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ABSTRACT
We present distributed algorithms for training dynamic Graph Neu-
ral Networks (GNN) on large scale graphs spanning multi-node,
multi-GPU systems. To the best of our knowledge, this is the first
scaling study on dynamic GNN.We devise mechanisms for reducing
the GPU memory usage and identify two execution time bottle-
necks: CPU-GPU data transfer; and communication volume. Ex-
ploiting properties of dynamic graphs, we design a graph difference-
based strategy to significantly reduce the transfer time. We develop
a simple, but effective data distribution technique under which the
communication volume remains fixed and linear in the input size,
for any number of GPUs. Our experiments using billion-size graphs
on a system of 128 GPUs shows that: (i) the distribution scheme
achieves up to 30x speedup on 128 GPUs; (ii) the graph-difference
technique reduces the transfer time by a factor of up to 4.1x and
the overall execution time by up to 40%.

CCS CONCEPTS
• Computing methodologies → Distributed algorithms; Ma-
chine learning algorithms.
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1 INTRODUCTION
Graphs are ubiquitous in diverse domains, ranging from finance
to bio-informatics. Building on classical deep learning, a variety of
Graph Neural Networks (GNN) have been developed for learning
graph structured data under multiple paradigms such as spectral,
convolutional and recurrent GNN [27].

Scaling GNN. Motivated by the success of graph neural net-
works on real-life learning tasks, several recent work have studied
the scalability aspects of GNNs. PinSage [29] reports an implemen-
tation that can handle billions of edges. Ma et al. [14] and Jia et al.
[8] describe efficient distributed and multi-GPU implementations.
General purpose GNN libraries, DGL [25], PyG [5] and AGL [30],
and distributed platforms, Aligraph [31] and TuX2 [28], have been
developed. A discussion on software and hardware solutions for
efficient GNN scaling can be found in the survey by Abadal et al.
[1]. Recent work by Tripathy et al. [23] presents a detailed study
on the data partitioning aspects of GNN scaling.

As part of the above work, various optimization strategies have
been developed, particularly addressing two critical bottlenecks:
GPU memory and communication volume. Since the GPU memory
is limited when compared to the main memory, it is typically in-
feasible to store large graphs in the GPU in their totality. Instead,
the input graph is transferred in chunks from the CPU to the GPU.
The CPU-to-GPU data transfer affects the overall execution time
and prior work (e.g., [8, 14]) has designed optimizations based on
mechanisms such as data streaming. In large multi-node, multi-
GPU systems, the communication volume is a significant factor
in determining the scaling behavior and different data partition-
ing methods have been proposed. As an example, Aligraph [31]
distributes the vertices among the processors using a hypergraph
partitioner and augments it with neighborhood caching. Tripathy
et al. [23] argue in favor of multi-dimensional block-wise partition-
ing methods adapted from classical techniques utilized in scaling
sparse linear algebra.

Dynamic GNN. In many scenarios, graphs are dynamic in na-
ture and evolve over time, e.g., social networks and financial trans-
action graphs. Broadly, two frameworks have been developed to
represent dynamic graphs [9]: Continuous Time Dynamic Graphs
(CTDG) and Discrete Time Dyanamic Graphs (DTDG). Under the
first framework, the evolution of the graph is captured in terms of
insertion/deletion of vertices/edges and updates to the attributes.
The second framework represents the dynamic graph by taking
snapshots at regular intervals to derive a sequence 𝐺1,𝐺2, . . . ,𝐺𝑇 ,
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where 𝑇 is the number of timesteps and 𝐺𝑡 is the graph as it stood
at timestep 𝑡 . Various models have been designed for learning
within both the CTDG (e.g., [12, 15, 18, 20, 24]) and the DTDG
(e.g., [3, 13, 16, 17, 19, 22]) frameworks. We refer to the survey by
Kazemi et al. [9] for a detailed discussion on the topic.

Scaling Dynamic GNN and OurWork. Our objective is to de-
velop a scalable implementation for training Dynamic GNN models
on distributed multi-node, multi-GPU systems.While the scalability
of GNN models (dealing with static graphs) has been well explored,
to the best of our knowledge, this is the first scaling study for the
Dynamic GNN setting.

Our study focuses on the discrete time framework of DTDG.
Dynamic GNN models for DTDG combine GNN from the domain
of graph learning and Recurrent Neural Networks (RNN) from the
domain of timeseries analysis. We consider a generic framework
where the model consists of multiple layers, and each layer in-
volves a graph convolution component applied over the individual
snapshots, followed by an RNN component applied over the indi-
vidual vertices across the timeline. The former aggregates features
from neighboring vertices and aids in learning the spatial graph
characteristics. The latter captures the temporal aspects.

Multiple dynamic GNN models for DTDG proposed in the lit-
erature follow the above framework (see survey [9]). We design
optimization strategies catered to the framework and apply them to
the three representative models: CD-GCN, EvolveGCN and TM-GCN
[16, 17, 19]. All the three models use the popular Graph Convolu-
tional Network (GCN) [11] as the GNN component. Regarding the
RNN component, CD-GCN employs the popular LSTM [7] model,
whereas TM-GCN utilizes the M-product [10]. The EvolveGCNmodel
applies LSTM over the GCN weight matrices so that the weights
evolve by learning the temporal characteristics. Prior work has
demonstrated the effectiveness of the above models on tasks such
as link prediction and node classification.

Strategies developed for scaling static GNN models are also ap-
plicable to the dynamic GNN setting. However, we demonstrate
that the timeseries aspect provides specific opportunities, which
we exploit to design optimization techniques tailored to dynamic
GNN.

Communication Volume: A natural data-distribution strategy is
to partition the vertices and distribute each snapshot according
to the above partition among the processors. Similar to the prior
work on GNN, hypergraph partitioners can be utilized to derive
an efficient vertex-partitioning. Under this scheme, the communi-
cation volume is dependent on the density properties of the input
graph and increases with increase in system size. Furthermore, the
communication pattern is highly irregular involving significant
implementation overheads, resulting in poor scaling behavior.

We show that dynamic GNN models allow for an alternative,
simple, but effective strategy based on partitioning the snapshots, in-
stead of vertices. Under this scheme, the GNN component happens
to be communication free and the RNN component is accommo-
dated via data redistribution. The salient feature of the approach
is that the communication volume is constant at 𝑂 (𝑇 · 𝑁 ) units,
irrespective of the input graph characteristics and number of pro-
cessors, where 𝑇 and 𝑁 are the number of timesteps and vertices,
respectively. In contrast to vertex-partitioning based on hyper-
graphs, the communication pattern is highly regular with minimal

implementation overheads. This enables efficient scaling to large
systems, as demonstrated in our experimental study.

Single Node Optimizations: In multi-node systems with multiple
GPUs per node, the architecture offers significantly higher intra-
node CPU-GPU data transfer speeds among GPUs on the same
node, as compared to inter-node communication. Consequently,
the execution time speedup grows sub-linearly with increase in
number of nodes, leading to diminished marginal gains in terms of
the ratio of performance to monetary cost. Hence, it is of interest
to consider single node systems (with multiple GPUs) as well. With
the above motivation, we design two optimization strategies that
are particularly effective on a single node: gradient checkpoint and
graph-difference based CPU-GPU data transfer.

Gradient Checkpoint: The GPU memory bottleneck is partic-
ularly severe while handling large datasets on a single node. For
instance, most of the model-dataset configurations in our experi-
ments do not execute on fewer than 8 GPUs. We address the issue
by adapting the well-known gradient checkpoint technique [4].
Originally designed in the context of deep neural networks with
large number of layers, the method has been applied to classical
RNN models as well [6]. Based on the technique, our implementa-
tion stores only a subset of snapshots in the GPU at any execution
point, thereby reducing the overall GPU memory usage.

