairs and in each pass, each free
vertex is considered to move to another part to reduce the cut
metric. We enforce the fixed vertex constraints simply; we do not
allow fixed vertices to be moved out of their fixed parts.

5.4. Handling fixed vertices in recursive bisection

The Zoltan hypergraph partitioner uses recursive bisection
(repeated subdivision of parts into two parts) to obtain a k-way
partition. This recursive bisection approach can be extended easily
to accommodate fixed vertices. For example, in the first bisection
of recursive bisection, the fixed vertex information of each vertex
can be updated so that vertices that are originally fixed to parts 1 ≤
p ≤ k/2 are fixed to part 1, and vertices originally fixed to parts
k/2 < p ≤ k are fixed to part 2. Then, the multilevel partitioning
algorithm with fixed vertices described above can be executed
without any modifications. This scheme is applied recursively in
each bisection.

6. Experimental results

In this section we present detailed comparisons of various
graph- and hypergraph-based repartitioning approaches using dy-
namic datasets that are synthetically generated using real applica-
tion base cases, as well as real dynamic data from applications in
data mining and adaptive mesh refinement simulations. For most
experiments, we select square, structurally symmetric data to al-
low comparisons between graph and hypergraph methods; the
data mining application, however, demonstrates the greater ap-
plicability of hypergraph methods to non-symmetric, rectangular
data — in this case, term-by-document matrices.

6.1. Repartitioning approaches

We consider three aspects of repartitioning methods and
compare different options provided by various algorithms as well
as the algorithms themselves.

• Repartitioning technique: Following the discussion in Section 2,
we classify repartitioning techniques into three categories:
scratch-remap, incremental and repartitioning. Repartitioning
approaches have been shown to outperform diffusive methods
in [39]; therefore, we consider only refinement approaches
within the incremental techniques category.
• Cost model: Hypergraph models accurately represent commu-
nication and migration costs for multi-way interactions, while
graph models represent approximate costs. We do not con-
sider coordinate-based models here, since they are not general
(e.g., they cannot be applied to data without coordinates) and
they do not model communication and migration costs explic-
itly.
• Optimizationmethod:Wealsomake a distinction between single
level vsmultilevel partitioners and compare their performance.

We compare six different partitioners given in Table 2 that
collectively cover all options with respect to each of the three
aspects considered. In our experiments, we use ParMETIS version
3.1 [31] for graph partitioning and Zoltan version 3.0 [5,10,17]
for hypergraph partitioning. For the scratch methods, we used
a maximal matching heuristic in Zoltan to map part numbers
between old and new partitions to reduce migration cost. We
do not expect the partitioning-from-scratch methods to be
competitive for dynamic problems, but include them as a useful
baseline.

6.2. Dynamically perturbed data experiments

To perform experiments on large numbers of processors, we
collected static data from three real applications and dynamically
perturbed the data over a series of time-steps. The properties of the
application datasets are shown in Table 3. These datasets provide
a range of sparsity and regularity representative of different
applications.
Twodifferentmethods are used to dynamically perturb the data

in the experiments. The first method introduces biased random
perturbations that change the structure of the data. In thismethod,
a certain fraction of vertices in the original data is randomlydeleted
along with the incident edges. At each repartitioning iteration,
this operation is repeated independently from previous iterations;
hence, a different subset of vertices from the original data is
deleted. This operation simulates dynamically changing data that
can both lose and gain vertices and edges. The results presented in
this section correspond to the case where half of the parts lose or
gain 25% of the total number of vertices at each iteration.We tested
several other configurations by varying the fraction of vertices
lost or gained. The results we obtained in these experiments were
similar to those presented in this section.
The second method simulates adaptive mesh refinement.

