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Abstract 
The Cell Broadband Engine (CBE, shortname “Cell”) is a 
nine-core implementation of the Cell Broadband Engine 
Architecture (CBEA), including a 64-bit Power Processor 
Element (PPE) and eight Synergistic Processor Elements 
(SPEs).  We apply this processor’s computational power 
to the calculation of a large FFT, comprising 16 million 
(224) single-precision complex samples.  We present an 
overview of the CBE, discuss Cell code development 
methodology, explore the challenges and the tradeoffs of 
this particular task, describe some implementation details, 
and present results. 
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Introduction 
The key to effective utilization of the CBE is to distribute 
any computational task efficiently and effectively over the 
eight SPEs. We describe our successful effort to do this 
on the chosen FFT problem.  Our approach considers 
many factors in order to maximize FFT computation 
speed. A modified stride-by-1 algorithm proposed by 
David H. Bailey in 1986 based on Stockham self-sorting 
FFT is chosen. The stride-by-1 characteristic allows the 
FFT array to be partitioned naturally, without data 
rearrangement, into vectors that can be executed in 
parallel by SIMD instructions. To minimize consumption 
of memory bandwidth, the number of contiguous sample 
points is set at 32, which matches the granularity of 
system storage DMA access.  (We’ll call these minimum-
size parcels of memory access “memory lines”).  Since 
we can further unroll the 4-way SIMD instructions by a 
factor of 8, and thereby schedule all instructions into 
pipelines without incurring any data dependency stalls, 
the choice of 32 words as a memory granularity is 
especially serendipitous. 
A matrix transpose is needed at some point to preserve the 
availability of these 32-word memory lines as contiguous 
samples. This approach performs the transposition 
efficiently by using SPE shuffle-byte instruction and 
carefully chosen DMA destination addresses part-way 

through the execution of the algorithm. A double-
buffering scheme is used to hide DMA latencies. A proper 
number of Radix-2 FFT stages (butterfly stages) are 
performed on each batch of elements read in to the SPE to 
ensure that the computation time is not overwhelmed by 
the memory access time. Finally, the tasks are uniformly 
distributed across the SPEs in a way that minimizes the 
need for synchronization. 
Our performance numbers demonstrates that the GFLOPS 
achieved by this FFT implementation are more than an 
order of magnitude better than the current generation of 
desktop computers at the same clock rate. 

Overview of Cell Broadband Engine 
Many on-chip computational resources are available to 
Cell programmers. [CBEA05] 

The CBE provides more than eight times the compute 
power of traditional single-core processors. Its SIMD 
engines are de-coupled from the traditional processor core 
for growth and scalability. The computational cores 
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include a PPE and eight SPEs. A data ring with a huge 
communication bandwidth connects the cores, system 
memory, and external I/O components together. 
The PPE provides the capability for traditional 
computation. It has an in-order instruction execution 
design to reduce the circuit complexity for smaller chip 
area and less power consumption. The instructions are 
dual-issued. The core also supports dual thread SMT to 
improve performance. In addition, the core is equipped 
with a VMX engine. 
The eight SPEs provide the scalable computational 
capacity. The SPE architecture and instruction set support 
up to 16-way SIMD to exploit data parallelism. Each SPE 
has its dedicated set of resources. Its 128 128-bit vector 
registers provide compilers or low-level programmers 
with a generous register set for frequently used variables. 
The address architecture of each SPE contains a 256-
kilobyte memory space called local store. This local store 
is placed physically next to the SPE core. Such closeness 
gives the SPE core a 51.2 GBs per second bandwidth for 
both instruction fetching and data load/store. 
Each SPE core is equipped with a DMA controller. This 
controller allows an SPE to exchange data between its 
local store and any resources connected to the data ring – 
e.g. system memory, local stores of other SPEs, and I/O 
components. In addition, the DMA controller also has a 
collective 51.2 GBs per second bandwidth into the 
Element Interconnect Bus (EIB). 