Graph-Difference Based CPU-GPU Data Transfer: Under the
checkpoint-based implementation, the snapshots are not stored
permanently in the GPU, but get transferred from CPU to GPU
on a per-demand basis, leading to increased execution time. We
mitigate the effect based on a crucial observation that, in real world
data-sets, the snapshots evolve at a slow pace and each snapshot is
similar in topology (set of edges) to the previous one. Based on the
observation, we design a graph-difference based snapshot transfer
method that offers significant reduction in the transfer time.

Experimental Evaluation: Applying the above strategies, we de-
velop distributed implementations for the three representative mod-
els: TM-GCN, EvolveGCN and CD-GCN. Our experimental study on a
system having 128 GPUs (16 nodes with 8 GPUs each) over real-
life datasets having up to a billion edges demonstrates that: (i) the
snapshot partitioning scheme enables good scaling behavior and
achieves up to 30x speedup on 128 GPUs compared to a single GPU;
(ii) in the singe-node setting, the graph-difference based strategy
offers up to 4.1x speedup in CPU-GPU transfer time, resulting in up
to 40% reduction in the overall execution time. As part of the study,
we also present a preliminary evaluation comparing snapshot-
partitioning and hypergraph-based vertex-partitioning approaches
that demonstrates the better scaling of snapshot-partitioning.

2 PRELIMINARIES
2.1 Discrete Time Dynamic Graphs (DTDG)
A DTDG consists of a dynamic graph G and associated input fea-
tures X. The former is a sequence G = 𝐺1,𝐺2, . . . ,𝐺𝑇 over 𝑇
timesteps, where each 𝐺𝑡 = (𝑉 , 𝐸𝑡 ) is a graph, referred as a snap-
shot. They are defined over the same set of 𝑁 vertices 𝑉 , but may
differ in terms of the spatial topology 𝐸𝑡 . Let 𝐴1, 𝐴2, . . . , 𝐴𝑇 be the
corresponding sparse adjacency matrices of size 𝑁 × 𝑁 , which can
be viewed as sparse tensorA = (𝐴1, . . . , 𝐴𝑇 ) of size𝑇 ×𝑁 ×𝑁 . The
input features X is a sequence X = 𝑋1, 𝑋2, . . . , 𝑋𝑇 , where each 𝑋𝑡 ,
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called a frame, is a matrix of size𝑁 ×𝐹 that specifies a feature-vector
of length 𝐹 for each vertex in 𝐺𝑡 . The sequence X can viewed as
a dense tensor of size 𝑇 × 𝑁 × 𝑁 . Throughout the paper, we use
uppercase letters for referring the individual frames/snapshots and
the corresponding calligraphic letters to mean the tensor.

2.2 Dynamic Graph Neural Networks
Graph Neural Networks. Graph neural networks are meant for
learning over static graphs and in our context, they are applied to
each snapshot 𝐺𝑡 = (𝑉 , 𝐸𝑡 ) in an independent manner. Given the
input feature matrix 𝑋𝑡 of size 𝑁 × 𝐹 , let 𝑋𝑡 [𝑢] denote the feature
associated with a vertex𝑢. A GNNmodel transforms𝑋𝑡 [𝑢] to𝑌𝑡 [𝑢]
via aggregating features of 𝑢 and its neighors. Various GNN models
have been proposed that differ in terms of the aggregation operator
(see survey [27]). In this paper, we focus on the popular Graph
Convolutional Network (GCN) model [11] that is employed in the
three dynamic GNN models used in our experimental study.

For a vertex 𝑢, let deg𝑢 denote the degree of 𝑢, the number of
neighbors. Intuitively, to each edge (𝑢, 𝑣), the GCN model assigns a
weight of 1/

√
(1 + deg𝑢 ) · (1 + deg𝑣). It derives 𝑌 [𝑢] via weighted

aggregation over the neighbors and applying a learnable linear layer
𝑊 . It can be conveniently expressed using the graph Laplacian.

Consider a timestep 𝑡 . Let 𝐴𝑡 be the 𝑁 × 𝑁 sparse adjacency
matrix of𝐺𝑡 . Let𝐷 be the diagonal matrix with𝐷 [𝑢,𝑢] = (1+deg𝑢 )
and 𝐼 be the 𝑁 ×𝑁 identity matrix. The normalized graph Laplacian
is given by:

𝐴 = 𝐷−1/2 · (𝐴 + 𝐼 ) · 𝐷−1/2, (1)

The GCN operation is defined as:

𝑌 = 𝜎 (𝐴 · 𝑋 ·𝑊 ), (2)

where𝑊 is a learnable weight matrix of size 𝐹 × 𝐹 ′ and 𝜎 is a
suitable activation function such as ReLU. The output length 𝐹 ′ is
a tunable parameter.

Recurrent Neural Networks. RNNmodels are meant for learn-
ing over time-series data. In our context, they are applied to the
time-series corresponding to each vertex in an independent man-
ner. Given a vertex𝑢 with features𝑋 [𝑢] = 𝑋1 [𝑢], 𝑋2 [𝑢], . . . , 𝑋𝑇 [𝑢]
each of length 𝐹 , the RNN model produces a transformed series
𝑌 [𝑢] = 𝑌1 [𝑢], 𝑌2 [𝑢], . . . , 𝑌𝑇 [𝑢] each of length 𝐹 ′, a tunable pa-
rameter. For each timestep 𝑡 , the model maintains a hidden state
𝑆𝑡 [𝑢]. It generates 𝑌𝑡 [𝑢] and 𝑆𝑡 [𝑢] by considering the previous
state 𝑆𝑡−1 [𝑢], input features from previous and current timesteps,
the new features from previous steps:

(𝑌𝑡 [𝑢], 𝑆𝑡 [𝑢]) = RNN(𝑆𝑡−1 [𝑢],
𝑋𝑡−𝑤 [𝑢], . . . , 𝑋𝑡 [𝑢],
𝑌𝑡−𝑤 [𝑢], . . . 𝑌𝑡−1 [𝑢]),

where the parameter 𝑤 controls the prior window length. The
RNN may involve internal learnable parameters. Taken over all the
vertices, the RNN operation can be expressed as:

(𝑌𝑡 , 𝑆𝑡 ) = RNN(𝑆𝑡−1, 𝑋𝑡−𝑤 , . . . , 𝑋𝑡 , 𝑌𝑡−𝑤 , . . . 𝑌𝑡−1), (3)

wherein 𝑌𝑗 is of size 𝑁 × 𝐹 ′ and 𝑆 𝑗 are of size 𝑁 × 𝑠 , with 𝑠 being a
tunable RNN hidden state length.

Different RNN models have been proposed in the literature.
Among the dynamic GNN models used in our study, CD-GCN and

(a) GCN and RNN operations

(b) Multi-layer dynamic GNN

Figure 1: Dynamic GNN. Part (a) illustrates a single pair of
GCN and RNN operations over 𝑁 = 4 vertices and 𝑇 = 3
timesteps. Part (b) presents a two layer model with each
layer consisting of a GCN-RNN pair.

EvolveGCN employ LSTM [7], whereas TM-GCN is based on the M-
product [10]. We shall describe the two RNN models, while dis-
cussing the above dynamic GNN models later in the paper.

