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Abstract

Data partitioning and load balancingare important components of parallel computations. Many different pa
titioning strategies have been developed, with great effectiveness in parallel applications. But the load-b
problem is not yet solved completely; new applications and architectures require new partitioning feature
ing algorithms must be enhanced to support more complexapplications. New models are needed for non-squ
non-symmetric, and highly connected systems arising from applications in biology, circuits, and materials
tions. Increased use of heterogeneous computing architectures requires partitioners that account for non-uniform
computing, network, and memory resources. And, for greatest impact, these new capabilities must be de
toolkits that are robust, easy-to-use, and applicable to a wide range of applications. In this paper, we dis
approaches to addressing these issues withinthe Zoltan Parallel Data Services toolkit.
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1. Introduction
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Load balancing—the assignment of work to processors—is critical in parallel simulations. It
mizes application performance by keeping processor idle time and interprocessor communicatio
as possible. In applications with constant workloads,static load balancing can be used as a pre-proce
to the computation. Other applications, such as adaptive finite element methods, have worklo
are unpredictable or change during the computation; such applications requiredynamic load balancers
that adjust the decomposition as the computation proceeds. Numerous strategies for static and
load balancing have been developed, including recursive bisection (RB) methods [1,58,61], spac
curve (SFC) partitioning [69,48,46,41,21] and graph partitioning (including spectral [58,53], m
level [4,26,32], and diffusive methods [11,27,37]).

These methods provide effective partitioning for many applications, perhaps suggesting that th
balancing problem is solved. RB and SFC methods are used in crash [52], particle [69,52], and a
finite element simulations [1,46,17]. Graph partitioning is effective in traditional [26,32], adaptive
56], and multiphase [68,57] finite element simulations, due, in part, to high-quality serial (Chaco
METIS [32], Jostle [66], Party [54], Scotch [47]) and parallel (ParMETIS [33], PJostle [66]) graph
titioners.

But as parallel simulations and environments become more sophisticated, partitioning algorithm
address new issues and application requirements. Software design that allows algorithms to be c
and reused is an important first step; carefully designed libraries that support many applications
application developers while serving as test-beds for algorithmic research. Existing partitioners n
ditional functionality to support new applications. Partitioning models must more accurately repre
broader range of applications, including those with non-symmetric, non-square, and/or highly-con
relationships. And partitioning algorithms need to be sensitive to state-of-the-art, heterogeneou
puter architectures, adjusting work assignments relative to processing, memory and commu
resources.

In this paper, we discuss ongoing research within the Zoltan Parallel Data Services project [
addressing issues arising from new applications and architectures. In Section 2, we discuss
software design and broad application support. In Section 3, we present enhancements of som
but-goodie” geometric algorithms to address needs of emerging applications and, in particula
and particle simulations. Section 4 includes a hypergraph partitioning model with greater accura
expressiveness than graph-based models. And in Section 5, we present system-sensitive partiti
heterogeneous computing architectures. While not an exhaustive survey, this paper highlights ou
efforts and demonstrates that indeed, more research needs to be done.

2. Software

Software design is an important part of dynamic load-balancing research. Unfortunately, dynam
balancing often is added to applications through a single partitioning algorithm implemented d
in the application. While this approach has very low overhead (as the partitioner works directl
the application’s data structures), it has a number of disadvantages. Because only one algori
implemented, the application developer cannot compare the algorithm to other strategies to eva
effectiveness for the application. The resulting implementation cannot be used in other applicat
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it is tied too closely to the original application’s data structures. The application developer may not have
the expertise or interest to optimize the partitioning algorithm. And implementing the partitioner takes

its are
ons of
y used
ns and

ications
all. And
oftware

nique
ctured
uite of
pplica-

g [69,
ion and
thods,
e graph
ed on
also be
solvers.
para-

similar
a-
rtitioned

an also
, appli-
object
to build

cks, the
saved
licated

load
m old

into and
[39]

s.) Dis-
ciently
sed for
ultiple
etween
time away from the developer’s primary interest—the application.
Software toolkits provide effective solutions to these software engineering issues [15]. Toolk

libraries offering expert implementations of related algorithms, allowing straightforward comparis
methods within an application. To further assist applications, they often include other commonl
services related to their main purpose. By design, toolkits can be used with a variety of applicatio
data structures; through their wider use, they benefit from more thorough testing. Of course, appl
incur some overhead in using the toolkits, but with careful design, the overhead can be kept sm
while application developers must trust the toolkit designers, open-source release of toolkit s
allows careful inspection the implementations.

The Zoltan Parallel Data Services Toolkit [12,14] is an example of such a toolkit. Zoltan is u
in providing dynamic load balancing and related capabilities to a wide range of dynamic, unstru
and/or adaptive applications. Zoltan delivers this support in several ways. First, by including a s
partitioning algorithms, Zoltan addresses the load-balancing needs of many different types of a
tions. Geometric algorithms like recursive bisection [1,58,61] and space-filling curve partitionin
48] provide high-speed, medium-quality decompositions that depend only on geometric informat
are implicitly incremental. These algorithms are highly effective in crash simulations, particle me
and adaptive finite element methods. Graph-based algorithms, provided through interfaces to th
partitioning libraries ParMETIS [33] and PJostle [66], provide higher quality decompositions bas
connectivity between application data, but at a higher computational price. Graph algorithms can
effective in adaptive finite element methods, as well as multiphase simulations and linear algebra
Using Zoltan, application developers can switch partitioners simply by changing a Zoltan run-time
meter, allowing comparisons of the partitioners’ effect on the applications.

