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We describe and implement a computer-assisted approach for
accelerating the exploration of uncharted effective free-energy
surfaces (FESs). More generally, the aim is the extraction of coarse-
grained, macroscopic information from stochastic or atomistic
simulations, such as molecular dynamics (MD). The approach func-
tionally links the MD simulator with nonlinear manifold learn-
ing techniques. The added value comes from biasing the simu-
lator toward unexplored phase-space regions by exploiting the
smoothness of the gradually revealed intrinsic low-dimensional
geometry of the FES.

free-energy surface | model reduction | machine learning |
protein folding | enhanced sampling methods

Acrucial bottleneck in extracting systems-level information
from direct statistical mechanical simulations is that the

simulations sample phase space “at their own pace” dictated by
the shape and barriers of the effective free-energy surface (FES).
In particular, this bottleneck is often a problem in molecular
dynamics (MD). Long simulation times are “wasted” revisiting
already explored locations in conformation space. Over the last
20 years, there has been a tremendous amount of effort invested,
and many truly creative solutions have been proposed for bias-
ing the simulations so as to circumvent this. Several techniques
have now become a standard part of the simulator’s toolkit, like
umbrella sampling or SHAKE. Other biasing techniques, like
importance sampling, milestoning, path sampling or metadynam-
ics, and the nudged elastic band/string method have been also
ingeniously formulated to help alleviate the above problem. It is
worth mentioning also more recent methods based on machine
learning, like reconnaissance metadynamics or diffusion map-
directed MD. An incomplete list of works reporting about those
methods can be found in refs. 1–10. Moreover, a recent review on
dimensional reduction and enhanced sampling in atomistic sim-
ulations can be found in ref. 11. A crucial assumption that under-
pins many of these methods is that the dynamics are, effectively,
low-dimensional: there exists a “good set of a few collective
variables or coordinates” (also called reduction coordinates),
in which one can write an effective Langevin or Fokker–
Planck equation. It is the potential of this effective Langevin
representation that we are trying to identify and exploit. One
generally expects this effective Langevin representation to be a
higher order, generalized one with memory terms (12). In effect,
we will show here how we can construct “short memory” approx-
imations with the help of collective variables (CVs) detected and
updated “on the fly” using manifold learning.

If we knew the right CVs and had an “easy way” to create
molecular conformations consistent with given values of these
variables, then creating tabulated or interpolated effective FESs
with a black box atomistic simulator and umbrella sampling
would be “easy.” By observing the dynamics of the MD in these
few CVs, we can then straightforwardly estimate the local gra-
dient of the effective potential and the local diffusivity in the

effective Langevin description. Actually, “easily” does not do jus-
tice to the problem. In fact, estimating effective Langevin terms
locally from simulations is a highly nontrivial estimation prob-
lem in the theory of stochastic differential equations (SDEs), and
many careers in financial mathematics are made from studying it
carefully. Here, we will conveniently assume that we have at our
disposal “the current best” local stochastic estimation techniques
available, so that we can go from observations of the unbiased
dynamics (or the umbrella-sampled dynamics) to local effective
SDE term coefficients.

Given an approximate effective FES in its few collective coor-
dinates, we can then go ahead to perform tasks, like reaction
rate estimation, with the explicit surrogate function or its tabu-
lated form. Mathematical and computational tools for perform-
ing such tasks on explicit or tabulated functions of a few vari-
ables exist in the standard mathematical literature and will also
be assumed known and “off the shelf” available from the opti-
mization literature.

Although finding these invaluable good collective coordinates
is difficult, it is at least reassuring to know that “the useful collec-
tive coordinate set” is not unique but rather, conveniently degen-
erate. For the sake of argument, let an FES be a 2D curved man-
ifold. Any set of two basis vectors on any plane that is one to one
with our FES would suffice to parametrize it and can be suitably
used to navigate the manifold. Discovering good coordinates for
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describing a function based on data is at the crux of modern com-
puter and data science research. This discovery is precisely our
task here too: find and explore an effective FES and parametrize
it by constructing a map in terms of useful collective coordinates.

We first discuss the simple, 1D case. As shown in Inset of
Fig. 1, Left, when a physically meaningful reaction coordinate s is
known a priori, then a procedure for extracting a good approxi-
mate FES from computational data is obvious: a possibly regular
grid in the 1D phase space is constructed, and umbrella sampling
is performed to estimate the potential of mean force. Alterna-
tively, several parallel, appropriately initialized short runs can be
used to estimate the local effective Langevin drift and diffusivity.
Either way, an approximate FES with controlled approximation
error can be interpolated.

However, good collective coordinates are not globally known
in advance and must be generated as the computation progresses.
Consider as an illustration the blue thick line in Fig. 1 representing
a 1D manifold with the corresponding 1D effective FES in yel-
low. Let us assume that, after some initial simulation time, the
solution trajectory becomes trapped in one of the energy wells as
reported in Fig. 1, Left. Then, data mining can be applied to an
ensemble of locally sampled configurations to (i) establish that
the relevant manifold is 1D; (ii) learn its local parametrization;
and thus, (iii) detect the boundary points of the manifold por-
tion so far explored (“fathomed”). These boundary points can
now be smoothly extended outward. Extension is not intended in
time, but in the geometry of the manifold, parametrized locally
by the first diffusion coordinate (13) or the first local princi-
pal component (LPC) close to each boundary. This extension
takes us beyond the conformation space already explored and
may well be against the local FES gradient, thus possibly lead-
ing to significant computational savings. The extension cannot
but be an approximate one. In fact, as schematically indicated by
black arrows in Fig. 1, Left, it acts as a “predictor,” performing a
Taylor series approximation of the manifold locally in the
ambient space. A “corrector” step must follow: a short equilibra-
tion gives us unexplored conformations on the manifold beyond
what we had already fathomed. The latter step is schematically
illustrated by the red arrow following the black arrow in Fig. 1,
and it can be possibly performed, e.g., by umbrella sampling using
Plumed (14) or Colvars (15). New brief simulations are run, and
new points on the manifold are collected (second blue point cloud
in Fig. 1, Left), added to the database, and then fed to data mining
to parametrize the augmented FES geometry. The extension pro-
cedure repeats again and again: new unexplored conformations
keep being added, and the extended geometry of the effective
FES is gradually revealed, leading to the discovery of new wells
as schematically reported on the right side of Fig. 1, Left.