Starting with the initial data, a certain fraction of the parts
at each iteration is randomly selected. Then, the sub-domain
corresponding to the selected parts performs a simulated mesh
refinement, where theweight and size of each vertex are increased
by a constant factor. In the experiments in this section, 10% of
the parts are selected at each iteration and the weight and size of
each vertex in these parts are randomly increased to between 1.5
and 7.5 of their original value. Similarly to the previous method,
we tested several other configurations by varying the factor that
scales the size and weight of vertices. The results obtained in these
experiments were similar to those presented here.
We performed the dynamically perturbed data experiments

on Sandia’s Thunderbird cluster. Each node of Thunderbird has
dual 3.6 GHz Intel EM64T processors with 6 GB of RAM. The
nodes are interconnected with an Infiniband network. We use
Intel v10.0 compilers with -O0 optimization flag and OpenMPI
v1.2.4. All experiments were run on 64, 256, and 1024 processors.
Several ParMETIS experiments failed on Thunderbird under this
configuration.We report results for all experimentswith ParMETIS
that completed successfully.
In Figs. 2 through 7, the parameterα, the number of iterations in

an epoch, is varied from10 to 1000, and total cost (3) is reported for
64, 256 and 1024 processors (parts). Each result is averaged over a

U.V. Catalyurek et al. / J. Parallel Distrib. Comput. 69 (2009) 711–724 717
Table 2
Properties of the partitioners used in the experimental evaluation.

Partitioner Repartitioning technique Cost model Optimization method Software

Z-repart Repartitioning Hypergraph Multilevel Zoltan
Z-SL-repart Repartitioning Hypergraph Single level Zoltan
Z-scratch Scratch-remap Hypergraph Multilevel Zoltan
Z-SL-refine Iterative Hypergraph Single level Zoltan
M-repart Repartitioning Graph Multilevel ParMETIS
M-scratch Scratch-remap Graph Multilevel ParMETIS
Table 3
Properties of the test datasets; |V | and |E| are the numbers of vertices and graph edges, respectively.

Name |V | |E| Vertex degree Application area
min max avg

xyce680s 682,712 823,232 1 209 2.4 VLSI design
slac6M 5,955,366 11,766,788 2 4 4.0 Finite element mesh
cage15 5,154,859 47,022,346 2 46 18.2 DNA electrophoresis
Fig. 2. Normalized total cost for xyce680s with perturbed data structure with α = 10, 100, 1000.
Fig. 3. Normalized total cost for xyce680s with perturbed weights with α = 10, 100, 1000.
sequence of 20 trials for each experiment. For each configuration,
there are six bars representing total cost for Z-repart, Z-SL-repart,
Z-scratch, Z-SL-refine, M-repart, and M-scratch, from left to right
respectively. The total cost in each bar is normalized by the total
cost of Z-repart in the respective configuration and consists of
two components: application communication costs (scaled by α)
on the bottom (darker shade) and migration costs on the top
(lighter shade). Results are shown for both the dynamic structure
perturbations and the dynamic weight perturbations.
The results indicate that our new hypergraph repartitioning

method Z-repart performs better than M-repart in terms of
minimizing the total cost in the majority of the test cases. This
can be explained by the fact that the migration cost minimization
objective is completely integrated into the multilevel scheme
rather than handled in only the refinement phase. Therefore, Z-
repart provides amore accurate trade-off between communication
and migration costs than M-repart to minimize the total cost. This
is more clearly seen for small and moderate α values where these
two costs are comparable. On the other hand, for large α values,
the migration cost is less important relative to the communication
cost, and the problem essentially reduces to minimizing the
communication cost alone. Therefore, in such cases, Z-repart and
M-repart behave similarly to partitioners using scratch methods.
Similar arguments hold when comparing Z-repart against

scratch-remap repartitioning methods. Since minimization of
migration cost is ignored in Z-scratch and M-scratch, migration
cost gets extremely large and dominates the total cost as α gets
smaller. Total cost with Z-scratch and M-scratch is comparable to

718 U.V. Catalyurek et al. / J. Parallel Distrib. Comput. 69 (2009) 711–724
Fig. 4. Normalized total cost for slac6M with perturbed data structure with α = 10, 100, 1000. Z-SL-repart and Z-SL-refine bars are truncated to enhance readability.
Fig. 5. Normalized total cost for slac6M with perturbed weights with α = 10, 100, 1000. Z-SL-repart and Z-SL-refine bars are truncated to enhance readability.
Fig. 6. Normalized total cost for cage15 with perturbed data structure with α = 10, 100, 1000.
Z-repart only when α is greater than 100, where communication
cost starts to dominate. Z-repart still performs as well as the
scratch methods in this range to minimize the total cost.
As the number of parts (processors) increases, the ratio of

