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Abstract—Large-scale GW calculations are the state-of-the-
art approach to accurately describe many-body excited-state
phenomena in complex materials. This is critical for novel device
design but due to their extremely high computational cost, these
calculations often run at a limited scale. In this paper, we
present algorithm and implementation advancements made in
the materials science code BerkeleyGW to scale calculations to
the order of over 10,000 electrons utilizing the entire Summit at
OLCF. Excellent strong and weak scaling is observed, and a 105.9
PFLOP/s double-precision performance is achieved on 27,648
V100 GPUs, reaching 52.7% of the peak. This work for the first
time demonstrates the possibility to perform GW calculations at
such scale within minutes on current HPC systems, and leads the
way for future efficient HPC software development in materials,
physical, chemical, and engineering sciences.

Index Terms—electronic structure, excited states, GW method,
GPU acceleration, divacancy defects, quantum computing

I. JUSTIFICATION FOR ACM GORDON BELL PRIZE

This work presents unprecedented GW calculations with
up to 10,968 electrons on materials with divacancy defects,
proxies for qubits, performed on full-scale Summit achieving
105.9 double-precision-PFLOP/s, 52.7% peak. With near lin-
ear scaling, the GPU BerkeleyGW implementation exhibits up
to 86× speedup and 16× energy saving compared to its CPU
implementation.

II. PERFORMANCE ATTRIBUTES

Category of Achievement Scalability, Time-to-solution,
Peak Performance

Type of Method Used Both Explicit and Implicit
Results Reported Full Application Excluding I/O
Precision Reported Double Precision
System Scale Measured on Full System
Measurement Mechanism Timers, FLOP Count

III. OVERVIEW OF THE PROBLEM

Electrons in excited states dictate many fundamental prop-
erties of materials, such as the efficiency of solar energy
conversion, protein folding, photosynthesis reactions, and
chemical reactions, to name a few. Understanding the excited-
state properties of these electrons is hence critical to the
advancement of many scientific domains including material
sciences, condensed matter physics, chemistry, biophysics, and

electronic engineering. Exactly solving for the properties of
electrons using quantum mechanics requires a computational
cost that increases exponentially with the problem size. This
is intractable in practice, and approximations must be made.

First-principles computations aim at obtaining important
materials’ properties using fundamental theories without fitting
parameters from experiments, and density-functional theory
(DFT) [1] is one of the most common approaches. However,
DFT is a ground-state theory and it presents serious errors
for excited-state properties. For example, the band gap (an
excited-state property) of silicon is underestimated by over
50% with the standard approximations in DFT [2].

The first-principles GW approach [2], [3] is the prevail-
ing excited-state method for many materials ranging from
photovoltaic cells to novel low-dimensional nanostructures.
It directly confronts the many-body nature of the electron-
electron interactions and is hence valid in describing excited
electrons, beyond DFT; however, the resulting equations are
much more complicated. One very important excited-state
property is the quasiparticle excitation energy (i.e. energy level
and band structure). For example, obtaining accurate excitation
energies of defect states in semiconductors are critical for
manipulating them with light for quantum computing [4].
Here we use semiconductor with divacancy defects as the
application case of the GW method. These systems usually
require a large supercell consisting of up to thousands of atoms
due to the extended nature of the defect states (see Fig. 1),
posing great challenges in obtaining GW results.

BerkeleyGW [5] is a massively parallel package for study-
ing exited-state properties of electrons in materials using the
GW method and beyond. Previously, it has shown excellent
scalability on CPUs [6], but with increasing demands for
larger scale GW calculations, acceleration is exceedingly
needed. In this paper, we present several significant algorithm
and implementation advancements made in BerkeleyGW to
scale these calculations efficiently on leadership supercomput-
ers, and to an unprecedented level of 2,742 atoms and 10,968
electrons. The parallelization and optimization techniques pre-
sented here are widely applicable to other GW or HPC codes
which share the same computational characteristics, hence
being largely beneficial to the community.

To summarize, we have made contributions as follows:
• We developed a multi-tier parallelization scheme across
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Fig. 1. Isosurface enclosing 90% of the wavefunction for an in-gap state
from a divacancy defect in Si. Calculation cell contains 2,742 atoms, 10,968
electrons.

valence/conduction bands, quasiparticle states, and plane-
wave basis elements to allow for an efficient and flexi-
ble multi-GPU, multi-node implementation. Techniques
employed include non-blocking cyclic communication,
workload batching, asynchronous data copies, and the
utilization of shared memory on GPUs (Sec. V).

• We achieved near linear strong and weak scaling up
to the full scale of Summit with 27,648 GPUs. This
makes large-scale GW calculations possible and, unprece-
dentedly, a Si divacancy structure with 2,742 atoms and
10,968 electrons is solved within 10 minutes.

• We achieved 105.9 PFLOP/s double-precision perfor-
mance with the 2,742-atom structure, running on the full
size of Summit, reaching 52.7% of the peak (200.79
PFLOP/s). We also observed an 86 times runtime speedup
and 16 times energy saving when comparing Summit at
OLCF and Cori Haswell at NERSC node-to-node.

• We implemented a workflow for pre-staging large input
files to node-local SSDs on Summit to improve I/O.

IV. CURRENT STATE OF THE ART

The first-principles GW method has been fast developing
since its inception as a practical approach by Hybertsen and
Louie [2] in the 1980s, with G representing the Green’s
function and W the screened Coulomb interaction. Standard
GW formalism involves summation over many unoccupied
states and scales as O(N4). (As a comparison, DFT scales as
O(N) to O(N3) depending on different strategies.) New GW
approaches have been proposed to eliminate the summation
over unoccupied states, as demonstrated by Umari et al. [7], by
Giustino et al. [8], and by Govoni et. al [9]–[11]. The formal
scaling of these implementations remains O(N4), and they
maintain similar characteristics to the standard GW approach
which can be exploited for optimization and parallelization.
Planewave basis sets are commonly adopted for accurate
treatment in the implementations of the GW method, such
as the popular software packages including BerkeleyGW [5]

(this work), Yambo [12], WEST [9], Quantum ESPRESSO
[13], Abinit [14], VASP [15], [16], and SterheimerGW [17].

