Computational Design of Shape-Aware Sieves

DAVID CHA, University of Southern California, USA
ODED STEIN, University of Southern California, USA

[

y - ‘ J
o \
\\W ‘ < <
shape A (should pass sieve) ! ’
\

])

) ’A\N’

top view top view

X £,X . X

y
4/‘ ;i

-
top view top view - a 1 x

v
v X
ke

‘,'”‘J @ @P QD @ Wy

shapes B,, B, B, (should
be blocked by sieve)

our optimized sieve fits A... ...but none of the Bs (in any orientation)

our fabricated sieve

Fig. 1. Given a shape A that should pass through a sieve, and shapes B, By, B3 that should be blocked by it, we compute a sieve hole that admits A and blocks
the Bs. A /' means the sieve lets the shape pass, and a X means the shape does not fit. We fabricate the sieves to verify their properties (cf. supplemental
video). Our method can also handle multiple A;s and accounts for various fabrication considerations.

We introduce mathematical tools to describe the geometric problem of sieves,
two-dimensional holes that admit certain three-dimensional objects to pass
through them, but block others. This is achieved by formulating the sieve
design problem as a two-player game where both players (the one that
wants to pass, and the one that wants to block) try to find a set of rigid
transformations to achieve their objective. We also introduce an algorithm for
solving this game by solving a global optimization problem employing both
differentiable rendering with gradient-based optimization as well as particle
swarm optimization. Our procedure accounts for real-world manufacturing
concerns, and we fabricate a variety of examples demonstrating the practical
viability of our sieves. Our implementation takes advantage of GPUs and
does not rely on any clean or manifold input geometry as long as it is a
triangle mesh. We can produce intricate sieves that block an arbitrary set of
shapes B but admit another arbitrary set of shapes A (if finding a solution
is possible for our method).

CCS Concepts: « Computing methodologies — Computer graphics; Shape
modeling; - Mathematics of computing — Mathematical optimization;
Nonconvex optimization.

Additional Key Words and Phrases: sieves,fabrication,global optimization

ACM Reference Format:
David Cha and Oded Stein. 2025. Computational Design of Shape-Aware
Sieves. In SIGGRAPH Asia 2025 Conference Papers (SA Conference Papers '25),

Authors’ Contact Information: David Cha, University of Southern California, Los
Angeles, California, USA; Oded Stein, University of Southern California, Los Angeles,
California, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.
SA Conference Papers °25, Hong Kong, Hong Kong

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2137-3/2025/12

https://doi.org/10.1145/3757377.3763875

December 15-18, 2025, Hong Kong, Hong Kong. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3757377.3763875

1 Introduction

Sieves are an old tool for separating objects: Some objects pass
through the sieve, and some do not. They are an important utensil
in the modern world, from laypeople’s kitchens to a variety of
industrial applications [Advantech Manufacturing 2001], and the
problem of designing sieves is both geometrically intriguing as well
as practically relevant. In this article, we introduce a method for
designing sieves that can be used to filter arbitrary objects using
only the shapes’ geometry. Leveraging the power of computational
design, we can use sieves to distinguish between shapes of intricate
geometries.

In its simplest form, the problem of designing a sieve is the prob-
lem of designing a two-dimensional hole that will let certain shapes
pass in some correct orientation, and will not let other shapes pass
no matter what orientation they are in. For industrial settings such
as mining, users might focus on simple shapes and sizes for holes
to separate particles by size and weight, combined with shaking
techniques and other physics considerations. We focus purely on
the geometric problem: what are the properties of a hole that cer-
tain shapes can be translated through, but others not? It turns out
that there is an interesting mathematical theory hiding behind this
simple question, which we study in depth in this article.

Actually solving the sieve problem raises many interesting algo-
rithmic as well as practical questions. We propose a method for
constructing a valid sieve that admits a set of arbitrary shapes
A1, ..., Am but will block arbitrary shapes By, ..., B, if such a con-
figuration can exist. This algorithm works by solving a 2-player

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3757377.3763875
https://doi.org/10.1145/3757377.3763875

2 « David Cha and Oded Stein

game between player A and player B, formulated as a global opti-
mization problem. In an iterative process, the B;s use gradient-based
optimization starting from a variety of initial configurations to opti-
mize an overlap loss computed through differentiable rendering in
order to orient themselves in a way that will fit through the hole. In
an outer loop, the A;s use a particle swarm optimization routine to
find a hole that will let them pass, but that the B;s cannot crack.

Our method specifically incorporates practical fabrication con-
siderations like 3D printing tolerances in order to achieve a viable
sieve that will perform in the real world (Fig. 1). We show the util-
ity of our method by computing a wide array of specialized and
geometrically intricate sieves (Figs. 5, 9, 8), and we fabricate sieves
to show their viability (Fig. 15). Since it is built on differentiable
rendering, our method is extraordinarily robust to bad input geom-
etry. We can compute sieve holes for any triangle mesh that can be
rendered; there is no requirement on manifoldness, connectedness,
or watertightness.

2 Related Works

While sieves are widely used in engineering applications, and there
exists practical research in designing sieves for filtering objects by
simple shapes and sizes, the design of sieves is not well-studied in
the geometry processing community. Mechanical engineers’ study
of sieves is concerned with the physical aspects of sieving and how
they are affected by object size [Liu 2009; Liu et al. 2019] or the
necessary motions of a sieving machine for optimal performance
[Modrzewski et al. 2022]; see the literature review of Sanchez-Suarez
et al. [2022] for an overview of sieving research in that field. By
contrast, our work focuses purely on the geometry of the shape and
the sieve hole, and on the question whether there is any orientation
under which a shape can translate through a hole.

Shadow art. Designing sieves is closely related to the problem of
shadow art: given one or more 2D outlines, find a 3D shape that,
when projected onto a plane from a certain direction (i.e., casting a
shadow), produces the 2D outlines.

Shadow art was studied, e.g., by Mitra and Pauly [2009], who
use a voxel-based discretization of 3D shapes, and more recently by
Sadekar et al. [2022]; Wang and Deng [2024], who use differentiable
rendering. Our problem of finding sieve holes is related: We want
to find a 2D outline so that certain 3D shapes fit through the 2D
outline when projected (player A), and certain shapes will never fit
no matter how they are rotated before they are projected (player B).
Much like these recent approaches, we use differentiable rendering
to optimize through an orthographic projection.

Further shadow art methods like Hsiao et al. [2018]’s focus on
one-dimensional curves generated by wires (where other works
in this section are two-dimensional). Min et al. [2017] introduce a
method for grayscale shadow art (where other works produce solid
shadows generated through full occlusion only). Other shadow art
methods analyze anamorphic 3D shapes [Debnath et al. 2025] or
shadows generated by hands [Gangopadhyay et al. 2023].

Optimizing for rigid transformation. Our problem is related to the
packing problem, where shapes are rigidly transformed so they can
fit in a certain bounded volume (in our case, so their projection can

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

fit through the sieve hole). This is a well-studied problem in many
disciplines, and we refer to various relevant surveys for an overview
of the literature [Ali et al. 2022; Guo et al. 2022]. Of specific interest
to us is the Matryoshka packing of Jacobson [2017]; we employ
a similar particle swarm global optimization to find results in the
complex and highly nonconvex space of orientations for our shapes
A. Other examples of recent geometry processing approaches to
the packing problem are the approaches of Attene [2015]; Cui et al.
[2023]; Xue et al. [2023]; Yang et al. [2023].

Another closely related field is path planning; finding a series of
rigid transforms that can maneuver an object through certain ob-
stacles without collisions. Examples of recent geometry processing
work in this area are the methods of Joho et al. [2024]; Sellan et al.
[2021]; Wang et al. [2024]; Zhang et al. [2020]; Zhao et al. [2023];
general surveys in robotics and continuous collision detection can
be found in the works of Guo et al. [2023]; Nie et al. [2020]. We
reduce the pathing in our sieve problem strictly to translations along
the z-axis only—no complicated pathing is allowed.

Katz and Tal [2025], extending earlier works on point cloud visi-
bility computation [Katz and Tal 2015; Katz et al. 2007; Mehra et al.
2010], optimize through their visibility method to find a rigid trans-
form for an optimal viewpoint, similar to how we find an optimal
rigid transform for fitting through a sieve hole.

Pure math. Pure mathematics has a variety of interesting subfields
connected with our sieve problem; we want to highlight two exam-
ples here. Geometric tomography studies how to reconstruct shapes
(or properties of shapes) from tomographic data such as projections
and cross-sections [Gardner 2006]. Computational geometers study
the polygon containment problem (whether one polygon can fit
inside another) [Goodman et al. 2017, Chapter 30].