migration cost to communication cost remains almost the same
when usingM-repart. On the other hand, when using Z-repart, this
ratio decreases to keep the total cost small. This result indicates
that Z-repart achieves a better balance between communication
and migration costs to minimize the overall cost and also shows
that this behavior scales well with the number of processors.
Z-SL-refine and Z-SL-repart attempt to minimize communica-

tion volume with relatively fewer vertex movements due to the
constrained initial partition. Therefore, the communication cost
of these methods is higher than other partitioners, resulting in a
relatively higher total cost for large α values. On the other hand,
both methods produce lower migration costs compared to scratch
methods for smallα values. Both Z-SL-refine and Z-SL-repart, how-
ever, are outperformed by Z-repart in all of our test cases. Indeed,
the benefit of multilevel methods is clearly shown in the compar-
isons of Z-repart and Z-SL-repart.
Run times of the tested partitioners normalized by that of

Z-repart for the perturbed structure and weight experiments
are given in Figs. 8–13. We observed two different run time
profiles in our test cases. The first one is shown in Figs. 8
and 9 for the xyce680s dataset, where multilevel hypergraph-
based methods Z-repart and Z-scratch are at least as fast as
their graph-based counterparts M-repart and M-scratch. In some
cases (e.g. perturbed data structure, running on 64 processors)
hypergraph-based approaches are up to five times faster than
graph-based approaches. Z-SL-repart is significantly faster than

U.V. Catalyurek et al. / J. Parallel Distrib. Comput. 69 (2009) 711–724 719
Fig. 7. Normalized total cost for cage15 with perturbed weights with α = 10, 100, 1000.
Fig. 8. Normalized run time with perturbed data structure for xyce680s with α = 10, 100, 1000.
Fig. 9. Normalized run time with perturbed weights for xyce680s with α = 10, 100, 1000.
Fig. 10. Normalized run time with perturbed data structure for slac6M with α = 10, 100, 1000.

720 U.V. Catalyurek et al. / J. Parallel Distrib. Comput. 69 (2009) 711–724
Fig. 11. Normalized run time with perturbed weights for slac6M with α = 10, 100, 1000.
Fig. 12. Normalized run time with perturbed data structure for cage15 with α = 10, 100, 1000.
Fig. 13. Normalized run time with perturbed weights for cage15 with α = 10, 100, 1000.
most other methods in this dataset with relatively low total cost;
therefore, it becomes a viable option for applications that require
a very fast repartitioner for small α values. The second run time
profile is observed in Figs. 10–13 for the slac6M and cage15
datasets. The results show that hypergraph-based repartitioning
can be up to ten times slower than graph-based approaches. As
these results show, there is no clear conclusion onwhich approach
is faster. Furthermore, since the application run time is often far
greater than the partitioning time, this enhancement may not be
important in practice.
As the number of processors increases, the number of requested

parts increases as well. This can be thought of as increasing the
problem size while applying more processors to solve it. When the
number of processors is increased from 64 to 256, normalized run
time decreased by 31% for Z-repart averaged over all test cases,
whereas it increased by 26% forM-repart. On the other hand, when
the number of processors is increased from 64 to 1024, run time
increased by 81% for M-repart, whereas the increase was only
18% for Z-repart. This suggests that in terms of run time, Z-repart
scales better than M-repart when the number of processors and
the problem size are increased simultaneously.

6.3. Adaptive mesh refinement experiments

Adaptive mesh refinement is a decades-old technique used in
finite element analysis to obtain desired solution resolution with
an optimal number of degrees of freedom. At each time-step, the

U.V. Catalyurek et al. / J. Parallel Distrib. Comput. 69 (2009) 711–724 721
–1.0

0.0

1.0

2.0

3.0

4.0

5.0
Y

0.0 1.0 2.0 3.0 4.0 5.0 6.0

X

–1.0

0.0

1.0

2.0

3.0

4.0

5.0

Y

0.0 1.0 2.0 3.0 4.0 5.0 6.0

X

–1.0

0.0

1.0

2.0

3.0

4.0

5.0

Y

0.0 1.0 2.0 3.0 4.0 5.0 6.0

X

a b c

Fig. 14. Hexahedral finite element meshes with adaptive mesh refinement at time-steps 0, 54, and 108, respectively.
Fig. 15. Normalized total cost for adaptive mesh refinement experiments with α = 100.
finite element code computes both the solution and an estimate
of the error in the solution. Elements in regions with high error
are subdivided into many smaller elements, while elements in
regions with low error are coalesced into fewer large elements.
Subsequent solves, then, obtain greater resolution in the high-error
regions without adding unnecessary degrees of freedom in low-
error regions.
In parallel simulations with adaptive mesh refinement, the

