
A Programming Example: Large FFT
on the Cell Broadband Engine

Alex Chunghen Chow
IBM Corporation

11501 Burnet Road
Austin, TX 78758

achow@us.ibm.com

Gordon C. Fossum
IBM Corporation

11501 Burnet Road
Austin, TX 78758

fossum@us.ibm.com

Daniel A. Brokenshire
IBM Corporation

11501 Burnet Road
Austin, TX 78758

brokensh@us.ibm.com

Abstract
The Cell Broadband Engine (CBE, shortname “Cell”) is a
nine-core implementation of the Cell Broadband Engine
Architecture (CBEA), including a 64-bit Power Processor
Element (PPE) and eight Synergistic Processor Elements
(SPEs). We apply this processor’s computational power
to the calculation of a large FFT, comprising 16 million
(224) single-precision complex samples. We present an
overview of the CBE, discuss Cell code development
methodology, explore the challenges and the tradeoffs of
this particular task, describe some implementation details,
and present results.

Keywords
Cell Broadband Engine (CBE), “Cell”, Synergistic
Processor Element (SPE), Fast Fourier Transform (FFT),
Single Instruction Multiple Data (SIMD), Direct Memory
Access (DMA), FFTW.

Introduction
The key to effective utilization of the CBE is to distribute
any computational task efficiently and effectively over the
eight SPEs. We describe our successful effort to do this
on the chosen FFT problem. Our approach considers
many factors in order to maximize FFT computation
speed. A modified stride-by-1 algorithm proposed by
David H. Bailey in 1986 based on Stockham self-sorting
FFT is chosen. The stride-by-1 characteristic allows the
FFT array to be partitioned naturally, without data
rearrangement, into vectors that can be executed in
parallel by SIMD instructions. To minimize consumption
of memory bandwidth, the number of contiguous sample
points is set at 32, which matches the granularity of
system storage DMA access. (We’ll call these minimum-
size parcels of memory access “memory lines”). Since
we can further unroll the 4-way SIMD instructions by a
factor of 8, and thereby schedule all instructions into
pipelines without incurring any data dependency stalls,
the choice of 32 words as a memory granularity is
especially serendipitous.
A matrix transpose is needed at some point to preserve the
availability of these 32-word memory lines as contiguous
samples. This approach performs the transposition
efficiently by using SPE shuffle-byte instruction and
carefully chosen DMA destination addresses part-way

through the execution of the algorithm. A double-
buffering scheme is used to hide DMA latencies. A proper
number of Radix-2 FFT stages (butterfly stages) are
performed on each batch of elements read in to the SPE to
ensure that the computation time is not overwhelmed by
the memory access time. Finally, the tasks are uniformly
distributed across the SPEs in a way that minimizes the
need for synchronization.
Our performance numbers demonstrates that the GFLOPS
achieved by this FFT implementation are more than an
order of magnitude better than the current generation of
desktop computers at the same clock rate.

Overview of Cell Broadband Engine
Many on-chip computational resources are available to
Cell programmers. [CBEA05]

The CBE provides more than eight times the compute
power of traditional single-core processors. Its SIMD
engines are de-coupled from the traditional processor core
for growth and scalability. The computational cores

16B/cycle (2x)
16B/cycle

BIC

RRAC I/O

MIC

Dual
XDRTM

16B/cycle

PPU

 L1

 L2

32B/cycle

16B/cycle

EIB (up to 96B/cycle)

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

16B/cycle

64-bit Power Architecture
w/VMX for Traditional

Computation

Synergistic Processor Elements for High (Fl)ops / Watt

include a PPE and eight SPEs. A data ring with a huge
communication bandwidth connects the cores, system
memory, and external I/O components together.
The PPE provides the capability for traditional
computation. It has an in-order instruction execution
design to reduce the circuit complexity for smaller chip
area and less power consumption. The instructions are
dual-issued. The core also supports dual thread SMT to
improve performance. In addition, the core is equipped
with a VMX engine.
The eight SPEs provide the scalable computational
capacity. The SPE architecture and instruction set support
up to 16-way SIMD to exploit data parallelism. Each SPE
has its dedicated set of resources. Its 128 128-bit vector
registers provide compilers or low-level programmers
with a generous register set for frequently used variables.
The address architecture of each SPE contains a 256-
kilobyte memory space called local store. This local store
is placed physically next to the SPE core. Such closeness
gives the SPE core a 51.2 GBs per second bandwidth for
both instruction fetching and data load/store.
Each SPE core is equipped with a DMA controller. This
controller allows an SPE to exchange data between its
local store and any resources connected to the data ring –
e.g. system memory, local stores of other SPEs, and I/O
components. In addition, the DMA controller also has a
collective 51.2 GBs per second bandwidth into the
Element Interconnect Bus (EIB).

