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Diane J. Cook and Lawrence B. Holder, University of Texas at Arlington

THE LARGE AMOUNT OF DATA 
collected today is quickly overwhelming re-
searchers’ abilities to interpret the data and
discover interesting patterns in it. In response
to this problem, researchers have developed
techniques and systems for discovering con-
cepts in databases.1–3 Much of the collected
data, however, has an explicit or implicit
structural component (spatial or temporal),
which few discovery systems are designed
to handle.4 So, in addition to the need to
accelerate data mining of large databases,
there is an urgent need to develop scalable
tools for discovering concepts in structural
databases.

One method for discovering knowledge in
structural data is the identification of com-
mon substructures within the data. Sub-
structure discovery is the process of identi-
fying concepts describing interesting and
repetitive substructures within structural
data. The discovered substructure concepts
allow abstraction from the detailed data
structure and provide relevant attributes for
interpreting the data.

The substructure discovery method is the
basis of Subdue, which performs data mining
on databases represented as graphs. The sys-
tem performs two key data-mining tech-
niques: unsupervised pattern discovery and
supervised concept learning from examples.
Our test applications have demonstrated the
scalability and effectiveness of these tech-
niques on a variety of structural databases.

Unsupervised concept
discovery

Subdue discovers substructures that com-
press the original data and represent struc-
tural concepts in the data. The substructure
discovery system represents structural data
as a labeled graph. Objects in the data map
to vertices or small subgraphs in the graph,
and relationships between objects map to
directed or undirected edges in the graph. A
substructure is a connected subgraph in the
graphical representation. An instance of a
substructure is a set of vertices and edges
from the input graph that match—graph the-
oretically—the substructure’s graphical rep-
resentation. This graphical representation
serves as input to the substructure discovery
system. Figure 1 shows a geometric exam-
ple of a database. It also shows the graph rep-
resentation of the discovered substructure
and highlights one of the four instances of
the substructure.

Subdue’s substructure discovery algorithm
is a beam search. Figure 2 shows the algo-
rithm. The first step initializes ParentList
(substructures to be expanded), ChildList
(substructures that have been expanded), and
BestList (the highest-valued substructures
found so far) as empty. It also sets Processed-
Subs (the number of substructures expanded
so far) to 0. Each list is a linked list of sub-
structures, sorted in nonincreasing order by
substructure value. For each unique vertex
label, Subdue assembles a substructure
whose definition is a vertex with that label
and whose instances are all the vertices in
input graph G with that label. Each sub-
structure is inserted in ParentList.

The inner while loop is the algorithm’s
core. It removes each substructure in turn
from the head of ParentList, and extends each
of the substructure’s instances in all possible
ways. It does this either by adding a new edge
and vertex in G to the instance or by adding
a new edge between two vertices if both ver-
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tices are already part of the instance. The first
instance of each unique expansion becomes a
definition for a new child substructure.All the
child instances that were expanded in the
same way (by adding the same new edge or
new edge with new vertex to the same old ver-
tex) become instances of that child substruc-
ture. In addition, child instances generated by
different expansions that match the child sub-
structure definition within the match-cost
threshold (described later) become instances
of the child substructure.

Subdue then evaluates each child, using
the minimum description length (MDL)
heuristic, and inserts each child in ChildList
in order of its heuristic value. The algorithm
enforces the search’s beam width by con-
trolling ChildList’s length. After inserting a

new child in ChildList, if ChildList’s length
exceeds BeamWidth, the system destroys the
substructure at the end of the list. The parent
substructure is inserted in BestList, and the

same pruning mechanism limits BestList to
be no longer than MaxBest. When ParentList
is empty, the algorithm switches ParentList
and ChildList, so that ParentList now holds
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In this continuation of our special
issue on data mining, we present
four articles that deal with mining
nontraditional forms of data. Two
articles deal with text mining. Sho-
lom Weiss, Brian White, Chidanand
Apte, and Fredrick Damerau show
that simple and fast document
matching can effectively assist help-
desk applications in matching prob-
lem descriptions to relevant stored
solution descriptions. Kurt Bollaker,
Steve Lawrence, and C. Lee Giles
present their Web-based CiteSeer
system that finds user-specific scien-

tific documents in the documents that are preprocessed and stored in a local
database. The system learns the user profile from the interactions and uses it
as an agent to monitor new documents that might interest the user.