Differentiable rendering. In recent years, powerful differentiable
renderers [Jakob et al. 2022; Jatavallabhula et al. 2019; Laine et al.
2020; Ravi et al. 2020] have appeared that can be easily integrated
into standard machine learning and optimization environments
(see the survey of Kato et al. [2020] for a more complete overview).
We use Kaolin [Jatavallabhula et al. 2019] and Pytorch [Paszke
et al. 2019] to compute orthographic projections of objects, and we
differentiate through this projection to optimize our objective.

A popular use of differentiable rendering in geometry processing
is to use an image-based loss based on a rendered image, and then
differentiate that image with respect to some deformation of a mesh.
This approach has been used in generative modeling of 3D shapes
[Dinh et al. 2025; Gao et al. 2023; Kim et al. 2025; Poole et al. 2023;
Wang et al. 2022], and of course in the generation of shadow art
[Sadekar et al. 2022]. There are countless other uses of differentiable
rendering in geometry and graphics, such as 3D reconstruction
[Kerbl et al. 2023; Lombardi et al. 2019; Mildenhall et al. 2020],
inverse rendering [Cole et al. 2021; Nicolet et al. 2021; Vicini et al.
2022; Zhu et al. 2022], and many more.

3 The geometry of sieves

We first define the basic language used to describe sieves.

Definition 3.1. A sieve hole is a simply connected region H C R?.

Definition 3.2. Let M C R3 be a solid object. We refer to its
orthographic projection along the z-axis onto R? as proj(M).

A sieve hole H admits M if there exists some rigid transformation
R € SO(3), t € R? such that proj(RM) + t C H, denoted as M € H.
If no such transformation exists, we say that H blocks M, denoted
asM ¢ H.

Admission and blocking can be used to define a mathematical
relation.

Definition 3.3. Let A, B C R® be two shapes. We define
AXB M

to mean that, for any sieve hole H with B € H, we also have A € H.
If A < Band B < A, then we say A ~ B.

PROPOSITION 3.4. = is a partial order with ~ as the equivalence
relation.

Proor. If A < Band B < C, for any C € H we must have that
B € H and hence A € H, so A < C, thus < is transitive.

Trivially A < A, so < is reflexive. By definition of ~, < is antisym-
metric. o

Crucially, < isnot a total (or complete) order, as there are examples
where neither A X B nor B < A. Since ~ is reflexive, symmetric,
and transitive, it is an equivalence relation. The relation ~ exhibits
a useful property:

ProPOSITION 3.5. A ~ B iff the two shapes have the same set of
projections across all orientations.

PRrOOF. See Supplemental Material A for the proof. O
However, A ~ B does not imply A and B are the
same shapes, as shown by the counterexample in A\
the inset: The (convex) icosahedron and the (non-
convex) hollowed-out icosahedron are different
shapes, but look the same when projected onto
R? from any direction.

4 The Sieve Game

Having defined sieves, admissibility, and their relations to each other,
we now define the central game that is the focus of this article: A
contest between two players seeking to block and pass through a
sieve hole, respectively.

Definition 4.1 (Sieve Game). Given a set of shapes A = {A1, ..., Ap}
that we wish to allow through a sieve and another set 8 = {By, ..., By}
that we do not, the game objectives of the Sieve Game are:

e For player A, to find a sieve hole H that admits all A; while
blocking all B;.

e For player B, to find a rigid transform that will allow passage
of any B; through the sieve hole H found by A.

If such an H exists, we say that A wins and B loses, and vice
versa if it does not exist.

Two-player games are sometimes formulated as maximin opti-
mization problems [Nisan et al. 2007], and our game is particularly
amenable to this. We start with Bs goal. Consider the expression

area(proj(M)) — area(proj(M) N H) (2)

Computational Design of Shape-Aware Sieves « 3

which equals the area of the projection of a 3D shape M not con-
tained in the sieve hole H. The condition proj(M) C H is equivalent
to area(proj(M)) — area(proj(M) N H) = 0, and proj(M) ¢ H is
equivalent to area(proj(M)) — area(proj(M) N H) > 0.

From now on, let M’ refer to the shape M rigidly transformed by
R € SO(3) and t € R? (we ignore the technicality of t’s dimension,
since the shape will always be projected onto R?). For a given sieve
hole H, the problem of finding a rigid transformation such that the
projection of B’ = RB+t is contained in H can be formulated as the
minimization problem

n}‘i’itn area(proj(B’)) — area(proj(B") N H) , (3)

where, if the optimum of zero is attained, then B is admitted, and
otherwise the optimum is positive, meaning B is blocked. Player 88
must thus solve the optimization problem (3) for all B;.

What does player A do? They must predict any move by 8, and
find a sieve hole that all the A; can pass through, while the B; are
blocked; i.e., they want a hole H so that the result of 3 is positive
for all B;. This can be written as the maximization problem

. st st
Hfgiﬁ,; 15212; (area(proj(B’)) — area(proj(B’) N H)))
s.t. area(proj(A’)) = area(proj(A’) N H)

for only one shape A and one shape B, or, for the general case,

n
max min min (area(proj(B})) — area(proj(B;) N H
pipax, min min (area(proj(By)) (proj(B)) N H)))

st.Vi=1,...,m area(proj(A})) = area(proj(A;) N H) ,

where Ry = (Ra,i)i» Ta = (tai)i. R = (Ri)i, T8 = (tBi)is
proj(A}) = proj(Ra,;A;) + ta;, and proj(B;) = proj(Rp;B;) + tp,;.
Our Sieve Game can be practically reduced to the maximin problem
(5). A wins if the optimization result is positive, and B wins if it is
0.

The Sieve Game is a two-player, zero-sum game with infinite
strategy sets where player A wants to maximize an objective value,
and player 8 wants to minimize it [Nisan et al. 2007]. For our
purposes, we are only interested in pure strategies, and not mixed
strategies where probabilities are assigned to the possible decisions
for each player: a straightforward global optimization of (5).

5 Constructing sieves

Solving (5) for arbitrary holes H is a difficult problem. We will now
simplify the problem in steps to make it practically solvable, and
to actually present an algorithm that can be used to solve some
version of the Sieve Game. We will begin incorporating practical
considerations.

5.1 One shape in A and one shape in 8

For the simpler case where A = {A} and B = {B}, we start by sim-
plifying As strategy to always set H = proj(A’). This automatically
satisfies the constraint area(proj(A;)) = area(proj(A;) N H). We
are left with the unconstrained optimization problem

maxlgnitn area(proj(B’)) — area(proj(B’) N proj(A’)) . (6)

Rs Rptp

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

4 « David Cha and Oded Stein

iteration 2 iteration 4

top view top view top view top view top view

o0 WA NG DG

iteration 8

energy maximization

|
o, | .
f g %‘ . over time
L/M §‘ &M) : energy (7)

|

10.04

|

:

| 0.02

|

l

()

| 2 6 10
|

iteration 10 PSO iterations

Fig. 2. The progression of our optimization procedure over time in an example with one shape in A and one shape in 8. The current best sieve at different
iterations of our PSO procedure is on the left, and the energy (7) at the end of each PSO step is on the right.

Note that we no longer need the translation vector t4 for A due to
the translation vector for B. Thus, in the simplified case it is just a
matter of finding a rotation of A such that B is not admitted by its
projection.

We find that the argument of the optimization problem is sen-
sitive to the relative sizes of A and B: Larger shapes lead to larger
projections, and hence larger objective values. This was particu-
larly problematic in practice in the case where we have multiple
shapes in 8. To accommodate for this, we normalize the argument
by area(proj(B’)), so that it is always in [0, 1]:

i (R, tg) , 7
max min Bar (Rp. tB) ()
where
area(proj(B’)) — area(proj(B’) N proj(A”))
Bar (Rp,tp) = P P PRS2

area(proj(B’))

5.2 One shape in A and many shapes in 8

We now move on to the more complicated (but still not general)
case where A = {A} and 8 = {By, ..., Bp}. This can be handled
with a simple extension of the inner optimization function f:

area(proj(B;)) — area(proj(B;) N proj(A”)) ®

' (R, tgi) =

P (Rpi tp.i) area(proj(B;))

As in (5), the introduction of many B; turns our optimization into

a minimization over the B;. Using ﬁ;‘, (Rp i, tB,i), our simplification
of (5) becomes

i + (RB, 7B 9
max min Bar (R, 7B))
where
n .
Bar (Rp,Tg) = f?zlflﬂfq (RB;:tB;) » (10)

and, as before, Rg = (Rp;); and 7g = (tg;)i.
In (9) an optimum of zero means A loses, otherwise the optimum
is positive and A wins.

