
Computational Design of Shape-Aware Sieves
DAVID CHA, University of Southern California, USA
ODED STEIN, University of Southern California, USA

shape A (should pass sieve)

shapes B₁, B₂, B₃ (should
be blocked by sieve) our optimized sieve fits A… our fabricated sieve…but none of the Bs (in any orientation)

top view top viewtop view top view

Fig. 1. Given a shape𝐴 that should pass through a sieve, and shapes 𝐵1, 𝐵2, 𝐵3 that should be blocked by it, we compute a sieve hole that admits𝐴 and blocks
the 𝐵s. A ✓ means the sieve lets the shape pass, and a × means the shape does not fit. We fabricate the sieves to verify their properties (cf. supplemental
video). Our method can also handle multiple 𝐴𝑖 s and accounts for various fabrication considerations.

We introduce mathematical tools to describe the geometric problem of sieves,
two-dimensional holes that admit certain three-dimensional objects to pass

through them, but block others. This is achieved by formulating the sieve

design problem as a two-player game where both players (the one that

wants to pass, and the one that wants to block) try to find a set of rigid

transformations to achieve their objective.We also introduce an algorithm for

solving this game by solving a global optimization problem employing both

differentiable rendering with gradient-based optimization as well as particle

swarm optimization. Our procedure accounts for real-world manufacturing

concerns, and we fabricate a variety of examples demonstrating the practical

viability of our sieves. Our implementation takes advantage of GPUs and

does not rely on any clean or manifold input geometry as long as it is a

triangle mesh. We can produce intricate sieves that block an arbitrary set of

shapes B but admit another arbitrary set of shapes A (if finding a solution

is possible for our method).

CCS Concepts: • Computing methodologies→ Computer graphics; Shape
modeling; •Mathematics of computing→ Mathematical optimization;
Nonconvex optimization.

Additional Key Words and Phrases: sieves,fabrication,global optimization

ACM Reference Format:
David Cha and Oded Stein. 2025. Computational Design of Shape-Aware

Sieves. In SIGGRAPH Asia 2025 Conference Papers (SA Conference Papers ’25),

Authors’ Contact Information: David Cha, University of Southern California, Los

Angeles, California, USA; Oded Stein, University of Southern California, Los Angeles,

California, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.

SA Conference Papers ’25, Hong Kong, Hong Kong
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2137-3/2025/12

https://doi.org/10.1145/3757377.3763875

December 15–18, 2025, Hong Kong, Hong Kong. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3757377.3763875

1 Introduction
Sieves are an old tool for separating objects: Some objects pass

through the sieve, and some do not. They are an important utensil

in the modern world, from laypeople’s kitchens to a variety of

industrial applications [Advantech Manufacturing 2001], and the

problem of designing sieves is both geometrically intriguing as well

as practically relevant. In this article, we introduce a method for

designing sieves that can be used to filter arbitrary objects using

only the shapes’ geometry. Leveraging the power of computational

design, we can use sieves to distinguish between shapes of intricate

geometries.

In its simplest form, the problem of designing a sieve is the prob-

lem of designing a two-dimensional hole that will let certain shapes

pass in some correct orientation, and will not let other shapes pass

no matter what orientation they are in. For industrial settings such

as mining, users might focus on simple shapes and sizes for holes

to separate particles by size and weight, combined with shaking

techniques and other physics considerations. We focus purely on

the geometric problem: what are the properties of a hole that cer-

tain shapes can be translated through, but others not? It turns out

that there is an interesting mathematical theory hiding behind this

simple question, which we study in depth in this article.

Actually solving the sieve problem raises many interesting algo-

rithmic as well as practical questions. We propose a method for

constructing a valid sieve that admits a set of arbitrary shapes

𝐴1, . . . , 𝐴𝑚 but will block arbitrary shapes 𝐵1, . . . , 𝐵𝑛 if such a con-

figuration can exist. This algorithm works by solving a 2-player

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3757377.3763875
https://doi.org/10.1145/3757377.3763875


2 • David Cha and Oded Stein

game between player A and player B, formulated as a global opti-

mization problem. In an iterative process, the 𝐵𝑖s use gradient-based

optimization starting from a variety of initial configurations to opti-

mize an overlap loss computed through differentiable rendering in

order to orient themselves in a way that will fit through the hole. In

an outer loop, the 𝐴𝑖s use a particle swarm optimization routine to

find a hole that will let them pass, but that the 𝐵𝑖s cannot crack.

Our method specifically incorporates practical fabrication con-

siderations like 3D printing tolerances in order to achieve a viable

sieve that will perform in the real world (Fig. 1). We show the util-

ity of our method by computing a wide array of specialized and

geometrically intricate sieves (Figs. 5, 9, 8), and we fabricate sieves

to show their viability (Fig. 15). Since it is built on differentiable

rendering, our method is extraordinarily robust to bad input geom-

etry. We can compute sieve holes for any triangle mesh that can be

rendered; there is no requirement on manifoldness, connectedness,

or watertightness.

2 Related Works
While sieves are widely used in engineering applications, and there

exists practical research in designing sieves for filtering objects by

simple shapes and sizes, the design of sieves is not well-studied in

the geometry processing community. Mechanical engineers’ study

of sieves is concerned with the physical aspects of sieving and how

they are affected by object size [Liu 2009; Liu et al. 2019] or the

necessary motions of a sieving machine for optimal performance

[Modrzewski et al. 2022]; see the literature review of Sanchez-Suarez

et al. [2022] for an overview of sieving research in that field. By

contrast, our work focuses purely on the geometry of the shape and

the sieve hole, and on the question whether there is any orientation

under which a shape can translate through a hole.

Shadow art. Designing sieves is closely related to the problem of

shadow art: given one or more 2D outlines, find a 3D shape that,

when projected onto a plane from a certain direction (i.e., casting a

shadow), produces the 2D outlines.

Shadow art was studied, e.g., by Mitra and Pauly [2009], who

use a voxel-based discretization of 3D shapes, and more recently by

Sadekar et al. [2022]; Wang and Deng [2024], who use differentiable

rendering. Our problem of finding sieve holes is related: We want

to find a 2D outline so that certain 3D shapes fit through the 2D

outline when projected (player A), and certain shapes will never fit

no matter how they are rotated before they are projected (player B).

Much like these recent approaches, we use differentiable rendering

to optimize through an orthographic projection.

Further shadow art methods like Hsiao et al. [2018]’s focus on

one-dimensional curves generated by wires (where other works

in this section are two-dimensional). Min et al. [2017] introduce a

method for grayscale shadow art (where other works produce solid

shadows generated through full occlusion only). Other shadow art

methods analyze anamorphic 3D shapes [Debnath et al. 2025] or

shadows generated by hands [Gangopadhyay et al. 2023].

Optimizing for rigid transformation. Our problem is related to the

packing problem, where shapes are rigidly transformed so they can

fit in a certain bounded volume (in our case, so their projection can

fit through the sieve hole). This is a well-studied problem in many

disciplines, and we refer to various relevant surveys for an overview

of the literature [Ali et al. 2022; Guo et al. 2022]. Of specific interest

to us is the Matryoshka packing of Jacobson [2017]; we employ

a similar particle swarm global optimization to find results in the

complex and highly nonconvex space of orientations for our shapes

A. Other examples of recent geometry processing approaches to

the packing problem are the approaches of Attene [2015]; Cui et al.

[2023]; Xue et al. [2023]; Yang et al. [2023].

Another closely related field is path planning; finding a series of

rigid transforms that can maneuver an object through certain ob-

stacles without collisions. Examples of recent geometry processing

work in this area are the methods of Joho et al. [2024]; Sellán et al.

[2021]; Wang et al. [2024]; Zhang et al. [2020]; Zhao et al. [2023];

general surveys in robotics and continuous collision detection can

be found in the works of Guo et al. [2023]; Nie et al. [2020]. We

reduce the pathing in our sieve problem strictly to translations along

the z-axis only—no complicated pathing is allowed.

Katz and Tal [2025], extending earlier works on point cloud visi-

bility computation [Katz and Tal 2015; Katz et al. 2007; Mehra et al.

2010], optimize through their visibility method to find a rigid trans-

form for an optimal viewpoint, similar to how we find an optimal

rigid transform for fitting through a sieve hole.

Pure math. Pure mathematics has a variety of interesting subfields

connected with our sieve problem; we want to highlight two exam-

ples here. Geometric tomography studies how to reconstruct shapes

(or properties of shapes) from tomographic data such as projections

and cross-sections [Gardner 2006]. Computational geometers study

the polygon containment problem (whether one polygon can fit

inside another) [Goodman et al. 2017, Chapter 30].

Differentiable rendering. In recent years, powerful differentiable

renderers [Jakob et al. 2022; Jatavallabhula et al. 2019; Laine et al.

2020; Ravi et al. 2020] have appeared that can be easily integrated

into standard machine learning and optimization environments

(see the survey of Kato et al. [2020] for a more complete overview).

We use Kaolin [Jatavallabhula et al. 2019] and Pytorch [Paszke

et al. 2019] to compute orthographic projections of objects, and we

differentiate through this projection to optimize our objective.

A popular use of differentiable rendering in geometry processing

is to use an image-based loss based on a rendered image, and then

differentiate that image with respect to some deformation of a mesh.