Two articles describe new techniques. Neal Lesh, Mohammed Zaki, and
Mitsunori Ogihara find frequent subsequence patterns that help classify a
sequence, such as DNA, into different classes of sequences. Their Feature-
Mine system efficiently examines subsequences to select a drastically pruned
feature set. The article by Diane Cook and Lawrence Holder deals with data
mining graph-structured data, such as CAD diagrams and chemical structures.
Their Subdue system uses a beam search to discover substructures (features)
that efficiently describe the given set of structures based on the MDL princi-
ple. Both of these new techniques discover useful features from the source
data that are not the flat tables typically found in popular databases, which dis-
criminate or describe such data.

The earlier issue

In the first part of this two-part special issue on data mining that ran in
our November-December 1999 issue, Gregory Piatetsky-Shapiro described
the growing community of data mining in his “Expert Opinion” column.
Data mining is becoming an indispensable decision-making tool in the ever
more competitive business world. And challenging applications inspire
new techniques and affirm their utility.

Two articles by Simon Kasif and Steven Salzberg discussed data mining

in the exciting field of computational biology, where frequent pattern dis-
covery, clustering, and classification all play crucial roles in understanding
protein structures and their functions.

Several articles represented innovative data-mining applications in more
traditional domains with conceptually flat data tables. Chidanand Apte,
Edna Grossman, Edwin Pednault, Barry Rosen, Fateh Tipu, and Brian
White have developed a specialized probabilistic model for auto insurance
pure premium—that is, the expected claim amount for each policy holder
that meets the strict actuarial requirement. Special attention is given to
missing values and the model’s scalability. Sylvain Létourneau, Fazel
Famili, and Stan Matwin described the entire process of modeling failing
aircraft components, from gathering data and generating serious models to
evaluating them using a domain-specific scoring function. Extensive exper-
iments seem to show that the nearest-neighbor method does best for most
parts. Philip Chan, Wei Fan, Andreas Prodromidis, and Salvatore Stolfo
apply a specialized boosting technique to credit card fraud detection for
scalability and enhanced utility of the model. Cost savings thus achieved
demonstrate the improved accuracy of multiple models while providing a
scalable fast model generation on a very large data set.

—David Waltz and Se June Hong, Guest Editors
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Data Mining: A Long-Term Dream Continues
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Figure 1. Example substructure in graph form: (a) input graph; (b) substructure.



the next generation of substructures to be
expanded.

The BeamWidth and Limit (a user-defined
limit on the number of substructures to
process) parameters, along with computa-
tional constraints on the inexact graph match
algorithm, constrain Subdue to a polynomial
running time.

Another user-specified parameter, Max-
SubSize, determines whether the algorithm
prunes the discovery search space by dis-
carding a child substructure whose heuristic
value is not greater than its parent’s heuristic
value. Early in the discovery process, the
number of a given substructure’s instances is
very large, and it dominates the value of any
heuristic that uses the number of instances as
a parameter. As the substructure grows, its
number of instances decreases quickly
because the substructure is becoming more
specific. This means that the heuristic value
also usually decreases early in the discovery
process. If it decreases for a sufficiently long
period, all the child substructures will be dis-
carded, ParentList will empty, and discovery
will halt. Disabling pruning during discov-
ery keeps ChildList full, even for substruc-
ture values that do not increase monotoni-
cally as the substructure definition grows.

Because ParentList never empties, another
method for halting the program is needed. If
the user specifies a maximum substructure
size (MaxSubSize), larger child substructures
will not be inserted in ChildList. As a result,
ParentList and ChildList will eventually
empty, and the discovery algorithm will halt.

Once a substructure is discovered, Subdue
uses it to simplify the data by replacing
instances of the substructure with a pointer
to the newly discovered substructure. Dis-
covered substructures allow abstraction from
detailed structures in the original data.
Through iteration of the substructure dis-
covery and replacement process, Subdue
constructs a hierarchical description of the
structural data in terms of the discovered sub-
structures. This hierarchy provides varying
interpretation levels that can be accessed on
the basis of the data analysis’s specific goals.