Common Cell Software Design Considerations
A Cell programmer must consider the following factors
when developing a CBE program in order to exploit the
many computational resources.
A CBE by its nature is a multi-core parallel processing
system. The existing practice of parallel programming is
readily applicable.
A Cell programmer should consider two levels of
parallelism granularity. One is the data level parallelism
supported by the SIMD and VMX instructions. Each
SIMD instruction operates on a full 128-bit register, so
depending on the size of the data, a single SIMD
instruction may be able to process 16 elements at the
same time. The other level of granularity is the task level
parallelism supported by the nine heterogeneous cores.
The SPE DMA data transfer overhead among the
resources is a critical design consideration for
performance. Transferring large amount of data with a
DMA controller takes up time. In some cases, the latency
is larger than the time required for an SPE to process the
data itself. By overlapping the DMA transaction and the
SPE’s instruction execution, a Cell programmer can
effectively hide the DMA latency and improve the
performance of a program.

The SPE DMA transfer has a granularity and alignment of
128 bytes. To utilize bandwidth effectively, the
programmer is encouraged to align the data to 128-byte
boundaries and transfer data in multiples of 128 bytes.
The size of the local store is also a factor to consider.
Considering the program performance and development
cost, it is desirable to have the working set of an SPE
program resides completely in the 256 KB local store. In
the STI Design Center, we have developed samples and
workloads in many application domains that fit in the
local store. However, if needed, programming techniques
such as code/data overlay or software data cache can still
be applied. Some advanced compilers, e.g. a CBEA-
enabled prototype xlc compiler for SPE, can generate
software cache code automatically.

Typical Cell Programming Models
The CBEA is capable of supporting many programming
models effectively. Depending on the characteristics of an
application, one programming model may be more cost-
effective than others.
The heterogeneous nature of the PPE and SPE cores
mandates that the SPE executable and call stack be
different from the PPE ones. A compiler and operating
system runtime may further build a shared-memory
abstraction on top of this SPE thread model.
However, early Cell programmers have found this model
to be very intuitive and effective especially when
developing new parallel programs. A given operating
system may alternatively expose an SPE core as a device.
This model is simpler when porting an existing
application where the main structure of the program will
not alter much and the interaction between the device and
the rest of the program can be effectively modeled as
device I/O. A programmer can then off-load a function
directly to the SPE device. With limited sharing between
the main program and the device, the message passing or
streaming programming model may arguably be a natural
abstraction on top of this low level model.
Regardless of which low-level model the kernel exposes,
an SPE runtime management library usually provides a
Cell programmer enough facility, among the other
necessities, to load, start, communicate with, and stop a
SPE program.

An Effective Cell Software Development Flow
Early Cell programmers adopted a series of development
stages that are very effective. Certain stages may be
optional depending on the need of a particular application.
• Algorithm complexity study –

The algorithms of a program must be studied in detail
to understand the characteristics of its parallelism. In
particular, the programmer needs to understand the
computational overhead of executing on an SPE or

PPE either in SIMD or scalar code. This stage
provides a set of possible parallelizable partitions and
mappings from computation to the available
resources.

• Communication analysis –
For a possible mapping or partition of the
computation task, a programmer can analyze the
required communication. This provides additional
information for a proper partitioning and mapping.

• Experimental partitioning and mapping –
Possible programming models, load balancing,
computational overhead, and DMA latencies are
common factors used to determine an initial partition
and mapping. An on-paper experiment against the
available resource is usually sufficient as a base for
subsequent stages.