5.3 Many shapes in A and many shapes in 8

At last, we deal with the case where A = {A1,...,A;} and B =
{Bi1,...,Bn}. A straightforward solution would be to use the tech-
nique for a single shape in ‘A and many shapes in 8, and if a solution
A] exists for each A;, we can simply create a sieve hole that is the
disjoint union of all the projections of the A} (a valid solution for the
Sieve Game we devised). This is possible to do by simply optimizing

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

(9). In this section, we will try to find more interesting holes H that
are a single, connected silhouette. Note that this is not as simple as
merely creating an overlapping union of the projections of the AJ,
as the result could be a shape that admits some of the B;.

We start by noting that, regardless of how the sieve hole H is
generated, finding the matching transformations for the B; is similar
to before (just now with a generic sieve hole H), by minimizing

n .
Pu(Rg, T8) = I{I:i{lﬁ}I(RB,i,tB,i) , (11)
where
area(proj(B})) — area(proj(B;) N H)
area(proj(B;))

B (Rp,is tgi) = (12)

We choose to construct H by finding optimal transformations
for the shapes A, Rz = {Ra1,...Ram} and Tz = {tas, ...tam}
(we do not keep track of a translation for A, as this would simply
translate the final sieve hole H itself). H is then defined as the union
of the projection of A;s,

H= Uproj(A;) . (13)
i=1

Simply optimizing (5) with this hole H without any further con-
straints, maxg , 7; ming, 7; P (Rg, 7g), leaves too much free-
dom and does not work well with our optimization infrastructure.
We deal with this by maximizing an energy that promotes overlaps
by adding a term to the energy that wants to minimize the area of
H, and by adding an activation function that helps overlapping the
different proj(A})s:

Anax Rrgf% % [tanhp (B (Rg, T) — n)] — aarea(H) . (14)
We choose 7 = 10, p = 200, 5 = 0.02, a = 5. The area(H) term
promotes a more compact sieve hole, while the tanh activation
function allows a trade-off between blocking the B;s and minimizing
the area of H: After enough of B is blocked, no more can be gained
by maximizing the blocked area, and it is easier to maximize the
objective by reducing the area of H.

5.4 Fabrication considerations

The Sieve Game (5) and the different strategies for solving it dis-
cussed in Section 5 so far have completely ignored the practical need
to fabricate H in a way so that shapes actually can pass through it

2 @ X
shape A top view top view sy
p X b 4 % w < <>

sieve with dilation
A fits in practice

sieve without dilation
A blocked in practice

shape B

Fig. 3. Because of real-world properties like 3D printer manufacturing toler-
ance and printers, a perfect theoretical fit for A does not mean that A will
actually fit in practice, hence we demand the sieve hole fits a dilated A. Cf.
supplemental video.

and be blocked by it. Here, we quickly address modifications to our
method that are necessary to accommodate the real world.

Offsetting the hole geometry. Even though in an ideal world A can
perfectly pass through the hole proj(A), this is not true in practice,
because of friction, as well as manufacturing tolerances. Hence we
enlarge H to allow for the A; to physically pass through it. At first
glance, it might seem like we only need to dilate the hole H resulting
from any of the optimizations in this section. This naive approach
could, however, lead to this now dilated hole admitting a shape B;
that it is supposed to block. Instead we dilate the shapes A; at the
start of any optimization, and search for holes that can admit the
dilated shapes. That way, the optimization accounts for fabrication
tolerances. By default, we dilate by 1 millimeter. Fig. 3 shows the
effect of our dilation procedure and how it works.

Simple connectedness of sieve holes. We have, so far, ignored the
statement of Definition 3.1 that the sieve hole H be simply connected.
This property is vital for fabrication: We cannot produce a sieve hole
that has a floating solid piece inside it, not connected to the walls
of the sieve. We account for this during our method by, wherever
proj(A) is mentioned, filling in all disconnected outside components
as part of the projection. Note that this might make certain games
unwinnable for A that are winnable without this. Fig. 4 shows how
our hole filling procedure works.

Accounting for complex motions. We assume that shapes are only
translated along the z-axis in a fixed orientation through the hole
and do not account for complex motions involving other translations
and rotations. It may seem as if some blocked shapes can actually be
wriggled through the sieve hole via complex motions, but making
the sieve sufficiently thick (at least the diameter of the circumsphere
of the shape) prevents this, as proven in Supplemental Material B
(for space reasons, the full depth of the sieves is not always displayed
in the figures).

6 Optimization methods

Our method, as described in Section 5, requires us to solve a variety
of minimization and maximization problems. These problems are
highly nonconvex and difficult to solve in general. Maximin and
minimax optimization problems are often the focus of study in game
theory [Nisan et al. 2007], but we do not use such existing algorithms

Computational Design of Shape-Aware Sieves « 5

e A wins!

shEp:lA ¢<<>Pw x =

leave floating piece in

v AN -

top view

8%

shape B remove floating piece

Fig. 4. We remove floating pieces in the sieve to make sure the sieve hole
is a single simply connected shape that can be physically fabricated. This
has effects on the game; in this example, A could win if we left the floating
piece in, but cannot if the piece is removed.

as the literature is often focused on finding optimal probabilities for
strategies to find the mixed Nash equilibrium of a game. Instead,
we want to find out whether A can win and, if possible, what the
winning configuration is.

We separate the optimization problems of Section 5 into two
problems: the inner minimization problem, which we solve using
gradient-based optimization, and the outer maximization problem,
which we solve with a zero-order global optimization method.

6.1 Gradient-based optimization

We represent the A;s and the B;s by triangle
meshes in R3. The projection operator proj
is implemented via differentiable rendering.
We render an orthographic raster of each
mesh projection using binary values for the pixels. However, to
guarantee the projection operator’s differentiability for optimiza-
tion, the actual rendering routine renders a soft mask smoothly
transitioning from 0 to 1 at the boundaries (the inset shows an ex-
ample of such a soft mask). We use a function in the differentiable
rendering library Kaolin [Jatavallabhula et al. 2019] to render soft
masks as defined by Chen et al. [2019]. All rasters were set to a
resolution of 256 X 256 pixels. Computing area(H) is then achieved
by summing all pixel values. Terms that involve the intersection
of two regions G and H, such as area(G N H), are implemented as
an elementwise multiplication of the per-pixel values of the binary
rasters. These actions are all easily differentiable.

We use Adam [Kingma and Ba 2017] with parameters 1 = 0.9,
B2 = 0.999, and € = 1078 at a learning rate of 0.05 for 100 itera-
tions to find a minimum for all the inner minimization problems
in Section 5. In order to make sure the minimization is not caught
in local minima, we initialize R, 7 with 10 random values drawn
from a uniform distribution of SO(3) and [—0.1,0.1]? respectively.
While more random values increases the chances of finding a global
minimum, the algorithm has no theoretical guarantees, so when 8
can win, it may be incorrectly reported that it loses. But note that
when it cannot win, it will never lead to incorrectly reporting that it
does since an objective value of zero cannot be attained. We define
the solution of this gradient-based minimization to be

* 0.6
0.4

min 4 (Rp, tp)
Rp,tp

f(Ra, Ta) = 7?;1% Bar (Rp.TB) , (15)
min 7 [tanh p (B (Rg, Tg)—1)]—aarea (H)
Rs, T8

SA Conference Papers '25, December 15-18, 2025, Hong Kong, Hong Kong.

6 « David Cha and Oded Stein

top view, top view

ﬁ%&gﬁ g, T

our optimized sieve

;Q &3 %

our optimized sieve A wins!

%}3

A wins!

top view top view

& ‘& @

A B our optimized sieve A wins!
/ top view x top view.
& B X
> . . o
our optimized sieve A wins!
J top view BN top view
Xp% -
¢ v
our optimized sieve A wins!

Fig. 5. Our sieves for the scenario with one shape in A and onein 8. A/
means the sieve lets the shape pass, and a X means the shape is blocked.

depending on which of the 3 problems (one shape in A, one shape
in B; one shape in A, many shapes in $; many shapes in A, many
shapes in 8B) we are solving. While these objective values are com-
puted using soft masks at each iteration during optimization, the
final value, which does not need differentiation, is computed using
binary rasters as they give the exact projection.

6.2 Particle swarm optimization

It remains to solve the outer maximization problem by maximizing
f, which we do using particle swarm optimization (PSO) [Poli 2008]
with 10 particles, 10 iterations, inertia weight v = 0.25, and acceler-
ation coefficients ¢; = 0.25, ¥ = 0.25. Fig. 2 shows how H evolves
during the optimization.