The MDL heuristic. Subdue’s heuristic for
evaluating substructures is based on the
MDL principle: The best theory for describ-
ing a data set is the theory that minimizes the
data set’s description length.5 The model for
description length calculation is a local com-
puter sending the description of a concept to
a remote computer. The local computer

encodes the concept as a bit string, and the
remote computer decodes the string to restore
the original concept. The concept’s descrip-
tion length is the number of bits in the string.

Subdue implements the MDL principle in
the context of graph compression using a
substructure. Thus, the best substructure in
a graph is one that minimizes DL(S) +
DL(G|S). Here S is the discovered substruc-
ture, G is the input graph, and DL(S) is the
number of bits required to encode the dis-
covered substructure. DL(G|S) is the number
of bits required to encode G after it has been
compressed using S. An earlier article
describes the exact graph-description-length
computation used in Subdue.6

Inexact graph match. Because substructure
instances can appear in different forms
throughout the database, Subdue uses an
inexact graph match to identify them.7 In this
approach, the user assigns a cost to each dis-
tortion of a graph. A distortion consists of
basic transformations such as deletion, inser-
tion, and substitution of vertices and edges.
In determining the distortion costs, the user
can bias the match for or against particular
types of distortions.

Given graphs g1 with n vertices and g2

with m vertices, m being greater than or equal
to n, the complexity of the full inexact graph
match is on the order of nm+1. Because the
discovery process uses this routine heavily,
its complexity can significantly degrade sys-
tem performance. To improve the algorithm’s
performance, we have it search through the
space of possible partial mappings using a
uniform cost search. The cost from the root
of the tree to a given node is calculated as the
cost of all distortions corresponding to that
node’s partial mapping. The algorithm con-
siders vertices from the matched graphs in
order, from the most heavily connected to the
least connected. Because the uniform cost
search guarantees an optimal solution, it ends
as soon as it finds the first complete mapping.

In addition, the user can limit the number
of search nodes (defined as a function of the
number of vertices in the first graph) con-
sidered by the branch-and-bound procedure.
When the number of nodes expanded in the
search tree reaches the defined limit, the
search resorts to hill climbing, using the map-
ping cost so far as the measure for choosing
the best node at a given level. Our earlier arti-
cle provides a complete description of Sub-
due’s polynomial inexact graph match.6

Bounds on the number of substructures
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Figure 2. Subdue’s discovery algorithm.

Subdue(Graph, BeamWidth, MaxBest, MaxSubSize, Limit)

ParentList = {}

ChildList = {}

BestList = {}

ProcessedSubs = 0

Create a substructure from each unique vertex label and 

its single-vertex instances; insert the resulting 

substructures in ParentList

while ProcessedSubs <= Limit and ParentList is not empty do

while ParentList is not empty do

Parent = RemoveHead(ParentList)

Extend each instance of Parent in all possible ways

Group the extended instances into Child substructures

foreach Child do

if SizeOf(Child) <= MaxSubSize then

Evaluate the Child

Insert Child in ChildList in order by value

if Length(ChildList) > BeamWidth then

Destroy the substructure at the end of ChildList

ProcessedSubs = ProcessedSubs + 1

Insert Parent in BestList in order by value

if Length(BestList) > MaxBest then

Destroy the substructure at the end of BestList

Switch ParentList and ChildList

return BestList



considered (L) and the number of partial
mappings considered during an inexact graph
match (g) constrain Subdue to run in poly-
nomial time. The system’s worst-case run-
time is the product of the number of gener-
ated substructures, the number of instances
of each substructure, and the number of par-
tial mappings considered during the graph
match. This is expressed

where v represents the number of vertices in
the input graph. An earlier article provides
the derivation of this expression.7

Discovery system applications

We have successfully applied Subdue, with
and without domain knowledge, to databases
in domains including image analysis, CAD
circuit analysis, Chinese characters, program
source code, and chemical reaction chains.7,8

CAD circuit analysis. Figure 3 shows the
substructures Subdue discovered in a CAD
circuit representing a sixth-order bandpass
leapfrog ladder (boxed substructures were
discovered in previous iterations). The fig-
ure also tabulates an evaluation based on
compression obtained with the substructure,
time required to process the database, a
human rating of the discovered concept’s
interestingness, and the number of substruc-
ture instances found in the database. For the
interestingness rating, eight domain experts
rated each substructure on a scale from 1 to
5, with 1 meaning the substructure does not
represent useful CAD information and 5
meaning the substructure is very useful.