Second, Zoltan supports many applications through its data-structure neutral design. While
toolkits focus on specific applications (e.g.,the DRAMA toolkit [39] supports only mesh-based applic
tions), Zoltan does not require applications to have specific data structures. Instead, data to be pa
are considered to be generic “objects” with weights representing their computational cost. Zolt
does not require applications to build specific data structures (e.g., graphs) for Zoltan. Instead
cations provide only simple functions to answer queries from Zoltan. These functions return the
weights, object coordinates, and relationships between objects. Zoltan then calls these functions
data structures needed for partitioning. While some overhead is incurred through these callba
cost is small compared to the actual partitioning time. More importantly, development time is
as application developers write only simple functions instead of building (and debugging) comp
distributed data structures for partitioning.

Third, Zoltan provides additional functionality commonly used by applications using dynamic
balancing. For example, Zoltan’s data migration tools perform all communication to move data fro
decompositions to new ones; application developers provide only callback functions to pack data
unpack data from communication buffers. (In this respect, application-specific toolkits like DRAMA
can provide greater migration capabilities, as they have knowledge of application data structure
tributed data directories based on the rendezvous algorithm of Pinar and Hendrickson [50] effi
locate off-processor data after repartitioning. An unstructured communication package can be u
performing communication within complex patterns of processors and transferring data between m
decompositions in multiphase simulations. While these tools operate well together, separation b
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tools allows application developers to use only the tools they want; for example, they can use Zoltan
to compute decompositions but perform data migration themselves, or they can build Zoltan distributed
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Zoltan’s design is effective for both applications and research. It allows both existing and new

cations to easily use Zoltan. New algorithms can be added to the toolkit easily and compared to
algorithms in real applications using Zoltan. In this way, Zoltan serves as our research test-bed
development, including enhancements to algorithms, incorporation of new models, and support fo
of-the-art architectures.

3. Geometric partitioning

Parallel crash and particle simulations are two application areas driving partitioning research
graph partitioning has been extremely effective for traditional finite element methods (so much
many application developers erroneously use the terms “graph partitioning” and “load balancin
terchangeably), geometric proximity of objects is more important than their graph connectivity in
applications. In crash simulations, for example, efficient parallel detection of contact surfaces
achieved when physically close surfaces are grouped within processors [52]. While graph-based
positions have been used in contact detection, they require construction of a geometric map for
search [30]. Computing a parallel decomposition with respect to geometric coordinates is a more
and straightforward approach. Similarly, greatest efficiency for particle methods is achieved whe
domains contain particles that are physically close to each other [69,52]. Indeed, particle method
have a natural graph connectivity, making graph partitioning difficult or impossible to apply. More
frequent changes in proximity due to geometry deformation or particle movement require reparti
strategies that are faster and more dynamic than graph partitioners.

Geometric partitioning is an old, conceptually simple, but often overlooked technique for qu
and inexpensively generating decompositions. Using only the geometric coordinates of object
methods assign regions of space to processors so that the weight of objects in each region
Zoltan includes geometric partitioners based on recursive bisection and space-filling curves.

Recursive bisection (RB) [1,58,61] computes a cutting plane that divides a physical region in
subregions, each with half of the simulation’s work (see Fig. 1). This cutting procedure is appl

Fig. 1. Cutting planes (left) and associated cut tree (right) for recursive bisection. Dots are objects to be balanced
shown with colored lines and tree nodes.
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Fig. 2. SFC partitioning (left)and box-assignment search procedure (right). Dots (objects)are ordered along the red SF
Partitions are indicated by color. The black box specified for box-assignment intersects the blue and white partitions.

cursively to each subregion until the number of subregions equals the number of partitions desire
number of partitions need not be a power of two; adjusting the work percentage on each side
allows any number of partitions.) Zoltan includes Recursive Coordinate Bisection (RCB) [1],which uses
cutting planes orthogonal to coordinate axes, and Recursive Inertial Bisection (RIB) [58,61], whic
putes cuts orthogonal to principal inertial axes of the geometry.

A space-filling curve (SFC) mapsn-dimensional space to one dimension [55]. In SFC partitioning
object’s coordinates are converted to a SFC key representing the object’s position along a SFC
the physical domain. Sorting the keys gives a linear ordering of the objects (see Fig. 2). This o
is cut into appropriately weighted pieces that are assigned to processors. Zoltan method HSFC
SFC) replaces the sort with adaptive binning [14]. Based upon their keys, objects are assigned
associated with partitions. Bin sizes are adjusted adaptively to obtain sufficient granularity for bala

Geometric methods share many disadvantages and advantages. They are effective when only
ric locality is important and/or natural graph connectivity is not available. Because they do not exp
control communication, geometric partitioners can induce higher communication costs than gra
titioners for some applications. However, because of their simplicity, they generally run faster a
easier to implement than graph partitioners. RCB and SFC partitioning are also implicitly increm
that is, small changes in workloads tend to produce only small changes in the decomposition, r
in little data movement between the old and new decompositions. This property is crucial in dy
load balancing since the cost of moving application data is often high. Given the effectiveness
metric methods for some applications, we present two enhancements that increase applicability
algorithms: assignment for contact detection and multicriteria partitioning.

Assignment for contact detection. In crash simulations, contact detection consists of finding all m
points that intersect a given set of surfaces. Parallel contact detection is often done in two steps
assign each surface to the partitions whose subdomains intersect the surface, and (2) within each
find the points intersecting surfaces assigned in step 1. The key kernels of step 1 are identifying
partitions’ subdomains intersect a given point or region. We define these kernels aspoint-assignment and
box-assignment, respectively. Given a point in space,point-assignment returns the partition owning th
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region of space containing the point. Given an axis-aligned region of space (defined by a 2D or 3D box),
box-assignment returns a list of partitions whose assigned regions overlap the specified box; this box can
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Point- and box-assignment are implemented easily for RB methods [52]. The cutting planes

generate a RB decomposition are stored as a binary tree, as shown in Fig. 1. The root repres
plane dividing the initial geometry into two subregions; children represent planes cutting each
subregions. Each leaf represents the partition to which a subregion is assigned. This tree desc
entire decomposition, yet is small enough to be stored on each processor, allowing point-assignm
box-assignment to be performed in serial.