For the case where A contains only one shape, straightforward
PSO with no additional modifications can be used. If A contains
multiple shapes, we employ the following approach to find a solution
with sufficient overlap between the projection of all the Als:

e For each A; € A, solve Rmatx f (Rai ta;) as if we were
A,i>UA, L

solving the one-shape-in-A-many-shapes-in-8 case.

o Sort the A; by the area of proj(A}), from largest to smallest.
e Set Hy = proj(A}).
e Fori=2,....,m:

- Imtlahze 10 random translation vectors and rotation angles
for transformations in R? to apply to and, for each, use
gradient-based optimization to maximize the area of the
projection’s overlap with H.

— Using PSO initialized with particles from last step, solve

max f ({Ra1 ... Raih{tazta;}) -
RAlstAl

to get an optimized transformed projection proj(A;) and
then set H; = Hj—1 U proj(A7).

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

J top view, top view

our optimized s1eve

top view top view
our optimized sie
top view top view

S &, 'ﬁik»

our optimized s1

] T — -

g \ 6

our optimized sieve

/«‘5@:

,l “
oy oy

R E

Fig. 6. Examples with one shape in A and one in B, but where A cannot
find a winning sieve. A v means the sieve lets the shape pass.

e Finally, set H = Hp,.

For the intermediate PSO steps, we use the same parameters as
elsewhere, except for i3 = 0.05, Y = 0.05.

This method computes the optimal orientations for the A; one
after the other. If, at the end, f(R#,7#) = 0, 8 wins. Else if
f(Ra,Ta) > 0, A wins. By successively optimizing each orienta-
tion of A;, we are able to ensure the simply connectedness of each
intermediate sieve hole H; and hence the final sieve hole H much
better than optimizing all orientations at once.

Declaring a winner. After PSO is finished, we run the gradient-based
inner optimization again to see how well 8 does against the sieve
hole H chosen A, but using 100 random initial orientations for 8
and 500 Adam iterations for significantly greater accuracy. If none
of the B; achieve a final energy of exactly zero (which is valid since
there is no floating point error due to it being computed from binary
rasters), then A wins.

7 Implementation & fabrication

We implement our method in Python using Pytorch [Paszke et al.
2019] and Kaolin [Jatavallabhula et al. 2019] for the gradient-based
optimization and differentiable rendering. We use Gpytoolbox [Sel-
lan et al. 2025] for common geometry processing tasks, particularly
for dilating meshes by taking the signed distance field of a mesh on a
grid and using marching cubes to reconstruct the offset surface. Our
code and result files including all STL files of the input and output
meshes are available at https://github.com/David-Cha/shape-aware-
sieves.

To create the meshes for fabrication in a 3D printer, we take the
binary raster of the output sieve hole H, and stack it to make a 3D
raster of a prism with H as its base; this prism is at least as deep as
the diameter of the largest circumsphere of all A;s and B;s, in order
to make sure that shapes can only pass through H by translation
along the z-axis, and not by rotation or xy translation. We then mesh
the raster with marching cubes [Lorensen and Cline 1987], and do a
mesh boolean between a rectangular block and the hole prism to

https://github.com/David-Cha/shape-aware-sieves
https://github.com/David-Cha/shape-aware-sieves

- - (‘ P e o3 top.
y W 1 ‘\
'g’ - v 8 =y @
shape A shape B A wins!
SLoln &s
shape A shape B our 0pt1m1zed sieve A wins!

Fig. 7. Constructing sieves for two very similar input shapes alternately
in the role of A and B. Even though the two shapes are very similar, our
method manages to construct sieves distinguishing between the two no
matter which one is A and which one is 8.

R4 3 SEED ¢
o ﬁg" -

top view top view top view
/[

shape A

g
)

\‘b T 29

shapes B,, B, our optimized sieve A wins!

shape A
top view top view top view top view

P& 66

our optimized sieve A wins!

Fig. 8. Sieves produced with our method that try to admit a mesh A and
block multiple meshes B;. A v means the sieve lets the shape pass, and a x
means the shape does not fit.

get a mesh of the sieve object that can be printed in a 3D printer.
We print both the shapes as well as the sieves using an UltiMaker
S5 with PLA material or a Stratasys F370 with ABS material.

Further implementation details, such as parameter choices for
certain experiments that deviate from the defaults, can be found in
the supplemental material.

8 Results

We use our method to generate a large variety of sieves for diverse
input geometries. We display the input shapes, the sieve geometry
(both in 3D and 2D from above), the orientation for the A;s to pass
through the sieve, and the orientation for the B;s that achieves the
lowest energy on the inner minimization.

Figs. 5 and 6 show sieves computed for the case with one shape
in A and one shape in 8. Our method determines that, in some
cases, A can win (and produces the corresponding sieve), and that,
in some bases, A cannot win (and the best possible sieve is pro-
duced). In Fig. 7 we demonstrate that our method can generate sieves
to distinguish even extremely similar geometry: Of the two very
similar-looking machine parts, our sieve only admits one, and blocks
the other (for each choice of object we want to admit). Figs. 1 and 8
showcase our results for the scenario where we have one shape in A
and multiple shapes in 8. Fig. 9 illustrates that the one-A-many-8
scenario is not the same as merely solving for the individual B; € B,

Computational Design of Shape-Aware Sieves « 7

%
A wins!

Xy

Yo v
our optimized sieve

SIS

our optimized sieve A wins!

vy &

our optimized sieve

shape A shape B,
sgape % shape B,

shape A shapes B,,B,

Fig. 9. Our method can generate a sieve admitting A and blocking B; by
itself, blocking B; by itself, but not a sieve blocking both 8 = {B;, By} at
the same time (B3 can pass).

° &
5 PSO particles

top view x top view
& &

3
2 e

shape B 10 PSO particles (default) A wins!

Fig. 10. Our PSO needs enough particles to find a good global optimum.
By using 5 instead of than the default value of 10 for an example where A
wins, it leads to B winning instead.

as here A could win against each of the meshes in 8 individually,
but cannot block both of them at the same time. It is not enough to
merely solve the pairwise problem of deciding whether a mesh A
can block every mesh B individually. Our fabricated sieves can be
seen in Figs. 1 and 15, and contain scenarios with one shape in A
and one shape in 8, as well as multiple shapes in A and multiple
shapes in 8. We verify in practice that the sieves admit the shapes
they should be admitting, and block the shapes that they should be
blocking. The examples in Fig. 15 with multiple shapes in A and
multiple shapes in 8 show where our method truly shines: We can
generate intricate sieve holes that pass many different shapes of
arbitrary geometry, but block others.

Figs. 10, 11, 12, and 13 show the effect of varying the hyperparam-
eters of our method. In Fig. 2 we show how the energy decreases
over multiple iterations of PSO. Supplemental Material C features
further runtime and convergence analysis of the method. A detailed
table with runtime statistics for all figures in the article can be found
in the supplemental material.

9 Limitations

Neither our inner gradient-based optimization (Figs. 11, 13) nor our
outer PSO (Figs. 10, 12) guarantee that a global optimum is actually
found, and thus we cannot guarantee that our method always cor-
rectly solves the Sieve Game. This can be sometimes remedied by
increasing the various hyperparameters for our method: number

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

8 « David Cha and Oded Stein

Y Y
¥ X * X

shape A 3 orientations
top view top view
. X
¥ *:?‘ r e
shape B 10 orientations (default) A wins!

Fig. 11. Our inner optimization for 8 needs to be initialized with enough
different initial orientations to find a correct solution. Using 3 instead of
the default 10 for an example where A can win, leads to a 8 win instead.

top view J top view

AR R

shape A 3 PSO iterations
<« 9 s
shape B 10 PSO iterations (default) A wins!

Fig. 12. The PSO in our method needs to be run for enough iterations. By
using 3 instead of the default value of 10 for an example where A wins, it
leads to B winning instead.

of particles, number of PSO iterations, number of 8 initializations,
and number of Adam iterations.

Our procedure for declaring a winner of the game can result in
a wrong call. In Fig. 14, we declare A a winner, even though B can
pass through the sieve in practice. A more principled approach,
taking into account further real-world tolerances and optimizing

with enough power to achieve certainty is required to remedy this.

10 Conclusion

Our method can find holes for arbitrary configurations of A and B
in many situations, enabling the fabrication of holes to filter shapes
using geometry alone. By creating and solving an optimization
formulation of this problem via differentiable rendering, we are able
to robustly handle arbitrary triangle meshes as inputs. Moreover,
we demonstrate the practicality of our method by accounting for
fabrication considerations and physical manufacturing of sieves.