Dynamic Graph Neural Networks for DTDG. Our work ap-
plies to a family of dynamic GNN models for DTDGs, which we
abstract using the framework described below. Details specific to
the three representative models (TM-GCN, CD-GCN, EvolveGCN) used
in our experimental evaluation are described in Section 5.

Under the framework, a dynamic GNNmodel consists of multiple
layers. Each layer involves a GCN [11] module operating on each
snapshot independently, followed by an RNN module operating on
the feature-vector of each vertex independently along the timeline.
Figure 1 (a) illustrates the idea.

A multi-layer model is constructed by iterating over this pair of
GCN/RNN operations. Figure 1 (b) illustrates a two-layer model.
Here, the input dynamic graph is represented as a sparse tensor A
of size𝑇 ×𝑁 ×𝑁 , and the input features X is a dense tensor of size
𝑇 × 𝑁 × 𝐹 . Tensor notation is used to represent the intermediate
activations as well. While the two RNN components operate on
the intermediate features output by the previous module, the GCN
components apply graph convolution on the input dynamic graph.

The intermediate feature lengths 𝐹1, 𝐹2, 𝐹3, and the embedding
length 𝐹 ′ are tunable. They determine the size of the GCN weight
matrices and the internal parameters of the RNN. The output of the
iterative process is a tensorZ of size 𝑇 × 𝑁 × 𝐹 ′ that provides an
embedding of size 𝐹 ′ for each 𝑢 at each timestep 𝑡 .

The embeddings can be used in multiple ways. In vertex classi-
fication, we are given ground truth labels for each vertex at each
timestep in the form of a matrix 𝑄 of size 𝑇 × 𝑁 with entries from
{1, . . . ,𝐶}, where𝐶 is the number of categories. For this application,
we derive predictions by projecting each embedding matrix 𝑍𝑡 to
the label space via a learnable weight matrix 𝑈 of size 𝐹 ′ ×𝐶 . The
predictions are compared against the ground truth using a loss
function such as cross-entropy. Edge prediction can be performed
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Figure 2: Gradient checkpoint illustration. Here, number of
blocks nb = 3. 𝜋 𝑗 represents the RNN-specific data passed
from block 𝑗 to 𝑗 +1, which gets stored as part of checkpoint-
ing. 𝜋0 is the initial data.

via concatenating the embeddings of the edge end-points. The latter
is explored in our experimental evaluation.

The weight matrices associated with the GCN and the RNN
modules, and the matrix 𝑈 are the learnable parameters of the
model. Backpropagation of the gradients is performed after the
forward phase has completed the processing of all the snapshots
(all their vertices).

3 SINGLE GPU IMPLEMENTATION
In this section, we discuss optimizations of gradient checkpoint
and graph-difference based CPU-GPU transfer.

3.1 Gradient Checkpoint
The standard two-phase training process, consisting of forward
and backpropagation, involves storing a copy of the intermediate
activation tensors, as well as the inputs A and X. This leads to
severe GPUmemory bottleneck for large inputs. In our experiments,
most of the model-dataset configurations do not execute on fewer
than 8 GPUs.We adapt the well-known gradient checkpoint method
(e.g., [4, 6]) to optimize the memory requirements.

In our setting, the GCN component operates independently on
each snapshot, but inter-dependency is caused by the RNN com-
ponent acting along the timeline. We partition the timeline into
nb blocks, each containing bsize = 𝑇 /nb timesteps, where the
number of blocks nb is a tunable parameter. For a block 𝑏 ∈ [1, nb],
the range of timesteps is given by the starting and ending timesteps
𝑠 (𝑏) = 1 + (𝑏 − 1) · bsize and 𝑒 (𝑏) = 𝑏 · bsize.

The idea of checkpointing is to restrict the storage of the input
and the intermediate data to a single block at any point during the
execution. Towards that goal, we first execute the forward pass
in the usual manner by processing the blocks in the increasing
order. Then, the backpropagation pass is conducted in the reverse
order, starting with the last block. The processing of each block
𝑏 consists of two parts: a rerun of the forward pass, followed by
gradient propagation in the reverse direction. The process limits
the memory usage to a single block thereby reducing the overall
the memory requirement. See Figure 2 for an illustration.

The procedure requires the ability to re-execute a block 𝑏. The
GCN component does not have dependency on the prior block
𝑏 − 1. However, the RNN component requires the following data
computed in block 𝑏 − 1: (i) the RNN hidden state corresponding to

the last timestep of block 𝑏 − 1 (namely 𝑆𝑒 (𝑏−1) ); (ii) the activations
of the RNN corresponding to the last𝑤 timesteps of the block 𝑏 − 1,
where 𝑤 is the window size (see Eqn. 3). We denote the above
information passed from block 𝑏 − 1 to block 𝑏 as 𝜋𝑏−1 (see Figure
2). We store 𝜋𝑏 for all the blocks during the forward pass, to be
reused during backpropagation.

The total GPU memory requirement involves two components:
memory needed to store the activations of the current block and the
checkpoint data. The former consists of the snapshots 𝐴𝑠 (𝑏) , . . . ,
𝐴𝑒 (𝑏) , input features 𝑋𝑠 (𝑏) , . . . , 𝑋𝑒 (𝑏) , and the intermediate tensors.
The latter consists of the checkpoint data 𝜋𝑏 stored across all the
blocks. While the former intra-block memory requirement is de-
termined by the block size bsize = 𝑇 /nb, the checkpoint data is
determined by the number of blocks nb. The two components can
be balanced by adjusting the parameter nb.

The parameter nb not only determines GPU memory usage, but
also influences the execution time, since the GPU utilization is better
and the latency is lower under larger block sizes (fewer blocks).
In our experiments, we tune the parameter so as to achieve the
best possible execution time, while ensuring that the GPU memory
usage does not exceed the available memory.

3.2 Graph-difference Based Input Transfer
In order to save memory, our checkpoint implementation stores
only the input and the intermediate data corresponding the current
block 𝑏 in the GPU. While latter gets generated and resides on
the GPU, the input comprising of the snapshots and the features
corresponding to the block 𝑏 get transferred from the CPU to the
GPU. This transfer happens twice, once during the forward phase
and the second during the rerun segment of the backpropagation.
We use pinned memory to optimize the above data transfer, as this
avoids the use of paged memory. In spite of the optimization, our
experiments show that the transfer time constitutes an important
component of the overall execution. In this section, we exploit the
properties of dynamic graphs to devise a graph-difference based
method that reduces the transfer time.

Our method is motivated by the fact that dynamic graphs change
gradually and therefore consecutive snapshots are expected to have
substantial overlaps in their topology. In addition, as explained later
(c.f. Section 5), towards improving accuracy, TM-GCN and EvolveGCN
apply certain pre-processing steps, named M-product and edge-life.
These steps tend to smoothen the differences across the snapshots,
and as a result, they magnify the overlaps in the topology among
consecutive snapshots.

Consider a block 𝑏 pertaining to the sequence of snapshots
𝐴𝑠 (𝑏) , . . . , 𝐴𝑒 (𝑏) of length bsize. The first snapshot 𝐴𝑠 (𝑏) is trans-
ferred from the CPU to the GPU using standard sparse matrix
representation of (index,value) pairs. Consider two consecutive
snapshots𝐴𝑖 and𝐴𝑖+1. Assuming that𝐴𝑖 is already present in GPU,
we describe how the graph-difference method transfers 𝐴𝑖+1.

We partition the edges of 𝐴𝑖 and 𝐴𝑖+1 into three sets:
• 𝐴𝑐𝑜𝑚 : the set of common edges present in both 𝐴𝑖 and 𝐴𝑖+1,
• 𝐴𝑒𝑥𝑡

𝑖
: the extra edges present in 𝐴𝑖 but not in 𝐴𝑖+1, and

• 𝐴𝑒𝑥𝑡
𝑖+1 : the extra edges present in 𝐴𝑖+1 but not in 𝐴𝑖 .