Recently, cubic-scaling GW approaches have been devel-
oped [18]–[20], which typically rely on an alternative rep-
resentation of the self-energy – for example, in the real-
space and imaginary-time domains. The cubic scaling is then
obtained at the cost of an increased overhead with a large
prefactor, usually related to a series of numerical integration.
Therefore, the problem size at which the cubic-scaling ap-
proach outperforms the standard O(N4) approach is strongly
system-dependent. Another emerging avenue for reduced-
scaling GW is the use of stochastic sampling techniques [21],
which enables linear scaling for some properties of materials
(not all properties are available with stochastic approaches)
by sacrificing the deterministic nature of the calculation and
introducing uncorrelated stochastic errors.

Besides the above-mentioned planewave GW packages,
there are other implementations using localized basis func-
tions, such as Gaussians (Fiesta [22], MolGW [23]), numerical
atomic orbitals (FHI-aims [24], SIESTA [25]), mixed Gaus-
sian and planewaves (CP2K [26]) and linearized augmented-
planewave with local orbitals (ELK [27], Exciting [28]).
Localized bases require a smaller basis size, hence reducing
the computational cost; however these calculations are more
difficult to converge systematically compared with planewave
basis sets, especially for systems with diffuse wavefunctions
as in small-gap semiconductors and metals. In general, lo-
calized basis sets are particularly efficient for isolated systems
(molecules and cluster), while planewaves are more convenient
and natural for solid-state systems.

As most GW studies still focus on systems with tens
to hundreds of atoms because of the high computational
complexity, the community is pushing towards much larger
systems to access new phenomena. To the best of our knowl-
edge, the largest GW calculation to date is for a twisted bilayer
phosphorene structure containing ∼2,700 atoms (∼13,500
electrons) using linear-scaling stochastic GW [29]. For the
deterministic approaches (which provide a more complete
picture of the excited-state properties), one of the largest and
recently reported calculation involves a graphene nanoribbon
consisting of ∼1,700 atoms using cubic-scaling GW combined
with localized Gaussian basis set [19]. For the standard O(N4)
scaling GW using the accurate planewave basis set, the system
size is still quite limited. Here, we focus on optimizing the
standard O(N4) GW approach with planewave basis sets as
implemented in BerkeleyGW [5] and achieve unprecedented
scalability and applicability to describe complex materials.

V. INNOVATIONS REALIZED

A. GW Method Complexity

The many-body problem of electronic excitations in a
material is described by the Dyson’s equation (in atomic units),

h0(r)ψi(r) +

∫
Σ(r, r′;EQP

i )ψi(r′)dr′ = EQP
i ψi(r), (1)



where r is the electron position, ψi is the quasiparticle (QP)
wavefunction for state i, EQP

i is the quasiparticle excitation
energy, h0 is a single-particle (or mean-field) operator, and Σ is
a non-Hermitian, non-local, and frequency-dependent operator
named the self-energy.

In the GW method, we approximate the self-energy Σ to the
first order in the Green’s function G(r, r′;ω) and the screened
Coulomb interaction W (r, r′;ω) as a frequency convolution,

Σ(r, r′;ω) = i

∫
dω′

2π
e−iδω

′
G(r, r′;ω−ω′)W (r, r′;ω′), (2)

where ω and ω′ represent frequencies and δ → 0+. The core
GW computation is the evaluation of matrix elements Σlm of
the self-energy operator between orbital wavefunctions l and
m. Σlm is expressed as a sum over orbitals n [2], [3],

Σlm =
i

2π

∑
nGG′

M−Gln
∗
M−G

′

mn

∫ ∞
0

dω
ε−1
GG′ (ω) vG′

El − En − ω
, (3)

where G corresponds to planewave basis elements, ε−1
GG′

represents a square matrix (inverse matrix of the dielectric
matrix ε) representing the dielectric screening in the system,
E is the orbital energy, vG′ is the Coulomb interaction in
reciprocal space and M are the matrix elements between
orbitals, MG

mn =
∫
dr ψ∗m(r)eiG·rψn(r).

Besides the large complexity introduced by the non-local
nature (GG′ dependence) and summation over states (n), Eq. 3
involves a frequency convolution. The frequency dependence
of ε can be efficiently captured using the generalized plasmon-
pole (GPP) approximation [2]. For the first-principles GW
calculations using the GPP model, the static dielectric matrix
ε(ω=0) is explicitly computed and thereafter extended to
nonzero frequencies according to the model.

In BerkeleyGW [5], the GW computational workflow is
implemented in two standalone executables, the Epsilon and
Sigma modules. Epsilon computes the dielectric matrix ε and
its inverse ε−1; subsequently, Sigma computes the self-energy
Σ(r, r′, ω) and its corresponding matrix elements Σml, using

ε−1 as an input. The workflow is represented as Epsilon ε−1

==⇒
Sigma Σml==⇒ output. These two modules combined give the
solution to Dyson’s equation (Eq. 1), i.e. a set of quasiparticle
excitation energies EQP. An overview of the computational
cost and memory requirement for the most time-consuming
components of Epsilon and Sigma is shown in Tab. I.

B. The Epsilon Module

Epsilon computes the inverse static dielectric matrix
ε−1(ω=0) employing a planewave basis of size NG. The
computed ε−1 is a NG×NG double-complex matrix. Typically
NG is on the order of 100k for large-scale applications. The
three major computational kernels in Epsilon are: the matrix
elements (MTXEL), the static polarizability (CHI-0) and the
dielectric matrix inversion (Inversion) kernels.

1) Matrix Element Kernel (MTXEL): The MTXEL kernel
computes transition matrix elements MG

vc between valence (v)
and conduction (c) wavefunctions using a planewave basis.