Our method cannot yet guarantee that the solution it finds blocks
all shapes B € B, given the nonconvex nature of our optimization
in B. It is an interesting challenge for future work to combine our
method with an algorithm that can prove efficiently that a certain
shape cannot fit through a hole in any configuration. Potential future
directions include partitioning the space of SO(3) in a way that some
optimization algorithm is guaranteed to find the global optimum
or incorporating well-established geometry processing algorithms
with theoretical guarantees like the iterative closest point algorithm
[Besl and McKay 1992].

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

/ top view J top view

N o e

shape A 5 Adam iterations
\/> .ol,vi} X as
shape B 100 Adam iterations (default) A wins!

Fig. 13. The gradient-based Adam optimization needs to run for a certain
minimum number of iterations. By using 5 instead of the default value of
100 for an example where A wins, it leads to B winning instead.

top view top view

A j(% % v &
optimized sieve
A (barely) wins! but B fits in practice
Fig. 14. It can happen that we determine that A has won, but B is blocked
by such a tiny amount that, when printed, it still passes the sieve. This

can sometimes be overcome by increasing the rasterization resolution or
(similarly) scaling the meshes.

In this work we have also assumed that shapes can only be trans-
lated along the z-axis through the sieve hole, which is only valid
when the sieve is very thick. If the sieve is thin enough, then shapes
reported to be blocked may actually be able to pass via complex
motions involving translations in the xy plane and rotations, so one
has to account for more possibilities for shapes to fit through holes
(similar to the work of Zhang et al. [2020]), an interesting direction
for future work.

Lastly, our method is only applicable to the case where the shapes
A € A and B € B can reliably attain their optimal orientation
for fitting through the sieve hole. In sieves, as used in industrial
settings or in the kitchen, objects are not precisely aligned with
holes; rather, the sieve is shaken, each object makes contact with the
sieve in a random orientation, and then has to pass through the hole
in that orientation. Accounting for the physics and the orientation
probabilities of the shaking process is another promising avenue
for future research.

Acknowledgments

We thank Jernej Barbi¢, Huanyu Chen, Silvia Sellan, Ryan Mei,
Bingjian Huang, and the USC Maker Space team for helping with
3D prints. We thank Silvia Sellan, Yingying (Samara) Ren, and Eitan
Grinspun for scientific discussions. We thank Pranav Jain for insight
on finding interesting combinations of meshes by suggesting the
aliens and machine parts examples. We are grateful to Leticia Mattos
Da Silva, Dylan Rowe, Pranav Jain, Letao Chen, and Alice Wei for
proofreading. USC’s Geometry and Graphics Group is supported by
NSF grant 2335493 and a gift by Adobe Inc. We thank the creators
of assets used in this article: the COSEG dataset [Wang 2012], the
TOSCA dataset [Bronstein et al. 2025], and various Thingiverse

Computational Design of Shape-Aware Sieves « 9

icated sieve

J top view

a
f}

shape A shape B our optlmlzed sieve

top vltw X x top view

\

top view top view top view top view

shapes B,, B,, B; our optimized sieve A wins our fabricated sieve
shape s Al; A2 top view top view top view top view
shapes Bl, B, our optimized sieve A wins our fabricated sieve

X \\J Xw‘

Vi Vi Vs
¥,
shapes A;, A,, A, \ \ \ \ \ \

top view top view top view top view top view top view
‘/
shapes B, B,, B, our optimized sieve A wins our fabricated sie
shapes Al, Az, A3 top view mp view iop view mp view top view iop view x
shapes B,, B,, B;, B, our optimized sieve A wins our fabricated sieve

Fig. 15. We fabricate our sieves with a 3D printer to demonstrate the practical use of our method, and verify manually that the sieves admit the A;s they
should be admitting / block the B;s they should be blocking. A v/ means the sieve lets the shape pass, and a X means the shape does not fit.

meshes obtained from Thingi10K [Zhou and Jacobson 2016], [blin- 2011; leemorton123 2011; Lenbok 2011; MakerBlock 2011; Maker-
coln 2013; bohnded 2011; cerberus333 2012; clintkc 2012; craigmclark Bot 2012; Mecano 2011; Mirice 2014; Padamsky_Miniatures 2023;
2012; etrohn 2012; gpvillamil 2011; Hotproceed 2012; hugolours 2020; pmoews 2011; PrettySmallThings 2012; SIMPAD17 2014; spadehand
Inorganic 2012; joeyC 2012; KingRahl 2013; kwalus 2013; Landru 2012; Sybren 2011; tarturo 2011; TheGoofy 2014].

SA Conference Papers '25, December 15-18, 2025, Hong Kong, Hong Kong.

10 « David Cha and Oded Stein

References

Advantech Manufacturing. 2001. Test Sieving: Principles and Procedures. New Berlin,
Wisconsin.

Sara Ali, Anténio Galrdo Ramos, Maria Antonia Carravilla, and José Fernando Oliveira.
2022. On-line three-dimensional packing problems: A review of off-line and on-line
solution approaches. Computers & Industrial Engineering 168 (2022).

Marco Attene. 2015. Shapes In a Box: Disassembling 3D Objects for Efficient Packing
and Fabrication. Comput. Graph. Forum 34, 8 (2015), 13 pages.

P.J. Besl and Neil D. McKay. 1992. A method for registration of 3-D shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence 14, 2 (1992), 239-256.

blincoln. 2013. Twisted Brick. https://www.thingiverse.com/thing:49080

bohnded. 2011. Yet Another Entry for the MakerBot Mascot. https://www.thingiverse.
com/thing:11625

Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. 2025. TOSCA
dataset. originally in Numerical Geometry of Non-Rigid Shapes (2009), obtained
via https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/
datasets/tosca.html.

cerberus333. 2012. Kool aid man. https://www.thingiverse.com/thing:26249

Wenzheng Chen, Jun Gao, Huan Ling, Edward J. Smith, Jaakko Lehtinen, Alec Jacobson,
and Sanja Fidler. 2019. Learning to predict 3D objects with an interpolation-based
differentiable renderer.

clintke. 2012. Ball in cube (or Rolling Cube). https://www.thingiverse.com/thing:19780

Forrester Cole, Kyle Genova, Avneesh Sud, Daniel Vlasic, and Zhoutong Zhang. 2021.
Differentiable Surface Rendering via Non-Differentiable Sampling. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV). 6088-6097.

craigmclark. 2012. Whoofle Magic Dragon. https://www.thingiverse.com/thing:27969

Qiaodong Cui, Victor Rong, Desai Chen, and Wojciech Matusik. 2023. Dense,
Interlocking-Free and Scalable Spectral Packing of Generic 3D Objects. ACM Trans.
Graph. 42, 4, Article 141 (2023).

Soumyaratna Debnath, Ashish Tiwari, Kaustubh Sadekar, and Shanmuganathan Raman.
2025. RASP: Revisiting 3D Anamorphic Art for Shadow-Guided Packing of Irregular
Objects. arXiv:2504.02465 [cs.GR]

Nam Anh Dinh, Itai Lang, Hyunwoo Kim, Oded Stein, and Rana Hanocka. 2025. Geom-
etry in Style: 3D Stylization via Surface Normal Deformation. arXiv:2503.23241

etrohn. 2012. Dualstrusion Ball in Cube. https://www.thingiverse.com/thing:22506

Aalok Gangopadhyay, Prajwal Singh, Ashish Tiwari, and Shanmuganathan Raman.
2023. Hand Shadow Art: A Differentiable Rendering Perspective. In Pacific Graphics
Short Papers and Posters, Raphaélle Chaine, Zhigang Deng, and Min H. Kim (Eds.).
The Eurographics Association.

William Gao, Noam Aigerman, Thibault Groueix, Vova Kim, and Rana Hanocka. 2023.
TextDeformer: Geometry Manipulation using Text Guidance. In ACM SIGGRAPH
2023 Conference Proceedings. Article 82.

Richard J. Gardner. 2006. Geometric Tomography: Projections and projection functions.
Cambridge University Press, 97-140.

Jacob E. Goodman, Joseph O’Rourke, , and Csaba D. Téth. 2017. Handbook of Discrete
and Computational Geometry (3 ed.). CRC Press.

gpvillamil. 2011. Little Green Men (flying saucer pilots). https://www.thingiverse.com/
thing:11810

Baosu Guo, Yu Zhang, Jingwen Hu, Jinrui Li, Fenghe Wu, Qingjin Peng, and Quan
Zhang. 2022. Two-dimensional irregular packing problems: A review. Frontiers in
Mechanical Engineering 8 (2022).