refinement and coalescing of elements cause significant load
imbalance. As processors add or remove elements due to refi-
nement, their workloads change. Dynamic load balancing has
played an important role in enabling parallel adaptive mesh
refinement simulations, redistributing work to accommodate
evolving meshes; see, e.g., [4,13,34,19,21,44,38,33]. Coordinate-
and graph-based methods have been used with great success, due
to mesh data’s relatively regular structure and low vertex degrees.
In these experiments, we compare our repartitioning hypergraph
model to commonly used graph-based repartitioners.
Our adaptive mesh data is a series of 109 hexahedral meshes

from the ALEGRA shock physics explicit finite element code [6].
The series of meshes represents time-steps of the simulation;
the mesh refinement tracks the shock moving across the domain
and its reflections. (Fig. 14 shows the mesh at the time-steps 0,
54, and 108, respectively.) The smallest mesh (time-step 0) has
132,209 nodes and 103,100 elements; the largest (time-step 108)
has 1,380,266 nodes and 1,247,000 elements.
We represent mesh nodes with vertices of the graph and

hypergraph models, and create a graph edge between nodes that
share a mesh element. These graph edges are used directly in the
graph methods, and combined into a single hyperedge per node in
the hypergraph methods. The smallest mesh has 1,527,841 graph
edges; the largest has 17,391,840 graph edges.
In our experiments, we performed an initial partitioning of the
initial mesh (time-step 0). Then at each time-step T > 0, we
assign each node of mesh T to the same part as its closest node
in mesh T − 1 — ‘‘closeness’’ is measured by two nodes’ proximity
along a space-filling curve through the nodes of bothmeshes— and
repartition mesh T using one of the methods in Table 2.
We ran experiments over 109 meshes with α = 100 on 16, 32,

and 64 processors of Sandia’s Odin cluster. Each node of Odin has
two AMD Opteron 2.2 GHz processors and 4 GB of RAM. Nodes are
connected with a Myrinet network. We usedMPICH v1.2.7 and gcc
v3.4.3.
Total cost (3) and run times for each method are shown

in Figs. 15 and 16, respectively. The repartitioning hypergraph
method Z-repart produced lower total cost than all other methods
in all of the test cases. Execution time for Z-repart was greater
than M-repart, indicating the need for faster heuristics in the
hypergraph implementation for applications with relatively low
and homogeneous connectivity.

6.4. Term-by-document experiments

Our last example is from text analysis and retrieval. Latent
Semantic Analysis (LSA) [16] is a popular technique for analysis
of large document collections. Given a set of documents, a user
can search for specific terms, documents relevant to a specific
topic, or find related documents. The method is based on reduced
approximations to the term-by-document matrix, where rows
represent terms and columns correspond to documents. There is
a nonzero matrix entry in position (i, j) if and only if document j
contains term i. Note that such matrices are rectangular and non-
symmetric, so graph models do not apply. The computationally

722 U.V. Catalyurek et al. / J. Parallel Distrib. Comput. 69 (2009) 711–724
Fig. 16. Normalized run time for adaptive mesh refinement experiments with α = 100.
Fig. 17. Normalized total cost for term-by-document with α = 100.
Fig. 18. Normalized run time for term-by-document with α = 100.
intensive part of LSA is to compute a truncated singular value
decomposition (SVD) of the type A ≈ Ak = UkΣkVk, where Σk
is diagonal, and k is the rank of the approximation. It is known
that 100 ≤ k ≤ 300 is a good range for retrieval. An iterative
method based on sparse matrix-vector multiplication by A is used
to compute the SVD.
We focus on a parallel strategy for LSA with a dynamic

document collection where documents are added over time. (This
is motivated by a project at Sandia led by Danny Dunlavy using
the LSALIB software.) Our goal is to find an efficient parallel
distribution of documents to processors, to ensure load balance
and reduce communication. As an example, we use a large term-
by-document matrix corresponding to the Citeseer database up
to 2004. Each month, a new set of documents are added, and the
SVD must be recomputed. The number of documents added will
vary from month to month. By default, documents are assigned
to processors in a cyclic fashion. There is a cost associated with
moving documents between processors. We seek load balance
with respect to the number of nonzeros in the term-by-document
matrix, which corresponds to memory usage.
We started with all the documents that existed on Jan. 1,