In higher dimensions, the basic approach remains the same,
although its representation becomes more complicated. Let us
consider a 2D “undulating” FES embedded in a high-dimen-
sional ambient space as shown in Fig. 1, Right. The “color map”

Fig. 1. Pictorial illustration of the iMapD exploration procedure with (Left) 1D and (Right) 2D effective FESs. In Left Inset, a good collective coordinate is
already available—the collective coordinates in Left and Right are not a priori known. A full description is in the text.

on this carpet denotes the effective FES contours; if, as we
“walk” on the carpet, we estimate the local color gradient, we
can use this information to help us direct our walking pattern.
This dynamically adaptive exploration strategy should speed up
the extraction of useful information, like a reaction rate, or the
discovery of a saddle point.

In Indiana Jones and the Last Crusade, the hero walks on a
glass mirror bridge that he cannot see. However, in the end, he
takes some sand and throws it at his feet, so that the sand reveals
the local shape of the bridge. This approach is precisely what we
do in our intrinsic map dynamics (iMapD) with our “free-energy
carpet.” We start with simulations that have locally and partially
sampled some location on the FES, thus representing the “sand
we have poured around our own feet” or the first small cloud C(1)

in Fig. 1, Right. However, now that a little of the low-dimensional
geometry of the carpet is revealed, we can walk by taking a big
step to a new location, pour some sand there, namely initialize
MD conformations consistent with the new location in collective
coordinate space, and start one or more unbiased simulations
there. This new set of data is “the new sand” represented by the
new little cloud C(2) in Fig. 1, Right to which we have stepped. The
size of the step toward new locations depends on the smoothness
of the carpet. One can easily intuit how the geometry is revealed
from iterating this process: For a d -dimensional (here d = 2)
reduced description, the initial “seed” simulation will form an
effectively d -dimensional cloud. We need to identify the (d −1)-
dimensional boundary of this cloud (its “silver lining”), which in
this case, is 1D. Starting from an ensemble of points on this 1D
curve, we “take a step away” from the cloud, smoothly extrap-
olating the coordinates “as far as we trust their smoothness.”
Clearly, point extrapolation can be performed one by one or all
in parallel computationally. As explained in ref. 16, we could pos-
sibly move along local geodesics. We can “trust” these geodesics
only so far, because the carpet may “violently” curve, and our
smooth extrapolation may not locally parametrize it any more.

By identifying the boundary, marching “outward” from a num-
ber M of points on it, creating M little d -dimensional clouds
from simulations initialized at each extrapolation, and then,
“integrating” the new M clouds in an atlas with the initial
one again and again, we will “fathom” the carpet. Therefore,
although the “local marching” from every boundary parametriza-
tion point may be done in local coordinates [e.g., local principal
component analysis (PCA)] or more global coordinates [e.g., dif-
fusion maps (DMAPs) geometric harmonics (17)], all new data
points at every iteration can be integrated in our global geometry
by either reprocessing them all together or creating an efficient
database structure that allows transitioning from local coordi-
nates of one cloud to local coordinates of the cloud next to it (one
chart in an atlas to the next). This strategy is reminiscent of “sim-
plicial continuation” (18) in following the parametric solutions
of algebraic equations. We have a predictor step represented
by our extrapolation in local reduction coordinates and then, a
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corrector step that “brings us back down” to the FES. This cor-
rector step might be discarding the fast initial transient of an
unbiased simulation or running umbrella sampling constrained
on the extrapolated coarse coordinates.

It is clear that we only need to move outward if we are to
explore new areas; this goal can be achieved through good book-
keeping. Although extension is a nontrivial process to generalize,
bookkeeping is easy in one dimension, easy (but nontrivial) in
two dimensions, doable in three, and difficult in four. Practically,
we expect the process to be easy to program for relatively low-
dimensional (up to 4D) FESs, whereas it will require nontrivial
computational geometry and programing in higher dimensions.
This bookkeeping is precisely the same one necessary in multi-
parameter simplicial continuation for the tracking of solutions of
algebraic equations (18, 19) [the available software package for
continuation and bifurcation problems AUTO (20)].

Results
We discuss now the implementation of the proposed iMapD
molecular simulation sampling approach.

Conforming to the literature and for the sake of clarity, our
first benchmark illustration is the time-honored alanine dipep-
tide (10, 16, 21), here in implicit solvent with the Amber03 force
field (22).

In our second application, we apply the iMapD algorithm to
the transmembrane protein Mga2, which plays a key role in
the regulation of lipid saturation levels in the yeast endoplas-
mic reticulum (ER). Recent simulations and experiments iden-
tified a unique rotation-based sensing mechanism to probe the
membrane characteristics (23). In response to changes in lipid
saturation, the 30-amino acid transmembrane helices (TMHs)
anchoring Mga2 into the ER were found to rotate relative to
each other in an Mga2 dimer, driven in part by packing effects
acting on bulky protruding tryptophans. Just probing the rota-
tional dynamics and charting the underlying free-energy land-
scape required millisecond-long MD simulations feasible only
with a coarse-grained (CG) description (24, 25). However, even
on this long timescale, only the TMH contact could be sampled,
with TMH dissociation expected to occur on timescales orders
of magnitude longer. Therefore, even in more than 3-ms simula-
tions of a simplified CG description, the relevant configuration
space of the dimer could not be sampled exhaustively.