Using the cut tree, RB point-assignment determines on which side of the root cut the given po
and proceeds to the child subregion containing the point. Comparisons continue down the tree un
is reached; the leaf’s partition is returned. Fork partitions, RB point-assignment requires O(logk) oper-
ations. Similarly, in RB box-assignment, corners of the box are compared to the root cut. If any
is less than the cut, the left child is visited; if any corner is greater than the cut, the right child is v
Partitions associated with all leaves reached during the recursion are returned. RB box-assign
quires O(logk) operations in typical usage, and O(k) operations in the worst case (where every partit
intersects the box).

In Zoltan’s HSFC partitioning, point-assignment is also easily implemented. Thek − 1 cuts dividing
the SFC intok partitions describe the entire decomposition and can be stored on each process
SFC key for the given point is computed. A binary search for this key in the array of cuts returns th
tition owning the space associated with key. Like RB point-assignment, SFC point-assignment r
O(logk) operations.

Box-assignment, however, is difficult in SFC partitioning. Examination of the SFC cuts does no
vide a description of the physical space assigned to each partition. Each entrance point of the S
the box must be found. Traversing the SFC is expensive and, unless done at extremely high re
could miss some partitions that lie within the box.

We have developed an efficient box-assignment algorithm for SFC decompositions. Our imple
tion is strongly influenced by access of SFC-indexed databases in which high-dimensional SFCs
to order database objects. The box-assignment problem is similar to the database problem of fin
data objects inside a specified box or all objects “near” a specified object in a database. Moore
veloped software for several query methods (including variations of box-assignment) and fast con
between Hilbert SFC keys and spatial coordinates; his work was based on earlier work by Butz
Thomas [64]. Lawder [35,36] presents a Hilbert-like SFC and practical conversions and spatial
for high-dimensional database access; while his algorithms would work for a true Hilbert SFC, he
a Hilbert-like curve with more compact state tables necessary for high-dimensional databases.

Our HSFC box-assignment algorithm calls a search routine,Next_Query, that returns one intersectin
partition per call. Starting with SFC key zero as input,Next_Query returns the first partitionm, 0� m <

k, along the SFC that intersects the box. Then, starting at the SFC cut between partitionsm andm + 1,
Next_Query returns the next intersecting partitionq, m + 1 � q < k. The search ends when no mo
partitions intersect the box. Thus,Next_Query is calledp + 1 times, wherep is the number of partition
intersecting the box. An example is shown in Fig. 2.

Next_Query recursively divides the spatial domain into octants and visits them in the order th
SFC enters them. The SFC value passed toNext_Query represents the lowest SFC key assigned to the
partitionm to check for intersection.Next_Query finds the lowest numbered octant intersecting the
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whose SFC key is not less than the input value. For each octant, it creates a partial SFC key by appending
bits representing the octant’s position to bits from higher octree levels; this partial key represents the
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subtree rooted at the current octant. If the partial key is less than the input key, the subtree eith
in the box or is owned by partitions 0 tom − 1; no further search of the subtree is needed. Also, if
octant’s extent (computed from the partial key) does not intersect the box, the search continues to
octant in the SFC. If, however, the extent intersects the box, the octant becomes the new spatial
the octant is refined, and the search is applied recursively to the octant’s children until the requir
key resolution is reached. (Occasionally, a partial key does not provide enough resolution to r
a subtree, even though the subtree does not meet the search criteria; in this case, stored bac
information allows efficient restart.) The final computed SFC key is then the smallest not-previ
found SFC key intersecting the box. A binary search of the SFC cuts produces the partition in wh
computed key lies. HSFC box-assignment requires O(p logk) operations.

To convert SFC keys to coordinates efficiently,Next_Query uses two transition tables [7]. These
bles represent the SFC as an octree without explicitly constructing the octree. Given an octant
orientation in the SFC (i.e., reflection and rotation of the Hilbert “U” curve), thedata table returns bits
indicating thex, y, and z positions of the octant within the orientation. These bits are concate
through all levels of the octree and converted to floating point coordinates. Given an octant and it
tation, thestate table returns the orientation of the SFC for the octant’s children. Inverse tables c
coordinates to SFC keys. This conversion can be thought of as numbering octants in the order
SFC enters them, selecting the octant containing the spatial point, and appending the octant’s nu
the key.

Example 1. We tested our HSFC box-assignment algorithm on a 1.04 million-element mesh of a
ical reactor. We generated an initial decomposition (96 partitions on a 16-processor Compa
Alpha cluster at Sandia) using RCB or HSFC. We then perturbed the mesh coordinates (as
tact/deformation problems) and repartitioned using the same method. For each method, we did
box-assignments on each processor. The box size was the average element size, a typical size
detection. Box locations were chosen randomly. In Table 1, we show the maximum (over all proc
time and number of intersecting partitions for 10 000 box-assignments. Due to the less regular s
HSFC subdomains, more intersecting partitions were found by HSFC box-assignment. The work
for local contact search (step 2 above) is proportional to the number of intersecting partitions; ho
the differences seen here do not raise concern. HSFC partitioning took less time than RCB p
ing, while HSFC box-assignment took more time than RCB box-assignment. Since box-assign
typically done thousands of times per decomposition, the relative benefits of RCB and HSFC
on the particular application and problem. However, for applications preferring HSFC decompos
availability of HSFC box-assignment is a benefit.

