Minimal Complex Analysis

- Complex function: A mapping from a complex variable $z=x+i y(i=\sqrt{-1})$ to a complex number $f(z) \in \mathbf{C}$.
- Differentiation: A complex function $f(z)$ at z is differentiable if the quantity

$$
\frac{f(z+\delta z)-f(z)}{\delta z}
$$

converges to a unique value as $\delta z \rightarrow 0$, independent of how $\delta z=\delta x+i \delta y$ approaches 0 (i.e., independent of the ratio $\delta x / \delta y$). Then the derivative of $f(z)$ is defined as

$$
\begin{equation*}
\frac{d f}{d z}=f^{\prime}(z) \equiv \lim _{\delta z \rightarrow 0} \frac{f(z+\delta z)-f(z)}{\delta z} . \tag{1}
\end{equation*}
$$

- Cauchy-Riemann conditions: Let

$$
\begin{equation*}
f(z)=\operatorname{Re} f(z)+i \operatorname{Im} f(z)=f_{1}(x, y)+i f_{2}(x, y), \tag{2}
\end{equation*}
$$

then $f(z)$ is differentiable at z if the following conditions are satisfied:

$$
\begin{equation*}
\frac{\partial f_{1}}{\partial x}=\frac{\partial f_{2}}{\partial y}, \frac{\partial f_{1}}{\partial y}=-\frac{\partial f_{2}}{\partial x} \tag{3}
\end{equation*}
$$

\because

$$
\begin{aligned}
\frac{f(z+\delta z)-f(z)}{\delta z} & =\frac{\frac{\partial f_{1}}{\partial x} \delta x+\frac{\partial f_{1}}{\partial y} \delta y+i\left(\frac{\partial f_{2}}{\partial x} \delta x+\frac{\partial f_{2}}{\partial y} \delta y\right)}{\delta x+i \delta y} \\
& =\frac{\left(\frac{\partial f_{1}}{\partial x}+i \frac{\partial f_{2}}{\partial x}\right)+\left(\frac{\partial f_{1}}{\partial y}+i \frac{\partial f_{2}}{\partial y}\right) \frac{\delta y}{\delta x}}{1+i \frac{\delta y}{\delta x}}
\end{aligned}
$$

By substituting Eq. (3) into the above equation in such a way that all y derivatives are eliminated, we obtain

$$
\frac{f(z+\delta z)-f(z)}{\delta z}=\frac{\left(\frac{\partial f_{1}}{\partial x}+i \frac{\partial f_{2}}{\partial x}\right)+\left(-\frac{\partial f_{2}}{\partial x}+i \frac{\partial f_{1}}{\partial x}\right) \frac{\delta y}{\delta x}}{1+i \frac{\partial y}{\delta x}}=\frac{\frac{\partial f_{1}}{\partial x}\left(1+i \frac{\delta y}{\delta x}\right)+i \frac{\partial f_{2}}{\partial x}\left(1+i \frac{\delta y}{\delta x}\right)}{1+i \frac{\delta y}{\delta x}}=\frac{\partial f_{1}}{\partial x}+i \frac{\partial f_{2}}{\partial x},
$$

which is independent of $\delta x / \delta y . / /$
(Corollary) When the derivative exists, the above proof shows that it is given by

$$
\begin{align*}
f^{\prime}(z) & =f_{1}^{\prime}(x, y)+i f_{2}^{\prime}(x, y) \\
& =\frac{\partial f_{1}}{\partial x}+i \frac{\partial f_{2}}{\partial x} \tag{4}\\
& =\frac{\partial f_{1}}{\partial x}-i \frac{\partial f_{1}}{\partial y}
\end{align*}
$$

The last equality is a consequence of the Cauchy-Riemann condition, Eq. (3), and is useful when complex analysis is used as a means to obtain a gradient of a 2 -dimmensional real function,

$$
\begin{equation*}
\nabla f_{1}(x, y)=\left(\frac{\partial f_{1}}{\partial x}, \frac{\partial f_{1}}{\partial y}\right) \tag{5}
\end{equation*}
$$

(Theorem) The complex power function $f(z)=z^{n}(n=1,2, \ldots)$ is differentiable.
\because Proof by mathematical induction.
(I) $n=1$

Let $f(z)=z=x+i y=f_{1}+i f_{2}$. Then,

$$
\frac{\partial f_{1}}{\partial x}=1=\frac{\partial f_{2}}{\partial y}, \frac{\partial f_{1}}{\partial y}=0=-\frac{\partial f_{2}}{\partial x}
$$