In this experiment, Subdue generated sub-
structures in three ways: using no background
knowledge, using background knowledge in
the form of graph match rules customized for
this domain, and using both graph match rules
and information about specific models likely
to occur in this domain. As the figure shows,
Subdue discovered substructures that perform
well at compressing the database and repre-
sent functional CAD concepts. Using general
background knowledge improved the con-
cept’s functional rating. But the MDL princi-
pal alone was effective in discovering the
operational amplifier substructure, which the
experts determined is highly interesting and
functional in this domain.

Protein structure analysis. More recently, we
applied Subdue to several large databases con-
taining data requiring scientific interpretation.
For example, we applied the unsupervised-dis-
covery system to the July 1997 release of the
Protein Data Bank (PDB). Our goal was to
identify structural patterns in the primary, sec-
ondary, and tertiary structures of three protein
categories: hemoglobin, myoglobin, and
ribonuclease A. These patterns would act as
signatures distinguishing proteins in the cate-
gory from other types of proteins and provid-
ing a classification mechanism.

Using Subdue, we converted primary
structure information from the primary DNA
sequence specified in each PDB file by rep-
resenting each amino acid in the sequence as
a graph vertex. The vertex numbers increase
in the sequence order from N-terminus to C-
terminus, and the vertex label is the name of
the amino acid. We added an edge labeled
“bond” between adjacent amino acids in a
sequence.

We extracted secondary structure by listing
occurrences of helices and strands along the
primary sequence.A graph vertex labeled “h”

followed by the helix type and length repre-
sents each helix. A graph vertex labeled “s”
followed by the strand’s orientation and length
represents each strand. Edges between two
consecutive vertices are labeled “sh” if they
belong to the same PDB file. To represent the
protein’s 3D features, we used the x, y, and z
coordinates of each atom in the protein. We
represented each amino acid α-carbon as a
graph vertex. If the distance between two α-
carbons was greater than 6 Å, we discarded
the information. Otherwise, we created edges
between two α-carbons and labeled them “vs”
(very short, distance ≤ 4 Å) or “s” (short).

Subdue indeed found a structural pattern
for each protein category. Using primary
structure information, it identified patterns
unique to each class of protein but occurring
in 63 of the 65 hemoglobin cases, 67 of the
103 myoglobin cases, and 59 of the 68
ribonuclease A cases.

Figure 4 summarizes one of the findings
for hemoglobin secondary structure, pre-
senting an overall view of the protein, the
portion where the discovered pattern exists,
and schematic views of the best pattern. The
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Figure 3. Discovered substructures in a leapfrog circuit (boxed substructures were discovered in previous iterations).



patterns discovered for each sample category
covered a majority of proteins in that cate-
gory. That is, 33 of the 50 analyzed hemo-

globin proteins, 67 of the 89 myoglobin
proteins, and 35 of the 52 ribonucleaseA pro-
teins contained the discovered patterns.

There are many possible reasons that some
proteins did not show a pattern. Many fac-
tors can affect a protein’s structure: sample
quality, experimental conditions, and human
error. Discrepancies can also result from
physiological and biochemical factors. The
same protein molecule’s structure might dif-
fer from one species to another. The protein
might be genetically defective. For example,
sickle-cell anemia is the classic example of a
genetic hemoglobin disease in which the pro-
tein lacks the structure necessary to perform
its normal function.

We mapped the secondary structural pat-
terns of the hemoglobin, myoglobin, and
ribonuclease A proteins back into the PDB
files. After mapping, we found that one dis-
covered hemoglobin pattern belongs to the
α chains and the other to the β chains of a
hemoglobin molecule (a hemoglobin mole-
cule contains two α and two β chains). The
discovered myoglobin pattern appears in a
majority of the myoglobin proteins in the
data set. Finally, upon mapping the discov-
ered ribonucleaseA patterns back to the PDB
files, we observed that several ribonuclease
S proteins have the same patterns as those in
ribonuclease A proteins. This is consistent
with the fact that ribonuclease S is a complex
consisting of two fragments (S-peptide and
S-protein) of the ribonuclease A proteins.
The pattern in the ribonuclease S comes from
the S-protein fragment.