Table 1
Results comparing RCB and HSFC box-assignment for Example 1

Partitioner # of Intersecting Parts Partitioning Time for 10 0
for 10 000 box-assignments Time box-assignme

RCB 10 931 0.71 secs 0.027 secs
HSFC 10 983 0.59 secs 0.176 secs
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Multicriteria geometric partitioning. Crash simulations are “multiphase” applications consisting of
two separate phases: computation of forces and contact detection. Often, separate decompositions are
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Obtaining a single decomposition that is good with respect to both phases would remove the n
communication between phases. Each object would have multiple loads, corresponding to its w
in each phase. The challenge would be computing a single decomposition that is balanced with
to all loads. Such a multicriteria partitioner could be used in other situations as well, such as ba
both computational work and memory usage.

Karypis et al. [57,30,34] have considered multicriteria graph partitioning and its use in crash s
tions. However, since geometric partitioners are often preferred, we aim to enable geometric alg
to balance multiple loads. Good solutions to the multicriteria partitioning problem may not exi
all problems with geometric methods; the best we can hope for are heuristics that work well on
problems. We are not aware of previous efforts in this area.

Most geometric partitioners reduce the partitioningproblem to a one-dimensional problem. RCB
for example, bisects the geometry perpendicular to only one coordinate axis at a time; the corres
coordinate of the objects defines a linear order. Thus, even if the original partitioning problem has
in multidimensional space (typicallyR3), we restrict our attention to the one-dimensional partition
problem. This problem is also known as chains-on-chains, and has been well studied for the sin
case [29,44,49].

Traditional optimization problems are written in the standard form: minimizef (x) subject to some
constraints. Hence, handling multiple constraints is easy, but handling multiple objectives is much
as it does not fit into this form. Multicriteria load balancing can be formulated as either a multicon
or multiobjective problem. Often, the balance of each load is considered a constraint and has to
a certain tolerance. Such a formulation fits the standard form, where, in this case, there is no ob
only constraints. Unfortunately, there is no guarantee that a solution exists to this problem. In p
we want a “best possible” decomposition, even if the desired balance criteria cannot be satisfied.
alternative is to make the constraints objectives; that is, we want to achieve as good balance as
with respect to all loads. Multiobjective optimization is a very hard problem, because, in gener
objectives conflict and there is no unique “optimal solution”.

In dynamic load balancing, speed is often more important than quality of the solution. The unicr
(standard) RCB algorithm is fast because each bisecting cut can be computed very quickly. Com
the cuts is fast because it requires solving only a unimodal optimization problem. We want the
speed to apply in the multicriteria case. Thus, we can remove many methods from consideration
we cannot afford to solve a global optimization problem, not even in one dimension.

We consider mathematical models of the multicriteria bisection problem. Although the partiti
problem allows fork partitions, we will focus on the bisection problem, i.e.,k = 2. The solution for
generalk can be obtained by recursively bisecting the resulting partitions. Given a set ofn points, let
a1, a2, . . . , an be the corresponding loads (weights). Informally, our objective is to find an indexs, 1 �
s � n, such that

∑
i�s ai ≈ ∑

i>s ai . When eachai is scalar, this problem is easy to solve. One can sim
minimize the larger sum:

min
s

max

(∑
i�s

ai,
∑
i>s

ai

)
.
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In the multicriteria case, however, eachai is a vector and the problem is not well-defined. In general,
no indexs achieves approximate equality in every dimension. Applying the weighted sum method to the
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formula above yields

min
s

wT max

(∑
i�s

ai,
∑
i>s

ai

)
,

where the maximum of two vectors is defined element-wise andw is a cost vector, possibly all ones, th
combines multiple objectives into a single objective. This formulation is reasonable for load bala
assuming componentj of ai represents the work associated with objecti and phasej , we minimize the
total time over all phases, where one phase cannot start before the previous one has finished.
nately, it is hard to solve; because the function is non-convex, global optimization is required. In
we propose a heuristic:

min
s

max

(
g

(∑
i�s

ai

)
, g

(∑
i>s

ai

))
,

whereg is a monotonically non-decreasing function in each component of the input vector. Motiva
the global criterion method, we suggest using eitherg(x) = ∑

j x
p

j with p = 1 or p = 2, org(x) = ‖x‖
for some norm. This formulation has one crucial computational advantage: the objective func
unimodal with respect tos. In other words, starting withs = 1 and increasings, the objective decrease
until at some point the objective starts increasing. That point defines the optimal bisection values. Note
that the objective may be locally flat (constant), so there is not always a unique minimizer.

While we did not explicitly scale the weights in our description above, scaling is important sinc
approach implicitly compares values corresponding to different weight dimensions. We implemen
types of scaling: no scaling or imbalance-tolerance scaling. No scaling is useful when the magn
the weights reflects the importance of the load types. But in general, the natural scaling is to m
weight dimensions equally important. To account for user-specified imbalance tolerances (i.e., am
load imbalance allowed for each weight dimension), we scale the weights such that the load typ
the largest imbalance tolerance have the smallest sum, and vice versa.