Here, we show that, with iMapD, not only the competing
Mga2-bound states but also the unbinding pathways can be dis-
covered simply by strategic initialization of otherwise fully unbi-
ased MD trajectories.

Benchmark 1. It has been long argued that alanine dipeptide
admits a 2D reduced description in terms of two physically mean-
ingful coordinates, namely the dihedral angles φ and ψ (21).
While exploring the FES, our approach does not require such
a priori knowledge of either the dimensionality or some physi-
cal meaning of the collective coordinates. Three successive stages
of our exploration protocol are reported in Fig. 2. The proto-
col is initialized from a transient simulation segment, providing
an ensemble of configurations visibly trapped within some initial
potential well: this set of configurations is what we call the initial
simulation data. Each stage of iMapD is composed of the follow-
ing substeps.

Data mining. A manifold learning technique is used to dis-
cover a low-dimensional embedding for the data collected so
far. Here, we use DMAPs (13). This discovery includes the
selection of the appropriate dimension (d) of the manifold
and its parametrization, here in terms of d leading diffusion
coordinates (DC1, . . . , DCd).
Boundary detection. Using algorithms from the literature, such
as alpha shapes (26, 27), or more generally, “wrapping” algo-
rithms (28), we detect the d − 1-dimensional boundary of the

region explored by the available simulation data. In high dimen-
sions, suitable algorithms are described in refs. 29 and 30.

Outward extension. At each boundary point, we take an out-
ward step. In the current implementation, the latter step is
approximately normal to the boundary in the tangent space of
the low-dimensional manifold, and it is performed using LPCs
in the ambient space. For each boundary point, (i) a fixed
number of nearest neighbors is detected in ambient space;
(ii) local PCA is performed on this set of neighbors with
the local reduced dimension dloc selected by a threshold
for the maximum variance (details below and in SI Text);
(iii) the center of mass of this local neighborhood is computed
in the dloc-dimensional PCA space; and then, (iv) “outward
extension” of the manifold at the original boundary point is
performed in the PCA low-dimensional space along the line
segment passing through the local neighborhood center of
mass and the boundary point itself. Geometric harmonics or
Laplacian pyramids (17, 31) can alternatively be used for
this purpose.

Lifting. Lifting is then performed from the extended LPCs
to unexplored molecular configurations lying on/close to the
extended manifold. Going from LPC directly to ambient space
was satisfactory in this simple illustration. In general, how-
ever, equilibrated conformations consistent with the extended
LPC values may be needed. As an example, those consis-
tent and equilibrated conformations can be obtained through
short, constrained, umbrella sampling runs (21), making use
of Plumed (14) or Colvars (15).

New sampling/database updating on the extended manifold.
Short simulation bursts are carried out from these new
“extended” initial conditions. Possibly, several replicas can be
generated from each condition when initialized with differ-
ent Maxwell–Boltzmann velocities and/or different thermo-
stat seeds. The new data are appended to the growing fath-
omed configuration database.

The procedure then repeats until new metastable configura-
tions are detected. In this respect, we notice that the adopted
machine learning algorithm comes with the intrinsic ability of
detecting new states. When such an event occurs, the new sam-
pled configuration set will appear in the low-dimensional diffu-
sion coordinate representation as a new distinct cluster. Con-
vergence can thus be inferred, and the search can be termi-
nated when key features of the diffusion coordinate representa-
tion, like the number of clusters and connectivity, do not change
anymore.

In Fig. 2, Left, an initial transient is visibly trapped in two
nearby metastable configuration wells. DMAPs clearly suggest
a 2D FES: Fig. 2, Left Inset shows this 2D manifold embedded
in the space of the first three DMAP coordinates. The bound-
ary points of the fathomed portion of the manifold are iden-
tified (Fig. 2, red circles) and extended outward (Fig. 2, green
stars). Lifting via LPC is quite satisfactory here, and new sam-
pling on the extended manifold is performed through simple
unbiased short runs initialized at the lifted configurations. The
resulting new configurations are appended to the growing sim-
ulation database, and a new round of data mining, boundary
detection, and outward extension is shown in Fig. 2, Center, both
in 2D projection and 3D embedding. This procedure is repeated
one more time, leading to Fig. 2, Right, where two new folded
metastable configurations have been discovered. What is impor-
tant is that the manifold parametrization shown in Fig. 2, Right
was not known at the beginning. Only the small portion of the
manifold marked by the yellow ellipse in Fig. 2, Right was initially
available. The geometry of the growing manifold beyond that ini-
tial ellipse and its adaptively growing parametrization have been
gradually revealed as part of our exploration protocol.
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Fig. 2. (Left) A long initial trajectory of alanine dipeptide trapped in two nearby metastable wells is shown in the corresponding 2D DMAP projection (a 3D
DMAP space embedding is also reported in Inset). Boundary points are identified (red circles) and extended outward (green stars). Local PCA suffices to lift
to ambient space (see below). (Center) Short simulation runs are performed from previously extended boundary points. New configurations are generated
and displayed (blue dots) in a 2D (and 3D) DMAP reduced space. (Right) After two steps, two new potential wells are reached by some of the simulation
frames. The “starting” portion of the FES geometry accessed by the initial simulations is marked in yellow—the rest has been revealed through exploration.

