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Abstract
Hybrid programming, whereby shared-memory and mes-
sage-passing programming techniques are combined
within a single parallel application, has often been dis-
cussed as a method for increasing code performance on
clusters of symmetric multiprocessors (SMPs). This paper
examines whether the hybrid model brings any perform-
ance benefits for clusters based on multicore processors.
A molecular dynamics application has been parallelized
using both MPI and hybrid MPI/OpenMP programming
models. The performance of this application has been
examined on two high-end multicore clusters using both
Infiniband and Gigabit Ethernet interconnects. The hybrid
model has been found to perform well on the higher-
latency Gigabit Ethernet connection, but offers no perform-
ance benefit on low-latency Infiniband interconnects. The
changes in performance are attributed to the differing com-
munication profiles of the hybrid and MPI codes.

Key words: message passing, shared memory, multicore,
clusters, hybrid programming

1 Introduction
High-performance computing (HPC) is a fast changing
area, where technologies and architectures are constantly
advancing (Strohmaier et al., 2005). In recent years a sig-
nificant trend within the HPC community has been away
from large massively parallel processing (MPP) machines,
based on proprietary chip technology and software,
towards clusters of standard PCs or workstations using
off-the-shelf components and open-source software. The
November 2008 Top500 ranking (http://www.top500.
org) of the world’s supercomputers shows that 410 are
classed as having a cluster architecture, whereas the
November 2002 list shows just 81 clusters in the Top500.
The increased availability and decreased cost of commod-
ity-off-the-shelf (COTS) hardware and software means
that clusters are also gaining in popularity in smaller com-
puting centers and research departments as well as the
larger centers that tend to feature in the Top500 list.

Recent advances in the computing field, such as 64-bit
architectures, multicore and multithreading processors
(Agarwal, 1992) and software multithreading (Nielsen and
Janssen, 2000), can all be used to benefit the scientific
computing community. Multicore processors can increase
application performance above the increase from multi-
processor systems (Kazempour et al., 2008). The intro-
duction of multicore processors has enabled a significant
trend towards clusters with many thousands of process-
ing cores. The machines in the upper reaches of the
Top500 list now contain not just tens of thousands but
hundreds of thousands of processor cores per system. As
multicore chips become more widespread there is a
growing need to understand how to efficiently harness
the power available.

These technological advances are leading to the divid-
ing lines between HPC architectures becoming blurred.
Previously, HPC machines were generally divisible into
two classes: systems of distributed memory nodes in
which each node is a processor with its own distinct mem-
ory, and systems in which nodes access a single shared
memory. When the nodes are identical processors, the lat-
ter type of system is often termed a symmetric multiproc-
essor (SMP). Systems in which the nodes themselves are
identical SMP systems introduce another level of compli-
cation to the field. The introduction of multicore proces-
sors has further increased the complexity of HPC
architectures. As the number of processing cores within a
processor increases, individual nodes within a distributed
memory cluster have become more like SMP machines,
with large amounts of memory shared between multiple
processing cores, while the overall cluster still retains the
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global characteristics of a distributed memory machine.
This results in HPC cluster architectures being more com-
plicated, containing several levels of memory hierarchy
across and within the cluster. In a multicore cluster paral-
lelism exists at the global level between the nodes of the
cluster, and across the multiple processors and cores
within a single node. At the global level the memory of the
cluster is seen as being distributed across many nodes. At
the node level, the memory is shared between the proces-
sors and processor cores that are part of the same node.
At the chip level, cache memory may be shared between
some processing cores within a chip, but not others. This
complex hierarchy of processing elements and memory
sharing presents challenges to application developers that
need to be overcome if the full processing power of the
cluster is to be harnessed to achieve high efficiency.

The distinction between SMP and multicore systems is
an important one. In a SMP system, a number of distinct
physical processors access shared memory through a
shared bus. Each processor has its own caches and connec-
tion to the bus. Multicore processors have several process-
ing cores on the same physical chip. These processors will
often share cache at some level (L2 or L3), while having
their own separate L1 caches. The cores often also share
a connection to the bus. This cache sharing can have per-
formance implications for parallel codes (Alam et al.,
2008).

1.1 Hybrid Parallel Programming

The Message Passing Interface (MPI) (Message Passing
Interface Forum, 2008) has become the de facto standard
for message-passing parallel programming, offering a
standard library interface that promotes the portability of
parallel code whilst allowing vendors to optimize the com-
munication code to suit particular hardware. Shared-mem-
ory programming has often been accomplished using
libraries (such as pThreads). These low-level approaches
offer a fine level of control over the parallelism of an
application, but can be complex to program. More recently
the higher-level compiler directive approach taken by
OpenMP (OpenMP Architecture Review Board, 2007)
has become the preferred standard for shared-memory
programming. OpenMP offers a simple yet powerful
method of specifying work sharing between threads,
leaving much of the low-level parallelization to the
compiler.

