Minimal Complex Analysis

¢ Complex function: A mapping from a complex variable z = x + iy (i = V-1 ) to a complex number
flz) €C.

* Differentiation: A complex function f(z) at z is differentiable if the quantity
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converges to a unique value as 8z — 0, independent of how 0z = 0x + idy approaches O (i.e.,
independent of the ratio dx/0y). Then the derivative of f(z) is defined as
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¢ Cauchy-Riemann conditions: Let
f(@)=Re f(2) +ilm f(z) = f1(x,y) +if>(x,y), (2)
then f(z) is differentiable at z if the following conditions are satisfied:
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By substituting Eq. (3) into the above equation in such a way that all y derivatives are eliminated, we
obtain
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which is independent of 8x/dy.//

(Corollary) When the derivative exists, the above proof shows that it is given by
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The last equality is a consequence of the Cauchy-Riemann condition, Eq. (3), and is useful when

complex analysis is used as a means to obtain a gradient of a 2-dimmensional real function,
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(Theorem) The complex power function f(z) = 7" (n =1, 2, ...) is differentiable.
* Proof by mathematical induction.
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Let f(z) =z=x+iy=f, + if;. Then,
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.7 is differentiable.
(IT) Assume that g(x) = Z* is differentiable, and consider f(z) = 7'
f(2)=128(2) = (x +iy)(g; +igy) = (xg) — yg2) + i(xgy + yg1) = f1 +if>.
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- If 7" is differentiable, then z*' is differentiable.
(III) Recursive application of (II), starting with (I), proves that 7" is differentiable for Vn > 1.//
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~. Proof by mathematical induction.
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(IT) Assume that Eq. (6) is true for n = k, then
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- If Eq. (6) is true for n =k, then it is also true for n = k+1.

(IIT) Recursive application of (II), starting with (I), proves that Eq. (6) is true for Vn > 1.//
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(Theorem) ¢° is differentiable and dieZ =e". (8)
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(Definition) w = logz is defined as the inverse of z = e".
(Theorem) logz is differentiable and dizlogz = % 9)
0z =e""ow
Jow 11
&z e 2
w
(Theorem) log(1-z)=- Y —. (10)
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