This approach has been used in generative modeling of 3D shapes

[Dinh et al. 2025; Gao et al. 2023; Kim et al. 2025; Poole et al. 2023;

Wang et al. 2022], and of course in the generation of shadow art

[Sadekar et al. 2022]. There are countless other uses of differentiable

rendering in geometry and graphics, such as 3D reconstruction

[Kerbl et al. 2023; Lombardi et al. 2019; Mildenhall et al. 2020],

inverse rendering [Cole et al. 2021; Nicolet et al. 2021; Vicini et al.

2022; Zhu et al. 2022], and many more.

3 The geometry of sieves
We first define the basic language used to describe sieves.

Definition 3.1. A sieve hole is a simply connected region 𝐻 ⊆ R2
.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.



Computational Design of Shape-Aware Sieves • 3

Definition 3.2. Let 𝑀 ⊆ R3
be a solid object. We refer to its

orthographic projection along the 𝑧-axis onto R2
as proj(𝑀).

A sieve hole𝐻 admits𝑀 if there exists some rigid transformation

𝑅 ∈ SO(3), t ∈ R2
such that proj(𝑅𝑀) + t ⊆ 𝐻 , denoted as 𝑀 ∈ 𝐻 .

If no such transformation exists, we say that 𝐻 blocks 𝑀 , denoted

as𝑀 ∉ 𝐻 .

Admission and blocking can be used to define a mathematical

relation.

Definition 3.3. Let 𝐴, 𝐵 ⊆ R3
be two shapes. We define

𝐴 ⪯ 𝐵 (1)

to mean that, for any sieve hole 𝐻 with 𝐵 ∈ 𝐻 , we also have 𝐴 ∈ 𝐻 .

If 𝐴 ⪯ 𝐵 and 𝐵 ⪯ 𝐴, then we say 𝐴 ∼ 𝐵.

Proposition 3.4. ⪯ is a partial order with ∼ as the equivalence
relation.

Proof. If 𝐴 ⪯ 𝐵 and 𝐵 ⪯ 𝐶 , for any 𝐶 ∈ 𝐻 we must have that

𝐵 ∈ 𝐻 and hence 𝐴 ∈ 𝐻 , so 𝐴 ⪯ 𝐶 , thus ⪯ is transitive.

Trivially𝐴 ⪯ 𝐴, so ⪯ is reflexive. By definition of ∼, ⪯ is antisym-

metric. □

Crucially, ⪯ is not a total (or complete) order, as there are examples

where neither 𝐴 ⪯ 𝐵 nor 𝐵 ⪯ 𝐴. Since ∼ is reflexive, symmetric,

and transitive, it is an equivalence relation. The relation ∼ exhibits

a useful property:

Proposition 3.5. 𝐴 ∼ 𝐵 iff the two shapes have the same set of
projections across all orientations.

Proof. See Supplemental Material A for the proof. □

However,𝐴 ∼ 𝐵 does not imply𝐴 and 𝐵 are the

same shapes, as shown by the counterexample in

the inset: The (convex) icosahedron and the (non-

convex) hollowed-out icosahedron are different

shapes, but look the same when projected onto

R2
from any direction.

4 The Sieve Game
Having defined sieves, admissibility, and their relations to each other,

we now define the central game that is the focus of this article: A

contest between two players seeking to block and pass through a

sieve hole, respectively.

Definition 4.1 (Sieve Game). Given a set of shapesA = {𝐴1, ..., 𝐴𝑚}
that wewish to allow through a sieve and another setB = {𝐵1, ..., 𝐵𝑛}
that we do not, the game objectives of the Sieve Game are:

• For player A, to find a sieve hole 𝐻 that admits all 𝐴𝑖 while

blocking all 𝐵𝑖 .

• For player B, to find a rigid transform that will allow passage

of any 𝐵𝑖 through the sieve hole 𝐻 found by A.

If such an 𝐻 exists, we say that A wins and B loses, and vice

versa if it does not exist.

Two-player games are sometimes formulated as maximin opti-

mization problems [Nisan et al. 2007], and our game is particularly

amenable to this. We start with Bs goal. Consider the expression

area(proj(𝑀)) − area(proj(𝑀) ∩ 𝐻 ) (2)

which equals the area of the projection of a 3D shape 𝑀 not con-

tained in the sieve hole𝐻 . The condition proj(𝑀) ⊆ 𝐻 is equivalent

to area(proj(𝑀)) − area(proj(𝑀) ∩ 𝐻 ) = 0, and proj(𝑀) ⊈ 𝐻 is

equivalent to area(proj(𝑀)) − area(proj(𝑀) ∩ 𝐻 ) > 0.

From now on, let𝑀′
refer to the shape𝑀 rigidly transformed by

𝑅 ∈ 𝑆𝑂 (3) and t ∈ R2
(we ignore the technicality of t’s dimension,

since the shape will always be projected onto R2
). For a given sieve

hole 𝐻 , the problem of finding a rigid transformation such that the

projection of 𝐵′ = 𝑅𝐵 + t is contained in 𝐻 can be formulated as the

minimization problem

min

𝑅,t
area(proj(𝐵′)) − area(proj(𝐵′) ∩ 𝐻 ) , (3)

where, if the optimum of zero is attained, then 𝐵 is admitted, and

otherwise the optimum is positive, meaning 𝐵 is blocked. Player B
must thus solve the optimization problem (3) for all 𝐵𝑖 .

What does player A do? They must predict any move by B, and

find a sieve hole that all the 𝐴𝑖 can pass through, while the 𝐵𝑖 are

blocked; i.e., they want a hole 𝐻 so that the result of 3 is positive

for all 𝐵𝑖 . This can be written as the maximization problem

max

𝐻,𝑅𝐴,t𝐴
min

𝑅𝐵 ,t𝐵

(
area(proj(𝐵′)) − area(proj(𝐵′) ∩ 𝐻 )

)
s.t. area(proj(𝐴′)) = area(proj(𝐴′) ∩ 𝐻 )

(4)

for only one shape 𝐴 and one shape 𝐵, or, for the general case,

max

𝐻,R𝐴,T𝐴
min

R𝐵 ,T𝐵

𝑛
min

𝑖=1

(
area(proj(𝐵′𝑖 )) − area(proj(𝐵′𝑖 ) ∩ 𝐻 )

)
s.t. ∀𝑖 = 1, . . . ,𝑚 area(proj(𝐴′

𝑖 )) = area(proj(𝐴′
𝑖 ) ∩ 𝐻 ) ,

(5)

where R𝐴 = (𝑅𝐴,𝑖 )𝑖 , T𝐴 = (t𝐴,𝑖 )𝑖 , R𝐵 = (𝑅𝐵,𝑖 )𝑖 , T𝐵 = (t𝐵,𝑖 )𝑖 ,
proj(𝐴′

𝑖
) = proj(𝑅𝐴,𝑖𝐴𝑖 ) + t𝐴,𝑖 , and proj(𝐵′

𝑖
) = proj(𝑅𝐵,𝑖𝐵𝑖 ) + t𝐵,𝑖 .

Our Sieve Game can be practically reduced to the maximin problem

(5). A wins if the optimization result is positive, and B wins if it is

0.

The Sieve Game is a two-player, zero-sum game with infinite

strategy sets where player A wants to maximize an objective value,

and player B wants to minimize it [Nisan et al. 2007]. For our

purposes, we are only interested in pure strategies, and not mixed

strategies where probabilities are assigned to the possible decisions

for each player: a straightforward global optimization of (5).

5 Constructing sieves
Solving (5) for arbitrary holes 𝐻 is a difficult problem. We will now

simplify the problem in steps to make it practically solvable, and

to actually present an algorithm that can be used to solve some

version of the Sieve Game. We will begin incorporating practical

considerations.

5.1 One shape in A and one shape in B
For the simpler case where A = {𝐴} and B = {𝐵}, we start by sim-

plifyingAs strategy to always set 𝐻 = proj(𝐴′). This automatically

satisfies the constraint area(proj(𝐴′
𝑖
)) = area(proj(𝐴′

𝑖
) ∩ 𝐻 ). We

are left with the unconstrained optimization problem

max

𝑅𝐴

min

𝑅𝐵 ,t𝐵
area(proj(𝐵′)) − area(proj(𝐵′) ∩ proj(𝐴′)) . (6)

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.



4 • David Cha and Oded Stein

shape A

shape
B

2 6 10
PSO iterations

energy (7)

0.04

0.02

0

energy maximization
over time

top view top view top view top view

iteration 2 iteration 4 iteration 8 iteration 10

top view top view top view top view

Fig. 2. The progression of our optimization procedure over time in an example with one shape in A and one shape in B. The current best sieve at different
iterations of our PSO procedure is on the left, and the energy (7) at the end of each PSO step is on the right.

Note that we no longer need the translation vector t𝐴 for 𝐴 due to

the translation vector for 𝐵. Thus, in the simplified case it is just a

matter of finding a rotation of 𝐴 such that 𝐵 is not admitted by its

projection.

We find that the argument of the optimization problem is sen-

sitive to the relative sizes of 𝐴 and 𝐵: Larger shapes lead to larger

projections, and hence larger objective values. This was particu-

larly problematic in practice in the case where we have multiple

shapes in B. To accommodate for this, we normalize the argument

by area(proj(𝐵′)), so that it is always in [0, 1]:
max

𝑅𝐴

min

𝑅𝐵 ,t𝐵
𝛽𝐴′ (𝑅𝐵, t𝐵) , (7)

where

𝛽𝐴′ (𝑅𝐵, t𝐵) =
area(proj(𝐵′)) − area(proj(𝐵′) ∩ proj(𝐴′))

area(proj(𝐵′)) .