The hybrid shared-memory and message-passing pro-
gramming model is often discussed as a method for
achieving better application performance on clusters of
shared-memory systems (Cappello and Etiemble, 2000;
Smith and Bull, 2001; Rabenseifner, 2003). Combining
OpenMP and MPI (and therefore the shared-memory and
message-passing models) is a logical step to make when

moving from clusters of distributed-memory systems to
clusters of shared-memory systems. However, previous
work has not reached a consensus as to its effectiveness.

Although it is possible to classify hybrid codes to a
fine level of detail according to the placements of MPI
instructions and shared-memory threaded regions (Rab-
enseifner, 2003), hybrid codes are most easily classified
into two simple distinct styles. The first style adds fine-
grained OpenMP shared-memory parallelization on top
of a MPI message-passing code, often at the level of main
work loops. This approach allows the shared-memory
code to provide an extra level of parallelization around the
main work loops of the application in a hierarchical fash-
ion that most closely matches the underlying hierarchical
parallelism of a cluster of SMP or multicore nodes. This
is the approach that we use in this paper. The second
style uses a flat single process multiple data (SPMD)
approach, spawning OpenMP threads at the beginning of
the application at the same time as (or close to) the spawn-
ing of MPI processes, providing a coarser granularity of
parallelism at the thread level with only one level of
domain decomposition. This approach has not been used
in this paper.

1.2 Previous Work

Previous work has been done by considering a hybrid
model of parallel programming, and in combining MPI
and OpenMP in particular. Cappello and Etiemble (2000)
have compared a hybrid MPI/OpenMP version of the
NAS benchmarks with the pure MPI versions, and found
that performance depends on several parameters such as
memory access patterns and hardware performance. Henty
(2000) considered the specific case of a discrete element
modeling code, finding that the OpenMP overheads result
in the pure MPI code outperforming the hybrid code, and
that the fine-grain parallelism required by the hybrid model
results in poorer performance than in a pure OpenMP code.
Smith and Bull (2001) found that in certain situations the
hybrid model can offer better performance than pure MPI
codes, but that it is not ideal for all applications. Lusk
and Chan (2008) have examined the interactions between
MPI processes and OpenMP threads, and illustrate a
tool that may be used to examine the operation of a
hybrid application. Jost et al. (2003) also looked at one
of the NAS parallel benchmarks, and found that the
hybrid model has benefits on slower connection fabrics.
One of the best known examples of a hybrid MPI/
OpenMP code is the plane wave Car Parrinello code,
CPMD (Car and Parrinello, 1985). The code has been
extensively used in the study of material properties, and
has been parallelized in a hybrid fashion based on a dis-
tributed-memory coarse-grained algorithm with the addi-
tion of loop-level parallelism using OpenMP compiler
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directives and multithreaded libraries (basic linear algebra
subprograms (BLAS) and fast Fourier transform (FFT)).
Good performance of the code has been achieved on dis-
tributed computers with shared-memory nodes and sev-
eral thousands of CPUs (Ashworth et al., 2005; Hutter
and Curioni, 2005).

1.3 Contribution

The work presented in this paper investigates the per-
formance of a hybrid molecular dynamics (MD) applica-
tion, and compares the performance of the code with the
same code parallelized using pure MPI. In this paper, we
consider and examine the performance of both versions
of the code on two high-end multicore systems. Much of
the previous work on the hybrid message-passing/shared-
memory model focuses on SMP systems or clusters of
SMP systems. While multicore systems share many char-
acteristics with SMP systems, there are significant dif-
ferences as discussed in Section 1 that may affect code
performance. These differences make the study of the
hybrid model on multicore systems a novel direction.
The results from the hybrid MD application used in this
paper provide further knowledge for the discussion of the
hybrid programming model and its suitability for use on
multicore clusters. As well as considering the hybrid
model on multicore clusters, in this paper we also exam-
ine the effect that the choice of interconnection fabric has
on the performance of a pure MPI code compared with a
hybrid MPI/OpenMP code, examining both high-end
HPC Infiniband and Infinipath interconnects, and more
standard Gigabit Ethernet connections.