The secondary-structure patterns discov-
ered are also distinct to each protein cate-
gory. Subdue searched the global data set to
identify the possible existence of the dis-
covered pattern from each protein category.
The results indicated that there is no exact
match of the best patterns of one category in
other categories.

Steve Sprang, a molecular biologist at the
University of Texas Southwestern Medical
Center, evaluated the patterns discovered by
the Subdue system. He reviewed the original
database and the discovered substructures to
determine whether the discovered concepts
represented the data accurately and pointed
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Figure 4. Hemoglobin secondary structure: (a) overall view, (b) discovered pattern, and (c) schematic views of the pattern.

Related work
Researchers have proposed a variety of unsupervised-discovery approaches for structural

data.1,2 One approach is to use a knowledge base of concepts to classify the structural data.
Systems using this approach learn concepts from examples and then categorize observed data.
Such systems represent examples as distinct objects and process individual objects one at a
time. In contrast, Subdue stores the entire database (with embedded objects) as one graph and
processes the graph as a whole.

Scientific discovery systems that use domain knowledge have also been developed, but they
target a single application domain. An example is Mechem,3 which relies on domain knowl-
edge to discover chemistry hypotheses. In contrast, Subdue performs general-purpose, auto-
mated discovery with or without domain knowledge and hence can be applied to many struc-
tural domains.

Logic-based systems have dominated relational concept learning, especially inductive logic
programming (ILP) systems. However, first-order logic can also be represented as a graph and,
in fact, is a subset of what graphs can represent. Therefore, learning systems using graphical rep-
resentations potentially can learn richer concepts if they can handle the larger hypothesis space.

FOIL,4 the ILP system discussed in this article, executes a top-down approach to learning
relational concepts (theories) represented as an ordered sequence of function-free definite
clauses. Given extensional background knowledge including relations and examples of the
target concept relation, FOIL begins with the most general theory. Then it follows a set-cover-
ing approach, repeatedly adding a clause that covers some positive examples and few negative
examples. Then, FOIL removes the positive examples covered by the clause and iterates the
process on the reduced set of positive examples and all negative examples until the theory
covers all the positive examples. To avoid overcomplex clauses, FOIL ensures that a clause’s
description length does not exceed the description length of the examples the clause covers. In
addition to the applications discussed here, as well as applications in numerous recursive and
nonrecursive logical domains, FOIL has been applied to learning search-control rules and pat-
terns in hypertext.
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to interesting discoveries. Sprang found that
Subdue discovered an interesting, previously
unknown pattern that suggests new informa-
tion about the microevolution of such pro-
teins in mammals.

We are continuing experimental applications of
Subdue’s unsupervised-discovery capabilities in
the domains of biochemistry, geology, program
source code, and aviation data.

Scalability

A barrier to integrating scientific discovery
into practical data-mining approaches is that
discovery systems lack scalability. Many sys-
tem developers evaluate a discovery method’s
correctness without regard to its scalability.
Another barrier is that some scientific-dis-
covery systems deal with rich data represen-
tations that degrade scalability. For example,
Subdue’s discovery relies on computationally
expensive procedures such as subgraph iso-
morphism. Although Subdue’s algorithm is
polynomially constrained, the system still
spends a considerable amount of computation
on this task.

We are researching the use of distributed
hardware to improve Subdue’s scalability. In
our approach, we partition the data among n
individual processors and process each par-
tition in parallel.9 Each processor performs
the sequential version of Subdue on its local
graph partition and broadcasts its best sub-
structures to the other processors. The
processors then evaluate the communicated
substructures on their local partitions. Once
all evaluations are complete, a master proces-
sor gathers the results and determines the
global best discoveries.