$\therefore z^{1}$ is differentiable.
(II) Assume that $g(x)=z^{k}$ is differentiable, and consider $f(z)=z^{k+1}$.

$$
\begin{aligned}
f(z)=z g(z) & =(x+i y)\left(g_{1}+i g_{2}\right)=\left(x g_{1}-y g_{2}\right)+i\left(x g_{2}+y g_{1}\right)=f_{1}+i f_{2} \\
\frac{\partial f_{2}}{\partial y} & =x \frac{\partial g_{2}}{\partial y}+g_{1}+y \frac{\partial g_{1}}{\partial y} \\
& =x \frac{\partial g_{1}}{\partial x}+g_{1}-y \frac{\partial g_{2}}{\partial x} \quad\left(\because \frac{\partial g_{2}}{\partial y}=\frac{\partial g_{1}}{\partial x} ; \frac{\partial g_{1}}{\partial y}=-\frac{\partial g_{2}}{\partial x}\right) \\
& =\frac{\partial f_{1}}{\partial x} \\
\frac{\partial f_{2}}{\partial x} & =g_{2}+x \frac{\partial g_{2}}{\partial x}+y \frac{\partial g_{1}}{\partial x} \\
& =g_{2}-x \frac{\partial g_{1}}{\partial y}+y \frac{\partial g_{2}}{\partial y} \quad\left(\because \frac{\partial g_{2}}{\partial x}=-\frac{\partial g_{1}}{\partial y} ; \frac{\partial g_{1}}{\partial x}=\frac{\partial g_{2}}{\partial y}\right) \\
& =-\frac{\partial f_{1}}{\partial y}
\end{aligned}
$$

\therefore If z^{k} is differentiable, then z^{k+1} is differentiable.
(III) Recursive application of (II), starting with (I), proves that z^{n} is differentiable for $\forall n \geq 1 . / /$
(Theorem) $\frac{d}{d z} z^{n}=n z^{n-1}$.
\because Proof by mathematical induction.
(I) $n=1$

$$
\frac{\delta z}{\delta z}=\frac{\delta x+i \delta y}{\delta x+i \delta y}=1 .
$$

(II) Assume that Eq. (6) is true for $n=k$, then

$$
\frac{d}{d z} z^{k+1}=\frac{d}{d z}\left(z \cdot z^{k}\right)=z^{k}+z \bullet k z^{k-1}=(k+1) z^{k} .
$$

\therefore If Eq. (6) is true for $n=k$, then it is also true for $n=k+1$.
(III) Recursive application of (II), starting with (I), proves that Eq. (6) is true for $\forall n \geq 1$.//
(Definition) $e^{z} \equiv \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$
(Theorem) e^{z} is differentiable and $\frac{d}{d z} e^{z}=e^{z}$.
\because

$$
\frac{d}{d z}\left(1+z+\frac{1}{2!} z^{2}+\frac{1}{3!} z^{3}+\cdots\right)=1+z+\frac{1}{2!} z^{2}+\cdots=e^{z} . / /
$$

(Definition) $w=\log z$ is defined as the inverse of $z=e^{w}$.
(Theorem) $\log z$ is differentiable and $\frac{d}{d z} \log z=\frac{1}{z}$.
\because

$$
\begin{aligned}
& \delta z=e^{w} \delta w \\
& \therefore \frac{\delta w}{\delta z}=\frac{1}{e^{w}}=\frac{1}{z}
\end{aligned}
$$

(Theorem) $\log (1-z)=-\sum_{k=1}^{\infty} \frac{z^{k}}{k}$.
\because

$$
\begin{gathered}
f(z)=\log (z) \\
f^{(1)}(z)=\frac{d f}{d z}=1 / z \\
f^{(2)}(z)=\frac{d^{2} f}{d z^{2}}=-1 / z^{2} \\
f^{(3)}(z)=2 / z^{3} \\
f^{(4)}(z)=-3!/ z^{4} \\
\vdots \\
f^{(n)}(z)=-(-1)^{n}(n-1)!/ z^{n} \\
\therefore f(1-z)=\sum_{k=0}^{\infty} \frac{f^{(k)}(1)}{k!}(-z)^{k}=-z-\frac{1}{2} z^{2}-\frac{1}{3} z^{3}-\cdots=-\sum_{k=1}^{\infty} \frac{z^{k}}{k} . / /
\end{gathered}
$$