For the sake of completeness, the results of the above explo-
ration process are also reported in the popular Ramachandran
plot in Fig. 3 in terms of the two physical coarse variables φ
and ψ. The dipeptide, initially trapped in the basins in Fig. 3,
Upper Left, is gradually forced toward new configurations that
would not have naturally been visited in such a short simu-
lation time period. In this relatively simple example, the low-
dimensional FES “slow manifold” identified on the fly happens
to also be the graph of a function above the two Ramachan-
dran plot coordinates. In other words, the determinant of the
Jacobian of the transformation from the “physical” coarse coor-
dinates φ–ψ to the diffusion ones DC1–DC2 keeps the same
sign and is neither too big nor too small on the data: it stays
bounded away from zero and infinity, so that the transformation
from physically meaningful to data-based collective coordinates
is bi-Lipschitz (32). This consideration implies that the effectively
2D FES can be described equally well in terms of φ–ψ or our
(evolving) DC1–DC2. If, however, this effectively 2D manifold
“folded” over the Ramachandran plot variables, our data mining
would still be able to correctly parametrize and extend the FES.

Before we elaborate on the steps, a few words about effi-
ciency. In this example, the total computational time associated
with all performed simulation bursts was estimated at ≈ 50 ps.
It is known that, for this system, ≈ 150 ns of direct simulation
are, on average, needed to observe the transition from the ini-
tial, lower free-energy configurations to the discovered, higher
free-energy ones (the same system was simulated in ref. 10).
This analysis yields an apparent computational speedup of three
orders of magnitude for this rudimentary implementation, in line
with what was observed in ref. 10, where the reinitialization did
not involve extrapolation but rather, occurred at the “farthest
reached” point in the leading diffusion coordinate. Because the
computation there was 1D, boundary detection was straightfor-
ward. This technique, like reconnaissance metadynamics, also
builds the exploration geometry and actually does it “seamlessly”
without having to “jump and reinitialize” consistent molecu-
lar configurations. However, it is precisely this “jumping and
reinitializing” that we feel is the most powerful element of our
approach (see also the 1D illustrative example in Fig. S2): we
do not have to wait to “fill in the wells” (as in metadynamics),
and we do not need to sample the part of the geometry that we
trust is smooth enough. We can take a step “as big as we trust”
in the geometry and then, sample there, and in this way, we save
a remarkable amount of computational time when exploration is
the goal (SI Text). These two steps are determined by the length
∆t of the unbiased sampling and the length c of the extension
(Materials and Methods and SI Text have details). Some concep-
tual geometrical considerations are in order.

For a simple 1D SDE in terms of a known scalar variable x ,
reinitializations can be carried out with no effort, and the exten-

sion parameter c can be chosen as large as one likes. The main
reason is that the support of the effective FES is not a curved 1D
manifold in a high-dimensional space. In complex atomistic sim-
ulations, however, challenges to the practical implementation of
the above procedure arise, because

the low-dimensional support (manifold) of the effective FES
is typically curved and embedded in a high-dimensional phase
space,

CG coordinates parametrizing this manifold are a priori
unknown and need to be systematically discovered and “har-
monized” with their incarnations at the previous step, and

reinitialization of the fine-scale simulator requires a lifting
operator from the low-dimensional space up to ambient phys-
ical space as discussed in ref. 31.

Those are precisely some of the aspects addressed in this work.
Our alanine example only provides a proof of concept illustra-
tion, because the code that we set up was far from optimal. We
did not optimize the extension parameter c or the unbiased sam-
pling time ∆t , which was, instead, kept constant, and in this first

New  
configurations

Initial 
configurations

Fig. 3. The discovery process of Fig. 2 is redisplayed here as a Ramachandran
plot of alanine dipeptide. Two steps are sufficient to reveal two initially
unknown metastable configurations of the molecule. At each step, before
outward extension of the boundary, we also performed global PCA filtering
of the data noise, where 98% of the variance was retained (Materials and
Methods and SI Text). Here (and below), physical coordinates are used only
for representation purposes and are not used for computation.
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attempt, at each step, we extended all detected boundary points.
Although iMapD is, in principle, not limited in terms of the FES
intrinsic dimension d , for simplicity, the current method imple-
mentation has been developed up to d = 3. This choice is also
because of restrictions on the adopted alpha-shapes boundary
detection (26, 27). Although the latter limitation can be over-
come using alternative methods (29, 30), more care is needed
when coping with the rapidly increasing number of boundary
points with dimension d . To this end, future optimized imple-
mentations will include a smarter parametrization/selection of
the boundary points to extend as well as a smarter selection of the
unbiased sampling interval based on local estimates of the free-
energy gradient. This selection is expected to follow the same
principles discussed in detail and shown in ref. 16, where, how-
ever, the collective coordinates were already known. One might,
for example, not extend points at which the effective FES rises
steeper than a preset threshold. Finally, in estimating compu-
tational speedup, we should also include the cost of necessary
intermediate steps, such as DMAPs, local PCA, and lifting.

Benchmark 2. Having shown the power of iMapD in applica-
tions to well-characterized model systems, we next use it to chart
the configuration space of the biologically relevant Mga2 sensor
of lipid saturation (23). For this challenging molecular system,
even millisecond-long atomistic MD simulations proved insuffi-
cient to observe a dimer dissociation event. However, they pro-
vide us with an excellent reference for the dimeric-bound state
(23). Fig. 4 shows the corresponding free-energy landscape as
a function of the first two global DCs of the dimers, with the
four highly populated clusters corresponding to local minima.
Importantly, we do not use this surface to guide iMapD in any
way, only to give the reader a global view of the progress in the
search.

