#### Report on the Sunway TaihuLight System

#### **Jack Dongarra**

#### **University of Tennessee**

#### **Oak Ridge National Laboratory**

#### June 20, 2016

University of Tennessee Department of Electrical Engineering and Computer Science Tech Report UT-EECS-16-742

### **Overview**

The Sunway TaihuLight System was developed by the National Research Center of Parallel Computer Engineering & Technology (NRCPC), and installed at the National Supercomputing Center in Wuxi (a joint team with the Tsinghua University, City of Wuxi, and Jiangsu province), which is in China's Jiangsu province. The CPU vendor is the Shanghai High Performance IC Design Center. The system is in full operation with a number of applications implemented and running on the system. The Center will be a public supercomputing center that provides services for public users in China and across the world.

The complete system has a theoretical peak performance of 125.4 Pflop/s with 10,649,600 cores and 1.31 PB of primary memory. It is based on a processor, the SW26010 processor, that was designed by the Shanghai High Performance IC Design Center. The processor chip is composed of 4 core groups (CGs), see figure 1, connected via a NoC, see figure 2, each of which includes a Management Processing Element (MPE) and 64 Computing Processing Elements (CPEs) arranged in an 8 by 8 grid. Each CG has its own memory space, which is connected to the MPE and the CPE cluster through the MC. The processor connects to other outside devices through a system interface (SI).

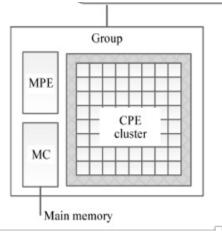



Figure 1: Core Group for Node

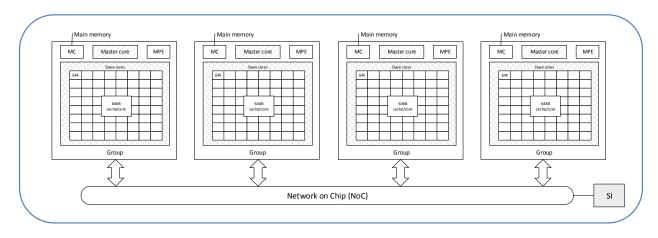



Figure 2: Basic Layout of a Node, the SW26010

Each CPE Cluster is composed of a Management Processing Element (MPE) which is a 64-bit RISC core which is supporting both user and system modes, a 264-bit vector instructions, 32 KB L1 instruction cache and 32 KB L1 data cache, and a 256KB L2 cache. The Computer Processing Element (CPE) is composed of an 8x8 mesh of 62-bit RISC cores, supporting only user mode, with a 264-bit vector instructions, 16 KB L1 instruction cache and 64 KB Scratch Pad Memory (SPM).



Figure 3: Image of SW26010 many-core (260 core) processor that makes up the node.

The SW26010 chip is a Chinese "homegrown" many-core processor. The Vendor is the Shanghai High Performance IC Design Center which was supported by National Science and Technology Major Project (NMP): Core Electronic Devices, High-end Generic Chips, and Basic Software.

### **Computer Node**

A computer node of this machine is based on one many-core processor chip called the SW26010 processor. Each processor is composed of 4 MPEs, 4 CPEs, (a total of 260 cores), 4 Memory

Controllers (MC), and a Network on Chip (NoC) connected to the System Interface (SI). Each of the four MPE, CPE, and MC have access to 8 GB of DDR3 memory. The total system has 40,960 nodes for a total of 10,649,600 cores and 1.31 PB of memory.

The MPE's and CPE's are based on a RISC architecture, 64-bit, SIMD, out of order microstructure. Both the MPE and the CPE participate in the user's application. The MPE performance management, communication, and computation while the CPEs mainly perform computations. (The MPE can also participate in the computations.)