Now, instead of transferring 𝐴𝑖+1 using standard sparse matrix
representation, we only transfer:
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• the indices corresponding to 𝐴𝑒𝑥𝑡
𝑖

• the indices corresponding to 𝐴𝑒𝑥𝑡
𝑖+1

• all the values for the new snapshot 𝐴𝑖+1

We first derive the common indices 𝐴𝑐𝑜𝑚 by excluding 𝐴𝑒𝑥𝑡
𝑖

from
𝐴𝑖 . We then reconstruct the indices of the new snapshot 𝐴𝑖+1 by
adding the extra edges in𝐴𝑒𝑥𝑡

𝑖+1 to𝐴
𝑐𝑜𝑚 . While the snapshots overlap

in terms of the topology, the values associated with their edges
are not expected to overlap. So, the transfer of value of the new
snapshot is required. When there is a large overlap in the structure,
this results in substantial saving as it avoids transferring the indices
for the common structure of the snapshots 𝐴𝑖 and 𝐴𝑖+1.

4 DISTRIBUTED IMPLEMENTATION
In the multi-node setting, the communication volume is a critical
aspect and it is determined by the data partitioning. We first discuss
a vertex partitioning approach, adapted from the static GNN setting,
and then present our snapshot partitioning approach. Assume that
we have 𝑃 processors, each endowed with a GPU, which could be
cores of the same node or span multiple nodes.

4.1 Vertex Partitioning Approach
A common approach used in (static) GNN setting with a single input
graph is to partition the vertices among the processors (e.g, [31]).
Adapting to our setting, we partition the vertex set 𝑉 uniformly
among the processors so that each processor 𝑝 owns 𝑁 /𝑃 vertices,
denoted 𝑉𝑝 . The snapshots get partitioned accordingly: for each 𝑡 ,
the rows of 𝐴𝑡 corresponding to 𝑉𝑝 are stored at processor 𝑝 . Each
input feature matrix 𝑋𝑡 is partitioned in a similar manner.

The RNN component operates independently on each vertex.
Hence, each processor 𝑝 can perform the operation on the set of
vertices 𝑉𝑝 without having to communicate with the other proces-
sors. Thus, the RNN component is communication free. However,
the GCN component requires significant communication.

Consider the GCN operation on a snapshot 𝐴𝑡 . Each vertex 𝑢 ag-
gregate the neighborhood features. Viewed from the other direction,
the feature of a vertex 𝑣 is required by all its neighbors Γ𝑡 (𝑣), which
may be distributed among multiple processors. Let 𝜆𝑡 (𝑣) denote
the number of processors that own at least one neighbor of 𝑣 . Then,
the communication is 𝜆𝑡 (𝑣) units. Summed across all snapshots and
vertices, the total communication is given by

∑
𝑡

∑
𝑣 𝜆𝑡 (𝑣) units per

GCN module, where a unit refers to a feature vector. The partition
minimizing the above communication volume can be found using
hypergraph partitioners such as PaToH [2].

Shortcomings ofVertex-partitioning.Under vertex partition-
ing, the communication volume increases with the number of pro-
cessors 𝑃 and is dependent on the graph density. In addition, the
communication pattern is irregular, resulting in significant imple-
mentation overheads. Finally, the approach requires sophisticated
hypergraph partitioners that incur high preprocessing time. Similar
observations have been made in recent prior work on scaling GNN
[23]. The dynamic GNN allows us to design simpler and effective
partitioning algorithm that overcomes the above issues.

(a) Non-checkpoint setting

(b) Checkpoint setting

Figure 3: Snapshot partitioning and re-distribution. Part (a)
illustrates the process without checkpoint taking 𝑇 = 6
timesteps and 𝑃 = 3 processors, represented by the three col-
ors. Thematrices𝐴𝑡 are sparse and are of size𝑁 ×𝑁 , whereas
the othermatrices are featurematrices of size𝑁×𝐹 (with dif-
ferent feature lengths 𝐹 ). The figure shows the partitioning
of the snapshots 𝐴𝑡 and the input features 𝑋𝑡 , as well the
two re-distributions and the GCN/RNN operations. Part (b)
illustrates the partitioning in the checkpoint setting taking
𝑇 = 12, 𝑃 = 3 and the number of blocks nb = 2.

4.2 Snapshot Partitioning and Redistribution
The core idea of our scheme is to partition the snapshots among
the processors, instead of the vertices. We then accommodate the
RNN component via a re-distribution of the feature matrices.

Snapshot Partitioning and GCN. For the ease of exposition,
we first discuss the implementation without gradient checkpoint.
Consider the first layer of the model involving a pair of GNN and
RNN components. Figure 3 (a) illustrates the partitioning and the
execution of the GCN/RNN components described below.

We partition the snapshots among the processors in a contiguous
manner so that each processor owns 𝑘 = 𝑇 /𝑃 contiguous snapshots.
Namely, processor 𝑝 is assigned snapshots 𝐴𝑠 to 𝐴𝑒 , where 𝑠 =

1 + (𝑝 − 1) · 𝑘 and 𝑒 = 𝑝 · 𝑘 . Similarly, the input features 𝑋𝑠 to 𝑋𝑒
are assigned to 𝑝 . The GCN weight matrices𝑊 are very small in
size and we store a copy of the matrices in all the processors.

For each 𝑡 , the processor responsible for the timestep 𝑡 has both
𝐴𝑡 and 𝑋𝑡 in entirety, and so it can perform the GCN operation
𝑌𝑡 = 𝐴 · 𝑋𝑡 ·𝑊 by itself without communication. Thus, the GCN
component is communication free. Let 𝑌1, 𝑌2, . . . , 𝑌𝑇 denote the
output matrices of the GCN operation, where 𝑌𝑡 is generated at the
processor responsible for the timestep 𝑡 .
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Re-distribution and RNN. The RNN module is applied over
the sequence 𝑌1, 𝑌2, . . . , 𝑌𝑇 . The module operates on each vertex 𝑢
independently and requires the entire sequence
𝑌1 [𝑢], 𝑌2 [𝑢], . . . , 𝑌𝑇 [𝑢], due to dependency across the timeline. To
facilitate the process, we re-distribute the matrices by perform-
ing a vertex-level partitioning. We partition the vertex set 𝑉 =

{𝑣1, 𝑣2, . . . , 𝑣𝑁 } into 𝑃 chunks of size 𝑘 = 𝑁 /𝑃 each and make pro-
cessor 𝑞 the owner of the 𝑞𝑡ℎ chunk. Namely, the processor 𝑞 owns
the vertices𝑉𝑞 = {𝑣𝑠 , . . . , 𝑣𝑒 }, where 𝑠 = 1 + (𝑞 − 1) · 𝑘 and 𝑒 = 𝑞 · 𝑘 .

For each timestep 𝑡 , the processor 𝑝 responsible for the timestep
splits thematrix𝑌𝑡 into 𝑃 chunks and sends the𝑞𝑡ℎ chunk to the pro-
cessor 𝑞. The processor 𝑞 assembles the sequence
𝑌1 [𝑉𝑞], 𝑌2 [𝑉𝑞], . . . , 𝑌𝑇 [𝑉𝑞] and applies the RNN operation. The data
transfers are realized via an all-to-all communication.

