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Minimal Complex Analysis 
 
• Complex function: A mapping from a complex variable z = x + iy (i = 

! 

"1) to a complex number 
f(z) ∈ C. 

• Differentiation: A complex function f(z) at z is differentiable if the quantity 

! 

f (z + "z) # f (z)

"z
 

 converges to a unique value as δz → 0, independent of how δz = δx + iδy approaches 0 (i.e., 
independent of the ratio δx/δy).  Then the derivative of f(z) is defined as 

 

! 

df

dz
= " f (z) #

$z%0
lim

f (z + $z) & f (z)

$z
. (1) 

• Cauchy-Riemann conditions: Let 
 

! 

f (z) = Re f (z) + iIm f (z) = f1(x,y) + if2(x,y) , (2) 

 then f(z) is differentiable at z if the following conditions are satisfied: 
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"f2

"x
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By substituting Eq. (3) into the above equation in such a way that all y derivatives are eliminated, we 
obtain 
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f (z + "z) # f (z)
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$f2
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=
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) 
* 
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=
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$x

+ i
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, 

which is independent of δx/δy.// 

(Corollary) When the derivative exists, the above proof shows that it is given by 

 

! 

" f (z) = " f 1(x,y) + i " f 2(x,y)

=
#f1

#x
+ i
#f2

#x

=
#f1

#x
$ i
#f1

#y

. (4) 
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The last equality is a consequence of the Cauchy-Riemann condition, Eq. (3), and is useful when 
complex analysis is used as a means to obtain a gradient of a 2-dimmensional real function, 

 

! 

"f1(x,y) =
#f1
#x
,
#f1
#y

$ 

% 
& 

' 

( 
)  (5) 

(Theorem) The complex power function f(z) = zn (n = 1, 2, ...) is differentiable. 

  

! 

Q Proof by mathematical induction. 
(I) n = 1 

Let f(z) = z = x + iy = f1 + if2.  Then, 

! 

"f1

"x
=1=

"f2

"y
,

! 

"f1

"y
= 0 = #

"f2

"x
 

∴z1 is differentiable. 

(II) Assume that g(x) = zk is differentiable, and consider f(z) = zk+1. 

! 

f (z) = zg(z) = (x + iy)(g1 + ig2) = (xg1 " yg2) + i(xg2 + yg1) = f1 + if2 . 
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∴If zk is differentiable, then zk+1 is differentiable. 

(III) Recursive application of (II), starting with (I), proves that zn is differentiable for ∀n ≥ 1.// 

(Theorem) 

! 

d

dz
z
n

= nz
n"1. (6) 

  

! 

Q Proof by mathematical induction. 
(I) n = 1 

! 

"z

"z
=
"x + i"y

"x + i"y
=1. 

(II) Assume that Eq. (6) is true for n = k, then 

! 

d

dz
z
k+1 =

d

dz
z • zk( ) = zk + z • kzk"1 = (k +1)zk . 
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∴If Eq. (6) is true for n = k, then it is also true for n = k+1. 

(III) Recursive application of (II), starting with (I), proves that Eq. (6) is true for ∀n ≥ 1.// 

(Definition) 
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(Theorem) ez is differentiable and 
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d
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2

+L = e
z .// 

(Definition) w = logz is defined as the inverse of z = ew. 

(Theorem) logz is differentiable and 
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d

dz
log z =

1

z
. (9) 
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Q 
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z
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(Theorem) 
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log(1" z) = "
z
k

k
k=1

#

$ . (10) 
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f (z) = log(z)
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