Common Cell Software Design Considerations 
A Cell programmer must consider the following factors 
when developing a CBE program in order to exploit the 
many computational resources. 
A CBE by its nature is a multi-core parallel processing 
system. The existing practice of parallel programming is 
readily applicable.  
A Cell programmer should consider two levels of 
parallelism granularity. One is the data level parallelism 
supported by the SIMD and VMX instructions.  Each 
SIMD instruction operates on a full 128-bit register, so 
depending on the size of the data, a single SIMD 
instruction may be able to process 16 elements at the 
same time. The other level of granularity is the task level 
parallelism supported by the nine heterogeneous cores.  
The SPE DMA data transfer overhead among the 
resources is a critical design consideration for 
performance. Transferring large amount of data with a 
DMA controller takes up time. In some cases, the latency 
is larger than the time required for an SPE to process the 
data itself. By overlapping the DMA transaction and the 
SPE’s instruction execution, a Cell programmer can 
effectively hide the DMA latency and improve the 
performance of a program. 

The SPE DMA transfer has a granularity and alignment of 
128 bytes. To utilize bandwidth effectively, the 
programmer is encouraged to align the data to 128-byte 
boundaries and transfer data in multiples of 128 bytes. 
The size of the local store is also a factor to consider. 
Considering the program performance and development 
cost, it is desirable to have the working set of an SPE 
program resides completely in the 256 KB local store.  In 
the STI Design Center, we have developed samples and 
workloads in many application domains that fit in the 
local store.  However, if needed, programming techniques 
such as code/data overlay or software data cache can still 
be applied. Some advanced compilers, e.g. a CBEA-
enabled prototype xlc compiler for SPE, can generate 
software cache code automatically. 

Typical Cell Programming Models 
The CBEA is capable of supporting many programming 
models effectively. Depending on the characteristics of an 
application, one programming model may be more cost-
effective than others. 
The heterogeneous nature of the PPE and SPE cores 
mandates that the SPE executable and call stack be 
different from the PPE ones. A compiler and operating 
system runtime may further build a shared-memory 
abstraction on top of this SPE thread model. 
However, early Cell programmers have found this model 
to be very intuitive and effective especially when 
developing new parallel programs. A given operating 
system may alternatively expose an SPE core as a device. 
This model is simpler when porting an existing 
application where the main structure of the program will 
not alter much and the interaction between the device and 
the rest of the program can be effectively modeled as 
device I/O. A programmer can then off-load a function 
directly to the SPE device. With limited sharing between 
the main program and the device, the message passing or 
streaming programming model may arguably be a natural 
abstraction on top of this low level model. 
Regardless of which low-level model the kernel exposes, 
an SPE runtime management library usually provides a 
Cell programmer enough facility, among the other 
necessities, to load, start, communicate with, and stop a 
SPE program. 

An Effective Cell Software Development Flow 
Early Cell programmers adopted a series of development 
stages that are very effective. Certain stages may be 
optional depending on the need of a particular application. 
• Algorithm complexity study – 

The algorithms of a program must be studied in detail 
to understand the characteristics of its parallelism. In 
particular, the programmer needs to understand the 
computational overhead of executing on an SPE or 



PPE either in SIMD or scalar code. This stage 
provides a set of possible parallelizable partitions and 
mappings from computation to the available 
resources. 

• Communication analysis – 
For a possible mapping or partition of the 
computation task, a programmer can analyze the 
required communication. This provides additional 
information for a proper partitioning and mapping. 

•  Experimental partitioning and mapping – 
Possible programming models, load balancing, 
computational overhead, and DMA latencies are 
common factors used to determine an initial partition 
and mapping. An on-paper experiment against the 
available resource is usually sufficient as a base for 
subsequent stages. 

• PPE control program / PPE scalar code – 
Developing the algorithm in scalar code provides the 
programmer not only a base program structure but 
also a deeper understanding of the algorithm. The 
scalar code can be further used as a verification tool 
for subsequent parallelization.  

• SPE scalar code replacement – 
Partition-able PPE code segments can be replaced by 
SPE scalar code. This stage allows the programmer to 
develop the communication, synchronization, and 
latency hiding functions. This stage can display the 
performance improvement from the task level 
parallelism. 

• SPE SIMD code development – 
The programmer re-implements the SPE scalar code 
in SIMD to exploit the data parallelism. This can give 
another boost of performance. 

• Partitioning / Mapping re-balance – 
In some cases, the partitioning and mapping needs to 
be re-adjusted to balance the computational and 
memory bandwidth requirements. 

• Other optimization considerations – 
Many times a particular algorithm may not use all 
SPEs equivalently. Load balancing and bottleneck 
removal are common Cell programming practice. In 
addition, the VMX engine in the PPE core can give 
another opportunity for performance improvement. 