1994, and ran a ten year simulation (120 months). The full matrix
has about 700,000 documents and 57 million nonzeros. In this
application, α should be in the range 100–600; we tested α =
100. Experiments were run on Sandia’s Odin cluster using 16, 32,
and 64 processors; results are presented in Figs. 17 and 18. We
compare only hypergraph-based approaches since graph-based
methods (ParMETIS) do not apply directly. We see from Fig. 17
that the multilevel methods are clearly performing better than
the single level methods, in terms of solution quality. Since in
this application, migration cost becomes very small compared to
application communication cost, there is only a little difference
between repartitioning and scratch-remap.

U.V. Catalyurek et al. / J. Parallel Distrib. Comput. 69 (2009) 711–724 723
7. Conclusion

In this paper, we presented a new approach to dynamic load
balancing based on a single hypergraph model that incorporates
both communication volume in the application and data migra-
tion cost. Detailed comparison of graph- and hypergraph-based
repartitioning using datasets from a range of application areas
showed that hypergraph-based repartitioning produces partitions
with similar or lower cost than the graph-based repartitioning.
The full benefit of hypergraph partitioning is realized on non-
symmetric and non-square problems that cannot be represented
easily with graph models [11,17].
Our hypergraph-based repartitioning model uses a single user-

defined parameterα to control trade-offs between communication
cost and migration cost. Experiments show that the approach
works particularly well when migration cost is more important,
and does not degrade quality when communication cost is more
important. Therefore, we recommend the presented approach as
a universal method for dynamic load balancing. The best choice
of α will depend on the application, and can be estimated easily.
Reasonable values are in the range 1–1000.
The experiments showed that the hypergraph-based reparti-

tioning approach implemented in Zoltan is scalable in terms of
quality of solution, and scales better than its graph-based coun-
terpart in terms of run time when the number of processors
and the number of requested parts are increased simultaneously.
However, in many cases, it required more time than graph-
based repartitioning due to the greater richness of the hypergraph
model. We will further investigate exploiting locality given by the
data distribution in order to improve the execution time of the
hypergraph-based repartitioning implementation. However, since
the application run time is often far greater than the partitioning
time, this enhancement may not be important in practice.

Acknowledgments

We thank Danny Dunlavy for providing the Citeseer data;
Richard Drake and Johan Steensland for the adaptive mesh
refinement data; and Rich Lee, Mark Shephard, and Xiaojuan Luo
for the slac6M data.

References

[1] C.J. Alpert, A.E. Caldwell, A.B. Kahng, I.L. Markov, Hypergraph partitioningwith
fixed vertices [vlsi cad], IEEE Trans. CAD Integrated Circuits Syst. 19 (2) (2000)
267–272.

[2] C. Aykanat, B.B. Cambazoglu, F. Findik, T. Kurc, Adaptive decomposition and
remapping algorithms for object-space-parallel direct volume rendering of
unstructured grids, J. Parallel Distrib. Comput. 67 (1) (2007) 77–99.

[3] C. Aykanat, B.B. Cambazoglu, B. Uçar, Multi-level direct k-way hypergraph
partitioning with multiple constraints and fixed vertices, J. Parallel Distrib.
Comput. 68 (5) (2008) 609–625.

[4] M.J. Berger, S.H. Bokhari, A partitioning strategy for nonuniform problems on
multiprocessors, IEEE Trans. Comput. C-36 (5) (1987) 570–580.

[5] E. Boman, K. Devine, R. Heaphy, B. Hendrickson, V. Leung, L.A. Riesen, C.
Vaughan, U. Catalyurek, D. Bozdag, W. Mitchell, J. Teresco, Zoltan 3.0: Parallel
partitioning, load balancing, and data-management services; User’s guide,
Tech. Report SAND2007-4748, W.Sandia National Laboratories, Albuquerque,
NM, 2007. http://www.cs.sandia.gov/Zoltan/ug_html/ug.html.