Let the output of the operation be 𝑍1 [𝑉𝑞], . . . , 𝑍𝑇 [𝑉𝑞]. The dy-
namic GNN model may involve multiple layers. To prepare for the
GCN model at the next layer, we re-distribute the 𝑍 matrices to
match the original snapshot partitioning. Namely, for each 𝑞 and
𝑡 , the processor 𝑞 sends 𝑍𝑡 [𝑉𝑞] to the processor 𝑝 responsible for
timestep 𝑡 . Upon receiving the data, each processor 𝑝 can reassem-
ble the matrix 𝑍𝑡 for each timestep it is responsible for. As before,
the data transfers are realized via an all-to-all communication.

Gradient Checkpoint Implementation. We next adapt the
partitioning algorithm to the context of gradient checkpoint. As-
sume that we have nb blocks each having bsize = 𝑇 /nb timesteps.
We apply snapshot partitioning within each block so that each
processor is responsible for bsize/𝑃 timesteps within the block.
Consequently, snapshots assigned to a processor are contiguous
within a block, but non-contiguous when viewed over the entire
timeline. See Figure 3 (b) for an illustration.

The above block-wise partitioning facilitates the RNN compu-
tation. The processors operate within the same block and move
to the next in a synchronous fashion. For each block, the GCN
operations are applied over the timesteps in the block and the RNN
operation is executed restricted to the block. Similarly, the all-to-all
communication are also limited to feature matrices of the block.
Finally, checkpoint data is stored and the procedure advances to
the next block.

Communication Volume. For every dynamic GNN layer con-
sisting of a GCN-RNN pair, we perform two re-distributions. Each
involves an all-to-all communication with an overall volume of𝑇 ·𝑁
units, where a unit refers to a feature vector. Regarding backpropa-
gation, at a high level, the procedure is executed in a symmetrically
opposite manner via performing the above steps in the reverse
order. Akin the to the forward phase, the procedure involves two
gradient re-distributions, realized via all-to-all communications.
Thus, the overall communication volume is 𝑂 (𝑇 · 𝑁 ) units.

Advantages of Snapshot Partitioning. An important benefit
of snapshot partitioning is that the the communication volume is
fixed at 𝑂 (𝑇 · 𝑁 ) units, for any number of processors and irrespec-
tive of the graph density properties. Furthermore, the partitioning
and the communication follow a regular pattern, which combined
with the simplicity of the scheme, results in minimal implementa-
tion overheads. These factors lead to better scalability. Finally, the
scheme does not require sophisticated hypergraph partitioners and
has limited preprocessing cost.

5 DYNAMIC GNN ARCHITECTURES
We describe the three models used in our experimental study. They
are representative of the dynamic GNN models for DTDG known
from prior literature (see survey [9]), making our optimization
techniques applicable to the current state of the art. All the three
models follow the framework described in Section 2.2, but differ in
the choice of the RNN component.

5.1 CD-GCN
The Concatenate Dynamic GCN [17] uses the well-known LSTM [7]
for RNN temporal aggregation. At a high level, referring Equation 3,
LSTM state 𝑆𝑡 consists of a pair (ℎ𝑡 , 𝑐𝑡 ) referred as the hidden and
the cell memory. At timestep 𝑡 , the state 𝑆𝑡 and the output 𝑌𝑡 are
derived from the previous state 𝑆𝑡−1, the current input 𝑋𝑡 and the
previous output 𝑌𝑡−1. Thus, the LSTM maintains a window length
of𝑤 = 1.

Based on accuracy considerations, CD-GCN incorporates skip-
connection to GCN by concatenating the input features to the
output, via modifying Equation (2):

𝑌0 = 𝐴 · 𝑋, 𝑌1 = 𝑌0 ·𝑊, 𝑌 = 𝜎 (𝑌0 ◦ 𝑌1),
where 𝑌0 ◦ 𝑌1 represents concatenation. As a result, 𝑌 will have
𝐹 + 𝐹 ′ features. The CD-GCN as proposed in [17] comprises of a
single dynamic GNN layer given by a GCN-LSTM pair. We extend
this architecture to two layers in the interest of generality of our
study. This will allow similar deeper models, to make use of our
acceleration strategies.

5.2 EvolveGCN
The evolving GCN [19] model also uses LSTM, but incorporates
two interesting aspects. First, it maintains a different GCN weight
matrix𝑊𝑡 for each timestep 𝑡 so that Equation 2 is modified as:

𝑌𝑡 = 𝜎 (𝐴𝑡 · 𝑋𝑡 ·𝑊𝑡 ) .
Secondly, instead of applying LSTM over the vertex features of
the graph, the model applies LSTM over the weight matrices. Each
layer therefore performs the following operations:

𝑊𝑡 = 𝐿𝑆𝑇𝑀 (𝑊𝑡−1),
𝑌𝑡 = 𝐺𝐶𝑁 (𝐴𝑡 , 𝑋𝑡 ,𝑊𝑡 ),

Intuitively, the weights evolve over the timeline and directly imbibe
the temporal properties. The paper offers two variants namely,
EGCN-O and EGCN-H. The above model corresponds to EGCN-O.

5.3 TM-GCN
In contrast to CD-GCN and EvolveGCN, for the RNN component, the
TM-GCN model employs M-transform [10], a parameter-less tempo-
ral aggregation mechanism. Given input features 𝑋1 [𝑢], . . . , 𝑋𝑇 [𝑢]
for a vertex 𝑢, the output sequence 𝑌1 [𝑢], . . . , 𝑌𝑇 [𝑢] is obtained by
aggregating the current and the previous𝑤 input features at each
timestep 𝑡 :

𝑌𝑡 [𝑢] = aggregate(𝑋𝑡−𝑤 [𝑢], . . . , 𝑋𝑡 [𝑢]),
where𝑤 is the tunable window size and aggregation is weighted
averaging.

Equivalently, the M-transform can be expressed in terms of ten-
sor operations. Let 𝑀 be a 𝑇 × 𝑇 lower diagonal matrix. Given
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an input tensor X of size 𝑇 × 𝑁 × 𝐹 , the M-transform is given
by: Y = X ×1 𝑀 , where ×1 refers to the first-mode tensor-times-
matrix (TTM) product. The output tensor Y has same size as X.
The temporal effect is restricted to the prior𝑤 steps by defining𝑀
as:

𝑀𝑡𝑘 =

{
1

𝑚𝑖𝑛 (𝑤,𝑡 ) if max(1, 𝑡 −𝑤 + 1) ≤ 𝑘 ≤ 𝑡,
0 otherwise.

.

The choice of weights result in averaging and normalizing the
features over the timeline.

5.4 Smoothening the Input Graphs
Real world dynamic graphs tend to be extremely sparse. Towards
increasing the density and to maintain continuity over consecutive
snapshots, EvolveGCN and TM-GCN smoothen the snapshots via the
notion of edge-life and M-transform, respectively.

The edge-life transformation carries edges from each snapshot
to the subsequent 𝑙 snapshots by modifying each 𝐴𝑡 as:

𝐴𝑡 = 𝐴𝑡 +
𝑡−1∑

𝑖=𝑡−𝑙+1
𝐴𝑖 ,

where the parameter 𝑙 , called edge-life, is a tunable parameter. The
transformation introduces changes into the graph topology at a
slower pace and increases the density as well.

The TM-GCN model implements smoothening by applying the M-
transform to the input tensor A, as well the input feature tensor X.
In practice, the two mechanisms achieve similar smoothing effect
and both are applied in a pre-processing step.

5.5 Implementation Aspects
Our implementation of the three models follows a common frame-
work incorporating graph-difference and snapshot-partitioning.
Below, we highlight implementation aspects specific to the models.