5.2 One shape in A and many shapes in B
We now move on to the more complicated (but still not general)

case where A = {𝐴} and B = {𝐵1, . . . , 𝐵𝑛}. This can be handled

with a simple extension of the inner optimization function 𝛽 :

𝛽𝑖𝐴′ (𝑅𝐵,𝑖 , t𝐵,𝑖 ) =
area(proj(𝐵′

𝑖
)) − area(proj(𝐵′

𝑖
) ∩ proj(𝐴′))

area(proj(𝐵′
𝑖
)) . (8)

As in (5), the introduction of many 𝐵𝑖 turns our optimization into

a minimization over the 𝐵𝑖 . Using 𝛽𝑖
𝐴′ (𝑅𝐵,𝑖 , t𝐵,𝑖 ), our simplification

of (5) becomes

max

R𝐴

min

R𝐵 ,T𝐵
𝛽𝐴′ (R𝐵,T𝐵) (9)

where

𝛽𝐴′ (R𝐵,T𝐵) =
𝑛

min

𝑖=1
𝛽𝑖𝐴′ (𝑅𝐵𝑖

, 𝑡𝐵𝑖
) , (10)

and, as before, R𝐵 = (𝑅𝐵,𝑖 )𝑖 and T𝐵 = (t𝐵,𝑖 )𝑖 .
In (9) an optimum of zero means 𝐴 loses, otherwise the optimum

is positive and 𝐴 wins.

5.3 Many shapes in A and many shapes in B
At last, we deal with the case where A = {𝐴1, . . . , 𝐴𝑚} and B =

{𝐵1, . . . , 𝐵𝑛}. A straightforward solution would be to use the tech-

nique for a single shape inA andmany shapes inB, and if a solution

𝐴′
𝑖
exists for each 𝐴𝑖 , we can simply create a sieve hole that is the

disjoint union of all the projections of the𝐴′
𝑖
(a valid solution for the

Sieve Game we devised). This is possible to do by simply optimizing

(9). In this section, we will try to find more interesting holes 𝐻 that

are a single, connected silhouette. Note that this is not as simple as

merely creating an overlapping union of the projections of the 𝐴′
𝑖
,

as the result could be a shape that admits some of the 𝐵𝑖 .

We start by noting that, regardless of how the sieve hole 𝐻 is

generated, finding the matching transformations for the 𝐵𝑖 is similar

to before (just now with a generic sieve hole 𝐻 ), by minimizing

𝛽𝐻 (RB ,TB) =
𝑛

min

𝑖=1
𝛽𝑖𝐻 (𝑅𝐵,𝑖 , t𝐵,𝑖 ) , (11)

where

𝛽𝑖𝐻 (𝑅𝐵,𝑖 , t𝐵,𝑖 ) =
area(proj(𝐵′

𝑖
)) − area(proj(𝐵′

𝑖
) ∩ 𝐻 )

area(proj(𝐵′
𝑖
)) . (12)

We choose to construct 𝐻 by finding optimal transformations

for the shapes A, RA = {𝑅𝐴,1, ..., 𝑅𝐴,𝑚} and TA = {t𝐴,2, ..., t𝐴,𝑚}
(we do not keep track of a translation for 𝐴1, as this would simply

translate the final sieve hole𝐻 itself).𝐻 is then defined as the union

of the projection of 𝐴𝑖s,

𝐻 =

𝑚⋃
𝑖=1

proj(𝐴′
𝑖 ) . (13)

Simply optimizing (5) with this hole 𝐻 without any further con-

straints, maxRA ,TA minRB ,TB 𝛽𝐻 (RB ,TB), leaves too much free-

dom and does not work well with our optimization infrastructure.

We deal with this by maximizing an energy that promotes overlaps

by adding a term to the energy that wants to minimize the area of

𝐻 , and by adding an activation function that helps overlapping the

different proj(𝐴′
𝑖
)s:

max

RA ,TA
min

RB ,TB

𝜏

2

[tanh 𝜌 (𝛽𝐻 (RB ,TB) − 𝜂)] − 𝛼 area (𝐻 ) . (14)

We choose 𝜏 = 10, 𝜌 = 200, 𝜂 = 0.02, 𝛼 = 5. The area(𝐻 ) term
promotes a more compact sieve hole, while the tanh activation

function allows a trade-off between blocking the 𝐵𝑖s and minimizing

the area of 𝐻 : After enough of 𝐵 is blocked, no more can be gained

by maximizing the blocked area, and it is easier to maximize the

objective by reducing the area of 𝐻 .

5.4 Fabrication considerations
The Sieve Game (5) and the different strategies for solving it dis-

cussed in Section 5 so far have completely ignored the practical need

to fabricate 𝐻 in a way so that shapes actually can pass through it

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.



Computational Design of Shape-Aware Sieves • 5

top viewshape A

shape B sieve without dilation
A blocked in practice

sieve with dilation
A fits in practice

top view top view

Fig. 3. Because of real-world properties like 3D printer manufacturing toler-
ance and printers, a perfect theoretical fit for 𝐴 does not mean that 𝐴 will
actually fit in practice, hence we demand the sieve hole fits a dilated 𝐴. Cf.
supplemental video.

and be blocked by it. Here, we quickly address modifications to our

method that are necessary to accommodate the real world.

Offsetting the hole geometry. Even though in an ideal world 𝐴 can

perfectly pass through the hole proj(𝐴), this is not true in practice,

because of friction, as well as manufacturing tolerances. Hence we

enlarge 𝐻 to allow for the 𝐴𝑖 to physically pass through it. At first

glance, it might seem like we only need to dilate the hole𝐻 resulting

from any of the optimizations in this section. This naive approach

could, however, lead to this now dilated hole admitting a shape 𝐵𝑖
that it is supposed to block. Instead we dilate the shapes 𝐴𝑖 at the

start of any optimization, and search for holes that can admit the

dilated shapes. That way, the optimization accounts for fabrication

tolerances. By default, we dilate by 1 millimeter. Fig. 3 shows the

effect of our dilation procedure and how it works.

Simple connectedness of sieve holes. We have, so far, ignored the

statement of Definition 3.1 that the sieve hole𝐻 be simply connected.

This property is vital for fabrication: We cannot produce a sieve hole

that has a floating solid piece inside it, not connected to the walls

of the sieve. We account for this during our method by, wherever

proj(𝐴) is mentioned, filling in all disconnected outside components

as part of the projection. Note that this might make certain games

unwinnable for A that are winnable without this. Fig. 4 shows how

our hole filling procedure works.

Accounting for complex motions. We assume that shapes are only

translated along the 𝑧-axis in a fixed orientation through the hole

and do not account for complexmotions involving other translations

and rotations. It may seem as if some blocked shapes can actually be

wriggled through the sieve hole via complex motions, but making

the sieve sufficiently thick (at least the diameter of the circumsphere

of the shape) prevents this, as proven in Supplemental Material B

(for space reasons, the full depth of the sieves is not always displayed

in the figures).

6 Optimization methods
Our method, as described in Section 5, requires us to solve a variety

of minimization and maximization problems. These problems are

highly nonconvex and difficult to solve in general. Maximin and

minimax optimization problems are often the focus of study in game

theory [Nisan et al. 2007], but we do not use such existing algorithms

shape A

A wins! B wins!

shape B

top view top view top view top view

leave floating piece in remove floating piece
floatingfloating

Fig. 4. We remove floating pieces in the sieve to make sure the sieve hole
is a single simply connected shape that can be physically fabricated. This
has effects on the game; in this example, 𝐴 could win if we left the floating
piece in, but cannot if the piece is removed.

as the literature is often focused on finding optimal probabilities for

strategies to find the mixed Nash equilibrium of a game. Instead,

we want to find out whether A can win and, if possible, what the

winning configuration is.

We separate the optimization problems of Section 5 into two

problems: the inner minimization problem, which we solve using

gradient-based optimization, and the outer maximization problem,

which we solve with a zero-order global optimization method.

6.1 Gradient-based optimization
We represent the 𝐴𝑖s and the 𝐵𝑖s by triangle

meshes in R3
. The projection operator proj

is implemented via differentiable rendering.

We render an orthographic raster of each

mesh projection using binary values for the pixels. However, to

guarantee the projection operator’s differentiability for optimiza-

tion, the actual rendering routine renders a soft mask smoothly

transitioning from 0 to 1 at the boundaries (the inset shows an ex-

ample of such a soft mask). We use a function in the differentiable

rendering library Kaolin [Jatavallabhula et al. 2019] to render soft

masks as defined by Chen et al. [2019]. All rasters were set to a

resolution of 256 × 256 pixels. Computing area(𝐻 ) is then achieved

by summing all pixel values. Terms that involve the intersection

of two regions 𝐺 and 𝐻 , such as area(𝐺 ∩ 𝐻 ), are implemented as

an elementwise multiplication of the per-pixel values of the binary

rasters. These actions are all easily differentiable.