• PPE control program / PPE scalar code –
Developing the algorithm in scalar code provides the
programmer not only a base program structure but
also a deeper understanding of the algorithm. The
scalar code can be further used as a verification tool
for subsequent parallelization.

• SPE scalar code replacement –
Partition-able PPE code segments can be replaced by
SPE scalar code. This stage allows the programmer to
develop the communication, synchronization, and
latency hiding functions. This stage can display the
performance improvement from the task level
parallelism.

• SPE SIMD code development –
The programmer re-implements the SPE scalar code
in SIMD to exploit the data parallelism. This can give
another boost of performance.

• Partitioning / Mapping re-balance –
In some cases, the partitioning and mapping needs to
be re-adjusted to balance the computational and
memory bandwidth requirements.

• Other optimization considerations –
Many times a particular algorithm may not use all
SPEs equivalently. Load balancing and bottleneck
removal are common Cell programming practice. In
addition, the VMX engine in the PPE core can give
another opportunity for performance improvement.

The FFT Example: Challenges
The Fast Fourier Transform (FFT) is one of the most
important algorithms in the last several decades. Its
applications range from image and signal processing to
partial differential equations (PDEs). With a multi-core
SIMD implementation of the CBEA, the CBE has the
capacity to perform huge computational tasks on a single
chip.
We use an example of a large FFT implementation of
16,777,216 (224) single-precision complex numbers to

demonstrate this capacity. The real and imaginary parts of
the input data are stored as two separate arrays - a total of
128 MB of memory requirement just for input data.
Furthermore, we maintain a working array of the same
size in main memory, as we chose to not implement an in-
place solution.
Such a large FFT implementation offers several
performance challenges both to traditional processors and
to the CBE.
• The large data array cannot fit into the on-chip cache or

on-chip memory. For a CBE, we have eight 256 KB
“local stores”, one for each SPE (total: 2 MB). It is
inevitable that we have to stream the data between
the system memory and local stores multiple times
during the algorithm execution.

• The I/O bandwidth required to reading and writing
to/from main memory after each butterfly cycle,
running simultaneously on all eight SPEs will far
exceed the 25.6 GB/s bandwidth of the CBE.
Performance is capped by the memory bandwidth if
we do not increase the amount of work done on each
batch of data collected from main memory. We
conclude that multiple butterfly stages should be
performed in each SPE, to avoid being memory-
bound.

• The data decimation (either decimation-in-time or
decimation-in-frequency) of an FFT implementation
introduces data access inefficiency if we wish to read
and write our data in 128-byte parcels. When the
granularity of the access irregularity falls below this
DMA transfer granularity, large memory-access
inefficiencies result.

Addressing the Challenges
We developed a variation on the stride-by-1 algorithm
proposed by David H. Bailey [Bailey88] based on the
Stockham self-sorting FFT. Hegland also described the
same index bit manipulation basis for this class of
techniques [Hegland94]. It specifically solves the data-
granularity difficulty by performing index-bit permutation
at the end of each radix-2 butterfly stage.
In order to reduce the memory bandwidth requirement,
we bundle the butterfly stages into groups of eight, so that
each SPE can read in a batch of data, perform eight full
stages of butterfly operations on it before writing out a
batch of result data.
We solve the data decimation problem by performing a
series of 4x4 matrix transpositions in local store before
writing out the results at the end of the first bundle of
eight butterfly cycles (effectively implementing a 2-D
matrix transposition on a 256x65536 matrix
representation of the 224 array).
The manipulation on the 24-bit array indices is
summarized in the following table.

Basic Algorithm illustration – 24-bit index bit manipulation
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Stage 1
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

01 00 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Stage 2

02 01 00 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Stage 3

03 02 01 00 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Stage 4

07 06 05 04 03 02 01 00 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Stage 8

08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 07 06 05 04 03 02 01 00
2D Matrix Trans.

09 08 10 11 12 13 14 15 16 17 18 19 20 21 22 23 07 06 05 04 03 02 01 00
Stage 9

10 09 08 11 12 13 14 15 16 17 18 19 20 21 22 23 07 06 05 04 03 02 01 00
Stage 10

23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
Stage 23

Stage 24
23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Each stage represents a Radix-2 butterfly stage. The 2-D
matrix transposition may be placed between any two
stages where the data decimation is above the required
data granularity.