As the first step in iMapD, we run a burst of 10 short (100-
ns) unbiased simulations initiated from the same starting con-
figuration. The resulting trajectories sample their vicinity but do
not escape the local free-energy minimum (black squares in Fig.
4A). We use the structures along these simulations to detect the
boundary in the local DC representation, and from there, we
project outward, building 16 new starting configurations. From
each of these, we start another burst of 10 100-ns long unbiased
simulations. Although most of these trajectories fall back to the
starting cluster, many are able to escape from it, landing into new
regions of the landscape and effectively discovering most of the

Fig. 4. Enhanced exploration of Mga2 dimer configurations represented on the FES as a function of the first two global DMAP coordinates.
(A) Configurations sampled from 10 100-ns-long unbiased simulations initiated from a single configuration (black squares). Final configurations of
100-ns-long unbiased simulations initialized from the first set of 16 newly projected structures (blue circles). (B) Final configurations of 100-ns-long unbiased
simulations started from the second set of 16 newly projected structures. Configurations from the initial 10 unbiased simulations that were extended and
are here tracked (C) up to 2 µs and (D) from 2 to 3 µs (black squares) and from 3 to 4 µs (magenta squares). The FES was previously extracted from a
2.52-ms-long equilibrium simulation.

highly populated clusters during the first phase of the expansion
(blue circles in Fig. 4A). In the spirit of building a growing map
of the landscape, we combine all configurations sampled so far
and repeat the boundary detection and projection in newly calcu-
lated local DC to obtain new starting configurations. In a second
iMapD round starting from them, we already visit all relevant
regions of the landscape (blue circles in Fig. 4B).

For reference, we extend the initial unbiased simulations to
estimate the timescales necessary to explore the landscape in a
purely equilibrium approach. In Fig. 4C, we can see that, after
running 10 simulations for 2µs each, only one trajectory is able
to leave the starting cluster. To discover all of the remaining clus-
ters, each simulation must be run for 4µs.

We now represent the exploration process by using two angles
u and v that describe the relative orientation of the two TMHs in
an Mga2 dimer (Inset in Fig. 5, Lower). We again took advantage
of already available long-equilibrium simulations to calculate a
reference FES as a function of u and v . Because of the identity
of the two TMHs, the surface, shown in Fig. 5, is approximately
mirror symmetric with respect to the bisector.

In iMapD, the first short unbiased simulations sample struc-
tures where the two reference tryptophans W10 face each other
and consistent with what we saw in the global DC representa-
tion, are confined to the starting state. The first expansion leads
to the discovery of two new states, which contain configurations
where the W10s are far apart, pointing in one case to opposite
directions and in the other, in the same direction. Taking into
account the symmetry of the surface, the last relevant state is dis-
covered during the second expansion. Importantly, in a few con-
figurations at this stage, the two TMHs are actually separated,
which represents a disassociation event of the dimer. This partic-
ular new configuration is then sampled for almost one-half of the
time during a third expansion.

Discussion
In this work, we described, implemented, and tested iMapD, a
geometry-based, machine learning-inspired approach to acceler-
ate the extraction of information from atomistic and stochastic
simulators. In particular, we focused on the exploration of effec-
tive FES. The unique enabling feature of iMapD is the perfor-
mance of computations without prior assumptions on its reduced
description in terms of CVs. In fact, according to a large body of
literature, suitable CVs can be rather nonintuitive, even in simple
systems (33, 34).
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Fig. 5. (Upper) Enhanced exploration represented in u, v space. Angles were calculated on configurations sampled from cumulative trajectories simulated
during the successive exploration phases and are represented as blue squares. The FES as a function of u, v was extracted from a 2.52-ms-long equilibrium
simulation. (Lower) Distance separating the two TMHs monitored during all of the exploration phases. Inset shows different representative structures of
the dimer, with the reference residue W10 shown in yellow and a schematic definition of u and v.

Importantly, our algorithm has been tested on CG simula-
tions of Mga2 TMH dimers, a system of biological relevance with
rich conformational dynamics in the microsecond to millisecond
regime and beyond. Here, the two helices can make use of vari-
ous contact interfaces, corresponding to the clusters in the FESs
shown in Figs. 4 and 5.

Our setup mimics a situation in which only one structure is
known and MD simulations are restricted to short timescales
because of the size of the system. On the one hand, the num-
ber of computing cores that can be used to parallelize a single
simulation might be limited by lack of resources or bounds in
the scaling behavior; on the other hand, the dynamics of com-
plex (bio)molecular systems are characterized by long correla-
tion times. It stands to reason that, in such situations of practi-
cal interest, running many short independent simulations is often
more effective than focusing on few long ones. However, a cru-
cial element of this strategy is to select appropriate initial config-
urations to not get trapped in configuration space.

By using machine learning algorithms (DMAPs and PCA) we
were able to infer new configurations from which to start bursts
of short unbiased simulations, and we were able to efficiently dis-
cover new relevant structures of the Mga2 TMH dimers. Start-
ing from a single initial structure, the iMapD algorithm was able,
in only two iterations, to sample structures in the entire relevant
configuration space of the dimer. We want to stress that all sim-
ulations that we have used are unbiased: after “intelligent” reini-
tialization, no unphysical force was added to steer the dynamics
of the system. Efficient data reinitialization (detailed below and
in SI Text) is a main enabling feature of this work.

To monitor the progress of the exploration, we used low-
dimensional FESs calculated as a function of both machine
learning coordinates (DMAP) and physical variables (angles
u, v). These surfaces are representations of the configuration
space of the dimer [i.e., when both TMHs are in close proximity
(≈ 1 nm)]. As we saw in Fig. 5 by monitoring the distance sep-
arating the two TMHs during the second and third expansions
(and thus, after only a few 10s of microseconds of cumulative
simulated time), the algorithm sampled a dissociation event.

In equilibrium simulations, these events occur on much longer
timescales than the formation of the dimer itself. During more
than 3-ms-long equilibrium simulations of the Mga2 dimer, we
never observed a single dissociation event (23).