Example 2. We present results using a 4000-element mesh of a chemical reactor with two weig
element (d = 2). For each element, the first weight is one; the second corresponds to the num
its faces having no face neighbors (i.e., on the external surface). This weighting scheme is real
contact problems. Tests were run on a Compaq/DEC Alpha cluster at Sandia. We divided thi
into k = 9 partitions using our multicriteria RCB code and compared against ParMETIS. Resu
shown in Table 2.BALANCE[i] is the maximum processor load for weighti divided by the averag
processor load for weighti, i = 0, . . . , d − 1. We observe little difference between the multicriteria R
algorithms using different norms. The balances are not quite as good as ParMETIS, which was e
since the RCB cuts are restricted to orthogonal planes. Still, the multicriteria RCB algorithm pro
reasonable load balance for this problem in less time than ParMETIS and provides a viable alte
for applications lacking graph connectivity. For comparison, we include the results for RCB withd = 1;
i.e., only the first weight is used. The edge cuts are the number of graph edges that are cut by
boundaries, approximating communication volume in parallel applications.
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Table 2
Results comparing multicriteria RCB and multicriteria ParMETIS for Example 2
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k = 9 RCB RCB RCB RCB ParMETIS
d = 1 d = 2 d = 2 d = 2 d = 2

norm= 1 norm= 2 norm= max

BALANCE[0] 1.00 1.13 1.13 1.12 1.01
BALANCE[1] 1.11 1.11 1.16 1.01
Edge Cuts 1576 1502 1500 1468 1516
Time 0.10 0.11 0.12 0.11 0.25

While further experimentation is needed, initial results are promising. A natural question is how
better one can do by choosing an arbitrary cutting plane at every step. (RCB is restricted to cuttin
coordinate axes.) There is an interesting theoretical result, known as the Ham Sandwich Theore
which implies that a set of points inRn, each with ann-dimensional binary weight vector, can be cut
a (n − 1)-dimensional hyperplane such that the vector sum in the two half-spaces differs by at m
in each vector component. A linear time algorithm exists forn = 2, and some efficient algorithms ex
for other low dimensions [38].

4. Hypergraph models

New simulation areas such as electrical systems, computational biology, linear programming a
otechnology show the limitations of current partitioning technologies. Critical differences between
areas and more traditional mesh-based PDE simulations include high connectivity, heterogeneity
ogy, and matrices that are rectangular or non-symmetric. The non-zero structure of the matrix in T
taken from a density functional theory simulation of polymer self-assembly [22], is representative o
new applications; one can easily see the vastly different structure of this matrix compared to a tra
finite element matrix (Table 3). More robust partitioning models are needed for efficient paralleli
of these applications.

Graph models are often considered the most effective models for mesh-based PDE simulat
graph models, graph vertices represent the data to be partitioned (e.g., elements, matrix rows
represent relationships between vertices (e.g., shared faces, off-diagonal matrix entries). The nu
edges “cut” by a subdomain boundary (i.e., connecting vertices in different partitions) approxima
volume of communication needed during computation (e.g., flux calculations, matrix–vector mult
tion). Vertices and edges can be weighted to reflect associated computation and communicatio
respectively. The goal of graph partitioning, then, is to assign equal total vertex weight to partitions
minimizing the weight of cut edges.

It is important to note that the edge-cut metric is only an approximation of communication vo
For example, in Fig. 3 (left), a grid is divided into two partitions (separated by a red line). Grid poA

has four graph edges associated with it; each edge (shown in blue) connectsA with a neighboring grid
point. Two of the edges are cut by the partition boundary; however, the actual communication v
associated with sendingA to the neighboring processor is only one grid point. Nonetheless, coun
examples demonstrate the success of graph partitioning in sparse iterative solvers and mesh-ba
applications; the approximation is often good enough for these applications.
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Another limitation of the graph model is the type of systems it can represent [23]. Because edge
graph model are non-directional, they imply symmetry in all relationships, making them appropria
for problems represented by square, symmetric matrices. Non-symmetric systemsA must be represente
by a symmetrized modelA+AT, adding new edges to the graph and further skewing the communic
metric. While a directed graph model could be adopted, it would not improve the communication m
accuracy.

Likewise, graph models cannot represent rectangular matrices, such as those arising in linear p
ming. Kolda and Hendrickson [24] propose using bipartite graphs. For anm × n matrix A, verticesmi ,
i = 1, . . . ,m represent rows, and verticesnj , j = 1, . . . , n represent columns. Edgeseij connectingmi

andnj exist for non-zero matrix entriesaij . But as in other graph models, the number of cut edges
approximates communication volume.

Hypergraph models [9] address many of the drawbacks of graph models. As in graph models
graph vertices represent the work of a simulation. However, hypergraph edges (hyperedges) ar
two or more related vertices. The number of hyperedge cuts is an exact representation of commun
volume, not merely an approximation [9]. In the example in Fig. 3 (right), a single hyperedge (s
in blue) including vertexA and its neighbors is associated withA; this single cut hyperedge accurate
reflects the communication volume associated withA.

Catalyurek and Aykanat [9] also describe the greater expressiveness of hypergraph models ov
models. Hypergraph models do not imply symmetry in relationships, allowing both non-symmetr
rectangular matrices to be represented. For example, the rows of a rectangular matrix could be rep
by the vertices of a hypergraph. Each matrix column would be represented by a hyperedge conne
non-zero rows in the column.

Hypergraph partitioning’s effectiveness has been demonstrated in many areas, including VL
out [6], sparse matrix decompositions [9,65], and database storage and data mining [10,45]
hypergraph partitioners are available (e.g., hMETIS [31], PaToH [9,8], Mondriaan [65]), but for
scale and dynamic applications, parallel hypergraph partitioners are needed.