The rest of this paper is organized as follows: Section 2
describes the hybrid MD application used in this work,
with focus on the portions of code affected by using the
hybrid model. Section 3 describes the hardware used for
performance testing, and describes the methodology
used, while Sections 4 and 5 present performance results.
Conclusions from the work are presented in Section 6,
and future work is considered in Section 7.

2 Hybrid Application
The MD application used in this research simulates a
three-dimensional fluid using a shifted Lennard–Jones
potential to model the short-range interactions between
particles. This simulation is carried out in a periodic
three-dimensional space, which is divided into sub-cells
each containing a number of particles stored in a linked
list.

The MPI message-passing version of the code per-
forms a three-dimensional domain decomposition of the
space to be simulated and distributes a block of sub-cells to
each MPI process. Each MPI process is responsible for the

same set of sub-cells throughout the simulation, although
particles may migrate from one cell to another. Although
no load balancing is carried out as the simulation
progresses, load imbalance is not a significant concern
because at short distances particle repel each other, but at
longer distances they attract, and hence particles are quite
homogeneously distributed in space.

The application contains several routines that are
called during each simulation timestep. The forces
routine contains the main work loop of the application,
which loops through the sub-cells in each process and
updates the forces for each particle. The movout routine
contains the communication code used for halo-swapping
and particle migration. There are also several smaller
routines, such as sum, which contains collective commu-
nications for summing macroscopic quantities (the virial
and the kinetic and potential energies of the system), the
hloop routine which checks to see if the code is still
equilibrating, and the movea and moveb routines which
each perform part of the velocity Verlet algorithm.

2.1 Hybrid Version

The hybrid version of the MD code used in this paper
was created by adding OpenMP parallelization on top
of the original MPI parallel code. Parallel directives
were added around the main forces loop of the appli-
cation, with the main particle arrays being shared between
threads. Threads are spawned at the beginning of the
forces routine, and the iterations over the sub-cells in
the main loop are divided between the threads using the
default OpenMP scheduling. A reduction clause is used to
manage the global sums performed to evaluate the virial
and the potential and kinetic energies, rather than using
atomic updates within the loop, as these variables are
written to by each of the threads during the forces
update loop. Experimentation with the OpenMP schedul-
ing options for the main forces loop did not reveal any
significant performance difference between schedules,
thus the default static schedule was used for performance
tests.

In addition to the forces loop, OpenMP paralleliza-
tion has been applied to the loops over all particles in
both the movea and moveb routine. In all other routines
the hybrid code will be running with less overall paral-
lelization than the MPI code, so a decrease in performance
of the routines without any form of OpenMP paralleliza-
tion may be seen.

No requirements are placed on the MPI implementation
as to the level of threading support required. Although
many implementations of the MPI standard provide a level
of thread-safe operation, this must usually be requested at
the MPI initialization stage. The thread-safe MPI imple-
mentation then guarantees that communication may be
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carried out in any thread without side effects. The hybrid
code used in this work restricts all message-passing com-
munication to the master thread of the application as all
such communication occurs outside of OpenMP paral-
lelized regions. This allows the code to be run without
multiple threads using MPI communications, thus no level
of thread safety is required from the MPI implementa-
tion.

2.2 Communication Routines

One expectation of hybrid codes is that they may
exhibit smaller runtimes as shared-memory communica-
tion between threads may be faster than message passing
between processes. In this work we have not found this
to be a factor in the performance differences. The MPI
implementations used for performance testing on the sys-
tems include communication devices that are able to use
shared memory for intra-node communication. This is a
common feature of recent MPI implementations, which
may result in a few differences between shared-memory
and message-passing code when running on one node.
However, the hybrid code does have a different commu-
nication profile from the pure MPI code which results in
different timings for the two codes when inter-node com-
munication is involved.

The MD code has two distinct phases of communica-
tion. The first occurs in the movout routine, where six
sets of point-to-point messages are used to send bound-
ary data and migrating particles to the eight nearest-
neighbor processes. The second phase occurs in the sum
routine, where collective communications are used to
communicate global system quantities (the kinetic and
potential energies and virial) to each process.

The first communication phase is clearly affected by
the number of processes and the number of cells in each
process. A pure MPI code running on a cluster of multi-
core nodes will have many processes with small numbers
of cells. The communication phase for these processes
will involve smaller message sizes, but more messages.
A hybrid code running on the same cluster will have
fewer processes, with larger numbers of cells. The com-
munication phases for these processes will therefore
involve larger message sizes, but fewer messages. This
difference in communication profile results in the com-
munication times depending heavily on the interconnect
used. There is a relationship between the number of mes-
sages and the interconnect latency, and the message size
and the bandwidth.