Each core of the CPE has a single floating point pipeline that can perform 8 flops per cycle per core (64-bit floating point arithmetic) and the MPE has a dual pipeline each of which can perform 8 flops per cycle per pipeline (64-bit floating point arithmetic). The cycle time for the cores is 1.45 GHz, so a CPE core has a peak performance of 8 flops/cycle \* 1.45 GHz or 11.6 Gflop/s and a core of the MPE has a peak performance of 16 flops/cycle \* 1.45 GHz or 23.2 Gflop/s. There is just one thread of execution per physical core.

A node of the TaihuLight System has a peak performance of (260 cores \* 8 flops/cycle \* 1.45 GHz) + (4 core \* 16 flops/cycle \* 1.45 GHz) = 3.0624 Tflop/s per node. The complete system has 40,960 nodes or 125.4 Pflop/s for the theoretical peak performance of the system.

Each CPE has a 64 KB local (scratchpad) memory, no cache memory. The local memory is SRAM. There is a 16KB instruction cache. Each of the 4 CPE/MPE clusters has 8 GB of DDR3 memory. So a node has 32 GB of primary memory. Each processor connects to four 128-bit DDR3-2133 memory controllers, with a memory bandwidth of 136.51 GB/s. Non-volatile memory is not used in the system.

The MPE/CPE chip is connected via a network-on-chip (NoC) and the system interface (SI) is used to connect the system outside of the node. The SI is a standard PCIe interface. The bidirectional bandwidth is 16 GB/s with a latency around 1 us.

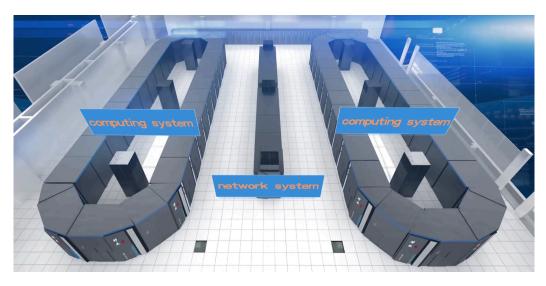



Figure 4: Overview of the Sunway TaihuLight System



Figure 5: Picture of the Sunway TaihuLight System computer room

Sunway TaihuLight System is based exclusively on processors designed and built in China.

For comparison, the next large acquisition of supercomputers for the US Department of Energy will not be until 2017 with production beginning in 2018. The US Department of Energy schedule is for a planned 200 Pflop/s machine called Summit at Oak Ridge National Lab by early 2018, a planned 150 Pflop/s machine called Sierra at Lawrence Livermore National Lab by mid-2018, and a planned 180 Pflop/s machine called Aurora at Argonne National Lab in late 2018.

### **Power Efficiency**

The peak power consumption under load (running the HPL benchmark) is at 15.371 MW or 6 Gflops/W. This is just for the processor, memory, and interconnect network. The cooling system used is a closed-coupled chilled water cooling with a customized liquid water-cooling unit.

#### **The Power System**

The power system is made up of a mutual-backup power input of 2x35 KV which go to a Frontend power supply with output of DC 300V. The Cabinet power supply is DC 12V and the CPU power supply is DC 0.9V.

### **The Interconnect**

Sunway has built their own interconnect. There is a five-level integrated hierarchy, connecting the computing node, computing board, super-nodes, cabinet, to the complete system. Each card

has two nodes, see figure 6.



### Figure 6: Two nodes on a card.

Each board has four cards, one facing up and one facing down, so each board has 8 nodes, see figure 7. There are 32 boards in a supenode or 256 nodes in a supernode, see figure 8.

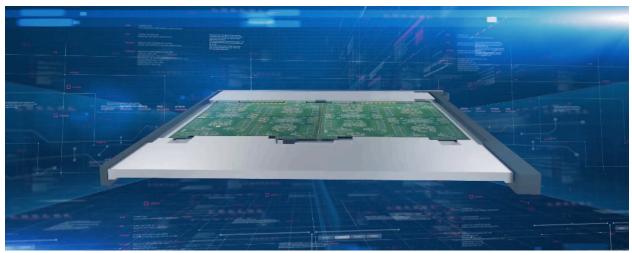



Figure 7: Four cards on a board, two up and two down (on the other side).