Huihui Guo, Fan Wu, Yunchuan Qin, Ruihui Li, Keqin Li, and Kenli Li. 2023. Recent
Trends in Task and Motion Planning for Robotics: A Survey. ACM Comput. Surv. 55,
13s, Article 289 (2023).

Hotproceed. 2012. Sold Holder. https://www.thingiverse.com/thing:21704

Kai-Wen Hsiao, Jia-Bin Huang, and Hung-Kuo Chu. 2018. Multi-view wire art. ACM
Trans. Graph. 37, 6, Article 242 (2018).

hugolours. 2020. Gargoyle/ Demon. https://www.thingiverse.com/thing:4594515

Inorganic. 2012. Ferrocene. https://www.thingiverse.com/thing:19622

Alec Jacobson. 2017. Generalized Matryoshka: Computational Design of Nesting
Objects. Computer Graphics Forum 36, 5 (2017).

Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin Nimier-David, Delio Vicini,
Tizian Zeltner, Baptiste Nicolet, Miguel Crespo, Vincent Leroy, and Ziyi Zhang. 2022.
Mitsuba 3 renderer. https://mitsuba-renderer.org.

Krishna Murthy Jatavallabhula, Edward Smith, Jean-Francois Lafleche, Clement Fuji
Tsang, Artem Rozantsev, Wenzheng Chen, Tommy Xiang, Rev Lebaredian, and Sanja
Fidler. 2019. Kaolin: A PyTorch Library for Accelerating 3D Deep Learning Research.
arXiv:1911.05063

joeyC. 2012. Parametric Magnetic Driver Bit Handle. https://www.thingiverse.com/thing:
34852

Dominik Joho, Jonas Schwinn, and Kirill Safronov. 2024. Neural Implicit Swept Volume
Models for Fast Collision Detection. In 2024 IEEE International Conference on Robotics
and Automation (ICRA). 15402-15408.

Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro Ando, Toru Matsuoka, Wadim
Kehl, and Adrien Gaidon. 2020. Differentiable Rendering: A Survey. arXiv:2006.12057

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

Sagi Katz and Ayellet Tal. 2015. On the Visibility of Point Clouds. In 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV). 1350-1358.

Sagi Katz and Ayellet Tal. 2025. HPRO: Direct Visibility of Point Clouds for Optimization.
Computer Graphics Forum (2025), €70046.

Sagi Katz, Ayellet Tal, and Ronen Basri. 2007. Direct visibility of point sets. ACM Trans.
Graph. 26, 3 (2007), 24-es.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 2023.
3D Gaussian Splatting for Real-Time Radiance Field Rendering. arXiv:2308.04079

Hyunwoo Kim, Itai Lang, Noam Aigerman, Thibault Groueix, Vladimir G. Kim, and
Rana Hanocka. 2025. MeshUp: Multi-Target Mesh Deformation via Blended Score
Distillation. arXiv:2408.14899

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs.LG]

KingRahl. 2013. Gnome Chess. https://www.thingiverse.com/thing:151265

kwalus. 2013. A Balloon Powered Helicopter. https://www.thingiverse.com/thing:152804

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo
Aila. 2020. Modular primitives for high-performance differentiable rendering. ACM
Trans. Graph. 39, 6, Article 194 (2020).

Landru. 2011. Magneto Helmet: X-men First Class. https://www.thingiverse.com/thing:
12006

leemorton123. 2011. 3D Perspective Illusion Generator(ish). https://www.thingiverse.
com/thing:13963

Lenbok. 2011. SOTC Model Cleanup Test. https://www.thingiverse.com/thing:11710

KeShun Liu. 2009. Some factors affecting sieving performance and efficiency. Powder
Technology 193, 2 (2009), 208-213.

Yu Liu, Xiaodong Zhou, Zhanping You, Biao Ma, and Fangyuan Gong. 2019. Determining
Aggregate Grain Size Using Discrete-Element Models of Sieve Analysis. International
Journal of Geomechanics 19, 4 (2019), 04019014.

Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas Lehrmann,
and Yaser Sheikh. 2019. Neural Volumes: Learning Dynamic Renderable Volumes
from Images. ACM Trans. Graph. 38, 4, Article 65 (2019).

William E. Lorensen and Harvey E. Cline. 1987. Marching cubes: A high resolution
3D surface construction algorithm. In Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques. 163-169.

MakerBlock. 2011. OpenSCAD Pirate Ship. https://www.thingiverse.com/thing:12856

MakerBot. 2012. Escape From Leviathan. https://www.thingiverse.com/thing:27065

Mecano. 2011. Air 2. https://www.thingiverse.com/thing:14204

Ravish Mehra, Pushkar Tripathi, Alla Sheffer, and Niloy J. Mitra. 2010. Visibility of
noisy point cloud data. Computers & Graphics 34, 3 (2010), 219-230.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis. arXiv:2003.08934

Sehee Min, Jaedong Lee, Jungdam Won, and Jehee Lee. 2017. Soft shadow art. In
Proceedings of the Symposium on Computational Aesthetics. Article 3.

Mirice. 2014. Origamix_Rabbit. https://www.thingiverse.com/thing:600429

Niloy J. Mitra and Mark Pauly. 2009. Shadow art. ACM Trans. Graph. 28, 5 (2009).

Remigiusz Modrzewski, Andrzej Obraniak, Adam Rylski, and Krzysztof Siczek. 2022. A
Study on the Dynamic Behavior of a Sieve in an Industrial Sifter. Applied Sciences
12, 17 (2022).

Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. 2021. Large steps in inverse rendering
of geometry. ACM Trans. Graph. 40, 6, Article 248 (2021).

Quan Nie, Yingfeng Zhao, Li Xu, and Bin Li. 2020. A Survey of Continuous Colli-
sion Detection. In 2020 2nd International Conference on Information Technology and
Computer Application (ITCA). 252-257.

Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani (Eds.). 2007. Algo-
rithmic Game Theory. Cambridge University Press.

Padamsky_Miniatures. 2023. Gnome Wizard. https://www.thingiverse.com/thing:
5763365

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
2019. PyTorch: an imperative style, high-performance deep learning library.

pmoews. 2011. Protein Models. https://www.thingiverse.com/thing:12283

Riccardo Poli. 2008. Analysis of the Publications on the Applications of Particle Swarm
Optimisation. Journal of Artificial Evolution and Applications 2008, 1 (2008), 685175.

Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. 2023. DreamFusion:
Text-to-3D using 2D Diffusion. In The Eleventh International Conference on Learning
Representations.

PrettySmallThings. 2012. Three 1:24 Windsor Chairs. https://www.thingiverse.com/
thing:21999

Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin
Johnson, and Georgia Gkioxari. 2020. Accelerating 3D Deep Learning with Py-
Torch3D. arXiv:2007.08501

Kaustubh Sadekar, Ashish Tiwari, and Shanmuganathan Raman. 2022. Shadow Art
Revisited: A Differentiable Rendering Based Approach. In 2022 IEEE/CVF Winter

https://www.thingiverse.com/thing:49080
https://www.thingiverse.com/thing:11625
https://www.thingiverse.com/thing:11625
https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/datasets/tosca.html
https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/datasets/tosca.html
https://www.thingiverse.com/thing:26249
https://www.thingiverse.com/thing:19780
https://www.thingiverse.com/thing:27969
https://arxiv.org/abs/2504.02465
https://arxiv.org/abs/2503.23241
https://www.thingiverse.com/thing:22506
https://www.thingiverse.com/thing:11810
https://www.thingiverse.com/thing:11810
https://www.thingiverse.com/thing:21704
https://www.thingiverse.com/thing:4594515
https://www.thingiverse.com/thing:19622
https://arxiv.org/abs/1911.05063
https://www.thingiverse.com/thing:34852
https://www.thingiverse.com/thing:34852
https://arxiv.org/abs/2006.12057
https://arxiv.org/abs/2308.04079
https://arxiv.org/abs/2408.14899
https://arxiv.org/abs/1412.6980
https://www.thingiverse.com/thing:151265
https://www.thingiverse.com/thing:152804
https://www.thingiverse.com/thing:12006
https://www.thingiverse.com/thing:12006
https://www.thingiverse.com/thing:13963
https://www.thingiverse.com/thing:13963
https://www.thingiverse.com/thing:11710
https://www.thingiverse.com/thing:12856
https://www.thingiverse.com/thing:27065
https://www.thingiverse.com/thing:14204
https://arxiv.org/abs/2003.08934
https://www.thingiverse.com/thing:600429
https://www.thingiverse.com/thing:5763365
https://www.thingiverse.com/thing:5763365
https://www.thingiverse.com/thing:12283
https://www.thingiverse.com/thing:21999
https://www.thingiverse.com/thing:21999
https://arxiv.org/abs/2007.08501

Conference on Applications of Computer Vision (WACV). 628-636.