TABLE I
COMPUTATIONAL AND MEMORY COMPLEXITY FOR EPSILON AND SIGMA

Kernel Computation Memory

Epsilon

MTXEL O(NvNcN
ψ
G logNψ

G) O(NvNcNG)

CHI-0 O(NvNcN2
G) O(NvNcNG +N2

G)

Inversion O(N3
G) O(N2

G)

Sigma
MTXEL O(NΣNbN

ψ
G logNψ

G) O(NbNG)

GPP O(NΣNbN
2
G) O(N2

G +NbNG)

Nv is the number of valence (occupied) bands, Nc the number of conduction
(empty) bands, Nb = Nv + Nc the total number of bands, Nψ

G and NG
are the planewave basis set size for the wavefunction and the dielectric
matrix respectively, NΣ the total number of quasiparticle energies (i.e. matrix
elements of Σ). Each operation takes place once per spin channel, as we
discuss later, except for Inversion, which happens once per system.

Fig. 2. Schematic representation of operations in Epsilon MTXEL for each
pair of valence and conduction wavefunctions.

The schematic implementation shown in Fig. 2 is based on
fast Fourier transforms (FFTs). MTXEL consists of an outer
loop over Nv valence wavefunctions (ψv) and an inner loop
over Nc conduction wavefunctions, and for each (v, c) pair
a convolution is performed in real space for NG planewave
functions [5]. The resulting matrix elements MG

vc, scaled by
a (v, c) energy dependent factor, are stored as column-vectors
in the matrix M, which has NG rows and Nv ×Nc columns.
The construction of MTXEL is embarrassingly parallelelized
by distributing the Nv×Nc independent pairs over MPI tasks.

The MTXEL kernel calls cuFFT [30] for FFT operations on
the GPU. As shown in Tab. I, the kernel has an O(N3 logN)
scaling for FLOPs and O(N3) scaling for memory. The main
implication of this is that the host-device data copies will
become a bottleneck if we naively copy data back and forth
at every cuFFT call. On the other hand, offloading all data to
device beforehand will exhaust the GPU memory very quickly
due to the large amount of (v, c) pairs. To help alleviate these
problems, we have adopted the following strategies.
• Precomputing Conduction Wavefunctions FFTs: The

FFTs of conduction wavefunctions (red box in Fig. 2)
are reused across all Nv valence wavefunctions (the outer
loop), so these FFTs are pre-computed in a separate loop
and saved on the GPU for later reuse. This causes a lock
in of a certain amount of GPU memory, but it reduces
the number of FFTs and memory copies by a factor two.

• Batching Mechanism for Conduction Wavefunctions: The



inner loop of Nc wavefunctions are processed in batches
to avoid memory overflow on the GPU. Host non page-
able (pinned) memory is used to allow for direct host-
device data transfers with a higher bandwidth. The pinned
buffer is kept under a certain size and is also reused
between iterations to keep the allocation cost low.

• Data Streams: A number of data streams (or CUDA
streams) are created and reused. Each stream is used to
schedule the sequence of data copy and cuFFT operations
of each cycle of the batch loop. This allows for multiple
cycles to run concurrently on GPU and also overlap
between GPU computation and device to host memory
transfer across cycles.

2) Static Polarizability Kernel (CHI-0): CHI-0 is the most
computationally demanding kernel of Epsilon, scaling as
O(N4) with the system size (see Tab. I). The algorithmic
motif is a large distributed matrix multiplication in the form of
M×MT∗ with M computed from MTXEL. For large systems,
M has on the order of 100k rows and 10M columns, which
poses challenges when computing CHI-0 in a distributed
fashion. Since the parallelization pattern in MTXEL is such
that different columns of M are distributed across different
processors, the data layout in CHI-0 naturally takes a similar
shape as shown in Fig. 3. Each MPI rank holds all the rows and
its own subset of columns of M and calculates its contribution
to χ0. The matrix χ0 is distributed with a 2D block-cyclic
data layout, such that the subsequent linear algebra operations
on χ0 can be performed in parallel using libraries such as
ScaLAPACK [31] and ELPA [32]. Due to the peculiar data
layout in CHI-0, the efficient use of external libraries for such
matrix multiplication (i.e. COSMA [33] and SLATE [34]) is
not straightforward for multi-GPU, multi-node applications.

Fig. 3. Data layout and distributed calculation in Epsilon CHI-0. For all NP
processes, the total data communicated is N2

G (it does not depend on NP ).

To achieve optimal performance, we use the cuBLAS [35]
library for the local GPU matrix multiplication (ZGEMM) on
each MPI rank, and the following strategies:
• Offloading Data Preparation Kernels: Local buffers need

to be prepared according to the χ0’s 2D block-cyclic
layout before the GEMM operations. Such preparation
can be performed on host (Host-Prep. algorithm in
Tab. IV) or accelerated on device after offloading M over
batches to avoid out-of-memory on GPU (Full-Offload
algorithm). As shown later in Sec. VII, the acceleration

Fig. 4. Non-blocking cyclic MPI communication based on point-to-point calls
in Epsilon CHI-0 exemplify with 4 MPI tasks. Colored bands represent GPU
computation with the same shading patterns for quarters of χ0 as in Fig. 3.
Gray bands represent MPI communication (MPI Wait) synchronizing the non-
blocking send and receive. Black bands represent copying local ZGEMM
results from GPU to CPU, adding them to the received partial sum from
Rmy−1, and posting MPI Isend/MPI Irecv calls for the next iteration.

of this kernel outperforms the data copy overhead and the
recomputation batches even for the smallest test case.

• Batching Mechanism: To avoid hitting the memory limit
on GPUs, we devise a batching mechanism to load
columns of M based on device’s maximum memory, the
results then being accumulated to χ0 from all batches.