Array Index Permutation Implementation Details
To recapitulate, the basic solution is to perform a series of
24 butterfly stages (indexed 0 through 23) on a large array
(each cycle consisting of 223 traditional radix-2
butterflies), and write the data back out to memory in a
permuted fashion such that if a word is read in from array
index
b0b1be…bi…b22b23
at the beginning of butterfly cycle i, then we compute the
output array index to be
bib0b1b2…bi-1bi+1…b22 b23
and we store the data to that location at the end of the
butterfly cycle.
The first improvement derives from the fact that if we
read 512 well-chosen memory lines into local store (256
real, 256 imaginary), we can perform eight full butterfly
stages on the resulting 8192 complex samples, and write
out the memory lines in permuted fashion, as long as we
don’t permute the bottom five bits. This function (taking
8192 samples and performing an octet of butterfly stages
on them) forms the core of our SPE processing. Note that
by organizing the algorithm in this fashion, we can do the
entire FFT by touching each memory location exactly six
times (three reads and three writes).
We call these large operations (the first, second and third
octets of butterfly stages) “megastages,” labeling them
Megastage A, Megastage B and Megastage C.
Within each megastage, each of the eight SPEs will be
responsible for one eighth of the elements of the array,

and can process its portion by looping 256 times,
processing 8192 elements in each loop iteration.
One complication of this is that it is necessary to permute
the bottom five bits at some point, and we choose to do
that within the SPE before we write out the results of
processing each batch of 8192 elements in Megastage A.
To see the effect of each megastage on the locations of
the data in the large array, let’s re-name the 24 bits in the
address space as
a0a1a2a3a4a5a6a7b0b1b2b3b4b5b6b7c0c1c2c3c4c5c6c7
After the “internal part” of Megastage A, the addresses
would be reversed in the first 8 bits:
a7a6a5…a0b0b1b2…b7c0c1c2…c7
but with judicious use of 4x4 transposes, we are able to
write the data out to memory at the address of index
b0b1b2…b7c0c1c2…c7a7a6a5…a0
Megastage B reads this address in, and writes it out to
location
c0c1c2…c7b7b6b5…b0a7a6a5…a0
Megastage C reads this address in, and writes it out to
location
c7c6c5…c0b7b6b5…b0a7a6a5…a0
and we have succeeded in completely reversing (or bit-
mirror-imaging) the address.
Let us summarize the algorithm:
Eight SPEs operating in parallel, executing Megastage A,
Megastage B and Megastage C, synchronizing at the end
of each Megastage.
Each megastage comprises, for each SPE, a loop of 256
code blocks consisting of the following three operations:

• read in 8192 array elements
• perform eight sets of butterfly stages on these

elements
• write out the resulting elements to a permuted

address
(Megastage A includes the matrix transforms referred to
in the preceding figure.)

Other Implementation Details
There are six components to this implementation which
we shall explore further: synchronization, DMA, Multi-
Buffering, Loop Unrolling and 4-way SIMD, Twiddle
Factors, and data interleaving/offsets.

Synchronization
The three megastages (Megastage A, Megastage B, and
Megastage C) need to be kept separate. For example, we
can’t have any SPEs start processing their Megastage B
function until all SPEs have successfully written out their
Megastage A results.

Several features exist in the CBEA to implement this. We
chose to use simple message passing between the SPEs
and the PPE, since the PPE is not otherwise occupied.
So, the PPE waits to hear from all eight SPEs that they
have finished Megastage A, and then the PPE sends
messages to all eight SPEs indicating that they can now
begin processing Megastage B.

DMA
The operations of reading in and writing out the 8192
array elements are implemented by reading and writing
512 128-byte memory lines (256 real, 256 imaginary).
This happens to be the native size of read and write
blocks on the CBEA, so we achieve optimal DMA
bandwidth usage.
The first task in this process computes a list of addresses
and lengths, and submits that list to the DMA engine.
(The DMA engine can accept a wide variety of lengths,
but for this algorithm, the lengths will always be specified
as 128 bytes.)
The resulting two blocks of data (32KB real and 32KB
imaginary) which are delivered by the DMA engine reside
in the local store of the SPE, and can then be accessed in
fully pipelined fashion by the butterfly code.
After the octet of butterfly cycles is complete, the
resulting data is written back out to main memory, using a
second DMA list (addresses and lengths), which is also
generated during this process.