As a precursor to parallel hypergraph partitioning, we have developed a serial hypergraph pa
in Zoltan. Like other hypergraph partitioners [9,31,8], our hypergraph partitioner uses multi-level
gies developed for graph partitioners [4,26,32]. In the multi-level algorithm, we coarsen a hype
into successively smaller hypergraphs. We partition the smallest hypergraph and project the co
composition back to the larger hypergraphs, using local optimization to reduce hyperedge cut
maintaining balance at each level.
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The coarsening phase uses reduction methods that are based on graph matching algorithms adapted
to hypergraphs. Each type of reduction method—matching, packing, and grouping—selects a set of
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vertices and combines them into a single, “larger” vertex. In matching, a pair of connected v
is replaced with an equivalent vertex; the new vertex’s weight, connectivity, and associated hyp
weights represent the original pair of vertices reasonably. Packing methods replace all vertices co
by a hyperedge with an equivalent vertex. Grouping methods replace all ungrouped vertices co
by a single hyperedge with an equivalent vertex. Optimal matching, packing and grouping algorith
typically very time consuming; they either are NP-complete or have run-times that are O(np) wherep is
large. Thus, we implemented several fast approximation algorithms for these tasks [3].

The coarsest hypergraph is then partitioned. If the coarsest hypergraph hask or fewer vertices (wherek
is the number of requested partitions), each vertex is trivially assigned to a partition. Otherwise, a
partitioning method establishes the coarse-hypergraph decomposition.

Finally, the coarse partition is projected onto the successively finer hypergraphs. A coarse verte
tition assignment is given to all fine vertices that were reduced into the coarse vertex. At each pro
a variation of the Fiduccia and Mattheyses [20] optimizer reduces the weight of cut hyperedge
maintaining load balance. The local optimizer generates two partitions (k = 2). Fork > 2, the hypergraph
partitioner is applied recursively.

Example 3. To demonstrate the effectiveness of hypergraph partitioning, we applied both grap
hypergraph partitioners to matrices and compared the communication volume required for matrix
multiplication using the resulting decompositions. For both methods, each rowi of the matrixA was
represented by nodeni . For hypergraph methods, each columnj was represented by a hyperedgehj

with hj = {ni: aij �= 0}. For graph methods, edgeeij connecting nodesni andnj existed for each non
zeroaij or aji in the matrixA; that is, the graph represented the symmetrized matrixA + AT.

The first matrix is from a standard hexahedral finite element simulation; it is symmetric and
sparse. This type of matrix is represented well by graphs. As a result, hypergraph partitioning h
a small advantage over graph partitioning for this type of matrix [9]. For a five-partition decompo
hypergraph partitioning reduced total communication volume 2–22% compared to graph partit
Detailed results are in Table 3; the “best” and “worst” Zoltan hypergraph methods correspond to d
reduction strategies.

Greater benefit from hypergraph partitioning is seen using a matrix from a polymer self-ass
simulation in the density-functional theory (DFT) code Tramonto [22]. The matrix has 46 176 row
3 690 048 non-zeros in an intricate sparsity pattern arising from the wide stencil used in Tramon
an eight-partition decomposition, hypergraph partitioning reduced total communication volume 3
relative to graph partitioning. Hypergraph partitioning also reduced the number of neighboring par
Detailed results are in Table 4. Because our methods are not yet optimized, we do not report par
times; however, Catalyurek and Aykanat show that hypergraph partitioning takes up to 2.5 times a
time as graph partitioning [9].

These experiments and others [9] show the promise of hypergraph partitioning for emerging a
tions. To be effective for dynamic load balancing, however, parallel hypergraph partitioners are n
Also, to keep data movement costs low, incremental hypergraph algorithms are needed; extensio
fusive graph algorithms [11] to hypergraphs is a logical approach, but is complicated by the hype
larger cardinality.
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Table 3
Comparison of graph and hypergraph partitioning for HexFEM matrix (Example 3)
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HexFEM Matrix:
• Hexahedral 3D
structured-mesh
finite element method.
• 32,768 rows
• 830,584 non-zeros
• Five partitions

Partitioning Imbalance # of Neighbor Communication Reduction
Method (Max / Partitions per Volume over all of Total

Avg Work) Partition Partitions Communicatio
VolumeMax Avg Max Total

Graph method 1.03 4 3.6 1659 6790
(METIS
PartKWay)

Best Zoltan 1.013 4 3.6 1164 5270 22%
hypergraph
method (RRM)

Worst Zoltan 1.019 4 2.8 2209 6644 2%
hypergraph
method (RHP)

5. Resource-aware load balancing

Load-balancing research is driven not only by emerging applications, but also by emerging
lel architectures. These new architectures span many scales. Clusters have become viable al
to tightly coupled parallel computers for small-scale systems. They are cost-effective environ
for running computationally intensive distributed applications. An attractive feature of clusters
ability to increase their computational power by adding nodes. Such expansions can result in he
neous environments, as newly added nodes often have superior capabilities. On the medium sca
supercomputers (e.g., ASCI Q, Earth Simulator) are constructed as networks of shared-memor
processors (SMPs) with complex and non-homogeneous interconnection topologies. And on the
scale, grid technologies have enabled computation on widely distributed systems, combining geo
ally distributed clusters and supercomputers into a single computational resource. These grids in
extreme computational and network heterogeneity.