• Non-Blocking Cyclic Communication Scheme: Distributed
GEMM can be implemented via MPI collectives where
each rank calculates its contribution to the ith quarter of
χ0 at the ith iteration of the process, 1 ≤ i ≤ NP , and
the blocking MPI Reduce call sums all the contributions
together to obtain the final results for that χ0 quarter
(each quarter in Fig. 3). In our scheme, instead of block-
ing MPI collectives, we use point-to-point non-blocking
MPI Isend and MPI Irecv. The communication pattern is
a ring, and each MPI rank Rmy only communicates with
its neighbouring ranks, Rmy+1 and Rmy−1 (cyclically).
As shown in Fig. 4, at each iteration i, 1 ≤ i ≤ NP ,
rank Rmy calculates its contribution for the (my− i)th
quarter of χ0, and at the same time receives a partial
sum about that same quarter from rank Rmy−1 (during
the first iteration, only zeros are received). The local
ZGEMM results from the GPU are then added on top
of this partial sum (represented by the black bands, and
done on the host), before being sent on to rank Rmy+1 in
the next iteration. The MPI communication (gray bands)
can largely overlap with the GPU computation (colored
bands with pattern shading), hence providing a significant
performance boost.

Overall, the parallel algorithms developed in CHI-0 display
a FLOPs scaling of O(NvNcN

2
G/Np), memory scaling of

O
(
(N2

G +NvNcNG)/Np
)

and a communication volume per
MPI task of O(N2

G) when employing Np MPI ranks.
3) Static Inverse Dielectric Kernel (Inversion): The final

step of Epsilon is an algebraic matrix inversion, usually
taking a very small fraction of the execution time. In this
step, χ0 is multiplied by the Coulomb potential to give the



dielectric matrix ε, which is then algebraically inverted to
give the inverse dielectric matrix ε−1. This step is currently
performed using LU decomposition and triangular inversion
in ScaLAPACK on the CPU, and will be ported to the GPU
when accelerated distributed libraries will be available.

C. The Sigma Module

Sigma calculates the quasiparticle energies of electrons EQP
i

by solving the Dyson’s equation (Eq. 1), using ε−1 computed
in Epsilon. The most expensive computational part in Sigma
is the evaluation of NΣ matrix elements of the self-energy
operator Σlm, each displaying a computational cost of O(N3)
with the system size, where NΣ can vary from tens for simpler
systems, to thousands for complex applications. Since the
evaluation of each self-energy matrix element is independent,
a two-level parallelization strategy is implemented:

1) Inter-pool parallelization: the total number of MPI tasks
Np is divided into Npools pools of equal size N pool

p =
Np/Npools. The NΣ self-energy matrix elements are then
distributed over pools, each pool working independently
on N pool

Σ = NΣ/Npools quasiparticles.
2) Intra-pool parallelization: parallelization of the work re-

quired for the evaluation of each self-energy matrix
element across multiple processors within a pool.

The first level of parallelization is straightforward, while the
second level involves the implementation of Eq. 3 using
the GPP model. For each pair of (l,m) wavefunctions, the
working equation can be rewritten in the compact form as:

Σlm =

Nb∑
n

NG∑
GG′

M l∗
Gn[P (En)]GG′M

m
G′n, (4)

where P(En) is an NG × NG matrix dependent on index
n (via En argument), and Ml and Mm are NG × Nb
matrices grouping the matrix elements for the l and m indices,
respectively. P(En) depends on the nth column-vector of Ml

and Mm, so that Eq. 4 represents a data reduction across these
matrices with a complex matrix-vector interdependence.

These operations are performed by the (Sigma) GPP kernel,
and the computation of the elements in M is performed by
the (Sigma) MTXEL kernel. Sigma processes one self-energy
matrix element at a time, i.e. an (l,m) pair, through an outer
loop over N pool

Σ . Within each iteration, Sigma then executes
sequentially the MTXEL kernel and the GPP kernel. Tab. I
summarizes the computational cost and memory requirement
for Sigma, and Fig. 5 gives a schematic representation of
the data distribution and basic operations for the intra-pool
parallelization. The columns of the M matrix are distributed
across different processors, and they are communicated in
an all-to-all fashion. Similar to Epsilon, there are also two
communication schemes, the MPI collectives (MPI Bcast)
based, and the non-blocking cyclic scheme [6], similar to the
one previously described for the Epsilon module. Overall, for
a parallel execution employing Np processors, Sigma displays
a computational complexity of O(NΣNbN

2
G/Np) (FLOPs),

a memory complexity of O
(

(N2
G +NbNG)/N pool

p

)
, and a

O(N pool
Σ NbNG) communication volume per MPI task.

Fig. 5. Schematic representation of the intra-pool parallelization in Sigma,
with 4 MPI processes as an example.

The Sigma kernels are detailed below.
1) Sigma MTXEL Kernel: The MTXEL kernel is largely

similar to that in Epsilon, but the outer loop is restricted solely
to the ψl and ψm wavefunctions for the currently calculated
matrix element Σlm, and the inner loop runs over all bands
Nb = Nv + Nc. Each MPI task computes its N distr

b subset of
Nb bands and stores the results in the local portion of Ml and
Mm matrices. The loop is performed over batches as well (see
Sec. V-B1) with a typical size of 10 to 40.