We use Adam [Kingma and Ba 2017] with parameters 𝛽1 = 0.9,

𝛽2 = 0.999, and 𝜖 = 10
−8

at a learning rate of 0.05 for 100 itera-

tions to find a minimum for all the inner minimization problems

in Section 5. In order to make sure the minimization is not caught

in local minima, we initialize R𝐵,T𝐵 with 10 random values drawn

from a uniform distribution of 𝑆𝑂 (3) and [−0.1, 0.1]2 respectively.
While more random values increases the chances of finding a global

minimum, the algorithm has no theoretical guarantees, so when B
can win, it may be incorrectly reported that it loses. But note that

when it cannot win, it will never lead to incorrectly reporting that it

does since an objective value of zero cannot be attained. We define

the solution of this gradient-based minimization to be

𝑓 (RA ,TA ) =


min

𝑅𝐵 ,t𝐵
𝛽𝐴′ (𝑅𝐵, t𝐵)

min

R𝐵 ,T𝐵
𝛽𝐴′ (R𝐵,T𝐵)

min

RB ,TB
𝜏
2
[tanh 𝜌 (𝛽𝐻 (RB ,TB)−𝜂)]−𝛼area (𝐻 )

, (15)

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.



6 • David Cha and Oded Stein

top view top view

A B

top view

A wins!

our optimized sieve

top view

A B our optimized sieve

top view top view

A B our optimized sieve

top view top view

A wins!

A wins!

A B our optimized sieve A wins!
top view top view

A B our optimized sieve A wins!

Fig. 5. Our sieves for the scenario with one shape in A and one in B. A ✓
means the sieve lets the shape pass, and a × means the shape is blocked.

depending on which of the 3 problems (one shape in A, one shape

in B; one shape in A, many shapes in B; many shapes in A, many

shapes in B) we are solving. While these objective values are com-

puted using soft masks at each iteration during optimization, the

final value, which does not need differentiation, is computed using

binary rasters as they give the exact projection.

6.2 Particle swarm optimization
It remains to solve the outer maximization problem by maximizing

𝑓 , which we do using particle swarm optimization (PSO) [Poli 2008]

with 10 particles, 10 iterations, inertia weight 𝜔 = 0.25, and acceler-

ation coefficients𝜓1 = 0.25,𝜓2 = 0.25. Fig. 2 shows how 𝐻 evolves

during the optimization.

For the case where A contains only one shape, straightforward

PSO with no additional modifications can be used. If A contains

multiple shapes, we employ the following approach to find a solution

with sufficient overlap between the projection of all the 𝐴′
𝑖
s:

• For each 𝐴𝑖 ∈ A, solve max

𝑅𝐴,𝑖 ,t𝐴,𝑖

𝑓
(
𝑅𝐴,𝑖 , t𝐴,𝑖

)
as if we were

solving the one-shape-in-A-many-shapes-in-B case.

• Sort the 𝐴𝑖 by the area of proj(𝐴′
𝑖
), from largest to smallest.

• Set 𝐻1 = proj(𝐴′
1
).

• For 𝑖 = 2, . . . ,𝑚:

– Initialize 10 random translation vectors and rotation angles

for transformations in R2
to apply to and, for each, use

gradient-based optimization to maximize the area of the

projection’s overlap with 𝐻 .

– Using PSO initialized with particles from last step, solve

max

𝑅𝐴,𝑖 ,t𝐴,𝑖

𝑓
(
{𝑅𝐴,1, . . . , 𝑅𝐴,𝑖 }, {t𝐴,2, . . . , t𝐴,𝑖 }

)
.

to get an optimized transformed projection proj(𝐴∗
𝑖
) and

then set 𝐻𝑖 = 𝐻𝑖−1 ∪ proj(𝐴∗
𝑖
).

A B our optimized sieve

top view top view

B wins!

A B B wins!our 

top view

optimized sieve

top view

A B our 

top view

optimized sieve

top view

B wins!

A B our 

top view

optimized sieve

top view

B wins!

Fig. 6. Examples with one shape in A and one in B, but where A cannot
find a winning sieve. A ✓ means the sieve lets the shape pass.

• Finally, set 𝐻 = 𝐻𝑚 .

For the intermediate PSO steps, we use the same parameters as

elsewhere, except for𝜓1 = 0.05,𝜓2 = 0.05.

This method computes the optimal orientations for the 𝐴𝑖 one

after the other. If, at the end, 𝑓 (RA ,TA ) = 0, B wins. Else if

𝑓 (RA ,TA ) > 0, A wins. By successively optimizing each orienta-

tion of 𝐴𝑖 , we are able to ensure the simply connectedness of each

intermediate sieve hole 𝐻𝑖 and hence the final sieve hole 𝐻 much

better than optimizing all orientations at once.

Declaring a winner. After PSO is finished, we run the gradient-based

inner optimization again to see how well B does against the sieve

hole 𝐻 chosen A, but using 100 random initial orientations for B
and 500 Adam iterations for significantly greater accuracy. If none

of the 𝐵𝑖 achieve a final energy of exactly zero (which is valid since

there is no floating point error due to it being computed from binary

rasters), then A wins.

7 Implementation & fabrication
We implement our method in Python using Pytorch [Paszke et al.

2019] and Kaolin [Jatavallabhula et al. 2019] for the gradient-based

optimization and differentiable rendering. We use Gpytoolbox [Sel-

lán et al. 2025] for common geometry processing tasks, particularly

for dilating meshes by taking the signed distance field of a mesh on a

grid and using marching cubes to reconstruct the offset surface. Our

code and result files including all STL files of the input and output

meshes are available at https://github.com/David-Cha/shape-aware-

sieves.

To create the meshes for fabrication in a 3D printer, we take the

binary raster of the output sieve hole 𝐻 , and stack it to make a 3D

raster of a prism with 𝐻 as its base; this prism is at least as deep as

the diameter of the largest circumsphere of all 𝐴𝑖s and 𝐵𝑖s, in order

to make sure that shapes can only pass through 𝐻 by translation

along the 𝑧-axis, and not by rotation or 𝑥𝑦 translation.We thenmesh

the raster with marching cubes [Lorensen and Cline 1987], and do a

mesh boolean between a rectangular block and the hole prism to

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

https://github.com/David-Cha/shape-aware-sieves
https://github.com/David-Cha/shape-aware-sieves


Computational Design of Shape-Aware Sieves • 7

top view top view

top view top view

shape A shape B

shape A shape B

A wins!

our optimized sieve A wins!

Fig. 7. Constructing sieves for two very similar input shapes alternately
in the role of A and B. Even though the two shapes are very similar, our
method manages to construct sieves distinguishing between the two no
matter which one is A and which one is B.

shape A

shapes B₁, B₂ our optimized sieve A wins!

top view top view top view

shape A
top view top view top view top view

our optimized sieve A wins!

Fig. 8. Sieves produced with our method that try to admit a mesh 𝐴 and
block multiple meshes 𝐵𝑖 . A ✓ means the sieve lets the shape pass, and a ×
means the shape does not fit.

get a mesh of the sieve object that can be printed in a 3D printer.

We print both the shapes as well as the sieves using an UltiMaker

S5 with PLA material or a Stratasys F370 with ABS material.

Further implementation details, such as parameter choices for

certain experiments that deviate from the defaults, can be found in

the supplemental material.

8 Results
We use our method to generate a large variety of sieves for diverse

input geometries. We display the input shapes, the sieve geometry

(both in 3D and 2D from above), the orientation for the 𝐴𝑖s to pass

through the sieve, and the orientation for the 𝐵𝑖s that achieves the

lowest energy on the inner minimization.

Figs. 5 and 6 show sieves computed for the case with one shape

in A and one shape in B. Our method determines that, in some

cases, A can win (and produces the corresponding sieve), and that,

in some bases, A cannot win (and the best possible sieve is pro-

duced). In Fig. 7 we demonstrate that our method can generate sieves

to distinguish even extremely similar geometry: Of the two very

similar-looking machine parts, our sieve only admits one, and blocks

the other (for each choice of object we want to admit). Figs. 1 and 8

showcase our results for the scenario where we have one shape inA
and multiple shapes in B. Fig. 9 illustrates that the one-A-many-B
scenario is not the same as merely solving for the individual 𝐵𝑖 ∈ B,

top view

shape B₁shape A

shape A

shape A shapes B₁,B₂

shape B₂

top view top view

A wins! our optimized sieve
top view

our optimized sieve

top view

A wins! 
top view top view

B wins! our optimized sieve

Fig. 9. Our method can generate a sieve admitting 𝐴 and blocking 𝐵1 by
itself, blocking 𝐵2 by itself, but not a sieve blocking both B = {𝐵1, 𝐵2} at
the same time (𝐵2 can pass).

top view

10 PSO particles (default)

top view

shape A 5 PSO particles

top view top view

A wins!shape B

B wins!

Fig. 10. Our PSO needs enough particles to find a good global optimum.
By using 5 instead of than the default value of 10 for an example where A
wins, it leads to B winning instead.

as here A could win against each of the meshes in B individually,

but cannot block both of them at the same time. It is not enough to

merely solve the pairwise problem of deciding whether a mesh 𝐴

can block every mesh 𝐵 individually. Our fabricated sieves can be

seen in Figs. 1 and 15, and contain scenarios with one shape in A
and one shape in B, as well as multiple shapes in A and multiple

shapes in B. We verify in practice that the sieves admit the shapes

they should be admitting, and block the shapes that they should be

blocking. The examples in Fig. 15 with multiple shapes in A and

multiple shapes in B show where our method truly shines: We can

generate intricate sieve holes that pass many different shapes of

arbitrary geometry, but block others.

Figs. 10, 11, 12, and 13 show the effect of varying the hyperparam-

eters of our method. In Fig. 2 we show how the energy decreases

over multiple iterations of PSO. Supplemental Material C features

further runtime and convergence analysis of the method. A detailed

table with runtime statistics for all figures in the article can be found

in the supplemental material.