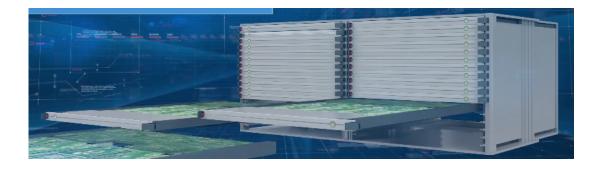



Figure 8: A Supernode composed of 32 boards or 256 nodes.

In a cabinet there are 4 Supernodes for a total of 1024 nodes, see figure 9.



Figure 9: A cabinet composed of 4 supernodes or 256 nodes.

Nodes are connected using PCI-E 3.0 connections in what's called a Sunway Network. Sunway custom network consists of three different levels, with the central switching network at the top connecting different supernodes, the super node network in the middle which fully connects all 256 nodes within each supernode providing high bandwidth and low latency for communication within the supernode, and the resource-sharing network at the bottom connecting the computing system to other resources, such as I/O services. The bisection network bandwidth is 70TB/s, with a network diameter of 7. Mellanox supplied the Host Channel Adapter (HCA) and switch chips for the Sunway TaihuLight.

Communication between nodes via MPI is at 12 GB/second and a latency of about 1 us.

### **Complete System**

The complete system is composed of 40 Cabinets, see figure 10. Each Cabinet contains 4 Supernodes and each Supernode has 256 Nodes, see figure 11. Each node has a peak floating point performance of 3.06Tflop/s.

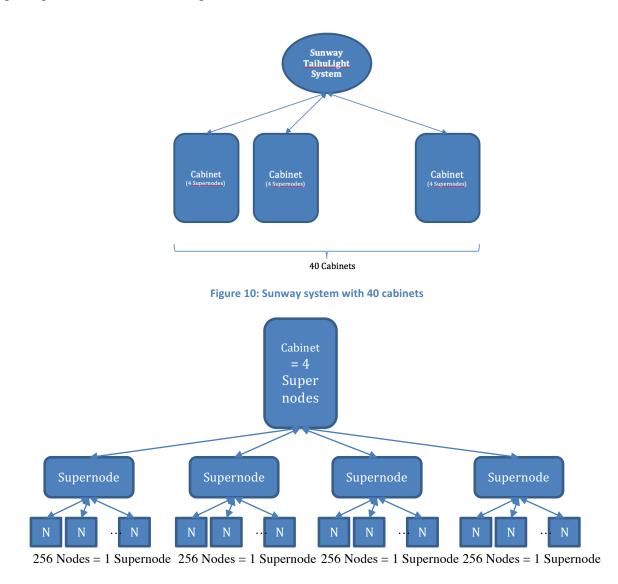



Figure 11: One cabinet of the system.

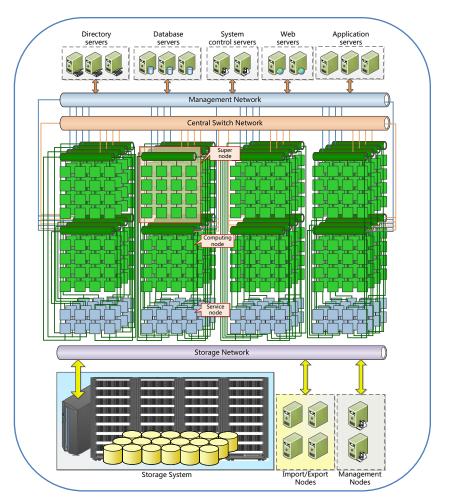



Figure 12: General Architecture of the Sunway TaihuLight

Each Supernode then is 256\*3.06 Tflop/s and a Cabinet of 4 Supernodes is at 3.1359 Pflop/s.