2) Sigma GPP Kernel: The entire computation of Sigma
GPP is performed on the device, including the many matrix-
vector operations in Eq. 4, with P(En) computed on the fly for
each index n. The algorithm consists of three nested loops as
shown in Fig. 6. The innermost loop iterates over bands (index
n), and each processor is responsible for N distr

b columns of M
for the current communication cycle. The two outer loops run
across N distr

G columns and all NG rows of P(En). The relation
between these parameters is N dist

b < N dist
G � NG, and this

dictates a lot of the design choices in our implementation:
a) The first two loops together provide sufficient parallelism

for GPUs and are hence collapsed, while the N dist
b loop is

unrolled on each thread to gain arithmetic intensity and
leverage data locality for G′ and G-related arrays.

b) The n loop is further divided into band blocks (Fig. 6),
with each block containing N distr

b−block iterations. The choice
for N distr

b−block is so that it is small enough for n-related
arrays to fit into L1 and L2 caches (and be kept there).

c) To further reduce data movement, the combined G′ and
G iteration space is tiled with small blocks of G′ and G
iterations executed one at a time. Since G varies more
frequently than G′, the loop tiling is designed so that
different SMs share some (not all) G-related arrays, while
some (not all) G′-related arrays are kept in L2 (L1 is too
small to be used this way).

d) Shared memory is used for reduction across G′, G and n
iterations on each thread and for reduction across threads
within a thread block. Some small, frequently used arrays
are kept in shared memory wherever possible. For warp-
wide reductions, the primitive __shfl_down_sync is
used for register-level data exchange, which is more
efficient than utilizing shared memory.



e) Long-latency instructions such as divides and square roots
for complex numbers are replaced with reciprocals and
absolute values wherever possible, which helps reduce
the ‘math pipe throttle’ type of warp stalls [36] and
significantly improves warp issue rates.

f) Parameters such as the number of threads per thread block
and the number of thread blocks are more optimized to
gain maximum occupancy, given the constraints posed by
high register and high shared memory usage.

g) The band blocks in b) are placed on different CUDA
streams and the results (partial sums of self-energy) are
transferred back from each kernel on each stream to the
host asynchronously. The results are then further reduced
on the CPU, across all MPI processes.

h) Similar to Epsilon, the non-blocking cyclic communica-
tion scheme (see Sec.V-B2) is employed in Sigma, and
maximum asynchronicity is available to leverage overlap
between GPU/CPU computation, host-device transfers,
and MPI communication.

loop G′ < Ndistr
G

. loop G < NG

. . loop n < Ndistr.
b−block

. . . Contract PGG′ with M l
Gn and Mm

G′n

. . . Accumulate σb−block (shared memory)
Reduce σ over GPU thread blocks, CUDA streams, and MPI ranks

Fig. 6. Loop structure of the Sigma GPP kernel on the GPU. σb−block is the
partial contribution to Σlm for the current band block.

To achieve optimal performance on a particular architecture
and for a problem size, fine tuning is required for a large
number of parameters, such as for the loop tiling and shared
memory usage. Hence, we provide both a standard version of
the GPP kernel, which runs out of the box and can achieve
decent performance for all common use cases of BerkeleyGW,
and a more optimized version which incorporates all the
optimizations discussed above and is specifically tuned to
the V100 GPUs on Summit. The latter is denoted with a
asterisk, e.g., Si-2742? in Tab. VI, and most results presented
in Sec. VII are for the standard version, unless specifically
stated.

VI. HOW PERFORMANCE WAS MEASURED

A. Benchmarks and Performance Metrics

The benchmarks employed to assess performance in this
paper are divacancy defect systems in bulk semiconductors,
namely silicon (Si) and silicon carbide (SiC), with a range of
cell sizes from 214 atoms to 2,742 atoms. These structures
have distinct computational complexities and memory foot-
prints and Tab. II illustrates some of the most important param-
eters and computational requirements. In terms of HPC perfor-
mance, we report the time-to-solution (for both CPU and GPU
implementations), strong and weak scaling, double-precision
performance (PFLOP/s) and energy efficiency (kJ/FLOP).

TABLE II
MINIMUM COMPUTATIONAL REQUIREMENTS FOR BENCHMARKS

Parameters Si-214 Si-510 Si-998 SiC-998 Si-2742
Nspin 1 1 1 2 (↑/↓) 1
Nψ
G 31,463 74,653 145,837 422,789 363,477

NG 11,075 26,529 51,627 149,397 141,505
Nb 6,397 15,045 29,346 16,153 80,694
Nv 428 1,020 1,996 1,997/1,995 5,484
Nc 5,969 14,025 27,350 14,156/14,158 75,210
NΣ Variable, up to 256 per spin

Epsilon PFLOPs 2.5 80.5 1164 10,091 66,070
Epsilon Memory (TB) 0.45 6.07 45.1 135 934
Epsilon Comm.Vol. (GB) 3.92 22.5 85.3 1428 640
Sigma PFLOPs 0.127 1.71 12.6 58.2 260.7
Sigma Memory (GB) 6.19 34.3 133.8 791.4 1006
Sigma Comm.Vol. (GB) 2.27 12.8 48.5 77.2 365.4

We use the same notation as in Tab. I, and ↑ and ↓ represent spin up and
spin down configurations respectively, for calculations with two components
(i.e., when Nspin = 2). Com.Vol. is the total communication volume per
MPI task. Note that the Sigma PFLOPs and Comm.Vol. per MPI task, are
measured per self-energy matrix element, and that the Sigma Memory is per
pool, accounting for device memory only.

B. Estimation of Operation Counts

To gauge the amount of operations performed in Epsilon
and Sigma, we use the canonical FLOP count from the most
compute-intensive components of the code as a lower bound,
and use tools such as NVIDIA Nsight Compute [37] to
validate. For Epsilon, the most compute-intensive part is CHI-
0, especially for large calculations, and within CHI-0, complex
matrix multiplications (ZGEMM) dominate the calculations.
The FLOP estimation for ZGEMMs is

FLOPs count (ZGEMM) = 8×N ×K ×M, (5)

which has been validated in [6]. For our benchmarks, N =
M = NG and K = Nv ×Nc for each spin.