9 Limitations
Neither our inner gradient-based optimization (Figs. 11, 13) nor our

outer PSO (Figs. 10, 12) guarantee that a global optimum is actually

found, and thus we cannot guarantee that our method always cor-

rectly solves the Sieve Game. This can be sometimes remedied by

increasing the various hyperparameters for our method: number

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.



8 • David Cha and Oded Stein

top view top view

shape A 3 orientations

top view top view

A wins!10 orientations (default)shape B

B wins!

Fig. 11. Our inner optimization for B needs to be initialized with enough
different initial orientations to find a correct solution. Using 3 instead of
the default 10 for an example where A can win, leads to a B win instead.

top view top view

shape A 3 PSO iterations

top view top view

A wins!10 PSO iterations (default)shape B

B wins!

Fig. 12. The PSO in our method needs to be run for enough iterations. By
using 3 instead of the default value of 10 for an example where A wins, it
leads to B winning instead.

of particles, number of PSO iterations, number of B initializations,

and number of Adam iterations.

Our procedure for declaring a winner of the game can result in

a wrong call. In Fig. 14, we declare 𝐴 a winner, even though 𝐵 can

pass through the sieve in practice. A more principled approach,

taking into account further real-world tolerances and optimizing

with enough power to achieve certainty is required to remedy this.

10 Conclusion
Our method can find holes for arbitrary configurations of A and B
in many situations, enabling the fabrication of holes to filter shapes

using geometry alone. By creating and solving an optimization

formulation of this problem via differentiable rendering, we are able

to robustly handle arbitrary triangle meshes as inputs. Moreover,

we demonstrate the practicality of our method by accounting for

fabrication considerations and physical manufacturing of sieves.

Our method cannot yet guarantee that the solution it finds blocks

all shapes 𝐵 ∈ B, given the nonconvex nature of our optimization

in B. It is an interesting challenge for future work to combine our

method with an algorithm that can prove efficiently that a certain

shape cannot fit through a hole in any configuration. Potential future
directions include partitioning the space of 𝑆𝑂 (3) in a way that some

optimization algorithm is guaranteed to find the global optimum

or incorporating well-established geometry processing algorithms

with theoretical guarantees like the iterative closest point algorithm

[Besl and McKay 1992].

top view

100 Adam iterations (default)

top view

shape A 5 Adam iterations

top view top view

A wins!shape B

B wins!

Fig. 13. The gradient-based Adam optimization needs to run for a certain
minimum number of iterations. By using 5 instead of the default value of
100 for an example where A wins, it leads to B winning instead.

top viewtop view

A
optimized sieve
A (barely) wins! but B fits in practiceB

A B

Fig. 14. It can happen that we determine that 𝐴 has won, but 𝐵 is blocked
by such a tiny amount that, when printed, it still passes the sieve. This
can sometimes be overcome by increasing the rasterization resolution or
(similarly) scaling the meshes.

In this work we have also assumed that shapes can only be trans-

lated along the 𝑧-axis through the sieve hole, which is only valid

when the sieve is very thick. If the sieve is thin enough, then shapes

reported to be blocked may actually be able to pass via complex

motions involving translations in the 𝑥𝑦 plane and rotations, so one

has to account for more possibilities for shapes to fit through holes

(similar to the work of Zhang et al. [2020]), an interesting direction

for future work.

Lastly, our method is only applicable to the case where the shapes

𝐴 ∈ A and 𝐵 ∈ B can reliably attain their optimal orientation

for fitting through the sieve hole. In sieves, as used in industrial

settings or in the kitchen, objects are not precisely aligned with

holes; rather, the sieve is shaken, each object makes contact with the

sieve in a random orientation, and then has to pass through the hole

in that orientation. Accounting for the physics and the orientation

probabilities of the shaking process is another promising avenue

for future research.

Acknowledgments
We thank Jernej Barbič, Huanyu Chen, Silvia Sellán, Ryan Mei,

Bingjian Huang, and the USC Maker Space team for helping with

3D prints. We thank Silvia Sellán, Yingying (Samara) Ren, and Eitan

Grinspun for scientific discussions. We thank Pranav Jain for insight

on finding interesting combinations of meshes by suggesting the

aliens and machine parts examples. We are grateful to Leticia Mattos

Da Silva, Dylan Rowe, Pranav Jain, Letao Chen, and Alice Wei for

proofreading. USC’s Geometry and Graphics Group is supported by

NSF grant 2335493 and a gift by Adobe Inc. We thank the creators

of assets used in this article: the COSEG dataset [Wang 2012], the

TOSCA dataset [Bronstein et al. 2025], and various Thingiverse

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.



Computational Design of Shape-Aware Sieves • 9

top view

shape A shape B

top view

our optimized sieve our fabricated sieveB wins 

our fabricated sieve

shape A

shapes B₁, B₂, B₃

top view top view top view top view

our optimized sieve A wins 

shape A shapes B₁, B₂ our fabricated sieveA wins our optimized sieve

top view top view top view

shapes A₁, A₂

shapes B₁, B₂

top view top view top view top view

A wins our optimized sieve our fabricated sieve

shapes A₁, A₂, A₃

shapes B₁, B₂, B₃ A wins our fabricated sieve

top view top view top view top view top view top view

our optimized sieve

shapes A₁, A₂, A₃

shapes B₁, B₂, B₃, B₄ A wins our optimized sieve our fabricated sieve

top view top view top view top view top view top view top view

Fig. 15. We fabricate our sieves with a 3D printer to demonstrate the practical use of our method, and verify manually that the sieves admit the 𝐴𝑖 s they
should be admitting / block the 𝐵𝑖 s they should be blocking. A ✓ means the sieve lets the shape pass, and a × means the shape does not fit.

meshes obtained from Thingi10K [Zhou and Jacobson 2016], [blin-

coln 2013; bohnded 2011; cerberus333 2012; clintkc 2012; craigmclark

2012; etrohn 2012; gpvillamil 2011; Hotproceed 2012; hugolours 2020;

Inorganic 2012; joeyC 2012; KingRahl 2013; kwalus 2013; Landru

2011; leemorton123 2011; Lenbok 2011; MakerBlock 2011; Maker-

Bot 2012; Mecano 2011; Mirice 2014; Padamsky_Miniatures 2023;

pmoews 2011; PrettySmallThings 2012; SIMPAD17 2014; spadehand

2012; Sybren 2011; tarturo 2011; TheGoofy 2014].

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.



10 • David Cha and Oded Stein

References
Advantech Manufacturing. 2001. Test Sieving: Principles and Procedures. New Berlin,

Wisconsin.

Sara Ali, António Galrão Ramos, Maria Antónia Carravilla, and José Fernando Oliveira.

2022. On-line three-dimensional packing problems: A review of off-line and on-line

solution approaches. Computers & Industrial Engineering 168 (2022).

Marco Attene. 2015. Shapes In a Box: Disassembling 3D Objects for Efficient Packing

and Fabrication. Comput. Graph. Forum 34, 8 (2015), 13 pages.

P.J. Besl and Neil D. McKay. 1992. A method for registration of 3-D shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence 14, 2 (1992), 239–256.

blincoln. 2013. Twisted Brick. https://www.thingiverse.com/thing:49080

bohnded. 2011. Yet Another Entry for the MakerBot Mascot. https://www.thingiverse.

com/thing:11625

Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. 2025. TOSCA

dataset. originally in Numerical Geometry of Non-Rigid Shapes (2009), obtained

via https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/

datasets/tosca.html.

cerberus333. 2012. Kool aid man. https://www.thingiverse.com/thing:26249

Wenzheng Chen, Jun Gao, Huan Ling, Edward J. Smith, Jaakko Lehtinen, Alec Jacobson,

and Sanja Fidler. 2019. Learning to predict 3D objects with an interpolation-based
differentiable renderer.

clintkc. 2012. Ball in cube (or Rolling Cube). https://www.thingiverse.com/thing:19780

Forrester Cole, Kyle Genova, Avneesh Sud, Daniel Vlasic, and Zhoutong Zhang. 2021.

Differentiable Surface Rendering via Non-Differentiable Sampling. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV). 6088–6097.

craigmclark. 2012. Whoofle Magic Dragon. https://www.thingiverse.com/thing:27969

Qiaodong Cui, Victor Rong, Desai Chen, and Wojciech Matusik. 2023. Dense,

Interlocking-Free and Scalable Spectral Packing of Generic 3D Objects. ACM Trans.
Graph. 42, 4, Article 141 (2023).

Soumyaratna Debnath, Ashish Tiwari, Kaustubh Sadekar, and Shanmuganathan Raman.

2025. RASP: Revisiting 3D Anamorphic Art for Shadow-Guided Packing of Irregular

Objects. arXiv:2504.02465 [cs.GR]

Nam Anh Dinh, Itai Lang, Hyunwoo Kim, Oded Stein, and Rana Hanocka. 2025. Geom-

etry in Style: 3D Stylization via Surface Normal Deformation. arXiv:2503.23241

etrohn. 2012. Dualstrusion Ball in Cube. https://www.thingiverse.com/thing:22506

Aalok Gangopadhyay, Prajwal Singh, Ashish Tiwari, and Shanmuganathan Raman.