To distribute data from any application effectively on such systems, partitioners must beresource-
aware; that is, they must account for heterogeneity in the execution environment. Resource-awa
ancing requires gathering information about the computing environment (e.g., computing, netwo
memory availability), and determining how to use the information for load balancing (e.g., by adj
partition sizes and/or selecting appropriate partitioning algorithms). A number of projects attemp
dress these issues. Teresco et al. [63] use a directed-graph model to represent hierarchical envir
their work is a precursor of the work described here. Minyard and Kallinderis [40] monitor process
times” to assign element weights that are used in octree partitioning. Walshaw and Cross [67]
a multilevel graph algorithm with a model of a heterogeneous communication network to minim
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Table 4
Comparison of graph and hypergraph partitioning for PolyDFT matrix (Example 3)
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PolyDFT matrix
• Polymer self-assembly
simulation
• Density functional
theory code
• 46,176 rows
• 3,690,048 non-zeros
• Eight partitions

Partitioning Imbalance # of Neighbor Communication Reduction
Method (Max / Partitions per Volume over all of Total

Avg Work) Partition Partitions Communicatio
VolumeMax Avg Max Total

Graph method 1.03 7 6 7382 44 994
(METIS
PartKWay)

Best Zoltan 1.018 5 4 3493 19 427 56%
hypergraph
method (MXG)

Worst Zoltan 1.03 6 5.25 5193 28 067 37%
hypergraph
method (GRP)

communication cost function. Sinha and Parashar [59] use the Network Weather Service (NWS)
gather information about the state and capabilities of available resources; they compute the load
of each node as a weighted sum of processing, memory, and communications capabilities.

We are developing a model for resource-aware load balancing called DRUM (Dynamic Re
Utilization Model) [19]. DRUM provides applications aggregated information about the computatio
communication capabilities of an execution environment. DRUM can be viewed as an abstract ob
(1) encapsulates the details of hardware resources, capabilities and interconnection topology, (2)
a facility for dynamic, modular, and minimally intrusive monitoring of an execution environment
(3) distills this information to a scalar “power” value, readily usable by any load-balancing algorith
the percentage of overall application load to be assigned to a partition. DRUM has been designed
with Zoltan, but may also be used as a separate library.

DRUM represents the underlying interconnection network topology of hierarchical systems (e.g
ters of clusters, or clusters of multiprocessors) as a tree. The root of the tree represents the total e
environment. Its children are high-level divisions of networks connected to form the total executi
vironment. Sub-environments are recursively divided, according to the network hierarchy, with t
leaves being individualcomputation nodes (i.e., single processors (SP) or SMPs). Computation no
have data representing their relative computing and communication power. Non-leafnetwork nodes, rep-
resenting routers or switches, have an aggregate power calculated as a function of the powers
children and the network characteristics. In Fig. 4, we show a tree representing a cluster with ei
and three SMPs connected in a hierarchical network structure.
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Fig. 4. Tree constructed by DRUM to represent a heterogeneous network.

Necessary knowledge of the execution environment’s underlying topology is specified in an XM
created by running a graphical configuration tool. The configuration tool also assesses nodes’ c
tional capabilities by running benchmarks (currently LINPACK [16]) and checks for optional faci
used by DRUM (e.g., threading capabilities). The configuration tool needs to be re-run only whe
ware characteristics of the system have changed.

Powers may be computed from the static benchmark data only or may include dynamic infor
from monitoringagents. At every node, agents in separate threads probe network interfaces for co
nication volume; network nodes are monitored byrepresentative processes. At each computation no
agents measure the CPU load and memory capacity as viewed by each local process of the pa
(An NWS interface is also available for gathering this information.) We compute the power of nodn as
the weighted sum of a processing powerpn and a communication powercn:

powern = wcomm
n cn + wcpu

n pn, wcomm
n + wcpu

n = 1.

Since multiple relevant processes might run on each noden, we extend the notion of a node’s power
processes. We denoteLPn = {psn,j , j = 1,2, . . . , kn}, the set ofkn processespsn,j running on noden
and invoking DRUM services.

For computation noden with m CPUs, we evaluate the processing powerpn,j for each processpsn,j

in LPn based on (i) CPU utilizationun,j by processpsn,j , (ii) the percentageit of time that CPUt

is idle (and, thus, available for computation if processes receive more work), and (iii) the node’s
benchmark rating (in MFLOPS)bn. The overall idle time in noden is

∑m
t=1 it . However, whenkn < m,

the maximum exploitable total idle time iskn − ∑kn

j=1 un,j . Therefore, the total idle time that process

psn,j could exploit is min(kn −∑kn

j=1 un,j ,
∑m

t=1 it ). Assuming all processespsn,j on noden should have
equal power, we compute average CPU usage and idle times per process:

un = 1

kn

kn∑
j=1

un,j , in = 1

kn

min

(
kn −

kn∑
j=1

un,j ,

m∑
t=1

it

)
.

Processing powerpn,j is estimated as

pn,j = bn(un + in), j = 1,2, . . . , kn.



148 K.D. Devine et al. / Applied Numerical Mathematics 52 (2005) 133–152

Sincepn,j is the same for all processesj on noden, pn = ∑kn

j=1 pn,j = knpn,1. On internal nodes,pn is
the sum of the processing powers of the nodes’ children.
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We estimate a node’s communication power based on the communication traffic at the node.
computation and (when possible) network node, agents estimate the average rate of incoming
λ and outgoing packetsµ on each relevant communication interface. We view a node’s communic
power as inversely proportional to the communication activity factorCAF = λ + µ at that node. The
CAF provides dynamic information about the traffic passing through a node, the communication
at neighboring nodes, and, to some extent, the traffic in the overall system. The communication
of nodes with more than one interface (e.g., routers) is computed as the average of the powers
interface. LetCAFn,i denote theCAF of interface i of a noden with s interfaces. We estimate th
communication power as

cn = 1

s

s∑
i=1

1

CAFn,i

.

In practice, software loop-back interfaces and interfaces withCAF = 0 are ignored. To compute pe
process communication powers for processesj, j = 1,2, . . . , kn, on noden, we computecn and associate
1
kn

cn with each process. For consistency, if at least one non-root network node cannot be probed f
munication traffic, all internal nodes are assignedCAF values computed as the sum of their immedi
children’s values.