TABLE III
VALIDATION OF OPERATION COUNT FOR SIGMA (TFLOPS)

(MEAS. - MEASURED, EST. - ESTIMATED)

System NΣ Nb NG Meas. Est. % Est./Meas.
Si-510 2 3223 9315 90.49 90.25 99.7
Si-510 2 4261 9315 119.54 119.32 99.8

SiC-214 4 2309 2945 12.96 12.93 99.7
SiC-214 4 3409 6979 107.23 107.17 99.9
Si-510∗ 2 4261 9315 112.18 112.05 99.9

SiC-214∗ 4 3409 6979 100.63 100.64 100.0

For Sigma, the GPP kernel takes up 95% of the FLOPs for
large simulations and the remaining FLOPs come mostly from
a few ZGEMMs (performing a partial summation) and FFTs.
The computational complexity for GPP is O(NΣNbN

2
G) (see

Tab. I) and, by performing a series of tests using the Si-214
system, we have determined a linear relationship between the
FLOPs and several parameters as αNΣNbN

2
G, with α being a

constant prefactor. This relationship was validated with Nsight
Compute measurements for other systems in Tab. III, with



less than 1% discrepancy between estimated and measured.
The prefactor for the standard GPP kernel (see Sec. V-C2) is
α = 153.36 and for the more optimized version is α = 151.53.
Thus, the total FLOPs count for GPP is

FLOPs count (GPP) = (153.36 + 8)×NΣNbN
2
G, (6)

where the additional 8 FLOPs comes from ZGEMM when
static remainder is employed. In both Epsilon and Sigma, we
are underestimating the operation counts as we only include
the GPU operations from the most compute-intensive part of
the code in the FLOPs estimation. We note that the more
optimized kernel does not employ the ZGEMMs for the partial
sum, therefore the additional 8 FLOPs are not included in its
total FLOPs count.

C. HPC Systems

Two leadership HPC systems are used for performance
assessment in this work, namely Summit at OLCF [38] and
Cori at NERSC [39]. Cori (Haswell and GPU partitions) is
used for some of the CPU benchmarks and GPU tests while
Summit is employed for the large-scale full-system runs.

Summit consists of 4,608 nodes, each with two IBM
POWER9 CPUs and six NVIDIA V100 GPUs. Each POWER9
processor has 21 cores and is connected to 3 GPUs via
NVLink. Each GPU has 80 SMs (Streaming Multiprocessors)
and 16GB HBM2 memory on device. There is 512 GB of
DDR4 memory on the host and 1.6TB of node-local non-
volatile memory that can be used as a burst buffer.

Cori has two main partitions, Haswell and KNL, and a 18-
node GPU chassis for code development activities. There are
2,688 Haswell nodes, each with two Intel Xeon E5-2698v3
CPUs and 128 GB of DDR4 memory. The GPU chassis
contains eight NVIDIA V100 GPUs and two Intel Xeon 6148
Skylake CPUs on each node. Most of Cori-related results in
Sec. VII are from the Haswell partition and the GPU chassis.

VII. PERFORMANCE RESULTS

In this section, we report performance results such as the
time-to-solution, FLOP/s performance, percentage of peak,
and energy efficiency. For the GPU implementation, all runs
are configured with one GPU per MPI process and all CPUs
on the host are equally divided among the MPI processes and
run as OpenMP threads. The full-system runs take place on
Summit and we have based our percentage of peak calculation
on 43.57 TFLOP/s per node, i.e. 200.79 PFLOP/s for 4608
nodes as reported in [40].

A. CPU versus GPU Implementation

Thanks to the innovations in Sec. V-B, Epsilon exhibits
an overall 18.6x speedup in runtime when moving from the
CPU implementation to GPUs for a moderate sized system,
Si-214. As reported in Tab. IV, the two dominant kernels
MTXEL and CHI-0 (Full-Offload) have gained 25 times and
23 times speedup in runtime. The Full-Offload algorithm (see
Sec.V-B2) has also contributed to the performance improve-
ment by reducing host-device data transfers and executing data

preparation routines on GPUs – a 2x speedup over the Host-
Prep version for CHI-0.

TABLE IV
RUNTIME COMPARISON OF CPU AND GPU IMPLEMENTATIONS OF

EPSILON ON CORI GPU (2 NODES) AT NERSC FOR SI-214

MTXEL CHI-0 Invert Total
CPU Only 616 1120 10.3 1794
GPU Host-Prep 24.2 100.4 9.3 146.3
GPU Full-Offload 24.4 47.7 9.6 96.3

For Sigma, the GPU implementation is 4.3x faster on one
Summit node than its CPU implementation on 20 Cori Haswell
nodes – a 86 times node-to-node speedup (Fig. 7). This is
much higher than the peak throughput ratio of 36 between
two machines (43.6 TFLOP/s to 1.2 TFLOP/s), demonstrating
better resource usage on the GPUs than on the CPUs.

Fig. 7. Runtime comparison of Sigma on Cori Haswell (CPU) and Summit
(GPU) for the Si-510 system with the evaluation of 4 quasiparticles states.
The total time to solution is roughly 6 minutes on 1 Summit node (6 GPUs),
and 27 minutes on 20 Cori nodes (640 CPUs).

With modern HPC design, energy consumption is emerging
as a fundamental metric to assess the efficiency of current
implementations. Fig. 8 shows the energy analysis we have
performed for a range of GW calculations on Summit and on
Cori Haswell. The average power per node is taken from the
TOP500 list [40], [41] for Summit (2,200 W) and the latest
study at NERSC [42] for Cori Haswell (400 W). These num-
bers include power consumption not only from the computing
units (CPUs and GPUs), but also from cooling, network,
file systems and other operation-related units, and hence they
give a more realistic picture of the energy consumption. With
energy consumption formulated as the average power per node
times runtime, Fig. 8 shows that for the same calculation, there
is about 7x energy saving for CHI-0 and 16x for Sigma when
switching from Cori Haswell to Summit.

With performance portability in mind, we have also de-
veloped an OpenACC version in tandem with the CUDA
version. The OpenACC version is compiled with PGI com-
piler, and PGI Fortran interfaces are used for the cuBLAS
and cuFFT library calls. Tab. V shows that for a medium-
sized problem Si-510, the OpenACC version presents a less
than 10% performance difference compared to the CUDA



Fig. 8. Energy efficiency comparison of CHI-0 and Sigma GPP kernels on
Cori Haswell and Summit for Si-510 with 4 quasiparticles.