Studying this first communication phase in terms of
the amount of communication allows us to see the differ-
ence between the hybrid and pure MPI communication
profiles. Assuming that the particles are distributed evenly
between subcells within a process, we calculate the

number of particles to be communicated per process and
the number that must be communicated over all processes
per timestep (Figure 1). The hybrid code clearly has more
particles to communicate per process, but as the numbers
of processes are reduced compared with the MPI code,
the overall number of particles to be communicated is far
less. This simple analysis does not take process place-
ment into account, or the fact that some of the MPI code
communication will be intra-node rather than all inter-
node as in the Hybrid case, but does provide insight into
the differing communication profiles.

The second communication phase in the MD code
involves collective communications to sum global sys-
tem characteristics. The size of messages does not change
between a pure MPI and a hybrid MPI/OpenMP code,
however, collective communications are affected by
changes in the numbers of processes involved in the
communication, as most collective operations take longer
as the number of processes involved increases. The hybrid
code uses less MPI processes to run on the same number
of cores as the MPI code, so performs better in this com-
munication phase.

3 Performance Testing
Performance analysis of both the hybrid and pure MPI
versions of the MD application was carried out on two
systems, Merlin and CSEEM64T. Both are clusters of
multicore nodes each with two available connection fab-
rics: a high-speed, low-latency “typical” HPC intercon-
nect, and a Gigabit Ethernet network. Merlin is a
production HPC system in use at Cardiff University, while
CSEEM64T is a benchmarking system at Daresbury
Laboratory.

3.0.1 Merlin Merlin is the main HPC cluster at the
Advanced Research Computing facility at Cardiff Uni-
versity. It consists of 256 compute nodes, each contain-
ing two quad-core Xeon E5472 Harpertown processors
running at 3.0 GHz, with 16 GB RAM. Each processor
contains four cores with a 32 kb instruction cache and a
32 kb L1 data cache. Each pair of cores shares a 6 MB L2
cache. The nodes are connected by a 20 GB/s Infiniband
interconnect with 1.8 ms latency, as well as a Gigabit
Ethernet network. Each node has one Infiniband link and
one Gigabit Ethernet link. The compute nodes run Red
Hat Enterprise Linux 5, with version 10 of the Intel C++
compilers. Bull MPI is used over both the Gigabit Ether-
net and Infiniband interconnects. The Gigabit Ethernet
interconnect is not a dedicated communication network
and is also used for node and job management, which has
an impact on some of the results. This use of a non-dedi-
cated network most likely accounts for the poor scaling
of some of the code on Merlin seen in Section 5.
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3.0.2 CSEEM64T CSEEM64T consists of 32 com-
pute nodes, each containing two dual-core Xeon 5160
Woodcrest processors running at 3.0 GHz, with 8 GB
RAM. Each processor is dual-core, with each core con-
taining a 32 kb instruction and a 32 kb L1 data cache,
with a 4 MB L2 cache shared between both cores. The
nodes are connected by a 20 GB/s Infinipath intercon-
nect, as well as a Gigabit Ethernet network. The compute
nodes run SUSE Linux 10.1, with version 10 of the Intel
C++ compilers. Intel MPI is used over the Gigabit Ether-
net network, while Infinipath MPI is used over the Infini-
path interconnect.

3.1 Methodology

On each cluster three different sizes of simulation were
tested: small, medium and large. The small simulation
contains 16,384,000 particles, the medium 28,311,552
particles and the large 44,957,696 particles. Each size
was run for 500 timesteps and each was tested three
times on a range of core counts. The fastest time of the
three runs was used for analysis. The MD simulation uses
a three-dimensional domain decomposition, so at each
core count the most even distribution across all three
dimensions was used.

When running the performance tests a number of MPI
processes were started on each node and the OMP_NUM_
THREADS environment variable used to spawn the cor-
rect number of threads to use the rest of the cores in the
node, giving (MPI) × (OpenMP) cores used per node.
Each simulation size and processor core count was tested
with three combinations of MPI processes and OpenMP
threads, as illustrated in Figure 2 and described in the fol-
lowing:

1. MPI: One MPI process started for each core in a
node, no OpenMP threads (4 × 1 on CSEEM64T,
8 × 1 on Merlin); see Figure 2(a).

2. Hybrid 1: One MPI process started on each node,
all other cores filled with OpenMP threads (1 × 4
on CSEEM64T, 1 × 8 on Merlin); see Figure 2(b).