The EvolveGCN model maintains a separate GCN weight matrix
𝑊𝑡 for each timestep. These matrices are small in size and we store
copies in each processor. The model applies the LSTM operation
over the above weight matrices, as against the feature matrices.
Consequently, the LSTM operation can be executed by each pro-
cessor without having to communicate with the other processors.
Thus, in addition to GCN, the LSTM component also becomes com-
munication free. To rephrase, each processor acts independently
on on the snapshots assigned to it. The backpropagation is also
executed in a similar manner and partial gradients for the model
parameters are derived. At the end of the training epoch, these
gradients are aggregated across the processors via an all-reduce
operation. This constitutes the only communication and the vol-
ume is insignificant since the weight matrices are small in size. The
M-transform based smoothening used in TM-GCN is also executed
as pre-processing.

For all the three models, we optimize the spatial aggregation
of the first GCN layer via pre-computation. The GCN operation
(Equation 2) can be split as 𝑌 ′ = 𝐴 · 𝑋 and 𝑌 = 𝑌 ′ ·𝑊 . Notice that
the first part is independent of any model parameters. So, we pre-
compute the product and reuse the result in each training epoch.
Since the operation is an expensive sparse-dense mulitplication,
this pre-processing improves training time for the baseline as well.

N T nnz M-product edge-life
epinions 755 K 501 13 M 653 M 1038 M
flickr 2.3 M 134 33 M 963 M 796 M

youtube 3.2 M 203 12 M 851 M 802 M
AMLSim 1 M 200 124 M 1094 M 1038 M

Table 1: Datasets. For each dataset, the number of vertices
(𝑁 ), timesteps (𝑇 ), total number of edges or non-zero ele-
ments (nnz) across all the snapshots are shown. TM-GCN and
the EvolveGCN smoothen the input graph by applying M-
product and edge-life, which introduces new non-zero ele-
ments. The number of non-zero elements after each of the
operations is given in the last two columns. The twomodels
are trained on the respective smoothened graphs.

6 EXPERIMENTAL EVALUATION
In this section, we present an experimental evaluation, first fo-
cusing on our CPU-GPU optimizations and snapshot-partitioning,
followed by a preliminary comparison to the vertex-partitioning
approach. While snapshot-partitioning offers better scaling, it has
certain limitations when the individual snapshots are large. We
briefly describe possible strategies for addressing them.

6.1 Setup
System. The experiments were conducted on the AiMOS system
(https://cci.rpi.edu/aimos). Our setup uses 16 nodes, each with 8
GPUs, leading to a total of 128 GPUs. Each node has 2x20 cores
of 2.5GHz Intel Xeon Gold 6248 and has 768 GiB RAM (shared by
the 8 GPUs). Each GPU is NVIDIA Tesla V100 with 32 GiB HBM.
The nodes are connected by Dual 100 Gb EDR Infiniband. In each
node, we run up to 8 processes, each controlling a single GPU and
mapped to a separate core of the node. We use PyTorch 1.7.1 for
training, NCCL 2.8.4 for backend communication and PyNCCL 0.1.2
for collective routines. All our codes are implemented in python.

Dataset. Our benchmark consists of four datasets shown in
Table 1. Epinions is derived from a user-product rating system,
wheres Youtube represents user-user links and Fickr is based on
links among images. The edges for each of these datasets are times-
tamped with the time at which the links are formed. All the three
datasets were obtained from Networks Repository [21]. AML-Sim
is generated from an Anti-money laundering simulator [26]. The
metadata for these datasets is shown in Table 1. As discussed earlier
(Section 5), TM-GCN and EvolveGCN smoothen the input graphs by
applying the M-product and the edge-life operations in a prepro-
cessing step. The process increases the size (number of edges) of
the snapshots. The sizes of the input and the smoothened graphs
are shown in the table. The models are trained on the respective
smoothened graphs. For instance, for the AMLsim graph, TM-GCN
is trained on a graph of size 1094𝑀 edges.

Models and Evaluation. We evaluate our optimization tech-
niques on three representative dynamic GNN models: CD-GCN [17],
EvolveGCN [19] and TM-GCN [16]. For all the model-dataset config-
urations, we use the in and out degrees as the input features, as
done in TM-GCN [16]. The intermediate feature lengths are set to 6
and the number of classification categories is 2.

https://cci.rpi.edu/aimos
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Figure 4: Evaluation of graph-difference technique. Comparison of the naive baseline (Base) and the graph-difference (GD)
snapshot transfer methods are shown for each dataset-model pair. In all the plots, X-axis is the number of GPUs and Y-axis
is the execution time in milliseconds. Each datapoint is split into two components: the transfer time, and others, which in-
cludes the computation and communication time. In some cases, the models did not execute on small number of GPUs due to
insufficient memory and these are left blank.

As discussed earlier (Section 2.2), the dynamic GNN models
generate vertex-level embeddings. Edge-level embeddings can be
derived by concatenating the embeddings of 𝑢 and 𝑣 for each edge
(𝑢, 𝑣). These embeddings can be used in different ways depending
on the task under consideration such as vertex classification and
link prediction. The first part of our study is concerned with ana-
lyzing the running time performance of our optimization strategies

and snapshot-partitioning. For this purpose, we measure time taken
for generating the embedding (and the corresponding backprop-
agation) per training epoch, averaged over 5 epochs. The subse-
quent segment of the study compares snapshot-partitioning with
vertex-partitioning, which includes an analysis of the loss/accuracy
convergence behavior. For this purpose, we consider the specific
task of link prediction.
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Figure 5: Strong scaling. Results for each dataset-model pair is shown. The implementation is endowed with the GD technique
for snapshot transfer. The X-axis is the number of GPUs and Y-axis is the execution time in milliseconds. Each datapoint
is split into three components: the transfer time, computation time and the communication time. For each model, the last
plot provides a summary containing the speedup on all the datasets for different values of 𝑃 with respect to 𝑃 = 1 as the
reference. For configurationswhere a single processor could not execute due to insufficient GPUmemory, the smallest number
of processors 𝑃 where the execution completed is taken as the reference. Since the reference point 𝑃 varies across different
datasets, for ease of comparison, we take the speedup at 𝑃 processors as 𝑃 .

6.2 Checkpoint and Graph Difference
We first evaluate the baseline and the checkpoint based implemen-
tations. Across different model-dataset configurations, we found
that the baseline did not execute on a single node, endowed with 8
GPUs, due to GPU memory bottleneck. In contrast, the checkpoint

based implementation was able to successfully run on a single node
for all the configuration, with even lesser than 8 GPUs.

As discussed earlier (Section 3.1), the checkpoint based imple-
mentation needs to transfer adjacency matrices 𝐴𝑠 (𝑏) , . . . , 𝐴𝑒 (𝑏)
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Figure 6: Loss and test accuracy convergence under snapshot and hypergraph partitioning schemes for the three models on
the AML-Sim dataset. The curves for TM-GCN are identical.

from CPU to GPU while executing a block 𝑏. This can be accom-
plished via naively transferring the matrices in sparse representa-
tion given by indices and values. In contrast, our graph-difference
based technique saves execution time by transferring only the dif-
ference of each snapshot with respect to the previous snapshot. We
use pinned memory to optimize the both the methods as it avoids
the use of paged memory.

We denote the naive baseline method as Base and the graph
difference method as GD. We evaluate the performance of the two
methods on all the dataset-model pairs for number of processors
𝑃 = 1 to 128. The results are shown in Figure 4. For the ease of
comparison, we divide the overall execution time into two com-
ponents: (i) the snapshot transfer time; (ii) others, which includes
computation and inter-GPU communication.