TABLE V
PERFORMANCE COMPARISON OF CUDA VS OPENACC (SIGMA GPP)

Runtime 6 GPUs 12 GPUs 24 GPUs
CUDA 358 s 182 s 91 s

OpenACC 378 s 192 s 100 s

Results for the Si-510 system with 4 quasiparticles on Summit excluding I/O.

version. This provides a proof of concept that a directive-based
programming model can be nearly as performant as CUDA
for accelerating BerkeleyGW. Additionally, this version can be
translated to OpenMP, with a similar syntax, which is planned
to be supported on all major DOE pre-exascale and exascale
supercomputers such as Perlmutter, Frontier, El Capitan and
Aurora.

B. Weak Scaling

Fig. 9(a) shows the weak scaling pattern of Epsilon, where
the number of GPUs utilized is scaled exactly to the problem
size, i.e. 1824/126 ≈ 15 and (998/510)4 ≈ 15. The most
computationally intensive kernel in Epsilon is CHI-0, which
scales at O(N4) with the number of atoms in the system. The
memory complexity for CHI-0 is O(N3) (see Tab. I), and the
MPI communication is O(N2) (see Fig. 3). As the number of
atoms increases from 510 to 998, the computational demand
(FLOPs) per GPU remains almost constant, but the amount
of memory required per MPI task decreases (i.e. O(N3) vs
O(N4)). With the reduced amount of data to process on each
processor, there is less batching required (see Sec. V-B2).
However, this benefit may not be enough to overcome the extra
communication required by the quartically increasing number
of processors, thus leading to 5% runtime increase for CHI-0.

For Sigma, the GPP kernel is the most computationally
demanding component, and it scales at O(N3) with the system
size, and linearly with the number of quasiparticle energies
(NΣ). To assess the weak scaling of GPP, we can either
increase the system size for a fixed NΣ, or increase NΣ

for a fixed system size. Fig. 9(b) shows the results for both
scenarios, with Cases A, B and C for the first and C, D
and E for the second. Excellent weak scaling is observed

Fig. 9. Weak scaling performance of (a) Epsilon and (b) Sigma on Summit.
For Epsilon the number of GPUs is scaled according to the O(N4) computa-
tional complexity. For Sigma the number of GPUs is scaled according to the
O(N3) computational complexity in Cases A, B and C, and to the number
of quasiparticles in Cases C, D and E.

Fig. 10. Strong scaling performance for the SiC-998 system for (a) Epsilon
and (b) Sigma (pool scaling with intra-pool parallelization).

in both scenarios, and the runtime variation between all five
cases is less than 3%, thanks to the two-level parallelization
strategy (see Sec. V-C). The 3% may have come from load
imbalance issues caused by non-uniform matrix distribution
(i.e. indivisible GPU numbers).

C. Strong Scaling

For the strong scaling, we focus on the two largest systems,
SiC-998 and Si-2742. They each require tens of EFLOPs for
Epsilon and Sigma calculation (see Tab. II).

Fig. 10(a) shows the strong scaling performance of Epsilon,
both CHI-0 alone and the total runtime. The non-CHI-0 parts
include MTXEL (GPU accelerated), Inversion (CPU only,
using ScaLAPACK) and file I/O (for SiC-998, the input size is
230 GB and output 333 GB). Excellent scaling is observed up



to 9,600 GPUs, thanks to Epsilon’s batching mechanism (see
Sec. V-B2). At 9,600 GPUs, the entire CHI-0 kernel can be run
within one batch, i.e. 135×1024/9600/Nspin = 7.2 GB (please
see Tab. II for 135 TB, and there is 16 GB of HBM memory
on the GPU). After this, the performance efficiency drops
mainly due to (a) the loss of effective overlapping between
GPU computation and MPI communication (computation time
has become too short), and (b) load imbalance between
nodes, caused by indivisible matrix dimensions and non-
uniform distribution of the workload over the ring patterned
communication.

For Sigma, as described in Sec.V-C, there are two levels
of parallelization. One is over the independent quasiparticles
(or pools) and the other is within the pool, across multiple
processors (intra-pool). Fig. 10(b) shows the strong scaling
behavior of the intra-pool parallelization for SiC-998, where
8 quasiparticle energies are calculated using 2 pools, with
the pool size ranging from 60 GPUs to 960 GPUs. Excellent
scaling performance is observed up to 480 GPUs per pool
and 960 GPUs in total, and the deviation from linearity is
mostly due to load imbalance between processors and loss
of effectiveness of the overlap between GPU computaion and
MPI communication.

With good strong scaling performance at 120 GPUs per
pool, we investigate the inter-pool parallel efficiency for SiC-
998. As shown in Fig. 11, the first five data points (green
and violet) sweep through different numbers of pools from
5, 10, 20, 40 and to 80 pools. Almost linear efficiency is
observed. Since 80 is the maximum possible number of pools
(1 quasiparticle for each of the 2 spin channels), to scale
further, we increase the pool size from 120 GPUs to 180, 240
and 342 GPUs (the last three black and blue markers), and end
at the full system of Summit and 27,360 GPUs in total. Again,
almost linear scaling is observed, even though I/O becomes an
issue at extreme scale and drives the entire curve off linearly
slightly. For Si-2742, a similar trend is shown in Fig. 11 from
30 pools, 60 pools, and 120 pools with 120 GPUs per pool
(first three blue and yellow data points), to 120 pools with 180,
204 and 228 GPUs per pool (last three pairs of data points).