All number are for 64-bit Floating Point Arithmetic.

1 Node = 3.06 Tflop/s
1 Supernode = 256 Nodes
1 Supernode = 783.97 Tflops
1 Cabinet = 4 Supernodes
1 Cabinet = 3.1359 Pflops
1 Sunway TaihuLight System = 40 Cabinets = 160 Supernodes = 40,960 nodes = 10,649,600 cores.
1 Sunway TaihuLight System = 125.4359 Pflop/s

1 Node = 260 cores

Assuming 15.311 MW for HPL using 40 cabinets, each cabinet is at 382.8 KW. Each cabinet has 4\*256 nodes or 373.8 W/node.

The Flops/W for the theoretical peak is at 8 Gflops/W and for HPL the efficiency is 6.074 Gflops/W (93 Pflops/15.311MW).

### **The Software Stack**

The Sunway TaihuLight System is using Sunway Raise OS 2.0.5 based on Linux as the operating system.

The basic software stack for the many-core processor includes basic compiler components, such as C/C++, and Fortran compilers, an automatic vectorization tool, and basic math libraries. There is also the Sunway OpenACC, a customized parallel compilation tool that supports OpenACC 2.0 syntax and targets the SW26010 many-core processor.

| Parallel Applic                                                                                                 | cation                                                                       |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Parallel Program Develop<br>IDE Parallel Debug                                                                  | pment Environment<br>Performance Monitor                                     |
| Parallel Compiling OpenACC                                                                                      | Environment                                                                  |
| Compiling SystemMany-Core Basic<br>Basic Libs• C/C++、Fortran<br>• SIMD• C Lib<br>• ACC Thread Lib<br>• Math Lib | Auto-vectorization<br>•C、C++、Fortran                                         |
| Parallel OS Environment<br>• Job<br>• Resource<br>• Power<br>• Power<br>• Network                               | HPC Storage Management<br>• SWGFS<br>• LWFS<br>• Storage Management Platform |
| Sunway TaihuLig                                                                                                 | ht System                                                                    |

# Figure: Sunway TaihuLight Software Stack

# Cooling

To satisfy the need of 28 MW cooling system Climaveneta delivered 15 TECS2-W/H watercooled chillers equipped with magnetic levitation, oil free VFD compressors, with the best Seasonal Energy Efficiency Ratio (ESEER), close to 10. The Climaveneta cooling system, combined with further eco sustainable technologies adopted, such as free cooling and VPF, has contributed to cut the entire energy consumption of the data center by 45%.

The heat exchange is at the level of the computing boards. The system is able to recycle the cooling water.

## **Applications**

There are currently four key application domains for the Sunway TaihuLight system:

- Advanced manufacturing: CFD, CAE applications.
- Earth system modeling and weather forecasting.
- Life science.
- Big data analytics.

There are three submissions which are finalists for the Gordon Bell Award at SC16 that are based on the new Sunway TaihuLight system. These three applications are: (1) a fully-implicit nonhydrostatic dynamic solver for cloud-resolving atmospheric simulation; (2) a highly effective global surface wave numerical simulation with ultra-high resolution; (3) large scale phase-field simulation for coarsening dynamics based on Cahn-Hilliard equation with degenerated mobility.

All these three applications have scaled to around 8 million cores (close to the full system scale). The applications that come with an explicit method (such as wave simulation and phase-field simulation) have achieved a sustained performance of 30 to 40 PFlops. In contrast, the implicit solver achieves a sustained performance of around 1.5 PFlops, with a good convergence rate for large-scale problems. These performance number may be improved before the SC16 Conference in November 2016.

The Gordon Bell Prize is awarded each year to recognize outstanding achievement in highperformance computing. The purpose of the award is to track the progress over time of parallel computing, with particular emphasis on rewarding innovation in applying high-performance computing to applications in science, engineering, and large-scale data analytics. Prizes may be awarded for peak performance or special achievements in scalability and time-to-solution on important science and engineering problems. Financial support of the \$10,000 award is provided by Gordon Bell, a pioneer in high-performance and parallel computing.