Sequential Subdue’s runtime is nonlinear
with respect to the graph’s size. So decreas-
ing the input’s size by partitioning the graph
among multiple processors sometimes results
in a speedup greater than the number of
processors. However, the serial algorithm
analyzes the entire graph and therefore does
not overlook important relationships of its
parts. Partitioning the graph among proces-
sors might remove essential information (in
our case, edges along boundary lines), and
neighboring information can no longer be
used to discover concepts.

The Metis graph-partitioning algorithm
(http://www-users.cs.umn.edu/~karypis/
metis) lets us divide the input graph into n
partitions in a way that minimizes the number
of edges shared by partitions and thus reduces

information loss. We modified this algorithm
to allow a small amount of overlap between
partitions, which recovers some of the infor-
mation lost at the partition boundaries.

Figure 5 graphs the runtime of distributed
Subdue on two classes of graphs as the
number of processors increases. The two
classes are

• graphs representing CAD circuits (each
labeled “nCAD,” where n represents the
size factor, and 1CAD contains 8,441 ver-

tices and 19,206 edges) and
• graphs generated artificially (each labeled

“nART,” where n represents the size fac-
tor, and 1ART contains 2,000 vertices and
5,000 edges).

As predicted, the speedup is usually close to
linear and sometimes greater than the num-
ber of processors. Increasing the number of
partitions results in improved speedup until
the number of partitions approaches the num-
ber of vertices in the graph.
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Figure 5. Distributed Subdue runtime on (a) CAD and (b) ART graphs.



Because each processor handles only a por-
tion of the overall database, some degrada-
tion in the quality of discovered substructures
might result from this parallel version of Sub-
due. In practice, we find that as the number
of processors increases, quality measured as
compression initially improves because a
greater number of substructures can be con-
sidered in the allotted time.As the number of
partitions approaches the number of vertices
in the graph, the quality of discovered sub-
structures degrades.

By partitioning the database effectively,
distributed Subdue proves to be a highly
scalable system. One of our tested data-
bases, representing a satellite image, con-
tains 2 million vertices and 5 million edges.
It could not be effectively processed on one
machine given the memory constraints. But
distributed Subdue processed the database
in less than three hours using eight proces-
sors. Requiring a minimal amount of com-
munication and using PVM (Parallel Virtual
Machine) for communication, distributed
Subdue is available for widespread use and
runs on a variety of heterogeneous distrib-
uted networks.

Supervised concept learning

We have extended Subdue to act not only
as an unsupervised-discovery system, but
also to perform supervised, graph-based,
relational concept learning. Few general-
purpose learning methods use a formal graph
representation of knowledge, perhaps be-
cause of a graph’s arbitrary expressiveness.
Another reason is the inherent NP-hardness
of typical learning routines, such as covers
and least-general generalization, which both
require subgraph isomorphism tests in the
general case. Pattern-recognition-learning
methods in chemical domains have been suc-
cessful because of the natural graphical des-
cription of chemical compounds, but no
domain-independent concept-learning sys-
tems use a graph representation.

Our main challenge in adding a concept-
learning capability to the graph-based dis-
covery system was including a negative
graph in the process. Substructures that occur
often in the positive graph but infrequently
in the negative graph are likely to represent
the target concept. Therefore, the Subdue
concept learner (SubdueCL) accepts both a
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positive and a negative graph and evaluates
substructures as to their compression of the
positive and lack of compression of the neg-
ative. SubdueCL searches for the substruc-
ture S that minimizes the cost of describing
substructure S in positive graph Gp and neg-
ative graph Gn. This cost is expressed

value(Gp, Gn, S) = DL(Gp, S) + DL(S) +
DL(Gn) − DL(Gn, S).

DL(G, S) is the description length, according
to the MDL encoding, of graph G after being
compressed using substructure S, and DL(G)
is the description length of graph G. This
cost represents the information needed to
represent Gp using substructure S, plus the
information needed to represent the portion
of Gn that was compressed using S. Thus,
SubdueCL prefers substructures that com-
press the positive graph but not the negative
graph.