To alleviate from I/O issues, we have implemented a
workflow that pre-stages input data into the node-local solid-
state storage devices (SSDs) on Summit before the compute
job runs. Before the pre-staging, the input data needs to be
prepared in a suitable format for later parallel executions, and
this preparation only needs to be done once for a given pool
size (i.e. number of MPI tasks per pool). Fig. 11 shows that
the Si-2742? system has significantly less I/O time, and more
specifically, the two Si-2742 entries in Tab. VI show the exact
timings, where the SSD utilization has reduced the I/O time
from 226s to 23s. Note that the time spent in the pre-staging
step (which is a separate job step from the compute job), is
about 52s for the Si-2742? benchmark and it is not included in
the 23s in Tab. VI. With 20.4 GB of input data being copied to
each of the 4608 nodes on Summit, this results in an average
aggregated bandwidth of 1.8 TB/s.

Fig. 11. Strong scaling performance of Sigma on Summit for the SiC-998
with 160 quasiparticles, Si-2742 with 120 quasiparticles, and Si-2742? with
128 quasiparticles, respectively. Labels denoted with an asterisk (?) are for
the more optimized GPP kernel described in Sec. V-C2 and with the SSD
utilization on Summit.

D. Full Summit Runs and Peak Performance

Fig. 12 presents the throughput performance of the two most
computationally demanding kernels from Epsilon and Sigma,
CHI-0 and GPP, in terms of FLOP/s rate versus the number
of GPUs, and the highest values come from Sigma and are
tabulated in Tab. VI.

Fig. 12. Throughput (PFLOP/s) of Epsilon CHI-0 and Sigma GPP for SiC-
998 and Si-2742 on Summit.

For the SiC-998 system, the overall throughput for CHI-
0 is 18.9 PFLOP/s with 9,600 GPUs (at 27% of peak), and
20.6 PFLOP/s with 14,400 GPUs. For the Si-2742 system,
the 4,000-node run reports a 54.8 PFLOP/s throughput and a
31.4% utilization of the 4,000-node peak performance of 172
PFLOP/s.

A series of Sigma calculations are reported in Tab. VI,
where the highest throughput comes from the Si-2742 system
with the more optimized GPP kernel (denoted by ?). On 4,608
Summit nodes, we have achieved 105.9 PFLOP/s double-
precision performance and 52.7% of the machine peak, as
highlighted in gray.



TABLE VI
BEST PERFORMANCE FROM SIGMA

# of # of GPUs Compute IO Throughput % of
GPUs Pools per Pool (s) (s) (PFLOP/s) Peak

SiC-998 27,360 80 342 142 71 65.3 32.9
Si-2742 27,360 120 228 401 226 78.0 39.2
Si-2742? 27,648 128 216 307 23 102.1 50.9
Si-2742? 27,648 256 108 592 39 105.9 52.7

Fig. 13. Roofline analysis of the most optimized Sigma GPP kernel on
Summit during the Si-2742 calculation. Note that there are hundreds of
thousands of kernel invocations of GPP and this is only a random sample.
This kernel has 51.9% of FMA instructions and at 3.92 TFLOP/s, it achieves
58.4% of the per-GPU peak, 6.7 TFLOP/s, and 76.9% of the more customized
Roofline ceiling, 5.1 TFLOP/s, at the default clock frequency 1312 MHz.

This achievement is extraordinary considering the following
challenges.

1) GPP performs a BLAS2 like operation rather than BLAS3
(matrix-matrix multiply like), so it is inherently band-
width bound. However, via cache blocking, loop unrolling
and other optimizations, we have moved the kernel to the
compute bound regime (see Fig.13), with an Arithmetic
Intensity from HBM of 132 FLOP/byte, which is well
over the Roofline machine balance point [43], [44].

2) The complex data access pattern for multiple arrays
presents a challenge in ensuring memory coalescence,
without which we can easily suffer from low warp issue
rates caused by ‘long scoreboard’ (global memory) or
‘short scoreboard’ (shared memory) stalls [36].

3) The existence of long-latency instructions in the kernel,
such as divides and square roots causes a certain level of
low warp issue and warp execution rates.

4) Due to the complex data type and the inter-dependency of
the variables, the kernel uses a lot of registers (80-90 per
thread) and shared memory (24-36KB per thread block);
this limits how many warps can be scheduled, reduces
occupancy and the kernel’s latency-hiding capability.

5) There is a 51.9% ratio of FMAs (fused multiply adds) out
of all FP64 instructions measured with Nsight Compute.
With the estimation of (2 × 0.519 + 0.481)/2 = 75.9%
[44], the best performance achievable is 5.1 TFLOP/s for

V100 at the standard clock frequency 1312 MHz (see
Fig.13). GPP achieves 3.92 TFLOP/s, 76.9% of that peak,
despite the above challenges.

These limiters are commonly seen in large scale HPC ap-
plications. Therefore, the implementation and optimization
techniques presented in this paper can be widely generalized
to other codes and other domains.

VIII. IMPLICATIONS

We have detailed the innovations we implemented in the
GW calculations in BerkeleyGW and the performance results
from simulating several defect complexes in silicon and silicon
carbide, semiconductors that continue to be broadly important
in electronics technology and quantum information. The ad-
vances described here enable the well-founded GW method
to be applied to challenging, fundamental questions related to
defects in established and emerging materials, such as two-
dimensional transition metal dichalcogenides and materials
projected for use in quantum information systems, replacing
semi-empirical methods.

This work demonstrates the possibility for large-scale GW
calculations on current HPC systems, and has profound scien-
tific and computational implications. First, a supercell of over
2,700 atoms and 10,000 electrons is simulated in minutes,
pushing the limit of GW calculations to the ten-thousand
electron regime and allowing for an unprecedented accuracy
for excited-state properties of complex materials. Second, the
GW workflow scales to the full size of Summit with 27,648
GPUs and achieves 105.9 PFLOP/s performance and 52.7%
of the peak. Excellent strong and weak scaling is shown and
nearly 20 times of energy savings is observed, with both highly
performant and portable approaches implemented. This work
sets a new milestone for large-scale GW electronic-structure
calculations and opens up new possibilities for high-fidelity
complex materials science studies in the exascale timeframe.
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