This problem has been recently addressed in the context of the
same CG model by using metadynamics (35), where an unphys-
ical history-dependent bias must be added on the distance sepa-
rating the two TMHs, considered to be a priori a slow coordinate
of the system. We applied a similar protocol to the Mga2 TMH
dimer system as reported in SI Text. There, we show that the
exploration efficiency of iMapD compares favorably with meta-
dynamics (Fig. S1), and we illustrate the difficulty of capturing
a single CV describing at the same time both the formation of
a TMH dimer and the rotational dynamics in the dimer state.
Moreover, we also quantify the artifacts caused by an unphysical
biasing potential acting along a nonideal CV (Fig. S1).

In iMapD, instead, the algorithm “discovers” the slow coor-
dinate corresponding to the separation between the two TMHs
after having exhaustively explored the slow coordinates describ-
ing the conformational rearrangement in the dimer state shown
in Figs. 4 and 5. One can say that the algorithm gradually and
adaptively discovers a hierarchy (an “atlas”) of slow coordinates.
Whereas our exploration proceeds without explicit CVs, as a
key difference to other methods, a postanalysis can certainly be
used to identify the mechanisms and the associated CVs. For the
Mga2 helix dimer, we first recovered the relative rotations of the
two helices in the bound state, as seen previously in millisecond-
long simulations. We then discovered a mechanism of disso-
ciation, in which the amino acid contacts break as helices tilt
against each other and lipids slide in between to trap the tilted
state and trigger dissociation. This mechanism thus combines
geometric and solvent coordinates and cannot easily be globally
described by a combination of simple CVs (e.g., distances and
angles).

Importantly, all of the short runs in iMapD are unbiased and
appropriately, reweighted for the choice of initial conditions, can
be exploited using standard methods as input in the construction
of master equations or Markov state models. Moreover, because
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we run many short simulations instead of few long ones, iMapD
is inherently highly parallelizable.

The main attractive feature of the proposed approach is that it
can explore low-dimensional effective FESs in high-dimensional
configuration spaces without the need of relying on a priori
knowledge of suitable collective coordinates. In fact, our coarse
coordinates are progressively and adaptively revealed as compu-
tation progresses.

The main assumption on which our method is based is the
same one that underpins most of the model reduction techniques
in statistical mechanics: because of timescale separation, the sys-
tem dynamics is mostly confined on low-dimensional (smooth)
manifolds in phase space (31, 36–39). Our approach squarely
aims at exploiting smoothness of the low-dimensional mani-
folds, which for the gradient systems of interest here act as the
support of the FES governing molecular and other atomistic
dynamics. Writing the expression jumping “as far as we trust
the smoothness” above is then the pivot on which our approach
“lives or dies.” Two important issues, one relatively simple and
one deeper, determine the tuning parameters of our algorithm.
The first is the easier one: if the effective FES does not have
hierarchical roughness, then there already exist two computa-
tional enabling technologies that support our algorithm. The first
“enabler” has to do with the local scaling of the noise through a
Mahalanobis-like distance (40), which combined with DMAPs-
based data mining, conveniently factors out fast local oscillations.
The curved fast local invariant measures, “half-moons” as we call
them, are discussed in ref. 41.

The second enabler is straightforward. After factoring out
these fast oscillations, we have a smooth surface, and now, we
are faced with a numerical error control problem: the need for
systematic adaptive step-size selection. We will not address this
technical issue here; we simply note that the same computational
machinery that, in traditional initial value problem solvers, allows
one to make local error estimates can also be, in principle, used
for our purposes. Performing the computation with one step and
then performing it twice with one-half the step allows one to
make a local “on line” error estimate and keep the computation
below prescribed error bounds.

The second issue is deeper, and we will only pay lip service
to resolving it, although we believe that what we suggest is “the
right way” to go about it. This critical issue is caused by hierarchi-
cal roughness. In SDE language, this condition implies that our
potentials are multiscale potentials and that our noises may not
be just additive. Here, we revert to the discussion above about
“what the best off-the-shelf estimation techniques” for multi-
scale diffusions and perhaps, not only diffusions but also, pos-
sibly Levy flight processes may be. In all of our discussion, we
assumed that the effective equation is a Langevin or the associ-
ated Fokker–Planck. For simple “egg-carton”-like potentials, it
is possible through ingenious but relatively straightforward tools
(e.g., subsampling) to “go around“ the roughness and estimate a
smooth effective SDE (42–45).

However, what is more systematically missing is a round of
data processing and if necessary, additional data collection for
hypothesis testing. In a more general context, in 2007, we dis-
cussed this issue of “Deciding the nature of the coarse equation
through microscopic simulations: The baby-bathwater scheme”
(46). As the abstract of that paper states,

“The effective coupling of microscopic simulators with macroscopic
behavior requires certain decisions about the nature of the unavail-
able coarse equation . . . In the absence of an explicit formula . . . we
propose, implement, and validate a simple scheme for deciding these
and other similar questions about the coarse equation using only the
microscopic simulator” (46).

We believe that the collection of data for hypothesis test-
ing about the nature of unavailable effective SDEs is a nascent

field, and we are cognizant of relatively few efforts in this direc-
tion. However, given the microscopic simulators, one can col-
lect the data necessary for such algorithms. We believe that,
although there will be technical difficulties and good mathe-
matics in the process, this research area will advance signifi-
cantly in the near future. Our approach will benefit from these
advances.