The value ofwcomm
n is currently specified manually. The possibility of basingwcomm

n on dynamic
factors, such asCAF, is being considered.

A top-down normalization is also performed for the values ofpn andcn at each level of the tree. Thu
for each noden in Li (the set of nodes at leveli), the final power is computed as

powern = ppn

(
wcomm

n

cn∑|Li |
j=1 cj

+ wcpu
n

pn∑|Li |
j=1 pj

)
,

whereppn is the power of the parent of noden; for the root node,ppn = 1.

Example 4. We present experimental results using DRUM in the solution of a Laplace equation
unit square, using Mitchell’s Parallel Hierarchical Adaptive MultiLevel software (PHAML) [42]. A
17 adaptive refinement steps, the mesh has 524 500 nodes. We used a Sun cluster at Williams
consisting of “fast” 450 MHz Sparc UltraII nodes and “slow” 300/333 MHz Sparc UltraII processor
connected by fast (100 Mbit) Ethernet. Benchmark runs indicated that the fast nodes have a com
rate of approximately 1.5 times faster than the slow nodes. Given an equal distribution of work, t
nodes would be idle one third of the time. Zoltan’s HSFC procedure is used for partitioning; resu
similar for other methods.

Table 5 shows wall clock solution times using equally sized partitions and DRUM’s reso
aware partitions. Computations on uniform speed processors indicate only a small overhead
by DRUM’s dynamic monitoring. With uniform partitions, adding two slow processors actually s
the computation. DRUM’s resource-aware partitions allow more effective use of these processo
ticularly when factoring in communication power. In preliminary experiments with larger numbe
processors, DRUM’s resource-aware partitions show similar improvements.
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Table 5
Solution wall clock times (in seconds) using uniformly sizedpartitions and DRUM’s resource-aware partitions for various
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Nodes Uniform wcomm
n = 0.0 wcomm

n = 0.1 wcomm
n = 0.25

4 fast 292.33 295.53 294.94 295.04
4 fast+ 2 slow 348.35 270.23 263.11 283.05
4 fast+ 4 slow 268.03 248.20 243.48 235.02

Many enhancements to DRUM are underway or planned for the future. The expression for th
munication power is being revised to include information such as interface speed (bandwidth) a
latency. Dynamic communication weight selection is being investigated. When communication i
lapped with computation, a weighted sum may not be an accurate model, so other ways to c
communication and processing power will be considered. We are also investigating ways to
memory statistics into the power expression. DRUM agents currently monitor the available an
memory on each computation node. More refined memory statistics (e.g., number of cache level
hit ratio, cache and main memory access times) are needed to capture memory effects in the m
are also developing a package for data collection and analysis that will enable us to filter noisy d
obtain better estimates of computational and communication performance.

Most previous work focuses on incorporating environment information into pre-selected partit
algorithms. As an alternative, such information could be used to select appropriate partitioning str
For example, DRUM’s hierarchical machine model leads naturally to topology-driven hierarchical
tioning. Work is divided among the children of the root of the DRUM tree, with the child nodes’ po
determining the amount of work to be assigned to each node. The work assigned to these node
recursively partitioned among the nodes in their subtrees. Different partitioning methods can be
each level and subtree to produce effective partitions with respect to the network; for example
or hypergraph partitioners could minimize communication between nodes connected by slow ne
while fast geometric partitioners operate within each node.

We are developing these capabilities in Zoltan. Preliminary tests use an adaptive finite eleme
ulation on a Sun cluster of multiprocessors. The subsets of the cluster used for the experim
four two-processor 450 MHz Sparc UltraII nodes and two four-processor 450 MHz Sparc UltraII n
all connected by fast (100 Mbit) Ethernet. Among all combinations of traditional and hierarchica
cedures, time to solution was often minimized using hierarchical load balancing using ParMET
inter-node partitioning and RIB within each node [62]. Further studies will be performed using h
chical balancing on larger clusters and with a wider variety of architectures and applications.

6. Conclusions and future work

While great progress has been made in dynamic load balancing for parallel, unstructured
adaptive applications, research continues to address issues arising due to application and arc
requirements. Existing algorithms, such as the geometric algorithms RCB and HSFC, are bei
mented to support special needs of complex applications. New models using hypergraphs a
developed to more accurately represent highly connected, non-symmetric, and/or rectangular
arising in density functional theory, circuit simulations, and integer programming. On heteroge
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computer architectures, software such as DRUM dynamically detects the available computing, memory
and network resources, and provides the resource information to both existing partitioning algorithms
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and new hierarchical partitioning strategies. Software toolkits such as Zoltan deliver these cap
to applications, enable comparisons of methods within applications, and serve as test-beds fo
research and development.

While we present some solutions to these issues, our work represents only a small sample
tinuing research into load balancing. For adaptive finite element methods, data movement from
decomposition to a new one can consume orders of magnitude more time than the actual com
of a new decomposition; highly incremental partitioning strategies that minimize data movement
portant for high performance of adaptive simulations [2,28]. In overlapping Schwartz preconditi
the work to be balanced depends on data in both the processor’s subdomain and the overlap regi
the size of the overlap region depends on the subdomain generated by the partitioner. In such ca
dard partitioning models that assume work per processor is the total weight of objects assigne
processor are insufficient; strategies that treat workloads as a function of the subdomain are nee
Very large-scale semantic networks place additional demands on partitioners, due to both their h
nectivity and irregular structure; highly effective partitioning techniques for these networks are in
infancy [18]. These examples of research in partitioning, while still not exhaustive, demonstra
indeed, the load-balancing problem is not yet solved.
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