[6] E.A. Boucheron, K.H. Brown, K.G. Budge, S.P. Burns, D.E. Carroll, S.K. Carroll,
M.A. Christon, R.R. Drake, C.G. Garasi, T.A. Haill, J.S. Peery, S.V. Petney, J.
Robbins, A.C. Robinson, R. Summers, T.E. Voth,M.K.Wong, ALEGRA: User input
and physics descriptions version 4.2, Tech. Report SAND2002-2775, Sandia
National Laboratories, Albuquerque, NM, 2002.

[7] T. Bui, C. Jones, A heuristic for reducing fill in sparse matrix factorization,
in: Proc. 6th SIAM Conf. Parallel Processing for Scientific Computing, SIAM,
1993, pp. 445–452.

[8] T. Bultan, C. Aykanat, A newmapping heuristic based onmean field annealing,
J. Parallel Distrib. Comput. 16 (1992) 292–305.

[9] B.B. Cambazoglu, C. Aykanat, Hypergraph-partitioning-based remapping
models for image-space-parallel direct volume rendering of unstructured
grids, IEEE Trans. Parallel Distrib. Syst. 18 (1) (2007) 3–16.
[10] U.V. Catalyurek, E.G. Boman, K.D. Devine, D. Bozdağ, R. Heaphy, L.A.
Fisk, Hypergraph–based dynamic load balancing for adaptive scientific
computations, in: Proceedings of 21st International Parallel and Distributed
Processing Symposium, IPDPS, IEEE, 2007.

[11] U.V. Çatalyürek, C. Aykanat, Hypergraph-partitioning based decomposition for
parallel sparse-matrix vector multiplication, IEEE Trans. Parallel Distrib. Syst.
10 (7) (1999) 673–693.

[12] U.V. Çatalyürek, C. Aykanat, PaToH: A multilevel hypergraph par-
titioning tool, Version 3.0, Bilkent University, Department of Com-
puter Engineering, Ankara, 06533 Turkey, 1999. PaToH is available at
http://bmi.osu.edu/~umit/software.htm.

[13] N. Chrisochoides, Multithreaded model for dynamic load balancing parallel
adaptive PDE computations, ICASE Report 95-83, ICASE, NASA Langley
Research Center, Hampton, VA 23681-0001, Dec. 1995.

[14] G. Cybenko, Dynamic load balancing for distributed memory multiprocessors,
J. Parallel Distrib. Comput. 7 (1989) 279–301.

[15] H. deCougny, K. Devine, J. Flaherty, R. Loy, C. Ozturan, M. Shephard, Load
balancing for the parallel adaptive solution of partial differential equations,
Appl. Numer. Math. 16 (1994) 157–182.

[16] S.C. Deerwester, S.T. Dumais, T.K. Landauer, G.W. Furnas, R.A. Harshman,
Indexing by latent semantic analysis, J. Amer. Soc. Inform. Sci. 41 (6) (1990)
391–407.

[17] K. Devine, E. Boman, R. Heaphy, R. Bisseling, U. Catalyurek, Parallel hypergraph
partitioning for scientific computing, in: Proc. of 20th International Parallel
and Distributed Processing Symposium, IPDPS’06, IEEE, 2006.

[18] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, C. Vaughan, Zoltan data
management services for parallel dynamic applications, Comput. Sci. Eng. 4
(2) (2002) 90–97.

[19] K. Devine, J. Flaherty, Parallel adaptive hp-refinement techniques for
conservation laws, Appl. Numer. Math. 20 (1996) 367–386.

[20] C.M. Fiduccia, R.M. Mattheyses, A linear-time heuristic for improving network
partitions, in: Proc. 19th IEEE Design Automation Conf., 1982, pp. 175–181.

[21] J. Flaherty, R. Loy, M. Shephard, B. Szymanski, J. Teresco, L. Ziantz, Adaptive
local refinement with octree load-balancing for the parallel solution of three-
dimensional conservation laws, J. Parallel Distrib. Comput. 47 (2) (1998)
139–152.

[22] M.R. Garey, D.S. Johnson, Computers and Intractability, W.H. Freeman and Co.,
New York, New York, 1979.

[23] B. Hendrickson, T.G. Kolda, Graph partitioning models for parallel computing,
Parallel Comput. 26 (2000) 1519–1534.