Multi-Buffering
The latency for loading and storing these 32KB blocks of
data into the local store is large (several thousands of SPE
cycles) so we implement a multi-buffering scheme which
allows us to fully hide these DMA cycles behind the
butterfly processing.
While the butterfly code is processing block n, the DMA
engine is loading the data for butterfly block n+1, and
writing out the data for block n-1.

Loop Unrolling and 4-Way SIMD
The latency for most SPE instructions is four or six SPE
cycles. However, single-precision operations are fully
pipelined, so we manually unroll our butterfly processing
loops by a factor of eight, to ensure that the compiler can
achieve this full pipelining without incurring any stalls
from data dependencies.
Everything in the SPEs is done in quadword (16 byte)
granularity. For single-precision floats, that corresponds
to 4-way SIMD operation.
Since the butterfly operations are always accessing pairs
of elements in the data arrays which are separated by a
multiple of four elements (that is, the bottom two bits of
their indices match), we can code the entire octet of
butterfly stages in full 4-way SIMD.

Note that the 8-way loop unrolling and the 4-way SIMD
lead us to process 32 butterflies in one iteration of the
inner loop. Recall that each butterfly operation takes two
complex numbers as input, and outputs two updated
complex numbers. So, that’s 16 bytes input and 16 bytes
output per butterfly, or 1 kbyte of memory bandwidth per
inner loop.

Twiddle Factors
We had several choices, regarding the “twiddle factors.”
We could pre-compute them all, and read them in as
needed, we could compute them all on the fly, as part of
the SPE code, or we could do some combination of the
two, reducing the number of table lookups to the point
that they will fit in the SPE, and not require bandwidth
to/from main memory, and taking advantage of
trigonometric identities, to simplify the task. We chose
this third option, as it represented both a minimal increase
in memory bandwidth and computation cycles.
The data size for the pre-computed sin and cos arrays
added up to 6k on each SPE (out of 256k total). In
Megastage A, the twiddle factor granularity was coarse
enough that we could use these pre-computed numbers
directly, with no additional computations. In Megastages
B and C, we needed to compute eight sin and eight cos
values for every 8192 elements processed. The required
work to compute the trigonometric identities which fine
tune these results add up to 48 extra floating point
operations (at a cost of 32 extra cycles) per iteration of
the inner loop.
To recap, this inner loop is hand-unrolled code which
computes 64 updated complex numbers, as the result of
32 individual butterfly operations. Thus, the amortized
cost of these trig identities was half a cycle per updated
complex number, in each of the eight SPEs.

Data Interleaving/Offsets
The off-chip memory accessed by the CBE is organized
into 16 “memory banks,” such that the first 128 bytes of
memory are in bank 0, the next 128 bytes are in bank 1,
etc., cycling back to bank 0 every 2048 bytes. Since our
large arrays of data are all naturally aligned on boundaries
in bank 0, and since we have eight SPEs, we found that
we were frequently accessing eight of the sixteen memory
banks very heavily, and essentially ignoring the other
eight, for long periods of time.
We discovered that if we aligned the beginning of the
arrays so that the arrays of real data started with bank 0,
and the arrays of imaginary data started with bank 8, we
achieved a more balanced utilization of memory
bandwidth, and a significant improvement in
performance.

Results

Source Code Size
The C code (including unrolled SPE intrinsics) which
implements all of the processing of 8192-element subsets
of the array adds up to around 460 lines of code (not
including the declarations of the sin and cos lookup
tables).
The C code which implements all of the DMA activity,
including double-buffering, adds up to around 130 lines
of code.

Object Code Size
The resulting executable code on each SPE fits within 39
kbytes, and the arrays occupy 198 kbytes, for a total size
of 237 kbytes (out of a maximum available space of 256
kbytes).