2023. Hand Shadow Art: A Differentiable Rendering Perspective. In Pacific Graphics
Short Papers and Posters, Raphaëlle Chaine, Zhigang Deng, and Min H. Kim (Eds.).

The Eurographics Association.

William Gao, Noam Aigerman, Thibault Groueix, Vova Kim, and Rana Hanocka. 2023.

TextDeformer: Geometry Manipulation using Text Guidance. In ACM SIGGRAPH
2023 Conference Proceedings. Article 82.

Richard J. Gardner. 2006. Geometric Tomography: Projections and projection functions.
Cambridge University Press, 97–140.

Jacob E. Goodman, Joseph O’Rourke, , and Csaba D. Tóth. 2017. Handbook of Discrete
and Computational Geometry (3 ed.). CRC Press.

gpvillamil. 2011. Little Green Men (flying saucer pilots). https://www.thingiverse.com/

thing:11810

Baosu Guo, Yu Zhang, Jingwen Hu, Jinrui Li, Fenghe Wu, Qingjin Peng, and Quan

Zhang. 2022. Two-dimensional irregular packing problems: A review. Frontiers in
Mechanical Engineering 8 (2022).

Huihui Guo, Fan Wu, Yunchuan Qin, Ruihui Li, Keqin Li, and Kenli Li. 2023. Recent

Trends in Task and Motion Planning for Robotics: A Survey. ACM Comput. Surv. 55,
13s, Article 289 (2023).

Hotproceed. 2012. Sold Holder. https://www.thingiverse.com/thing:21704

Kai-Wen Hsiao, Jia-Bin Huang, and Hung-Kuo Chu. 2018. Multi-view wire art. ACM
Trans. Graph. 37, 6, Article 242 (2018).

hugolours. 2020. Gargoyle/ Demon. https://www.thingiverse.com/thing:4594515

Inorganic. 2012. Ferrocene. https://www.thingiverse.com/thing:19622

Alec Jacobson. 2017. Generalized Matryoshka: Computational Design of Nesting

Objects. Computer Graphics Forum 36, 5 (2017).

Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin Nimier-David, Delio Vicini,

Tizian Zeltner, Baptiste Nicolet, Miguel Crespo, Vincent Leroy, and Ziyi Zhang. 2022.

Mitsuba 3 renderer. https://mitsuba-renderer.org.

Krishna Murthy Jatavallabhula, Edward Smith, Jean-Francois Lafleche, Clement Fuji

Tsang, Artem Rozantsev, Wenzheng Chen, Tommy Xiang, Rev Lebaredian, and Sanja

Fidler. 2019. Kaolin: A PyTorch Library for Accelerating 3D Deep Learning Research.

arXiv:1911.05063

joeyC. 2012. Parametric Magnetic Driver Bit Handle. https://www.thingiverse.com/thing:

34852

Dominik Joho, Jonas Schwinn, and Kirill Safronov. 2024. Neural Implicit Swept Volume

Models for Fast Collision Detection. In 2024 IEEE International Conference on Robotics
and Automation (ICRA). 15402–15408.

Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro Ando, Toru Matsuoka, Wadim

Kehl, and Adrien Gaidon. 2020. Differentiable Rendering: A Survey. arXiv:2006.12057

Sagi Katz and Ayellet Tal. 2015. On the Visibility of Point Clouds. In 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV). 1350–1358.

Sagi Katz and Ayellet Tal. 2025. HPRO: Direct Visibility of Point Clouds for Optimization.

Computer Graphics Forum (2025), e70046.

Sagi Katz, Ayellet Tal, and Ronen Basri. 2007. Direct visibility of point sets. ACM Trans.
Graph. 26, 3 (2007), 24–es.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 2023.

3D Gaussian Splatting for Real-Time Radiance Field Rendering. arXiv:2308.04079

Hyunwoo Kim, Itai Lang, Noam Aigerman, Thibault Groueix, Vladimir G. Kim, and

Rana Hanocka. 2025. MeshUp: Multi-Target Mesh Deformation via Blended Score

Distillation. arXiv:2408.14899

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Optimization.

arXiv:1412.6980 [cs.LG]

KingRahl. 2013. Gnome Chess. https://www.thingiverse.com/thing:151265

kwalus. 2013. A Balloon Powered Helicopter. https://www.thingiverse.com/thing:152804

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo

Aila. 2020. Modular primitives for high-performance differentiable rendering. ACM
Trans. Graph. 39, 6, Article 194 (2020).

Landru. 2011. Magneto Helmet: X-men First Class. https://www.thingiverse.com/thing:

12006

leemorton123. 2011. 3D Perspective Illusion Generator(ish). https://www.thingiverse.

com/thing:13963

Lenbok. 2011. SOTC Model Cleanup Test. https://www.thingiverse.com/thing:11710

KeShun Liu. 2009. Some factors affecting sieving performance and efficiency. Powder
Technology 193, 2 (2009), 208–213.

Yu Liu, Xiaodong Zhou, Zhanping You, BiaoMa, and FangyuanGong. 2019. Determining

Aggregate Grain Size Using Discrete-ElementModels of Sieve Analysis. International
Journal of Geomechanics 19, 4 (2019), 04019014.

Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas Lehrmann,

and Yaser Sheikh. 2019. Neural Volumes: Learning Dynamic Renderable Volumes

from Images. ACM Trans. Graph. 38, 4, Article 65 (2019).
William E. Lorensen and Harvey E. Cline. 1987. Marching cubes: A high resolution

3D surface construction algorithm. In Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques. 163–169.

MakerBlock. 2011. OpenSCAD Pirate Ship. https://www.thingiverse.com/thing:12856

MakerBot. 2012. Escape From Leviathan. https://www.thingiverse.com/thing:27065

Mecano. 2011. Air 2. https://www.thingiverse.com/thing:14204

Ravish Mehra, Pushkar Tripathi, Alla Sheffer, and Niloy J. Mitra. 2010. Visibility of

noisy point cloud data. Computers & Graphics 34, 3 (2010), 219–230.
Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-

mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields

for View Synthesis. arXiv:2003.08934

Sehee Min, Jaedong Lee, Jungdam Won, and Jehee Lee. 2017. Soft shadow art. In

Proceedings of the Symposium on Computational Aesthetics. Article 3.
Mirice. 2014. Origamix_Rabbit. https://www.thingiverse.com/thing:600429

Niloy J. Mitra and Mark Pauly. 2009. Shadow art. ACM Trans. Graph. 28, 5 (2009).
Remigiusz Modrzewski, Andrzej Obraniak, Adam Rylski, and Krzysztof Siczek. 2022. A

Study on the Dynamic Behavior of a Sieve in an Industrial Sifter. Applied Sciences
12, 17 (2022).

Baptiste Nicolet, Alec Jacobson, andWenzel Jakob. 2021. Large steps in inverse rendering

of geometry. ACM Trans. Graph. 40, 6, Article 248 (2021).
Quan Nie, Yingfeng Zhao, Li Xu, and Bin Li. 2020. A Survey of Continuous Colli-

sion Detection. In 2020 2nd International Conference on Information Technology and
Computer Application (ITCA). 252–257.

Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani (Eds.). 2007. Algo-
rithmic Game Theory. Cambridge University Press.

Padamsky_Miniatures. 2023. Gnome Wizard. https://www.thingiverse.com/thing:

5763365

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani,

Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.

2019. PyTorch: an imperative style, high-performance deep learning library.
pmoews. 2011. Protein Models. https://www.thingiverse.com/thing:12283

Riccardo Poli. 2008. Analysis of the Publications on the Applications of Particle Swarm

Optimisation. Journal of Artificial Evolution and Applications 2008, 1 (2008), 685175.
Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. 2023. DreamFusion:

Text-to-3D using 2D Diffusion. In The Eleventh International Conference on Learning
Representations.

PrettySmallThings. 2012. Three 1:24 Windsor Chairs. https://www.thingiverse.com/

thing:21999

Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin

Johnson, and Georgia Gkioxari. 2020. Accelerating 3D Deep Learning with Py-

Torch3D. arXiv:2007.08501

Kaustubh Sadekar, Ashish Tiwari, and Shanmuganathan Raman. 2022. Shadow Art

Revisited: A Differentiable Rendering Based Approach. In 2022 IEEE/CVF Winter

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

https://www.thingiverse.com/thing:49080
https://www.thingiverse.com/thing:11625
https://www.thingiverse.com/thing:11625
https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/datasets/tosca.html
https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/datasets/tosca.html
https://www.thingiverse.com/thing:26249
https://www.thingiverse.com/thing:19780
https://www.thingiverse.com/thing:27969
https://arxiv.org/abs/2504.02465
https://arxiv.org/abs/2503.23241
https://www.thingiverse.com/thing:22506
https://www.thingiverse.com/thing:11810
https://www.thingiverse.com/thing:11810
https://www.thingiverse.com/thing:21704
https://www.thingiverse.com/thing:4594515
https://www.thingiverse.com/thing:19622
https://arxiv.org/abs/1911.05063
https://www.thingiverse.com/thing:34852
https://www.thingiverse.com/thing:34852
https://arxiv.org/abs/2006.12057
https://arxiv.org/abs/2308.04079
https://arxiv.org/abs/2408.14899
https://arxiv.org/abs/1412.6980
https://www.thingiverse.com/thing:151265
https://www.thingiverse.com/thing:152804
https://www.thingiverse.com/thing:12006
https://www.thingiverse.com/thing:12006
https://www.thingiverse.com/thing:13963
https://www.thingiverse.com/thing:13963
https://www.thingiverse.com/thing:11710
https://www.thingiverse.com/thing:12856
https://www.thingiverse.com/thing:27065
https://www.thingiverse.com/thing:14204
https://arxiv.org/abs/2003.08934
https://www.thingiverse.com/thing:600429
https://www.thingiverse.com/thing:5763365
https://www.thingiverse.com/thing:5763365
https://www.thingiverse.com/thing:12283
https://www.thingiverse.com/thing:21999
https://www.thingiverse.com/thing:21999
https://arxiv.org/abs/2007.08501