[24] B. Hendrickson, R. Leland, The Chaco User’s Guide, Version 2.0, Sandia National
Laboratories, Alburquerque, NM, 87185, 1995.

[25] B. Hendrickson, R. Leland, A multilevel algorithm for partitioning graphs,
in: Proc. Supercomputing ’95, ACM, 1995.

[26] B. Hendrickson, R. Leland, R. Van Driessche, Skewed graph partitioning, in:
Proc. Eighth SIAM Conf. Parallel Processing for Scientific Computation, March
1997.

[27] Y.F. Hu, R.J. Blake, D.R. Emerson, An optimal migration algorithm for dynamic
load balancing, Concurrency Pract. Exp. 10 (1998) 467–483.

[28] G. Karypis, V. Kumar, A fast and high qualitymultilevel scheme for partitioning
irregular graphs, SIAM J. Sci. Comput. 20 (1) (1998) 359–392.

[29] G. Karypis, V. Kumar, MeTiS a software package for partitioning unstructured
graphs, partitioning meshes, and computing fill-reducing orderings of sparse
matrices version 4.0, University of Minnesota, Department of Comp. Sci. and
Eng., Army HPC Research Center, Minneapolis, 1998.

[30] G. Karypis, V. Kumar, R. Aggarwal, S. Shekhar, hMeTiS a hypergraph
partitioning package version 1.0.1, University of Minnesota, Department of
Comp. Sci. and Eng., Army HPC Research Center, Minneapolis, 1998.

[31] G. Karypis, K. Schloegel, V. Kumar, Parmetis: Parallel graph partition-
ing and sparse matrix ordering library, version 3.1. Technical Report,
Dept. Computer Science, University of Minnesota, 2003. http://www-
users.cs.umn.edu/~karypis/metis/parmetis/download.html.

[32] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, Wil-
ley–Teubner, Chichester, U.K., 1990.

[33] L. Oliker, R. Biswas, PLUM: Parallel load balancing for adaptive unstructured
mesh es, J. Parallel Distrib. Comput. 51 (2) (1998) 150–177.

[34] A. Patra, J.T. Oden, Problem decomposition for adaptive hp finite element
methods, J. Comput. Syst. Eng. 6 (2) (1995).

[35] F. Pelligrini, PT-SCOTCH 5.1 user’s guide, Research Rep., LaBRI, 2008.
[36] J.R. Pilkington, S.B. Baden, Partitioning with spacefilling curves, CSE Technical

Report CS94–349, Dept. Computer Science and Engineering, University of
California, San Diego, CA, 1994.

[37] P. Sadayappan, F. Ercal, J. Ramanujam, Cluster partitioning approaches to
mapping parallel programs onto hypercube, Parallel Comput. 13 (1990) 1–16.

[38] K. Schloegel, G. Karypis, V. Kumar, Multilevel diffusion algorithms for
repartitioning of adaptive meshes, J. Parallel Distrib. Comput. 47 (2) (1997)
109–124.

[39] K. Schloegel, G. Karypis, V. Kumar, A unified algorithm for load-balancing
adaptive scientific simulations, in: Proc. Supercomputing, Dallas, 2000.

[40] K. Schloegel, G. Karypis, V. Kumar, Wavefront diffusion and LMSR: Algorithms
for dynamic repartitioning of adaptive meshes, IEEE Trans. Parallel Distrib.
Syst. 12 (5) (2001) 451–466.

[41] J.D. Teresco, M.W. Beall, J.E. Flaherty, M.S. Shephard, A hierarchical partition
model for adaptive finite element computation, Comput. Methods Appl. Mech.
Engrg. 184 (2000) 269–285.

http://www.cs.sandia.gov/Zoltan/ug_html/ug.html
http://bmi.osu.edu/~umit/software.htm
http://www-users.cs.umn.edu/~karypis/metis/parmetis/download.html
http://www-users.cs.umn.edu/~karypis/metis/parmetis/download.html
http://www-users.cs.umn.edu/~karypis/metis/parmetis/download.html

724 U.V. Catalyurek et al. / J. Parallel Distrib. Comput. 69 (2009) 711–724
[42] A. Trifunovic, W.J. Knottenbelt, Parkway 2.0: A parallel multilevel hypergraph
partitioning tool, in: Proc. 19th International Symposium on Computer
and Information Sciences, ISCIS 2004, in: LNCS, vol. 3280, Springer, 2004,
pp. 789–800.