We can see that for the EvolveGCN and TM-GCN models, GD pro-
vides significant reduction in the transfer time across the datasets,
with the speedup factors as high as 4.1x. As a result, the overall
execution time improves by up to 40%. As discussed earlier (Section
5), based on accuracy considerations, the two models smoothen
the input snapshots by applying the edge-life and the M-product
operations to the input snapshots. These operations magnify the
similarity among consecutive snapshots, enhancing the gains for
GD. In contrast, CD-GCN works directly with the input snapshots
and the gains in transfer time are up to 2x. The latter result demon-
strates the strong similarity among the snapshots in real-life, which
can possibly be exploited in other contexts as well.

We can see that the gains are higher at smaller GPUs, and this is
due to the checkpoint mechanism. The checkpoint based implemen-
tation executes one block at a time. The first snapshot of each block
is transferred naively and the rest of the snapshots are transferred
via the GD method. Thus, the fraction of the snapshots that benefit
fromGD is given by (bsize−1)/bsize, where bsize is the number
of timesteps in each block. In the multi-GPU setting, each block
is partitioned uniformly, with each processor receiving bsize𝑝 =

bsize𝑝/𝑃 snapshots. The requirement of naively transferring the
first snapshot applies within the chunk of snapshots assigned to
each processor. Consequently, the fraction of snapshots that benefit
from GD becomes (bsize𝑝 − 1)/bsize𝑝 = (bsize − 𝑃)/bsize. As
the number of processors 𝑃 increases, the benefit ratio decreases.

Furthermore, communication becomes more dominant at higher
system sizes. Consequently, theGD technique provides higher gains
for smaller number of GPUs. In summary, the checkpoint and the
graph-difference mechanisms allow efficient execution of large
datasets on a single node.

6.3 Scaling Study
Strong Scaling.We next study the strong scaling behavior of the
implementation, endowed with the GD technique for snapshot
transfer. The results are shown Figure 5. As before, the results for
each dataset-model pair is presented. The plots provide breakup of
the execution time in terms of three components: snapshot transfer,
computation and communication. Apart from the detailed breakup,
for each model, a summary plot is included which presents the
speedup curves for all the datasets. Taking 𝑃 = 1 as the reference
point, the plot provides the speedup achieved as we increase the
number of processors to 128.

As discussed in Section 5, the communication volume EvolveGCN
is insignificant for EvolveGCN, and so, only the other two compo-
nents are shown. As 𝑃 increases, each processor handles lesser
number of snapshots and hence, the computation time scales well
for all the dataset-model configurations.

In contrast, the communication becomes a bottleneck for TM-GCN
and CD-GCN at higher number of processors. Under snapshot parti-
tioning, the communication volume is 𝑂 (𝑇 · 𝑁 ), irrespective of the
number of processors 𝑃 . However, the communication time depends
upon the system size. Each node has 8 GPUs and so for 𝑃 ≤ 8, the
communication is intra-node and does not involve interconnection
network. Higher number of processors require inter-node commu-
nication and as a result, we observe a drop in speedup at 𝑃 = 16
compared to 𝑃 = 8. On further analysis, note that the fraction of
intra-node volume is 1/𝐾 and the inter-node volume is (𝐾 − 1)/𝐾 ,
where 𝐾 = 𝑃/8 is the number of nodes. Thus, the inter-node vol-
ume increases with the number of nodes. On the other hand, the
bisection bandwidth increases with 𝐾 . The combination of the two
aspects determine the communication time and the scaling behav-
ior improves as 𝐾 increases. At 𝑃 = 128, the speedup is up to 30x,
as against the ideal value of 128x.
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Figure 7: Weak scaling of the three models.

Weak Scaling. We next study the weak scaling behavior using
randomly generated graphs. Given 𝑇 , 𝑁 and edge density 𝑓 , the
generator constructs each snapshot independently by adding 𝑁
vertices and randomly selecting 𝑚 = 𝑁 · 𝑓 pairs of vertices as
edges. The edge-life and theM-product operations are applied to the
graphs in the case of EvolveGCN and TM-GCN models, respectively.

We set the number of timesteps 𝑇 = 256 and edge density 𝑓 = 3.
Starting with 𝑁 = 214 at 𝑃 = 1, we scale up to 𝑃 = 128 processors
via doubling 𝑁 at each step, so that the number of vertices is 1𝑀
at 𝑃 = 128. In the case of TM-GCN, the aggregate number of edges
across the snapshots (after M-product) varied from 16𝑀 to 2.1𝐵 for
TM-GCN and the other models showed similar trend.

The results are shown in Figure 7. We compute the throughput
as the ratio of aggregate number of edges across all the snapshots
to the execution time. We derive the speedup by normalizing the
throughput with respect to 𝑃 = 1 for each model. We can see that
TM-GCN and CD-GCN achieve a speedup of 125x and 79x at 𝑃 = 128,
as against the ideal value of 128. The scaling briefly drops going
from 𝑃 = 8 to 𝑃 = 16. The reason is that each node has 8 GPUs,
and hence the node boundary is crossed at 𝑃 = 16, resulting in
the use of slower inter-node communication links. The EvolveGCN
model involves communication only for gradient aggregation and
achieves superlinear speedup of 260x at 𝑃 = 128.

6.4 Comparison with Vertex-Partitioning
We present a preliminary empirical comparison of our snapshot-
partitioning scheme with the vertex-distribution method based on
hypergraph partitioning (Section 4.2), illustrating the benefits of
snapshot-partitioning discussed therein. While hypergraph-based
partitioning has been well studied in the context of graph process-
ing and static GNN, no prior implementation is available for our
dynamic GNN setting. Towards enabling the study, we developed a
basic implementation of the strategy.

Vertex-Partitioning Implementation. We use PaToH [2] hy-
pergraph partitioner to determine the set of vertices 𝑉𝑝 owned by
each processor 𝑝 . The vertices 𝑉𝑝 need not be consecutive, but we
make them to be consecutive via renaming, to avoid implementa-
tion overheads. At each timestep 𝑡 , the 𝑁 × 𝑁 Laplacian sparse
matrix 𝐴𝑡 and the 𝑁 × 𝐹 feature matrix 𝑋𝑡 are distributed by as-
signing the sub-matrices 𝐴𝑡 [𝑉𝑝 , :] (rows corresponding vertices
in 𝑉𝑝 ) and 𝑋𝑡 [𝑉𝑝 , :] to the processor 𝑝 . Since RNN operates on

each vertex independently over the timeline, it can be executed
via kernel calls without the need for communication. However, the
SpMM convolution operation 𝑌𝑡 = 𝐴𝑡 · 𝑋𝑡 is more involved and
requires communication. We want the result 𝑌𝑡 to be distributed in
the same manner so that 𝑝 derives 𝑌𝑡 [𝑉𝑝 , :]. In this computation, 𝑝
requires the row 𝑋𝑡 [𝑣, :], for a vertex 𝑣 , only if the corresponding
column 𝐴𝑡 [:, 𝑣] contains at least one non-zero element (alterna-
tively, 𝑝 owns a neighbor of 𝑣). To reduce the communication, any
processor sends only the required rows to the other processors.
The hypergraph partitioner is set up in a such a manner that the
above communication volume is minimized. To avoid overheads
during training time, the indices are pre-computed so that each
processor knows the rows it needs to send to every other processor.
Our implementation ensures that data structures such as the above
indices are maintained in-place on the GPU.