While discussing estimation, there is another significant and
less difficult item to consider: the exploitation of the estimated
local potential gradient of the FES in informing its geometric
exploration. To a large extent, this item has been discussed in
ref. 16 when the collective coordinates were known. Here, the
issues remain the same. When at the bottom of a well, we prob-
ably intend to move upward. We may want our steps to be along
local geodesics; we may want our steps to maybe try to conform
to level sets of the effective free energy. If we find a saddle, we
may just kick a little “on the other side” and let the simulation
find the new well bottom by itself. If we have disparate gradi-
ents in different directions (surfaces that look like the Grand
Canyon), we might prefer not to go above some level set, because
the simulation would never get there in a person’s lifetime. If the
code is to be useful, we appreciate that these decisions and sev-
eral other common sense decisions have to be implemented in an
automated fashion in the code.

Clearly, that option is a matter of effort and resources. Plumed
(14) and Colvars (15) go quite a long way toward being a platform
in which to incorporate what is done here and what we envision
being done in an automated fashion. As shown in ref. 36, it is also
important to recognize that one may have “exotic” manifolds that
change dimensionality as the exploration proceeds. For instance,
in these cases, we might have two dimensions narrowing to one
dimension and then, maybe “opening back out,” like a river delta,
to two dimensions. We can, in principle, deal with that geomet-
rically, but we do not discuss this in this paper referring to the
work of Belkin et al. (47) and others (48). The important issue
of adaptively determining the dimensionality of low-dimensional
surfaces in data mining has been discussed in ref. 49.

It is fitting to close the discussion with a quotation from the
2016 review article by Peters (50):

“However, the methods in this review share one overarching disad-
vantage. Human intuition remains the best source of trial coordinates
and mechanistic hypotheses, and there is no procedure for having an
epiphany. All current algorithms for optimizing reaction coordinates
work within the space of chosen trial coordinates.”

Our work here attempts such a “computer-assisted epiphany”:
by adaptively revealing the exploration geometry and exploit-
ing its smoothness to guide additional exploration; it makes
a step toward circumventing human intuition in the discovery
phase. However, the rationalization of what has been discov-
ered in terms of physically interpretable candidate coordinates
is an important postprocessing step and significantly augments
the overall value of the process (e.g., confirming that, in the last
stages, the relative tilt between the two helices is “one-to-one”
with the machine-discovered coordinates). A useful discussion
of the “man-versus-machine” detected variables can be found in
refs. 51 and 52.

Materials and Methods
DMAP: Mapping from Ambient Space to Reduced Space. The data mining sub-
step of our procedure has been performed by the DMAP method, where
density-invariant normalization of the affinity matrix has been performed.
Full details on DMAP can be found in refs. 13 and 17, whereas the specific
implementation followed in this work is provided in SI Text.

Lifting from Reduced to Ambient Space by Local PCA. At the core of our
approach stands an effective procedure for extending and lifting from
reduced to ambient space the boundary of the so-far explored FES portion.
Let B be an arbitrary boundary point in the p-dimensional ambient space,

E5500 | www.pnas.org/cgi/doi/10.1073/pnas.1621481114 Chiavazzo et al.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 6
8.

18
1.

17
.8

 o
n 

O
ct

ob
er

 2
0,

 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
68

.1
81

.1
7.

8.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621481114/-/DCSupplemental/pnas.201621481SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/cgi/doi/10.1073/pnas.1621481114


PN
A

S
PL

U
S

A
PP

LI
ED

M
A

TH
EM

A
TI

CS
BI

O
PH

YS
IC

S
A

N
D

CO
M

PU
TA

TI
O

N
A

L
BI

O
LO

G
Y

which we want to extend outward with respect to the previously simulated
(available) point cloud. Let us identify the (n − 1) nearest neighbors of B in
the ambient space. Let X be the n × p data matrix collecting the Cartesian
coordinates of n points, namely the ones within the chosen neighborhood
of B, including B itself.

Let dloc be a PCA-based estimate of the FES local dimension as discussed in
detail in SI Text. Let us consider the n× dloc matrix Y collecting the reduced
PCA coordinates of the n points of interest, namely the first dloc columns
of the matrix of principal component scores S. Let yB and ycenter be the
PCA reduced coordinates of the above boundary point B and the center
of mass of the considered neighborhood, respectively. Boundary points are
extended in PCA space along the direction passing by yB and ycenter , so that
a new point can be identified as ynew = yB + c~v, where c is a nonnegative
scalar quantity stipulating how far we intend to extend the point B from the
current location; however, ~v is the (outward) unit vector along the chosen
extension direction. Lifting the new point ynew into ambient space can be
readily accomplished by a linear mapping:

Ynew = ynew C̃ + X̄, [1]

where the dloc × p matrix C̃ is given by the (transposed) first dloc columns
of the matrix of loadings C, whereas X is the mean row vector, where each
of the p ambient space coordinates is averaged over the n points in the
chosen neighborhood. Full details on extension and lifting are provided in
SI Text.

Computations with Ala Dipeptide. The Ala dipeptide is simulated with
GROMACS 4.5.5 (53, 54) in a periodically replicated box with dimensions of
2× 2× 2 nm3. Solvent is treated implicitly using the Still generalized Born
formalism with a cutoff of 0.8 nm. The temperature is maintained constant
at 300 K by means of a velocity rescaling thermostat (55).

When searching for DMAP low-dimensional embedding, all configura-
tions are first aligned to a reference configuration using the Kabsch algo-
rithm (56, 57), and afterward, the standard Euclidean distance is used
as pairwise dissimilarity function. The DMAP model parameter was set
at ε= 0.35 nm. When performing local PCA, at each boundary point,
n = 65 nearest neighbors are considered, whereas the local dimension
dloc is automatically estimated by setting a threshold for maximum var-
iance of 0.95.