3. Hybrid 2: Two MPI processes started on each
node, all other cores filled with OpenMP threads
(2 × 2 on CSEEM64T, 2 × 4 on Merlin); see Fig-
ure 2(c).

When using less than the full number of cores on a
node, the full node was reserved via the job queueing
system to ensure exclusive access while the performance
testing was carried out.

Fig. 1 Movout analysis: particles communicated per timestep.

 at UNIV OF SOUTHERN CALIFORNIA on August 13, 2010hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


201HYBRID PROGRAMMING ON MULTICORE

4 Multicore Performance

The use of multicore processors in modern HPC systems
has created issues (Dongarra et al., 2007) that must be
considered when looking at application performance.
Among these are the issues of memory bandwidth (the
ability to obtain data from memory to the processing
cores), and the effects of cache sharing (where multiple
cores share one or more levels of cache). Some brief
experiments have been performed to assess the effects of
these on the MD code used in this paper.

4.1 Memory Bandwidth

Memory bandwidth issues are easily exposed in a code
by comparing the performance of the application with
fully populated and under populated nodes. By running

the MPI code on a number of fully populated nodes on
Merlin (using eight processes per node, ppn = 8), then
again on twice the number of nodes using half the cores
(ppn = 4), we can see whether any performance differ-
ences occur due to the reduced memory bandwidth on a
fully populated node. The results of this test are shown in
Figure 3. They clearly show that there is little if any per-
formance difference between a fully populated and
under-populated node, demonstrating that memory band-
width is not an issue with this MD code, so not a factor
when examining performance results.

4.2 Cache Sharing

We have examined the effect of cache sharing for both
the MPI and hybrid codes on Merlin. As each node in
this cluster contains two quad-core processors, with two

Fig. 2 MPI and Hybrid versions: (a) MPI; (b) Hybrid 1; (c) Hybrid 2.
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pairs of cores on each physical processor sharing the L2
cache, running four processes or threads on one proces-
sor (using all four cores, so the L2 cache is shared) and
then on two processors (using one of each pair of cores,
so each core has exclusive access to the cache), will
expose any performance difference caused by cache shar-
ing. The timing results for the two codes, and difference
between the exclusive and shared cache timings are pre-
sented in Table 1.

The MPI code is affected more by the cache sharing
than the hybrid code, as the difference between exclusive
cache timing and shared cache timing is larger for the
total time of the MPI code. This is to be expected as the
MPI code runs with four processes continually, whereas

the hybrid code only runs one process until the threads
are spawned in the forces routine. The hybrid code is
only sharing cache between cores during the execution of
this routine, at all other points only one MPI process is
running, which will have exclusive access to the cache. It
is therefore reasonable to expect that the hybrid code will
be affected less by the cache sharing overall. Examining
the portion of the total difference that can be attributed
to the forces routine, shows that it makes up a far
greater proportion of the total difference in the hybrid
code than the MPI code, which is in line with these
expectations.

Examining only the forces routine timing does not
show any clear difference between the two codes. The

Fig. 3 Merlin memory bandwidth tests.

Table 1
Timing effects of cache sharing. Times are in seconds.

MPI Hybrid

Simulation Shared Exclusive Difference (%) Shared Exclusive Difference (%)

Small Total 2436.699 2328.641 4.43% 3622.872 3577.680 1.25%

Forces 2211.631 2168.351 1.96% 3305.688 3275.290 0.92%

Large Total 8410.663 8103.421 3.65% 16,935.252 16,751.750 1.08%

Forces 7791.354 7691.7058 1.28% 16,061.832 15,921.399 0.87%

 at UNIV OF SOUTHERN CALIFORNIA on August 13, 2010hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


203HYBRID PROGRAMMING ON MULTICORE

small simulation shows a larger difference between
shared and exclusive cache in the MPI code, while the
large simulation shows the bigger difference in the
hybrid code. It is not therefore possible to state that either
is affected more or less by the cache sharing than the
other. The difference does show that cache sharing has a
negative impact on the performance of the code, but that
it is not responsible for the large performance difference
between the MPI and hybrid codes when running on
small numbers of cores.

5 Performance Results
Throughout the performance results two simple patterns
can plainly be observed.

First, the main work portion of the code (the forces
routine) is always slower in the hybrid code than the pure
MPI code. This may be the result of the increased over-
heads in this section of code related to the spawning, syn-
chronizing and joining of the OpenMP threads. The
reduction clause needed to ensure the kinetic and virial
measures are updated correctly adds an additional over-
head and an extra synchronization point that is not
present in the pure MPI code, where all synchronization
occurs outside the forces routine in the communica-
tion portions of the code.