Another challenge was the discovery sys-
tem’s bias toward finding only one good sub-
structure in the entire input graph. Inductive
logic programming (ILP) systems have a
distinct advantage over Subdue; they typi-
cally find theories composed of many rules,
whereas Subdue finds essentially one rule.
Subdue’s iterative, hierarchical capabilities
somewhat address this problem. But the sub-
structures found in later iterations are typi-
cally defined in terms of previously discov-
ered substructures and are therefore only
specializations of the earlier, more general
rule. To avoid this tendency, SubdueCL dis-
cards any substructure that contains sub-
structures discovered during previous itera-
tions. SubdueCL iterates until it can find no
substructure that compresses the positive
graph more than the negative graph.

Comparing learning systems

We compared SubdueCL to the ILP sys-
tem FOIL (First-Order Inductive Learning)10

and to the decision-tree induction system
C4.5.3 First, we compared the relational
learners SubdueCL and FOIL on a simple
artificial domain to examine qualitative dif-
ferences. Then we compared all three sys-
tems on relational domains.

An artificial domain. Figure 6a depicts the
two data sets of the house domain, house1 and
house2, whose target concept is “triangle on
square.” House1 contains the six examples on
the left, and house2 contains the two addi-
tional examples on the right. Each object has
a shape and is related to other objects by the
binary relation on. Figure 6b shows the results
of running SubdueCL and FOIL on house1.

The bracketed numbers in Figure 6b are
the number of false negatives and false posi-
tives. We ran FOIL twice on each data set,
once with the default minimum individual-
clause-accuracy of 80%, and once with a min-
imum of 50%. At 80%, FOIL returned the
concept that nothing was a house, misclassi-
fying the three positive examples. At 50%,
FOIL described houses as any example with
a triangle on top. However, to relate the tri-
angle and square objects in a connected sub-
structure, SubdueCL includes the on relation.
Therefore, SubdueCL recognized that the tri-
angle should be on top of the square.

The house2 data set adds two examples to
house1 to emphasize the need for the on rela-
tion. Figure 6c shows the results of running
the two systems on house2. Again, FOIL has
trouble identifying the correct concept.

These examples reveal an advantage of
graph representation over logic for such posi-

tion-invariant (and other relational) concepts.
However, logic is better suited for some con-
cepts. For example, FOIL can easily repre-
sent the concept “top and bottom objects
have same shape” as follows:

house(A,B,C) :- shape(A,S), 

shape(C,S). or
house(A,B,C) :- shape(A,S1), 

shape(C,S2), S1 = S2.

In contrast, using the graph representation
defined for the house domain, SubdueCL
would need to learn five different substruc-
tures, one for each shape. Of course, if we
could foresee such a concept, we could
change the graph representation to include
an intermediate shape vertex connected to
another vertex with the actual shape. Then,
we could add equal edges between these
shape vertices to represent equivalent shapes
independent of the actual shape. Further-
more, although both systems handle numeric
values (vertex labels), a similar representa-
tional transformation is necessary for learn-
ing concepts involving general equalities and
inequalities between numbers.

Relational domains. The relational do-
mains we used in our tests included illegal
chess endgames, tic-tac-toe endgames, and
musical excerpts. The chess domain consists
of 12,957 row-column positions for a white
king, white rook, and black king such that
the black king is (positive) or is not (nega-
tive) in check. FOIL extensionally defined
adjacency relations between chessboard
positions and less-than relations between
row and column numbers. We provided C4.5
with the same information by adding fea-
tures that relate each piece’s row and col-
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Figure 7. (a) A chess domain example; SubdueCL’s (b) graphical representation and (c) discovered substructures for the example.



umn values as equal, not equal, or adjacent.
Figure 7 shows SubdueCL’s representation

of a chess domain example. Each piece is rep-
resented by two vertices corresponding to a
piece’s row and column, connected by a posi-
tion relation (for example, WKC stands for
white king column). Instead of less-than rela-
tions, we used eq and noteq relations between
all such rows and columns.

We tested the three systems for predictive
accuracy on this domain, using threefold cross
validation, with significance values gathered
from a paired-student t-test. The accuracy
results were 99.8% for FOIL, 99.77% for
C4.5, and 99.21% for SubdueCL. The accu-
racy difference between FOIL and SubdueCL
is significant at the 0.19 level (that is, the prob-
ability that the difference is insignificant is
0.19), and the difference between C4.5 and
SubdueCL is significant at the 0.23 level.