Link Prediction. For the purpose of comparing the two parti-
tioning schemes, we study the link prediction problem considered
in prior work on dynamic GNN [16, 19]. The objective is to train
on the first 𝑇 timesteps and predict edges that might appear on
timestep 𝑇 + 1. To construct the training set, for each timestep, we
select 𝜃 fraction of the edges in 𝐺𝑡 and assign them label 1, and
include an equal number of randomly chosen vertex-pairs (𝑢, 𝑣),
with label 0. The testing sample at timestep 𝑇 + 1 is constructed in
a similar manner from the graph 𝐺𝑇+1. The test accuracy is mea-
sured as the percentage of correctly classified pairs. The parameter
𝜃 controls the size of the training set and we set it to 0.1 in our
experiments. The dynamic GNN models produce an embedding for
each vertex at each timestep. We derive classification for a pair of
vertices (𝑢, 𝑣) by concatenating the embedding of the two endpoints
and applying a fully connected layer.

Evaluation. We illustrate the benefits of snapshot partitioning
by considering the AML-Sim dataset. We execute all the three mod-
els on this dataset under the two partitioning schemes. We provide
the gradient checkpoint mechanism to hypergraph partitioning as
well, to avoid GPU memory bottlenecks. Snapshot-partitioning is
endowed with the graph-difference based CPU-GPU transfer of
snapshots, whereas the hypergraph partitioning transfers the snap-
shots directly. We execute GCN and RNN as single-batch operations.
The results of the evaluation are shown in Table 2 (averaged over
five epochs).

Loss Convergence. Before analyzing the execution time per-
formance, we first consider the convergence of loss and accuracy
under the two partition schemes. Unlike deep neural networks,
our processing does not involve (variable sized) batched gradient
descent or batch normalization layers that impact final accuracy.
Consequently, both the schemes simulate the underlying sequen-
tial algorithms faithfully. As a result, their convergence behaviors
are identical, except for floating point accumulation errors. This
is illustrated by Figure 6, which shows the cross-entropy loss and
test accuracy for the two schemes. We can see that the curves are
identical under the two schemes for the TM-GCNmodel, and diverge
mildly towards the end for CD-GCN. There is noticeable differences
on EvolveGCN, however the underlying (sequential) loss and accu-
racy in this case show considerable fluctuations within consecutive
epochs. Given that the two models simulate the convergence of
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Model Ranks Comm Volume Time (ms)
snapshot hyper snapshot hyper

tmgcn
4 5.2 3.2 3396 6668
16 6.5 6.8 1384 5254
64 6.8 9.5 593 9164

cdgcn
4 13.8 0.4 3867 6252
16 17.3 0.9 2545 4653
64 18.1 1.2 1135 8856

egcn
4 0 DNR 4185 DNR
16 0 5.0 944 8431
64 0 6.9 308 12276

Table 2: Comparison of snapshot and baseline hypergraph
partitioning. Volume in billions of floating point numbers.

the sequential model, we can compare their execution time perfor-
mance on a per-epoch basis.

Communication Volume. Snapshot-partitioning incurs a vol-
ume of 𝑂 (𝑇 · 𝑁 · (𝑃 − 1)/𝑃) (excluding self-communication), that
approaches the fixed limit of𝑂 (𝑇 ·𝑁 ) units as the number of proces-
sors 𝑃 increases. In contrast, the volume under vertex-partitioning
grows with 𝑃 , as more edges get split among the processors. The be-
havior is illustrated in the table. On the TM-GCNmodel, hypergraph-
partitioning volume is lesser at 𝑃 = 4, nearly matches at 16 pro-
cessors, and overshoots at 𝑃 = 64. The EvolveGCN model applies
RNN over the locally-held copies of the weight matrices, as against
feature matrices. Hence, snapshot-partitioning is communication
free, except for an insignificant gradient aggregation, and is clearly
superior. In contrast, CD-GCN does not smoothen the input graph
(via M-product or edge-life), resulting in a sparser model-training
graph. The vertex-partitioning volume still increases with 𝑃 , but
stays lower than that of snapshot-partitioning till 𝑃 = 64.

Execution Time. The communication process under vertex-
partitioning involves send-recv buffer constructions, and mainte-
nance of indices of rows to be communicated between processor
pairs. The irregular indexing and buffering operations induce sig-
nificant overheads, especially when performed on GPU. In contrast,
snapshot-partitioning involves a simpler and regular communica-
tion pattern: the snapshot held by a processor is split into equal
sized chunks and communicated to the corresponding owners. This
leads to minimal GPU processing and implementation overheads. In
addition, the graph-difference based mechanism reduces CPU-GPU
transfer time, leading to superior scaling compared to hypergraph
partitioning. We note that it may be possible to reduce the imple-
mentation overheads of vertex-partitioning. However, the increas-
ing communication volume and irregular communication pattern
will remain impediments to scaling.

6.5 Limitations and Possible Improvements
Large Snapshots & Hybrid Partitioning. The snapshot parti-
tioning scheme assigns each snapshot in its entirety to a processor,
which may be infeasible when the dataset contains large individual
snapshots that are too big to process on a single GPU. A related
issue is that some processors may be left idle when the number of
snapshots (𝑇 ) is smaller than the number of processors (𝑃 ).

A hybrid partitioning scheme is a possible approach to handle
the above scenarios. The idea is to create groups of processors,
and divide the individual snapshots into chunks and distribute
them with a group. Existing static GNN partitioning techniques
such as block-wise partitioning [23] can be adapted for intra-group
distribution. More generally, a hybrid scheme can be designed by
combining the above approach with snapshot partitioning.

To explore the possibility, we experimented by training the
TM-GCN model with two large datasets derived from the AML-Sim
generator. We trained the model on two GPUs by splitting each
snapshot between the two. The datasets characteristics and test
accuracy obtained are shown below; as with the earlier schemes,
the implementation truthfully simulates the sequential execution.

Dataset T nnz size accuracy
AMLSim-Large-1 200 2.2 B 44 GB 63.8%
AMLSim-Large-2 200 3.2 B 64 GB 65.8%

The above experiment shows that it is possible to design techniques
which distribute individual snapshots among multiple processors
for handling large snapshots.

Computation-CommunicationOverlap.The dynamicmodel
execution in each layer involves four steps: GCN operation; an all-
to-all communication for redistribution; the RNN operation; an
all-to-all redistribution step that prepares for the next layer. Our
current implementation executes the four steps sequentially. How-
ever, it may be possible to overlap the computation and the com-
munication steps, as outlined below. In the non-checkpoint version,
each processor 𝑝 owns 𝑏 = 𝑇 /𝑃 snapshots. The processors select
one of their snapshots and apply the GCN operation. Then, they
re-distribute the results restricted to the selected snapshots. The
above communication can be overlapped with the GCN operation
for the next set of snapshots. The third and the fourth steps can
be overlapped in a similar manner. In the checkpoint version, the
same idea can be utilized, but within each checkpoint block.

7 CONCLUSIONS AND FUTUREWORK
We presented, to the best of our knowledge, the first study on
the scalability aspects of training dynamic GNN models. With
a focus on exploring novel opportunities presented by the tem-
poral aspects of dynamic GNNs, we designed a graph-difference
based technique for minimizing the CPU-to-GPU transfer time
and an efficient distribution scheme based on snapshot partition-
ing. We list interesting avenues for future work: (i) a hybrid par-
titioning scheme for handling large snapshots; (ii) exploration of
computation-communication overlap; (iii) scaling of Continuous
Time Dynamic Graphs (CTDG), wherein the evolving graph is rep-
resented by insertion/deletion of vertices/edges.
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