Nevardo Sanchez-Suarez, Gina Lia Orozco-Mendoza, Jhon Wilder Zartha-Sossa,
Delcy Camila Gafaro-Garcés, Lourdes Gladys Melchor-Cahuana, and Cristian
Gonzalez-Tovar. 2022. Trends in Sieving and Its Applications in Cereals. A Lit-
erature Review. Frontiers in Sustainable Food Systems 6 (2022).

Silvia Sellan, Noam Aigerman, and Alec Jacobson. 2021. Swept volumes via spacetime
numerical continuation. ACM Trans. Graph. 40, 4, Article 55 (2021).

Silvia Sellan, Oded Stein, et al. 2025. gptyoolbox: A Python Geometry Processing
Toolbox. https://gpytoolbox.org/.

SIMPAD17. 2014. Omnis Terra. https://www.thingiverse.com/thing:492429

spadehand. 2012. Watch Case for 6498 Manual Wind Movement. https://www.thingiverse.
com/thing:21853

Sybren. 2011. Enlightened Horns. https://www.thingiverse.com/thing:11599

tarturo. 2011. 3D Initials Logo - Make your own. https://www.thingiverse.com/thing:
12354

TheGoofy. 2014. 3D printed mechanical Clock with Anchor Escapement. https://www.
thingiverse.com/thing:328569

Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2022. Differentiable signed distance
function rendering. ACM Trans. Graph. 41, 4, Article 125 (2022).

Caoliwen Wang and Bailin Deng. 2024. Neural Shadow Art. arXiv:2411.19161 [cs.CV]

Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A. Yeh, and Greg Shakhnarovich. 2022.
Score Jacobian Chaining: Lifting Pretrained 2D Diffusion Models for 3D Generation.
arXiv:2212.00774

Jingping Wang, Tingrui Zhang, Qixuan Zhang, Chuxiao Zeng, Jingyi Yu, Chao Xu, Lan
Xu, and Fei Gao. 2024. Implicit Swept Volume SDF: Enabling Continuous Collision-
Free Trajectory Generation for Arbitrary Shapes. ACM Trans. Graph. 43, 4, Article
110 (2024).

Yunhai Wang. 2012. COSEG dataset. https://irc.cs.sdu.edu.cn/~yunhai/public_html/ssl/
ssd.htm.

Tianyang Xue, Mingdong Wu, Lin Lu, Haoxuan Wang, Hao Dong, and Baoquan Chen.
2023. Learning Gradient Fields for Scalable and Generalizable Irregular Packing. In
SIGGRAPH Asia 2023 Conference Papers. Article 105, 11 pages.

Zeshi Yang, Zherong Pan, Manyi Li, Kui Wu, and Xifeng Gao. 2023. Learning Based 2D
Irregular Shape Packing. ACM Trans. Graph. 42, 6, Article 266 (2023).

Xinya Zhang, Robert Belfer, Paul G. Kry, and Etienne Vouga. 2020. C-Space tunnel
discovery for puzzle path planning. ACM Trans. Graph. 39, 4, Article 104 (2020).
Hang Zhao, Zherong Pan, Yang Yu, and Kai Xu. 2023. Learning Physically Realizable
Skills for Online Packing of General 3D Shapes. ACM Trans. Graph. 42, 5, Article

165 (2023).

Qingnan Zhou and Alec Jacobson. 2016. Thingil0K: A Dataset of 10,000 3D-Printing
Models. arXiv preprint arXiv:1605.04797 (2016).

Jingsen Zhu, Fujun Luan, Yuchi Huo, Zihao Lin, Zhihua Zhong, Dianbing Xi, Rui
Wang, Hujun Bao, Jiaxiang Zheng, and Rui Tang. 2022. Learning-based Inverse
Rendering of Complex Indoor Scenes with Differentiable Monte Carlo Raytracing.
In SIGGRAPH Asia 2022 Conference Papers. Article 6, 8 pages.

Computational Design of Shape-Aware Sieves « 11

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

https://gpytoolbox.org/
https://www.thingiverse.com/thing:492429
https://www.thingiverse.com/thing:21853
https://www.thingiverse.com/thing:21853
https://www.thingiverse.com/thing:11599
https://www.thingiverse.com/thing:12354
https://www.thingiverse.com/thing:12354
https://www.thingiverse.com/thing:328569
https://www.thingiverse.com/thing:328569
https://arxiv.org/abs/2411.19161
https://arxiv.org/abs/2212.00774
https://irc.cs.sdu.edu.cn/~yunhai/public_html/ssl/ssd.htm
https://irc.cs.sdu.edu.cn/~yunhai/public_html/ssl/ssd.htm

Supplemental Material
A Proof for similarity proposition
Here we supply the proof for Prop. 3.5 from the article.

PROPOSITION A.1. A ~ B iff the two shapes have the same set of
projections across all orientations.

ProoF. We first prove a related Claim: A 2 B &< VRp €
SO(3)3Ry4 € SO(3),t4 € R? such that proj(RaA)+t4 C proj(RgB)

(=): For any Rp € SO(3), trivially B € proj(RpB). Since A < B,
we must also have A € proj(RgB), which means there must exist
R4 € SO(3),ta € R? such that proj(RaA) + t4 C proj(RgB).

(<): Suppose H is a sieve hole such that B € H. Then there exists
Rp € SO(3) and tg € R? such that proj(RgB) + tg C H. By the
assumption, R4 € SO(3), t4 € R? such that

proj(RaA) +ta +tp C proj(RgB) +tp C H
So A € H, and thus A < B.
Now we prove the two directions of the proposition.
(=): Since A < B,
{proj(RA) +t | R € SO(3),t € R?} C
{proj(RB) +t | R € SO(3),t € R?},

and since B <X A, the converse also holds. Thus the two sets of
projections are equal.
(&): The equality of the two sets implies

{proj(RA) +t | R € SO(3),t e R?} C
{proj(RB) +t | R € SO(3),t € R?},

as well as the converse, and thus A < B and B < A respectively, so
A~B.]

B Proof for blocking complex motions

ProposITION B.1. Define the sieve pipe P to be the prism of height
height h with sieve hole H as the base, which represents the shape of the
3D tunnel of our sieve. If h is at least the diameter of the circumsphere
of a blocked shape B, then there cannot exist a trajectory for this shape
to pass through the sieve.

Proor. For the sake of contradiction, suppose otherwise. Then
due the thickness of h, at some point along the trajectory, B must
be fully contained in P at some orientation (R, t) where R € SO(3)
and t € R3. This implies proj(RB + t) C H, a contradiction. O

C Mesh & runtime statistics

Tab. 1 features runtime statistics for each experiment performed.

Tab. 2 contains vertex and face counts for the meshes used. The
mesh names reference either TOSCA [Bronstein et al. 2025], COSEG
[Wang 2012], Thingil0k [Zhou and Jacobson 2016], or very simple
meshes created by the authors.

Fig 17 features a convergence plot of the inner Adam optimization.

Fig. 16 shows how the runtime of our method scales with the number
of input shapes.

Computational Design of Shape-Aware Sieves « 1

runtime (s) runtime (s)

S
6000 6000
5000 5000
4000 4000
3000 3000
2000 2000
1000 1000
10 20 30 40 50 75K 150K 225K

number of B shapes number of vertices of all B shapes

Fig. 16. Runtimes of the optimization and winner declaration stages of our
method with one shape in A and a varying number of shapes in 8, where
all shapes were chosen randomly from Thingi10K. For these experiments,
we used a raster resolution of 128 x 128 during optimization as the default
value led to exceeding the GPU memory.

loss during Adam loss during Adam

160
Ninits = 5 300 Rinits = 5 _
Rinits = 20 - Vs, ¢ 4 Rinits = 20 lh¢ “Vs.
80 Ninits = 40 i 150 Rinits = 40 ‘v&
Minits = 80 § Rinits = 80)
0 0
0 50 100 0 50 100

iteration iteration

Fig. 17. Evolution of the loss in the first case of (15) during Adam optimiza-
tion for varying numbers of different initializations of the state of 5.