Accuracy
The input array is filled with a simple real-only function:
 f(x) = 7.0 + sin(x) + cos(2x)
(Of course, any function would suffice, as the amount of
computation does not depend on the values being
processed)
After processing through a full cycle (time domain to
frequency domain, and back again) the results are
compared with the original function. The error envelope
is as follows:
 real: (-0.000008, 0.000006)
 imaginary: (-0.000004, 0.000004)

Performance
The code was executed on a 3.2 GHz Cell BE in our lab
in Austin. We determined that one execution of this FFT
required 0.043 seconds of clock time.

0

10

20

30

40

50

Performance Comparison

GFLOPS 1.20 1.55 46.80

Leading Brand @2GHz Pow er 5 @1.65GHz CBE @3.2GHz

Using the standard “5 N log N” metric for FFT floating-
point operations, we computed that this corresponds to
46.8 GFlops/second.
Matteo Frigo of IBM Research, co-creator of the FFTW
subroutine library, reports that a 1.65 GHz Power5 can
compute this FFT in 1.3 seconds using the FFTW library,
which corresponds to 1.55 GFlops.
He also provided a performance result on a leading brand
workstation, running at 2.0 GHz. That machine computed
this FFT (using the FFTW library) in 1.7 seconds, or 1.2
GFlops (see chart).

References
[Bailey88] David H. Bailey, “A High-Performance FFT
Algorithm for Vector Supercomputers”, Intl. Journal of
Supercomputer Applications, vol.2, no. 1, 1988
[CBEA05] Cell Broadband Engine Architecture
Document, 2005
[Hegland94] Markus Hegland, “A self-sorting in-place
fast Fourier transform algorithm suitable for vector and
parallel processing”, Numerische Mathematik, 68, 1994

Authors
Alex Chunghen Chow is a senior programmer and a
software development manager in the STI Design Center
(Austin, Texas). He leads a team developing workloads,
libraries, demo, and samples for the CBE chip bring-up.
He received a BS and MS degrees in electronic
engineering from National Chiao-Tung University,
Taiwan. He also received a Ph.D. degree from the
University of Arizona in electrical and computer
engineering. His fields of work include discrete event
simulation, distributed and parallel
simulation/programming, and object-oriented
programming and framework.
Gordon C. Fossum graduated from the University of
Illinois at Urbana-Champaign with a BS in Math and
Computer Science. He received a Master's degree from
the University of California, Berkeley. He has been
employed by IBM in Austin, Texas, for the past 17 years,
the majority of which was spent working in workstation
graphics software. He enjoys any opportunity to force the
bits and bytes to submit to his authority, and is a big fan
of the Cell Broadband Engine.
Daniel A. Brokenshire is a senior technical staff member
in the STI Design Center (Austin, Texas). His
responsibilities include the development of programming
standards, language extensions, and reusable software
libraries for the CBE. He received a BS in computer
science and BS and MS degrees in electrical engineering,
all from Oregon State University.

© IBM Corporation 2005
IBM Corporation
Systems and Technology Group
Route 100
Somers, New York 10589

Produced in the United States of America
May 2005
All Rights Reserved

This document was developed for products and/or
services offered in the United States. IBM may not offer
the products, features, or services discussed in this
document in other countries.

The information may be subject to change without notice.
Consult your local IBM business contact for information
on the products, features and services available in your
area.

All statements regarding IBM future directions and intent
are subject to change or withdrawal without notice and
represent goals and objectives only.

IBM, the IBM logo, Power Architecture, are trademarks
or registered trademarks of International Business
Machines Corporation in the United States or other
countries or both. A full list of U.S. trademarks owned by
IBM may be found at:

http://www.ibm.com/legal/copytrade.shtml.

IEEE and IEEE 802 are registered trademarks in the
United States, owned by the Institute of Electrical and
Electronics Engineers. Other company, product, and
service names may be trademarks or service marks of
others.

Photographs show engineering and design models.
Changes may be incorporated in production models.
Copying or downloading the images contained in this
document is expressly prohibited without the written
consent of IBM

All performance information was determined in a
controlled environment. Actual results may vary.
Performance information is provided “AS IS” and no
warranties or guarantees are expressed or implied by IBM

THE INFORMATION CONTAINED IN THIS
DOCUMENT IS PROVIDED ON AN "AS IS" BASIS.
In no event will IBM be liable for damages arising
directly or indirectly from any use of the information
contained in this document.