The FFT Example: Challenges 
The Fast Fourier Transform (FFT) is one of the most 
important algorithms in the last several decades. Its 
applications range from image and signal processing to 
partial differential equations (PDEs). With a multi-core 
SIMD implementation of the CBEA, the CBE has the 
capacity to perform huge computational tasks on a single 
chip. 
We use an example of a large FFT implementation of 
16,777,216 (224) single-precision complex numbers to 

demonstrate this capacity. The real and imaginary parts of 
the input data are stored as two separate arrays - a total of 
128 MB of memory requirement just for input data.  
Furthermore, we maintain a working array of the same 
size in main memory, as we chose to not implement an in-
place solution. 
Such a large FFT implementation offers several 
performance challenges both to traditional processors and 
to the CBE.  
• The large data array cannot fit into the on-chip cache or 

on-chip memory. For a CBE, we have eight 256 KB 
“local stores”, one for each SPE (total: 2 MB). It is 
inevitable that we have to stream the data between 
the system memory and local stores multiple times 
during the algorithm execution. 

• The I/O bandwidth required to reading and writing 
to/from main memory after each butterfly cycle, 
running simultaneously on all eight SPEs will far 
exceed the 25.6 GB/s bandwidth of the CBE. 
Performance is capped by the memory bandwidth if 
we do not increase the amount of work done on each 
batch of data collected from main memory. We 
conclude that multiple butterfly stages should be 
performed in each SPE, to avoid being memory-
bound. 

• The data decimation (either decimation-in-time or 
decimation-in-frequency) of an FFT implementation 
introduces data access inefficiency if we wish to read 
and write our data in 128-byte parcels. When the 
granularity of the access irregularity falls below this 
DMA transfer granularity, large memory-access 
inefficiencies result. 

Addressing the Challenges 
We developed a variation on the stride-by-1 algorithm 
proposed by David H. Bailey [Bailey88] based on the 
Stockham self-sorting FFT. Hegland also described the 
same index bit manipulation basis for this class of 
techniques [Hegland94]. It specifically solves the data-
granularity difficulty by performing index-bit permutation 
at the end of each radix-2 butterfly stage. 
In order to reduce the memory bandwidth requirement, 
we bundle the butterfly stages into groups of eight, so that 
each SPE can read in a batch of data, perform eight full 
stages of butterfly operations on it before writing out a 
batch of result data. 
We solve the data decimation problem by performing a 
series of 4x4 matrix transpositions in local store before 
writing out the results at the end of the first bundle of 
eight butterfly cycles (effectively implementing a 2-D 
matrix transposition on a 256x65536 matrix 
representation of the 224 array). 
The manipulation on the 24-bit array indices is 
summarized in the following table.  



Basic Algorithm illustration – 24-bit index bit manipulation
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Stage 1
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

01 00 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Stage 2

02 01 00 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Stage 3

03 02 01 00 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Stage 4

07 06 05 04 03 02 01 00 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Stage 8

08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 07 06 05 04 03 02 01 00
2D Matrix Trans.

09 08 10 11 12 13 14 15 16 17 18 19 20 21 22 23 07 06 05 04 03 02 01 00
Stage 9

10 09 08 11 12 13 14 15 16 17 18 19 20 21 22 23 07 06 05 04 03 02 01 00
Stage 10

23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
Stage 23

Stage 24
23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00  

Each stage represents a Radix-2 butterfly stage. The 2-D 
matrix transposition may be placed between any two 
stages where the data decimation is above the required 
data granularity. 

Array Index Permutation Implementation Details 
To recapitulate, the basic solution is to perform a series of 
24 butterfly stages (indexed 0 through 23) on a large array 
(each cycle consisting of 223 traditional radix-2 
butterflies), and write the data back out to memory in a 
permuted fashion such that if a word is read in from array 
index 
b0b1be…bi…b22b23  
at the beginning of butterfly cycle i, then we compute the 
output array index to be 
bib0b1b2…bi-1bi+1…b22 b23 
and we store the data to that location at the end of the 
butterfly cycle. 
The first improvement derives from the fact that if we 
read 512 well-chosen memory lines into local store (256 
real, 256 imaginary), we can perform eight full butterfly 
stages on the resulting 8192 complex samples, and write 
out the memory lines in permuted fashion, as long as we 
don’t permute the bottom five bits.  This function (taking 
8192 samples and performing an octet of butterfly stages 
on them) forms the core of our SPE processing.  Note that 
by organizing the algorithm in this fashion, we can do the 
entire FFT by touching each memory location exactly six 
times (three reads and three writes). 
We call these large operations (the first, second and third 
octets of butterfly stages) “megastages,” labeling them 
Megastage A, Megastage B and Megastage C. 
Within each megastage, each of the eight SPEs will be 
responsible for one eighth of the elements of the array, 