FOIL learned six rules, SubdueCL learned
five rules (substructures), and C4.5 learned 43
rules. All three systems discovered four rules
that described in each case approximately
2,000 of the 2,118 positive examples. Figure
7c shows two of these rules described as sub-
structures. The remaining rules differed
among systems and proved to be more pow-
erful for FOIL and C4.5 because of these sys-
tems’ ability to learn numeric ranges.

Next, we tested the systems on a complete
set of 958 possible board configurations at the
end of tic-tac-toe games. The target concept is
“a win for x.” We supplied the three systems
with the values (X, O, and blank) for each of
the nine board positions. Unlike the other sys-
tems, SubdueCL does not key on individual
position values but uses relational information
between board positions to learn the three win
concepts: three-in-a-row, three-in-a-column,
and three-in-a-diagonal. The accuracy results
are therefore 100% for SubdueCL, 92.35% for
FOIL (the difference is significant at the 0.21
level), and 96.03% for C4.5 (the difference is
significant at the 0.03 level).

In the final experiment, we attempted to
differentiate Beethoven works from Bach
works, using a set of musical excerpts
described by a sequence of pitch values. We
obtained the 100 Bach chorales from the UC
Irvine repository and randomly selected the
Beethoven works from the composer’s col-
lected works. To provide examples for the
three learning systems, we selected a musi-
cal theme from each of 50 Beethoven exam-
ples and repeated it 10 times, with a varying
pitch offset and surrounded by random pitch
values. We tested the learning systems both
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by using absolute pitch values and by using
the relative difference between one pitch
value and the next. All three systems per-
formed better with pitch difference values.
Unlike FOIL and C4.5, SubdueCL used the
relational information between successive
notes to learn the embedded musical
sequences for the positive examples. The
accuracy values were 100% for SubdueCL,
85.71% for FOIL (the difference is signif-
icant at the 0.06 level), and 82% for C4.5
(the difference is significant at the 0.00
level).

OUR EXPERIMENTAL RESULTS
indicate that SubdueCL, the graph-based rela-
tional concept learner, is competitive with
logic-based relational concept learners on a
variety of domains. This comparison has
identified a number of avenues for enhance-
ments. SubdueCL would benefit from the
ability to identify ranges of numbers. We
could accomplish this by utilizing the sys-
tem’s existing capability to find similar but
not exact matches of a substructure in the
input graph. Numeric values within the
instances could be generalized to the encom-
passing range. A graph-based learner also
needs the ability to represent recursion, which
plays a central part in many logic-based con-
cepts. More research is needed to identify rep-
resentational enhancements for describing
recursive structures—for example, graph
grammars. Our future work will also focus on
extending Subdue to handle other forms of
learning, such as clustering.

We are continuing our testing of Subdue in
real-world applications. In biochemistry, for
example, we are applying Subdue to data from
the Human Genome Project to find patterns
in the DNA sequence that indicate the pres-
ence of a gene-transcription-factor site. Unlike
other approaches to finding patterns in gene
data,11 Subdue uses a graph to represent struc-
tural information in the sequence. We hope
that the discovered patterns will point to genes
in uncharted areas of the DNA sequence.

In another area of chemistry, we are apply-
ing SubdueCL to the Predictive Toxicology
Challenge data. This data contains the struc-
tural descriptions of more than 300 chemi-

cal compounds that have been analyzed for
carcinogenicity. Each compound (except for
about 30 held out for future testing) is labeled
as either cancer-causing or not. Our goal is
to find a pattern in the cancerous compounds
that does not occur in the noncancerous com-
pounds. So far, SubdueCL has found several
promising patterns, which are currently
under evaluation in the University of Texas at
Arlington’s Department of Chemistry.

In addition, we are applying Subdue to a
number of other databases, including the Avi-
ation Safety Reporting System database, US
Geological Survey earthquake data, and soft-
ware call graphs. Subdue has discovered sev-
eral interesting patterns in the ASRS data-
base. Burke Burkart of UTA’s Department of
Geology evaluated Subdue’s results on the
geology data and found that Subdue correctly
identified patterns dependent on earthquake
depth, often the distinguishing factor among
earthquake types. These and other results
show that Subdue discovers relevant knowl-
edge in structural data and that it scales to
large databases.
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