D Implementation details

For any figures of results that were produced using non-default
parameters, we report the values below:

Fig. 5, first row: 20 random B initial orientations

Fig. 5, fourth row: 40 random % initial orientations

Fig. 7, second row: 30 random B initial orientations

Fig. 15, second row: 20 random B initial orientations

Meshes of cats and humans from the TOSCA dataset used here
were modified to be watertight and have been renamed by append-
ing _fixed to each STL filename. While our algorithm can robustly
handle non-watertight meshes, they are unsuitable for our 3D print-
ers.

E Figure details

To render images featuring a 3D object inside a sieve, we preprocess
the sieve mesh by slightly smoothing the hole geometry to remove
jagged edges from the surface reconstruction. This does not matter
for the 3D printing process, since the tolerances are larger than the
jaggedness.

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

2 « David Cha and Oded Stein

Figure A meshes B meshes Optimization Winner Final 8 A wins
runtime (s) declaration losses
runtime (s)

Fig. 8 (top) 37111.stl 37009.stl, 37415.stl 902.0 415.9 0.168, Y
0.077
Fig. 14 37731.stl 37730.stl 317.1 146.5 0.001 N
Fig. 5 (third) 38631.stl 39880.stl 273.2 122.0 0.037 Y
Fig. 5 (fourth) 39930.stl 39925.stl 222.9 19.4 0.044 Y
Fig. 6 (first) 41729.stl 964933.stl 54.1 16.2 0.000 N
Fig. 6 (second) 45550.stl 79239.stl 1691.3 754.6 0.000 N
Fig. 13 (bottom) 46665.stl 100139.stl 78.7 314 0.020 Y
Fig. 13 (top) 46665.stl 100139.stl 11.2 60.2 0.000 N
Fig. 9 (top) 46665.st] 46665_long.stl 54.9 19.6 0270 Y
Fig. 9 (bottom) 46665.stl 46665_long.stl, 121.4 54.0 0.108, N
100139.stl 0.000
Fig. 11 (bottom) 62526_cut.stl 62526.stl 352.1 149.3 0.030 Y
Fig. 11 (top) 62526_cut.stl 62526.stl 115.0 151.6 0.000 N
Fig. 4 (left) 62860.st1 cube.stl 30.4 10.0 0.345 Y
Fig. 4 (right) 62860.stl cube.stl 27.6 9.8 0.000 N
Fig. 2 67223.stl 591211.stl 63.6 27.7 0.017 Y
Fig. 15 (first) 67856.stl 131500.stl 845.7 367.1 0.000 N
Fig. 10 (bottom) 69079_cut.stl 69079.stl 176.7 45.9 0.031 Y
Fig. 10 (top) 69079_cut.stl 69079.stl 53.7 48.5 0.000 N
Fig. 6 (third) 80597.stl 83229.stl 1805.5 788.9 0.000 N
Fig. 6 (fourth) 293457.stl 293453 stl 1118.6 494.9 0.000 N
Fig. 7 (top) 296802.stl 296803.stl 148.7 44.4 0.013 Y
Fig. 7 (bottom) 296803.stl 296802.stl 233.2 36.8 0.006 Y
Fig. 12 (bottom) arch.stl rect_prism.stl 23.4 10.3 0.021 Y
Fig. 12 (top) arch.stl rect_prism.stl 9.4 9.9 0.000 N
Fig. 3 (right) bowtie.stl sphere.stl 29.8 11.5 0.193 Y
Fig. 3 (left) bowtie.stl sphere.stl 244 11.5 0.212 Y
Fig. 1 cat9_fixed.stl catl_fixed.stl, 3956.2 1778.5 0.012, Y
cat3_fixed.stl, 0.030,
cat4_fixed.stl 0.053
Fig. 5 (second) cat9_fixed.stl cat6_fixed.stl 1315.8 613.8 0.007 Y
Fig. 5 (first) centaur5.stl centaur4.stl 1551.3 332.0 0.084 Y
Fig. 15 (fifth) coseg_chairs_102.stl, coseg_chairs_112.stl, 9410.5 878.9 0.081, Y
coseg_chairs_103.stl, coseg_chairs_116.stl, 0.049,
coseg_chairs_111.stl coseg_chairs_120.stl 0.046
Fig. 8 (bottom) coseg_vases_364.stl coseg_vases_361.stl, 1978.2 891.9 0.100, Y
coseg_vases_365.stl, 0.361,
coseg_vases_808.stl 0.280
Fig. 15 (third) david6_fixed.stl david10_fixed.stl, 7547.2 3267.4 0.141, Y
david11_fixed.stl, 0.153,
david13_fixed.stl 0.107
Fig. 15 (fourth) 67523.stl, 67223.stl 822070.stl, 2037.7 271.5 0.032, Y
591211.stl 0.037
Fig. 15 (sixth) thick_S.stl, thick_R.stl, 1981.6 118.1 0.080, Y
thick Lstl, thick A.stl, 0.063,
thick_G.stl thick_P.stl, 0.050,
thick_H.stl 0.074
Fig. 5 (fifth) wizard.stl gargoyle.stl 9334.0 4126.7 0.203 Y
Fig. 15 (second) wolf2.stl wolf0.stl, wolfl.stl 878.3 204.8 0.036, Y
0.036

Table 1. Runtime statistics for experiments in this article. “Final B losses” is the energy (9) at the end of B’s gradient-based optimization step from the winner
declaration procedure.

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

Computational Design of Shape-Aware Sieves « 3

Mesh filename Number of vertices Number of faces Mesh filename Number of vertices Number of faces
100139.stl 1112 2224 cat3_fixed.stl 27896 55788
131500.stl 17426 34882 cat4_fixed.stl 27896 55788
293453 stl 23739 47474 cat6_fixed.stl 27896 55788
293457.stl 23773 47542 cat9_fixed.stl 27896 55788
296802.stl 1156 2320 centaur4.stl 15768 31528
296803.stl 1120 2248 centaur5.stl 15768 31532
37009.stl 12002 23909 COSeg_Chairs_lOZ‘stl 15724 31456
37111.stl 44004 88106 Cosegichairsilo?).stl 9652 19304
37415.stl 7853 13340 coseg_chairs_111.stl 8050 16100
37730.stl 5212 10512 coseg_chairs_112.stl 13628 27256
37731.stl 5480 11048 coseg_chairs_116.stl 13463 26926
38631.stl 8059 16728 coseg_chairs_120.stl 10121 20242
39880.stl 4953 9902 coseg_vases_361.stl 14859 29734
39925.stl 418 844 coseg_vases_364.stl 13548 27100
39930.stl 514 1024 coseg_vases_365.stl 13514 27028
41729.stl 2655 5330 coseg_vases_808.stl 13172 26344
45550.stl 1595 3222 cube.stl 8 12
46665.stl 376 764 david10_fixed.stl 52568 105132
46665_10ng.st1 376 764 davidi11_fixed.stl 52568 105132
591211.stl 680 1380 david13_fixed.stl 52569 105134
62526.stl 7818 13152 david6_fixed.stl 52569 105134
62526_cut.stl 7480 12560 gargoyle.stl 172687 347360
62860.stl 40 96 rect_prism.stl 8 12
67223.stl 1030 2064 sphere.stl 50 96
67523.stl 1592 3204 thick_A.stl 680 1360
67856.stl 5647 11350 thick_G.stl 774 1544
69079.stl 1470 2956 thick_H.stl 622 1240
69079_cut.stl 1478 2968 thick_ILstl 282 560
79239.stl 36164 72328 thick_P.stl 564 1128
80597.stl 21999 43994 thick_R.stl 692 1384
822070.stl 11213 22450 thick_S.stl 738 1472
83229.stl 37988 76026 wizard.stl 308544 616940
964933.stl 148 292 wolf0.stl 4344 8684
arch.stl 28 52 wolf1.stl 4344 8684
bowtie.stl 16 28 wolf2.stl 4344 8684
catl_fixed.stl 27896 55788

Table 2. Details for the meshes used in experiments in this article.

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

	Abstract
	1 Introduction
	2 Related Works
	3 The geometry of sieves
	4 The Sieve Game
	5 Constructing sieves
	5.1 One shape in A and one shape in B
	5.2 One shape in A and many shapes in B
	5.3 Many shapes in A and many shapes in B
	5.4 Fabrication considerations

	6 Optimization methods
	6.1 Gradient-based optimization
	6.2 Particle swarm optimization

	7 Implementation & fabrication
	8 Results
	9 Limitations
	10 Conclusion
	Acknowledgments
	References
	A Proof for similarity proposition
	B Proof for blocking complex motions
	C Mesh & runtime statistics
	D Implementation details
	E Figure details