and can process its portion by looping 256 times, 
processing 8192 elements in each loop iteration. 
One complication of this is that it is necessary to permute 
the bottom five bits at some point, and we choose to do 
that within the SPE before we write out the results of 
processing each batch of 8192 elements in Megastage A. 
To see the effect of each megastage on the locations of 
the data in the large array, let’s re-name the 24 bits in the 
address space as 
a0a1a2a3a4a5a6a7b0b1b2b3b4b5b6b7c0c1c2c3c4c5c6c7 
After the “internal part” of Megastage A, the addresses 
would be reversed in the first 8 bits:  
a7a6a5…a0b0b1b2…b7c0c1c2…c7 
but with judicious use of 4x4 transposes, we are able to 
write the data out to memory at the address of index 
b0b1b2…b7c0c1c2…c7a7a6a5…a0 
Megastage B reads this address in, and writes it out to 
location 
c0c1c2…c7b7b6b5…b0a7a6a5…a0 
Megastage C reads this address in, and writes it out to 
location 
c7c6c5…c0b7b6b5…b0a7a6a5…a0 
and we have succeeded in completely reversing (or bit-
mirror-imaging) the address. 
Let us summarize the algorithm: 
Eight SPEs operating in parallel, executing Megastage A, 
Megastage B and Megastage C, synchronizing at the end 
of each Megastage. 
Each megastage comprises, for each SPE, a loop of 256 
code blocks consisting of the following three operations: 

• read in 8192 array elements 
• perform eight sets of butterfly stages on these 

elements 
• write out the resulting elements to a permuted 

address 
(Megastage A includes the matrix transforms referred to 
in the preceding figure.) 

Other Implementation Details 
There are six components to this implementation which 
we shall explore further: synchronization, DMA, Multi-
Buffering, Loop Unrolling and 4-way SIMD, Twiddle 
Factors, and data interleaving/offsets. 

Synchronization  
The three megastages (Megastage A, Megastage B, and 
Megastage C) need to be kept separate.  For example, we 
can’t have any SPEs start processing their Megastage B 
function until all SPEs have successfully written out their 
Megastage A results.   



Several features exist in the CBEA to implement this.  We 
chose to use simple message passing between the SPEs 
and the PPE, since the PPE is not otherwise occupied.   
So, the PPE waits to hear from all eight SPEs that they 
have finished Megastage A, and then the PPE sends 
messages to all eight SPEs indicating that they can now 
begin processing Megastage B. 

DMA  
The operations of reading in and writing out the 8192 
array elements are implemented by reading and writing 
512 128-byte memory lines (256 real, 256 imaginary).  
This happens to be the native size of read and write 
blocks on the CBEA, so we achieve optimal DMA 
bandwidth usage.   
The first task in this process computes a list of addresses 
and lengths, and submits that list to the DMA engine.  
(The DMA engine can accept a wide variety of lengths, 
but for this algorithm, the lengths will always be specified 
as 128 bytes.)   
The resulting two blocks of data (32KB real and 32KB 
imaginary) which are delivered by the DMA engine reside 
in the local store of the SPE, and can then be accessed in 
fully pipelined fashion by the butterfly code.  
After the octet of butterfly cycles is complete, the 
resulting data is written back out to main memory, using a 
second DMA list (addresses and lengths), which is also 
generated during this process. 

Multi-Buffering  
The latency for loading and storing these 32KB blocks of 
data into the local store is large (several thousands of SPE 
cycles) so we implement a multi-buffering scheme which 
allows us to fully hide these DMA cycles behind the 
butterfly processing.  
While the butterfly code is processing block n, the DMA 
engine is loading the data for butterfly block n+1, and 
writing out the data for block n-1.  

Loop Unrolling and 4-Way SIMD 
The latency for most SPE instructions is four or six SPE 
cycles.  However, single-precision operations are fully 
pipelined, so we manually unroll our butterfly processing 
loops by a factor of eight, to ensure that the compiler can 
achieve this full pipelining without incurring any stalls 
from data dependencies. 
Everything in the SPEs is done in quadword (16 byte) 
granularity.  For single-precision floats, that corresponds 
to 4-way SIMD operation. 
Since the butterfly operations are always accessing pairs 
of elements in the data arrays which are separated by a 
multiple of four elements (that is, the bottom two bits of 
their indices match), we can code the entire octet of 
butterfly stages in full 4-way SIMD. 