Second, the hybrid model offers little (if any) perform-
ance improvement over the pure MPI code when using a
modern low-latency HPC interconnect, such as Infini-
band or Infinipath. The pure MPI code in general runs
much faster than the hybrid code when using these con-
nections. The communication profile of the pure MPI
code suits these low-latency high-bandwidth intercon-
nect well. However, when using a low-latency intercon-
nect such as Gigabit Ethernet, the opposite is seen. When
using large numbers of cores over such an interconnect,
the hybrid code performs better than the pure MPI code.
This is probably because a larger number of MPI proc-
esses results in more network traffic and congestion
when Gigabit Ethernet is used.

These results do not show any performance gains from
the use of shared memory over message passing within
nodes. As already discussed, the MPI implementations
used for testing include communication devices allowing
the intra-node communications to be carried out through
shared memory without having to use explicit message
passing over the network interconnect. This allows the
intra-node communications in the MPI code to be as fast
as the shared memory accesses in the hybrid code.

5.1 Merlin

On the Merlin cluster (two quad-core processors per
node), it is clear that when using the Infiniband connec-

tion the MPI code is faster than either of the Hybrid ver-
sions. The Hybrid 1 (1 × 8) version is slower than the
Hybrid 2 (2 × 4) approach, while both are slower than the
pure MPI code (Figure 4).

The performance gaps between the three code variants
remain fairly consistent as the number of cores increases,
demonstrating that the scalability of the three codes is very
similar. The performance of the Hybrid 1 and Hybrid 2
codes is also very similar throughout all core counts,
something which is not seen when using the Gigabit Eth-
ernet interconnect (Figure 5).

Examining the breakdown of runtime between rou-
tines for the large simulation on both 512 and 128 cores
(Table 2) shows that the main differences between the
Hybrid 1 and pure MPI codes occur in the forces and
movout routines. Both routines have a longer runtime in
the hybrid code when using the Infiniband connection.
This pattern, where the forces routine has a longer
runtime in the hybrid code than in the pure MPI code, is
repeated throughout the performance results on both
clusters using both interconnects, as discussed already.

The Gigabit Ethernet results on Merlin show that the
scalability of both the pure MPI and hybrid codes is an
issue when using larger numbers of processors (Figure 5),
but that in general the hybrid codes outperform the pure
MPI code. Above 128 cores there is no performance
improvement for either the Hybrid 1 or pure MPI code.
Above 192 cores the pure MPI code performance stead-
ily worsens, while the Hybrid 1 performance stays rela-
tively steady. The Hybrid 2 code fluctuates in performance
more erratically than either the Hybrid 1 or MPI codes,
but delivers the best performance at 192, 256, 384 and
512 cores.

The routine breakdown (Table 3) on Gigabit Ethernet
shows that the main difference in timings between the
pure MPI and hybrid codes comes again in the movout
routine, which has a far longer runtime in the pure MPI
code on 512 cores than the hybrid code. There is also a
large difference in the sum routine, which uses collective
communications, as the pure MPI performs worse with
the collectives over the Gigabit Ethernet, while the hybrid
code fares better due to the reduced number of MPI proc-
esses involved in the communication.

5.2 CSEEM64T

On the CSEEM64T cluster a similar pattern to that seen
on the Merlin cluster is observed. Using the low-latency,
high-bandwidth Infinipath interconnect the pure MPI code
outperforms the hybrid codes with all problem sizes.
Unlike on Merlin, however, there are large differences
between the Hybrid 1 and Hybrid 2 results when using
the Infinipath connection. The Hybrid 2 results are often
much slower than the pure MPI, up to twice as slow in
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Fig. 4 Merlin with Infiniband overall timing results.

Fig. 5 Gigabit Ethernet with Merlin: results from the large simulation.
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some cases, and also much slower than the Hybrid 1 tim-
ings (Figure 6). This plot shows the code running at all
problem sizes on 64 cores, and it is plain to see the per-
formance gap between MPI and the Hybrid codes.

Using the Gigabit Ethernet connection the results (Fig-
ure 7) are quite different, with the hybrid codes perform-
ing better than the pure MPI with all problem sizes. The

Table 2
Routine breakdown, large simulation with 
Infiniband on Merlin. Times are in seconds.