Computational Design of Shape-Aware Sieves • 11

Conference on Applications of Computer Vision (WACV). 628–636.
Nevardo Sanchez-Suarez, Gina Lia Orozco-Mendoza, Jhon Wilder Zartha-Sossa,

Delcy Camila Gafaro-Garcés, Lourdes Gladys Melchor-Cahuana, and Cristian

Gonzalez-Tovar. 2022. Trends in Sieving and Its Applications in Cereals. A Lit-

erature Review. Frontiers in Sustainable Food Systems 6 (2022).
Silvia Sellán, Noam Aigerman, and Alec Jacobson. 2021. Swept volumes via spacetime

numerical continuation. ACM Trans. Graph. 40, 4, Article 55 (2021).
Silvia Sellán, Oded Stein, et al. 2025. gptyoolbox: A Python Geometry Processing

Toolbox. https://gpytoolbox.org/.

SIMPAD17. 2014. Omnis Terra. https://www.thingiverse.com/thing:492429

spadehand. 2012.Watch Case for 6498ManualWindMovement. https://www.thingiverse.

com/thing:21853

Sybren. 2011. Enlightened Horns. https://www.thingiverse.com/thing:11599

tarturo. 2011. 3D Initials Logo - Make your own. https://www.thingiverse.com/thing:

12354

TheGoofy. 2014. 3D printed mechanical Clock with Anchor Escapement. https://www.

thingiverse.com/thing:328569

Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2022. Differentiable signed distance

function rendering. ACM Trans. Graph. 41, 4, Article 125 (2022).
Caoliwen Wang and Bailin Deng. 2024. Neural Shadow Art. arXiv:2411.19161 [cs.CV]

HaochenWang, Xiaodan Du, Jiahao Li, Raymond A. Yeh, and Greg Shakhnarovich. 2022.

Score Jacobian Chaining: Lifting Pretrained 2D Diffusion Models for 3D Generation.

arXiv:2212.00774

Jingping Wang, Tingrui Zhang, Qixuan Zhang, Chuxiao Zeng, Jingyi Yu, Chao Xu, Lan

Xu, and Fei Gao. 2024. Implicit Swept Volume SDF: Enabling Continuous Collision-

Free Trajectory Generation for Arbitrary Shapes. ACM Trans. Graph. 43, 4, Article
110 (2024).

Yunhai Wang. 2012. COSEG dataset. https://irc.cs.sdu.edu.cn/~yunhai/public_html/ssl/

ssd.htm.

Tianyang Xue, Mingdong Wu, Lin Lu, Haoxuan Wang, Hao Dong, and Baoquan Chen.

2023. Learning Gradient Fields for Scalable and Generalizable Irregular Packing. In

SIGGRAPH Asia 2023 Conference Papers. Article 105, 11 pages.
Zeshi Yang, Zherong Pan, Manyi Li, Kui Wu, and Xifeng Gao. 2023. Learning Based 2D

Irregular Shape Packing. ACM Trans. Graph. 42, 6, Article 266 (2023).
Xinya Zhang, Robert Belfer, Paul G. Kry, and Etienne Vouga. 2020. C-Space tunnel

discovery for puzzle path planning. ACM Trans. Graph. 39, 4, Article 104 (2020).
Hang Zhao, Zherong Pan, Yang Yu, and Kai Xu. 2023. Learning Physically Realizable

Skills for Online Packing of General 3D Shapes. ACM Trans. Graph. 42, 5, Article
165 (2023).

Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing

Models. arXiv preprint arXiv:1605.04797 (2016).

Jingsen Zhu, Fujun Luan, Yuchi Huo, Zihao Lin, Zhihua Zhong, Dianbing Xi, Rui

Wang, Hujun Bao, Jiaxiang Zheng, and Rui Tang. 2022. Learning-based Inverse

Rendering of Complex Indoor Scenes with Differentiable Monte Carlo Raytracing.

In SIGGRAPH Asia 2022 Conference Papers. Article 6, 8 pages.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

https://gpytoolbox.org/
https://www.thingiverse.com/thing:492429
https://www.thingiverse.com/thing:21853
https://www.thingiverse.com/thing:21853
https://www.thingiverse.com/thing:11599
https://www.thingiverse.com/thing:12354
https://www.thingiverse.com/thing:12354
https://www.thingiverse.com/thing:328569
https://www.thingiverse.com/thing:328569
https://arxiv.org/abs/2411.19161
https://arxiv.org/abs/2212.00774
https://irc.cs.sdu.edu.cn/~yunhai/public_html/ssl/ssd.htm
https://irc.cs.sdu.edu.cn/~yunhai/public_html/ssl/ssd.htm


Computational Design of Shape-Aware Sieves • 1

Supplemental Material

A Proof for similarity proposition
Here we supply the proof for Prop. 3.5 from the article.

Proposition A.1. 𝐴 ∼ 𝐵 iff the two shapes have the same set of
projections across all orientations.

Proof. We first prove a related Claim: 𝐴 ⪯ 𝐵 ⇐⇒ ∀𝑅𝐵 ∈
𝑆𝑂 (3) ∃𝑅𝐴 ∈ 𝑆𝑂 (3), t𝐴 ∈ R2

such that proj(𝑅𝐴𝐴) + t𝐴 ⊆ proj(𝑅𝐵𝐵)
(⇒): For any 𝑅𝐵 ∈ 𝑆𝑂 (3), trivially 𝐵 ∈ proj(𝑅𝐵𝐵). Since 𝐴 ⪯ 𝐵,

we must also have 𝐴 ∈ proj(𝑅𝐵𝐵), which means there must exist

𝑅𝐴 ∈ 𝑆𝑂 (3), t𝐴 ∈ R2
such that proj(𝑅𝐴𝐴) + t𝐴 ⊆ proj(𝑅𝐵𝐵).

(⇐): Suppose𝐻 is a sieve hole such that 𝐵 ∈ 𝐻 . Then there exists

𝑅𝐵 ∈ 𝑆𝑂 (3) and t𝐵 ∈ R2
such that proj(𝑅𝐵𝐵) + t𝐵 ⊆ 𝐻 . By the

assumption, ∃𝑅𝐴 ∈ 𝑆𝑂 (3), t𝐴 ∈ R2
such that

proj(𝑅𝐴𝐴) + t𝐴 + t𝐵 ⊆ proj(𝑅𝐵𝐵) + t𝐵 ⊆ 𝐻

So 𝐴 ∈ 𝐻 , and thus 𝐴 ⪯ 𝐵.

Now we prove the two directions of the proposition.

(⇒): Since 𝐴 ⪯ 𝐵,

{proj(𝑅𝐴) + t | 𝑅 ∈ 𝑆𝑂 (3), t ∈ R2} ⊆
{proj(𝑅𝐵) + t | 𝑅 ∈ 𝑆𝑂 (3), t ∈ R2} ,

and since 𝐵 ⪯ 𝐴, the converse also holds. Thus the two sets of

projections are equal.

(⇐): The equality of the two sets implies

{proj(𝑅𝐴) + t | 𝑅 ∈ 𝑆𝑂 (3), t ∈ R2} ⊆
{proj(𝑅𝐵) + t | 𝑅 ∈ 𝑆𝑂 (3), t ∈ R2} ,

as well as the converse, and thus 𝐴 ⪯ 𝐵 and 𝐵 ⪯ 𝐴 respectively, so

𝐴 ∼ 𝐵. □

B Proof for blocking complex motions
Proposition B.1. Define the sieve pipe 𝑃 to be the prism of height

heightℎ with sieve hole𝐻 as the base, which represents the shape of the
3D tunnel of our sieve. If ℎ is at least the diameter of the circumsphere
of a blocked shape 𝐵, then there cannot exist a trajectory for this shape
to pass through the sieve.

Proof. For the sake of contradiction, suppose otherwise. Then

due the thickness of ℎ, at some point along the trajectory, 𝐵 must

be fully contained in 𝑃 at some orientation (𝑅, t) where 𝑅 ∈ 𝑆𝑂 (3)
and t ∈ R3

. This implies proj(𝑅𝐵 + t) ⊆ 𝐻 , a contradiction. □

C Mesh & runtime statistics
Tab. 1 features runtime statistics for each experiment performed.

Tab. 2 contains vertex and face counts for the meshes used. The

mesh names reference either TOSCA [Bronstein et al. 2025], COSEG

[Wang 2012], Thingi10k [Zhou and Jacobson 2016], or very simple

meshes created by the authors.

Fig 17 features a convergence plot of the inner Adam optimization.

Fig. 16 shows how the runtime of our method scales with the number

of input shapes.

1000

3000

runtime (s)

10 5040
number of B shapes

20 30

2000

4000

5000

6000

1000

3000

runtime (s)

75K 225K
number of vertices of all B shapes

150K

2000

4000

5000

6000
optim

ization

winner declaration

optim
iza

tio
n

winner declaration

Fig. 16. Runtimes of the optimization and winner declaration stages of our
method with one shape in A and a varying number of shapes in B, where
all shapes were chosen randomly from Thingi10K. For these experiments,
we used a raster resolution of 128 × 128 during optimization as the default
value led to exceeding the GPU memory.