[43] C. Walshaw, The Parallel JOSTLE Library User’s Guide, Version 3.0, University
of Greenwich, London, UK, 2002.

[44] C. Walshaw, M. Cross, M.G. Everett, Parallel dynamic graph partitioning for
adaptive unstructured meshes, J. Parallel Distrib. Comput. 47 (2) (1997)
102–108.

[45] M.S.Warren, J.K. Salmon, A parallel hashed oct-tree n-body algorithm, in: Proc.
Supercomputing ’93, Portland, OR, Nov. 1993.

[46] M. Willebeek-LeMair, A.P. Reeves, Strategies for dynamic load balancing on
highly parallel computers, IEEE Trans. Parallel Distrib. Syst. 4 (9) (1993)
979–993.

[47] R. Williams, Performance of dynamic load balancing algorithms for unstruc-
tured mesh calculations, Concurrency 3 (October) (1991) 457–481.

Umit V. Catalyurek is an Associate Professor in the
Department of Biomedical Informatics at The Ohio State
University, and has a joint faculty appointment in the
Department of Electrical and Computer Engineering. His
research interests include combinatorial scientific com-
puting, run-time systems for data-intensive computing,
and high-performance computing in biomedicine. He re-
ceived his Ph.D., M.S. and B.S. in Computer Engineering
and Information Science from Bilkent University, Turkey,
in 2000, 1994 and 1992, respectively.

Erik G. Boman is a scientist at Sandia National Laborato-
ries, Albuquerque, NM, USA. He received a Ph.D. in Sci-
entific Computing and Computational Mathematics from
Stanford University and also holds a M.S. (Cand. Scient.)
degree in Computer Science (Informatics) from the Uni-
versity of Bergen, Norway. His current research interests
are in combinatorial scientific computing, parallel com-
puting, and sparse matrix algorithms. He is a principal
investigator for the CSCAPES (Combinatorial Scientific
Computing and Petascale Simulations) SciDAC Institute.
Karen D. Devine is a scientist at Sandia National Labora-
tories in Albuquerque, NM. She earned her Ph.D. and M.S.
in Computer Science from Rensselaer Polytechnic Insti-
tute, where she studied parallel adaptive finite element
methods with Joseph Flaherty. She earned a B.S. in Com-
puter Science from Wilkes University. She is the princi-
pal investigator for the Zoltan project, and is interested
in combinatorial scientific computing, interoperable soft-
ware development, and high-performance computing in
informatics.

Doruk Bozdağ is a post-doctoral researcher in the
Department of Biomedical Informatics at The Ohio State
University. His research interests include parallel graph
algorithms, scheduling algorithms for multiprocessor
systems, data mining and bioinformatics. He received his
Ph.D. in Electrical and Computer Engineering from The
Ohio State University in 2008 and B.S. in Electrical and
Electronic Engineering and B.S. in Physics from Boğaziçi
University, Turkey, in 2002.

Robert T. Heaphy holds a Ph.D. in physics, M.A in mathematics, and B.S. in physics
and mathematics from the University of New Mexico. He has extensive experience
in object-oriented design, languages, and databases, including work with GPS
tracking systems, data acquisition, networking, and educational software. He is a
Certified Quality Engineer with the American Society for Quality.

Lee Ann Riesen is a computer software engineer at Sandia
National Laboratories in Albuquerque, NM. She earned
her M.S. in Computer Science and M.A. in Mathematics
from the University of New Mexico and her B.S. in
AppliedMathematics from Columbia University. Her work
at Sandia has focused on development of scalable software
in many scientific application areas, system software
for high-performance computing, and parallel scientific
visualization.

	A repartitioning hypergraph model for dynamic load balancing
	Introduction
	Related work
	Preliminaries
	Hypergraph partitioning with fixed vertices
	Multilevel partitioning paradigm

	Repartitioning hypergraph model
	Parallel repartitioning tool
	Coarsening phase
	Coarse partitioning phase
	Refinement phase
	Handling fixed vertices in recursive bisection

	Experimental results
	Repartitioning approaches
	Dynamically perturbed data experiments
	Adaptive mesh refinement experiments
	Term-by-document experiments

	Conclusion
	Acknowledgments
	References