Number of 
cores

MPI Hybrid

512 Forces 34.06927 36.18235

Movout 2.37228 6.98469

MoveA 0.70046 0.94867

MoveB 0.39769 0.6112

Sum 2.09433 0.40785

Hloop 0.07061 0.07222

Startup 2.87173 3.18326

128 Forces 137.7295 155.33234

Movout 8.75808 28.76653

MoveA 8.57629 8.33893

MoveB 4.25237 5.21269

Sum 2.02575 1.25527

Hloop 1.97784 1.99515

Startup 3.04294 3.42531

Table 3
Routine breakdown, large simulation with 
gigabit Ethernet on Merlin. Times are in 
seconds, 512 cores.

MPI Hybrid

Forces 34.20658 36.07332

Movout 415.74687 234.70416

MoveA 0.66362 0.96054

MoveB 0.31689 0.5956

Sum 101.97926 1.44475

Hloop 0.11349 0.07668

Startup 25.75003 9.93624

Fig. 6 CSEEM64T with Infinipath, 64 core timings.
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Hybrid 1 and Hybrid 2 runtimes are very similar, with
Hybrid 1 having a slightly slower performance than
Hybrid 2, while both are consistently faster than the pure
MPI timings.

An examination of the routine timings breakdown
over both interconnects (Table 4) shows two things.
First, the forces routine is again slower in the hybrid
code than in the pure MPI code. Second, the main differ-
ences between the two codes occurs in the timing of the
movout routine, as on the Merlin cluster. Using the
Infinipath connection the movout routine is much
faster in the pure MPI code than the hybrid, while this is
reversed when using the Gigabit Ethernet connection. On
the Infinipath interconnect, the pure MPI code movout
routine is around twice as fast as that of the hybrid code,
while on Gigabit Ethernet the hybrid code movout rou-
tine is twice as fast as the pure MPI code movout rou-
tine.

On CSEEM64T, for both Infinipath and Gigabit Eth-
ernet connections, the differences between the pure
MPI and Hybrid 1 codes are in the region of 20–60 sec-
onds, depending on the simulation size. Using the
Infinipath connection the pure MPI code is faster,
using the Gigabit Ethernet connection the Hybrid 1
code is faster.

Fig. 7 CSEEM64T with Gigabit Ethernet, 64 core timings.

Table 4
CSEEM64T routine breakdown, large 
simulation. Times are in seconds.

Interconnect MPI Hybrid

Infinipath Forces 193.77336 207.99323

Movout 7.90706 18.5059

MoveA 7.377 12.5858

MoveB 3.64191 5.08047

Sum 0.90146 0.26923

Hloop 2.07302 2.3668

Startup 4.10984 3.794

Gigabit Forces 194.5966 207.18975

Ethernet Movout 53.00865 27.87451

MoveA 7.42247 12.57763

MoveB 3.48986 5.05727

Sum 1.3424 1.29131

Hloop 2.06386 2.3614

Startup 9.39962 9.38928
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5.3 Interconnects

The communication phases of the code are where the
major differences between the MPI and hybrid timing
profiles occur. The interconnect used for communication
has a significant effect on this phase of the code.

Figure 8 shows the time spent in the movout routine
for the pure MPI, Hybrid 1 and Hybrid 2 codes on both
CSEEM64T and Merlin, for both interconnects on each
system. As expected, the difference between the standard
Gigabit Ethernet interconnect and the high-end Infinipath
and Infiniband interconnects can be quite large, with the
Gigabit Ethernet interconnect consistently much slower
than the faster HPC interconnects. For the small simula-
tion on Merlin, the MPI movout code running on Giga-
bit Ethernet is around 172 times as slow as for the
Infiniband connection. On CSEEM64T for the small sim-
ulation, the Gigabit Ethernet is about 17 times as slow.
For the large simulation, the difference is about 68 times
on Merlin, and 6 times on CSEEM64T. The hybrid code
fares a little better than this however. For all size simula-
tions on Merlin, the difference between the Infiniband
and Gigabit Ethernet times for the movout routine is
only around 10 seconds. On CSEEM64T, this difference
is even less, being somewhere between 3 and 10 seconds.
The MPI code spends less time in the communication
phase than the hybrid codes when using the Infiniband
and Infinipath interconnects, but the reverse is true
when using the Gigabit Ethernet connection. On Merlin,
in the Hybrid 1 code the movout routine is much faster
than for the pure MPI code on this interconnect, while on
CSEEM64T both the Hybrid 1 and Hybrid 2 movout
code are faster. Of interest is the fact that on Merlin at 128
cores using the Gigabit Ethernet connection, the Hybrid 2
code is much slower than both the MPI and Hybrid 1
codes. This correlates with the poor scaling of the code
seen in Figure 5, where Hybrid 2 is much slower than
both Hybrid 1 and the MPI code at this core count. This
may be caused by a number of factors, perhaps due to the
placement of processes at this core count resulting in
more inter-node communication for the Hybrid 2 code.