0

80

160
loss during Adam

0 50 100 0 50 100
0

150

300
loss during Adam

iteration iteration

ninits = 5
ninits = 10
ninits = 20
ninits = 40
ninits = 80

ninits = 5
ninits = 10
ninits = 20
ninits = 40
ninits = 80

vs. vs.

Fig. 17. Evolution of the loss in the first case of (15) during Adam optimiza-
tion for varying numbers of different initializations of the state of B.

D Implementation details
For any figures of results that were produced using non-default

parameters, we report the values below:

• Fig. 5, first row: 20 random B initial orientations

• Fig. 5, fourth row: 40 random B initial orientations

• Fig. 7, second row: 30 random B initial orientations

• Fig. 15, second row: 20 random B initial orientations

Meshes of cats and humans from the TOSCA dataset used here

were modified to be watertight and have been renamed by append-

ing _fixed to each STL filename. While our algorithm can robustly

handle non-watertight meshes, they are unsuitable for our 3D print-

ers.

E Figure details
To render images featuring a 3D object inside a sieve, we preprocess

the sieve mesh by slightly smoothing the hole geometry to remove

jagged edges from the surface reconstruction. This does not matter

for the 3D printing process, since the tolerances are larger than the

jaggedness.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.



2 • David Cha and Oded Stein

Figure A meshes B meshes Optimization

runtime (s)

Winner

declaration

runtime (s)

Final B
losses

A wins

Fig. 8 (top) 37111.stl 37009.stl, 37415.stl 902.0 415.9 0.168,

0.077

Y

Fig. 14 37731.stl 37730.stl 317.1 146.5 0.001 N

Fig. 5 (third) 38631.stl 39880.stl 273.2 122.0 0.037 Y

Fig. 5 (fourth) 39930.stl 39925.stl 222.9 19.4 0.044 Y

Fig. 6 (first) 41729.stl 964933.stl 54.1 16.2 0.000 N

Fig. 6 (second) 45550.stl 79239.stl 1691.3 754.6 0.000 N

Fig. 13 (bottom) 46665.stl 100139.stl 78.7 31.4 0.020 Y

Fig. 13 (top) 46665.stl 100139.stl 11.2 60.2 0.000 N

Fig. 9 (top) 46665.stl 46665_long.stl 54.9 19.6 0.270 Y

Fig. 9 (bottom) 46665.stl 46665_long.stl,

100139.stl

121.4 54.0 0.108,

0.000

N

Fig. 11 (bottom) 62526_cut.stl 62526.stl 352.1 149.3 0.030 Y

Fig. 11 (top) 62526_cut.stl 62526.stl 115.0 151.6 0.000 N

Fig. 4 (left) 62860.stl cube.stl 30.4 10.0 0.345 Y

Fig. 4 (right) 62860.stl cube.stl 27.6 9.8 0.000 N

Fig. 2 67223.stl 591211.stl 63.6 27.7 0.017 Y

Fig. 15 (first) 67856.stl 131500.stl 845.7 367.1 0.000 N

Fig. 10 (bottom) 69079_cut.stl 69079.stl 176.7 45.9 0.031 Y

Fig. 10 (top) 69079_cut.stl 69079.stl 53.7 48.5 0.000 N

Fig. 6 (third) 80597.stl 83229.stl 1805.5 788.9 0.000 N

Fig. 6 (fourth) 293457.stl 293453.stl 1118.6 494.9 0.000 N

Fig. 7 (top) 296802.stl 296803.stl 148.7 44.4 0.013 Y

Fig. 7 (bottom) 296803.stl 296802.stl 233.2 36.8 0.006 Y

Fig. 12 (bottom) arch.stl rect_prism.stl 23.4 10.3 0.021 Y

Fig. 12 (top) arch.stl rect_prism.stl 9.4 9.9 0.000 N

Fig. 3 (right) bowtie.stl sphere.stl 29.8 11.5 0.193 Y

Fig. 3 (left) bowtie.stl sphere.stl 24.4 11.5 0.212 Y

Fig. 1 cat9_fixed.stl cat1_fixed.stl,

cat3_fixed.stl,

cat4_fixed.stl

3956.2 1778.5 0.012,

0.030,

0.053

Y

Fig. 5 (second) cat9_fixed.stl cat6_fixed.stl 1315.8 613.8 0.007 Y

Fig. 5 (first) centaur5.stl centaur4.stl 1551.3 332.0 0.084 Y

Fig. 15 (fifth) coseg_chairs_102.stl,

coseg_chairs_103.stl,

coseg_chairs_111.stl

coseg_chairs_112.stl,

coseg_chairs_116.stl,

coseg_chairs_120.stl

9410.5 878.9 0.081,

0.049,

0.046

Y

Fig. 8 (bottom) coseg_vases_364.stl coseg_vases_361.stl,

coseg_vases_365.stl,

coseg_vases_808.stl

1978.2 891.9 0.100,

0.361,

0.280

Y

Fig. 15 (third) david6_fixed.stl david10_fixed.stl,

david11_fixed.stl,

david13_fixed.stl

7547.2 3267.4 0.141,

0.153,

0.107

Y

Fig. 15 (fourth) 67523.stl, 67223.stl 822070.stl,

591211.stl

2037.7 271.5 0.032,

0.037

Y

Fig. 15 (sixth) thick_S.stl,

thick_I.stl,

thick_G.stl

thick_R.stl,

thick_A.stl,

thick_P.stl,

thick_H.stl

1981.6 118.1 0.080,

0.063,

0.050,

0.074

Y

Fig. 5 (fifth) wizard.stl gargoyle.stl 9334.0 4126.7 0.203 Y

Fig. 15 (second) wolf2.stl wolf0.stl, wolf1.stl 878.3 204.8 0.036,

0.036

Y

Table 1. Runtime statistics for experiments in this article. “Final B losses” is the energy (9) at the end of B’s gradient-based optimization step from the winner
declaration procedure.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.



Computational Design of Shape-Aware Sieves • 3

Mesh filename Number of vertices Number of faces

100139.stl 1112 2224

131500.stl 17426 34882

293453.stl 23739 47474

293457.stl 23773 47542

296802.stl 1156 2320

296803.stl 1120 2248

37009.stl 12002 23909

37111.stl 44004 88106

37415.stl 7853 13340

37730.stl 5212 10512

37731.stl 5480 11048

38631.stl 8059 16728

39880.stl 4953 9902

39925.stl 418 844

39930.stl 514 1024

41729.stl 2655 5330

45550.stl 1595 3222

46665.stl 376 764

46665_long.stl 376 764

591211.stl 680 1380

62526.stl 7818 13152

62526_cut.stl 7480 12560

62860.stl 40 96

67223.stl 1030 2064

67523.stl 1592 3204

67856.stl 5647 11350

69079.stl 1470 2956

69079_cut.stl 1478 2968

79239.stl 36164 72328

80597.stl 21999 43994

822070.stl 11213 22450

83229.stl 37988 76026

964933.stl 148 292

arch.stl 28 52

bowtie.stl 16 28

cat1_fixed.stl 27896 55788

Mesh filename Number of vertices Number of faces

cat3_fixed.stl 27896 55788

cat4_fixed.stl 27896 55788

cat6_fixed.stl 27896 55788

cat9_fixed.stl 27896 55788

centaur4.stl 15768 31528

centaur5.stl 15768 31532

coseg_chairs_102.stl 15724 31456

coseg_chairs_103.stl 9652 19304

coseg_chairs_111.stl 8050 16100

coseg_chairs_112.stl 13628 27256

coseg_chairs_116.stl 13463 26926

coseg_chairs_120.stl 10121 20242

coseg_vases_361.stl 14859 29734

coseg_vases_364.stl 13548 27100

coseg_vases_365.stl 13514 27028

coseg_vases_808.stl 13172 26344

cube.stl 8 12

david10_fixed.stl 52568 105132

david11_fixed.stl 52568 105132

david13_fixed.stl 52569 105134

david6_fixed.stl 52569 105134

gargoyle.stl 172687 347360

rect_prism.stl 8 12

sphere.stl 50 96

thick_A.stl 680 1360

thick_G.stl 774 1544

thick_H.stl 622 1240

thick_I.stl 282 560

thick_P.stl 564 1128

thick_R.stl 692 1384

thick_S.stl 738 1472

wizard.stl 308544 616940

wolf0.stl 4344 8684

wolf1.stl 4344 8684

wolf2.stl 4344 8684

Table 2. Details for the meshes used in experiments in this article.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.


	Abstract
	1 Introduction
	2 Related Works
	3 The geometry of sieves
	4 The Sieve Game
	5 Constructing sieves
	5.1 One shape in A and one shape in B
	5.2 One shape in A and many shapes in B
	5.3 Many shapes in A and many shapes in B
	5.4 Fabrication considerations

	6 Optimization methods
	6.1 Gradient-based optimization
	6.2 Particle swarm optimization

	7 Implementation & fabrication
	8 Results
	9 Limitations
	10 Conclusion
	Acknowledgments
	References
	A Proof for similarity proposition
	B Proof for blocking complex motions
	C Mesh & runtime statistics
	D Implementation details
	E Figure details