Note that the 8-way loop unrolling and the 4-way SIMD 
lead us to process 32 butterflies in one iteration of the 
inner loop.  Recall that each butterfly operation takes two 
complex numbers as input, and outputs two updated 
complex numbers.  So, that’s 16 bytes input and 16 bytes 
output per butterfly, or 1 kbyte of memory bandwidth per 
inner loop. 

Twiddle Factors 
We had several choices, regarding the “twiddle factors.”  
We could pre-compute them all, and read them in as 
needed, we could compute them all on the fly, as part of 
the SPE code, or we could do some combination of the 
two, reducing the number of table lookups to the point 
that they will fit in the SPE, and not require bandwidth 
to/from main memory, and taking advantage of 
trigonometric identities, to simplify the task.  We chose 
this third option, as it represented both a minimal increase 
in memory bandwidth and computation cycles. 
The data size for the pre-computed sin and cos arrays 
added up to 6k on each SPE (out of 256k total).  In 
Megastage A, the twiddle factor granularity was coarse 
enough that we could use these pre-computed numbers 
directly, with no additional computations.  In Megastages 
B and C, we needed to compute eight sin and eight cos 
values for every 8192 elements processed.  The required 
work to compute the trigonometric identities which fine 
tune these results add up to 48 extra floating point 
operations  (at a cost of 32 extra cycles) per iteration of 
the inner loop. 
To recap, this inner loop is hand-unrolled code which 
computes 64 updated complex numbers, as the result of 
32 individual butterfly operations.  Thus, the amortized 
cost of these trig identities was half a cycle per updated 
complex number, in each of the eight SPEs. 

Data Interleaving/Offsets 
The off-chip memory accessed by the CBE is organized 
into 16 “memory banks,” such that the first 128 bytes of 
memory are in bank 0, the next 128 bytes are in bank 1, 
etc., cycling back to bank 0 every 2048 bytes.  Since our 
large arrays of data are all naturally aligned on boundaries 
in bank 0, and since we have eight SPEs, we found that 
we were frequently accessing eight of the sixteen memory 
banks very heavily, and essentially ignoring the other 
eight, for long periods of time.  
We discovered that if we aligned the beginning of the 
arrays so that the arrays of real data started with bank 0, 
and the arrays of imaginary data started with bank 8, we 
achieved a more balanced utilization of memory 
bandwidth, and a significant improvement in 
performance. 



Results 

Source Code Size 
The C code (including unrolled SPE intrinsics) which 
implements all of the processing of 8192-element subsets 
of the array adds up to around 460 lines of code (not 
including the declarations of the sin and cos lookup 
tables). 
The C code which implements all of the DMA activity, 
including double-buffering, adds up to around 130 lines 
of code. 

Object Code Size 
The resulting executable code on each SPE fits within 39 
kbytes, and the arrays occupy 198 kbytes, for a total size 
of 237 kbytes (out of a maximum available space of 256 
kbytes). 

Accuracy 
The input array is filled with a simple real-only function: 
   f(x) = 7.0 + sin(x) + cos(2x) 
(Of course, any function would suffice, as the amount of 
computation does not depend on the values being 
processed) 
After processing through a full cycle (time domain to 
frequency domain, and back again) the results are 
compared with the original function.  The error envelope 
is as follows: 
   real: (-0.000008, 0.000006) 
   imaginary: (-0.000004, 0.000004) 

Performance 
The code was executed on a 3.2 GHz Cell BE in our lab 
in Austin.  We determined that one execution of this FFT 
required 0.043 seconds of clock time. 
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Using the standard “5 N log N” metric for FFT floating-
point operations, we computed that this corresponds to 
46.8 GFlops/second. 
Matteo Frigo of IBM Research, co-creator of the FFTW 
subroutine library, reports that a 1.65 GHz Power5 can 
compute this FFT in 1.3 seconds using the FFTW library, 
which corresponds to 1.55 GFlops. 
He also provided a performance result on a leading brand 
workstation, running at 2.0 GHz.  That machine computed 
this FFT (using the FFTW library) in 1.7 seconds, or 1.2 
GFlops (see chart).  
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