The nonnegative scalar quantity c for local extension is chosen in the
range 0.05< c< 0.12. Starting from each new extended configuration,
two short bursts are performed, each time randomly reassigning Maxwell–
Boltzmann velocities to atoms. Simulation bursts consist of 15,000 simu-
lation steps with a time step of 0.02 fs. The latter unusually small time
step is not essential for computations: it was chosen for convenience,
because it ensured a sufficiently large number of samples along the burst
trajectories.

Computations with Mga2.
Model and simulation details. The 30-aa-long transmembrane domain of
Mga2 (sequence in single-letter code: RNDKMLIFFWIPLTLLLLTWFIMYKFG-
NQD) was modeled as an alpha helix in the MARTINI v2.2 force field (24, 25).
We used the insane tool (58) to assemble for each simulation a 10×10×
10-nm box containing two Mga2 monomers, about 300 1-Palmitoyl-2-
oleoylphosphatidylcholine (POPC) lipids, water, and ion beads corresponding
to a 0.15 M NaCl concentration for a total amount of about 10,000 beads.

Each initial configuration was relaxed by using 15,000 steps of steepest
descent and then equilibrated for 2 ns at a temperature of 303 K and pres-
sure of 1 atm, restraining the positions of the protein beads compatibly
with the pressure coupling. Temperature was kept constant with the veloc-

Table 1. Summary of performed MD simulations of the Mga2 dimer

No. of starting No. of Cumulative simulation u, v Discovered Cumulative count of
Simulation structures simulations time (µs) states dissociation events

1. Initial unbiased 1 10 1 1/4 0
2. Expansion 1 16 160 16 3/4 0
3. Expansion 2 16 150 15 4/4 1
4. Expansion 3 12 100 12 4/4 1
5. Reference 1 10 40 4/4 0

unbiased
6. Equilibrium 10 10 2,520 4/4 0

free energy

ity rescaling thermostat (55), and pressure was kept constant with the semi-
isotropic Berendsen barostat (59) during equilibration and the semiisotropic
Parrinello–Rahman barostat (60) during the production runs.

All simulations were performed in GROMACS 4.6.7 (53, 54, 61, 62) using
a time step of 20 fs.
Enhanced sampling details. We initially ran 10 independent simulations
starting from the same structure, each 100-ns long. We saved configura-
tions containing only the protein coordinates every 2 ns and aligned them
in a self-consistent way to the average sampled configuration, removing
translations and rotations with the Kabsch algorithm (56, 57). In particular,
we first aligned the trajectory to an arbitrary configuration, calculated the
average configuration, and used it to align the trajectory again, repeating
the procedure until the rmsd between two consecutive average configu-
rations was smaller than 0.01 nm. The alignment was done on the back-
bone beads of residues 3–28 of each monomer. Furthermore, we took into
account the identity of the two monomers, which introduces an exchange
symmetry in the system. We thus considered for every frame the structure
with the smallest rmsd to the reference on swapping of the two monomers.

We calculated the first two DCs in the Cartesian space of the aligned
configurations using the Euclidean metric and ε= 5 nm and approximated
the boundary of the obtained points with a convex hull. We projected each
point on the boundary outward at a distance of v = 5 nm along the local
PCA, which was calculated on its 100 nearest neighbors, with dloc chosen to
keep 95% of the original variance.

We added lipids around the projected dimer and solvated the resulting
bilayer; then, we shortly equilibrated the system, obtaining 16 new config-
urations (Table 1). We then ran 10 independent 100-ns-long unbiased sim-
ulations for each new configuration by randomly initializing the velocities
and merged the new trajectories with the initial ones.

After this first expansion, we repeated the entire procedure for a second
and third time (expansions 2 and 3), obtaining 16 and 12, respectively, new
configurations (Table 1). Newly discovered configurations where the two
monomers are separated were excluded from the procedure, because they
would dominate the representation in DC.
Global DMAP calculation. The FES as a function of the first two global dif-
fusion coordinates shown in Fig. 4 was calculated using 24,815 configura-
tions of the dimer sampled at equal times from a previously reported 2.52-
ms-long equilibrium trajectory (23) that was self-consistently aligned to the
average configuration as already explained.

To represent newly sampled configurations on the global DMAP land-
scape, we aligned them on the same average configuration described above
and combined them with the configurations sampled from the long equilib-
rium trajectory, hence evaluating the DMAP on the combined set for each
new trajectory. All DMAPs were calculated using the Euclidean metric and
ε = 5 nm.
Relative orientation calculation. The two angles u and v used in Fig. 5
define the relative rotation of the two alpha helices forming an Mga2
dimer; u is the angle defined counterclockwise between the orthogonal line
to the direction connecting the centers of mass of the two helices and the
vector pointing to residue W10 of the first monomer, and v is the angle
defined counterclockwise between the orthogonal line to the direction con-
necting the centers of mass and the vector pointing to residue W10 of the
second monomer (Inset in Fig. 5, Lower). Both angles have periodicity 2π.
For chemically and structurally identical monomers, we would have mirror
symmetry with respect to the line u− v = 2π.

The reference free-energy landscape of Fig. 5 was calculated by using
248,144 frames sampled at equal times from a 2.52-ms-long equilibrium
trajectory (23). We calculated u and v both in the reference of the first
monomer and the reference of the second monomer, in this way effectively
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enforcing the monomer exchange symmetry of the system. Any residual
deviation from the mirror symmetry in the surface is caused by some flex-
ibility of the helices, which can be only approximately considered as rigid
bodies.

Analysis and visualization of the data were performed with NumPy (63),
SciPy (64), IPython (65), Matplotlib (66), and MDAnalysis (67). Molecular rep-
resentations were made with VMD (68, 69).
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5. Májek P, Elber R (2010) Milestoning without a reaction coordinate. J Chem Theory
Comput 6:1805–1817.
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