This difference in the movout routines on the two
interconnects is also shown well in Figure 9. This clearly
shows the scaling of the movout routine timing as the
number of cores increases on the CSEEM64T cluster.
For Infinipath, the MPI movout code is consistently
faster than the Hybrid 1 movout routine, but on Gigabit
Ethernet this is only true at 16 cores. For all other core
counts the Hybrid 1 code spends less time in the movout
routine than does the pure MPI code.

The interconnect used also affects the timing of the
collective communications in the sum routine (Figure 10).
The Hybrid 1 code is consistently faster than the pure
MPI code on both interconnects, while the Hybrid 2 code

is faster on all but Gigabit Ethernet on 256 cores. The
most striking result is for 512 cores using the Gigabit
Ethernet interconnect, where the Hybrid 1 code is 98.52%
faster than the MPI code. It is also interesting to see that at
both core counts, the Hybrid 1 and Hybrid 2 codes are
more than twice as fast as the pure MPI code on the Infini-
band interconnect, where the hybrid code overall is much
slower than the pure MPI. However this routine, and glo-
bal communications as a whole, are not a significant part
of the runtime, so this routine does not have a major
effect on the total time of the application.

6 Conclusion
The hybrid model has often been discussed as a possible
model for improving code performance on clusters of
SMPs or clusters of multicore nodes. While it has not
been found that the shared-memory sections of the code
bring any performance benefits over using MPI proc-
esses on a multicore node, it was found that the commu-
nication profile differs between the pure MPI and hybrid
codes sufficiently for there to be significant performance
differences between the two.

No benefit has been found from shared-memory thread-
ing on a multicore node over using MPI processes for
the work portions of the code. With this particular MD
code the extra overhead from starting and synchronizing
threads results in the shared-memory code performing
slower than the pure message-passing code in the main
work sections. Cache sharing has been shown to have less
of an effect on the hybrid code than the pure MPI, but this
may be due to the specific implementation of the MD
algorithm used in this code, and cannot be generalized to
the hybrid model itself.

The MPI and hybrid codes exhibit different communi-
cation profiles whose runtimes can be affected depending
on the communication interconnect being used. This
work has shown that with a MD simulation using modern
multicore clusters with high-end low-latency intercon-
nects, the hybrid model does not offer any improvement
over a pure MPI code. The extra overheads introduced
by shared-memory threading increase the runtime of the
main work portion of the code, while the low-latency
interconnect removes any benefit from the reduction in
the number of messages in the communication phases.
However, on a higher-latency connection, such as Giga-
bit Ethernet, there may be much benefit from the hybrid
model. The extra overheads from the threading portion
are outweighed by the reduction in communication time
for both point-to-point and collective communication.
The smaller numbers of larger messages in a hybrid code
mean that the communication profile is better suited to a
higher-latency interconnect than a pure MPI code with
many smaller messages.
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Fig. 8 Movout routine timings of the large simulation: interconnect comparison. (a) Merlin, 128 cores. (b) CSEEM64T,
96 cores.
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Fig. 9 Movout routine timings with CSEEM64T: large simulation. (a) Infinipath. (b) Gigabit Ethernet.
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The hybrid model has also shown that it may be suited
to codes with large amounts of collective communica-
tions. Results in this area look promising, with the hybrid
code performing better at collectives than the MPI code
on both interconnects tested. More work is needed in this
area to see whether this is a pattern exhibited by other
codes.

7 Future Work
This work has examined two high-performance intercon-
nects: Gigabit Ethernet and high-end Infiniband and
Infinipath connections. The next task is to examine the
performance of the hybrid model on a mid-range stand-
ard Infiniband connection to fill in the gap in results
between the low-end Gigabit Ethernet connection and the
high-end Infiniband/Infinipath interconnects.

Following this we intend to examine the performance
of the hybrid model with larger-scale scientific codes.
The MD simulation used in this work is a fairly simple sim-
ulation, modeling only short-range interactions between
particles. Examining the performance of the hybrid model
with a more complicated code may reveal further per-
formance issues not explored in this work. As much of
the benefit from the hybrid model seems to come from
reduced communications, a code that relies on more intra-

node communication for long-range force calculation
may benefit further from the hybrid model.
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