# LINPACK Benchmark Run (HPL)

The results for the Linpack Benchmark showing a run of the HPL benchmark program using 165,120 nodes, that run was made using 1.2 PB total or 7.2 TB of the memory of each node and achieved 93 Pflop/s out of a theoretical peak of 125 Pflop/s or an efficiency of 74.15% of theoretical peak performance taking a little over 3.7 hours to complete, with an average power consumption of 15.37 MW, See figure 9.

Summary of HPL Benchmark run:

• HPL number = 93 Pflop/s

- 74.15% efficient (peak at 125 Pflop/s)
- Size of the matrix, n = 12,288,000 (1.2 PB)
- Logical process grid of pxq = 256 x 640
- 163,840 MPI processes, which corresponds to 4 x 40,960 CGs in the system.
- Each CG has one MPE, and 64 CPEs. So within the MPI process, 64 threads to use the 64 CPEs.
- The number of cores is 163,840 x 64 = 10,649,600 cores for the HPL run.
- Time to complete benchmark run: 13,298 seconds (3.7 hours)
- Average 15.371 MW
- 6 Gflops/W

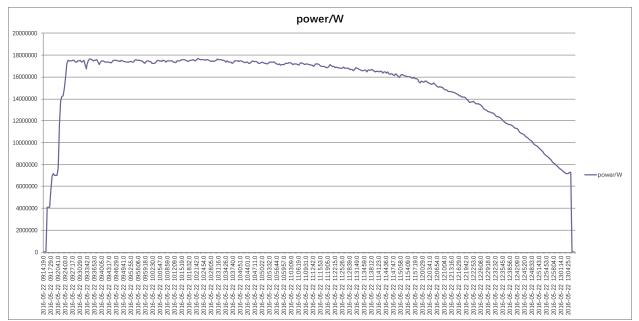



Figure 9: Power consumption for the HPL benchmark run.

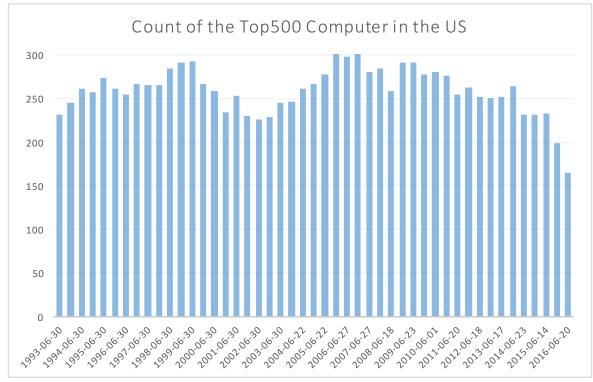
### **Funding for the System**

The system was funded from three sources, the central Chinese government, the province of Jiangsu, and the city of Wuxi. Each contributed approximately 600 million RMBs or a total of 1.8 billion RMBs for the system or approximately \$270M USD. That is the cost of the building, hardware, R&D, and software costs. It does not cover the ongoing maintenance and running of the system and center.

### Summary

The Sunway TaihuLight System is very impressive with over 10 million cores and a peak performance of 125 Pflop/s. The Sunway TaihuLight is almost three times (2.75 times) as fast and three times as efficient as the system it displaces in the number one spot. The HPL Benchmark results at 93 Pflop/s or 74% of theoretical peak performance is also impressive, with

an efficiency of 6 Gflops per Watt. The HPCG performance at only 0.3% of peak performance shows the weakness of the Sunway TaihuLight architecture with slow memory and modest interconnect performance. The ratio of floating point operations per byte of data from memory on the SW26010 is 22.4 Flops(DP)/Byte transfer, which shows an imbalance or an overcapacity of floating point operations per data transfer from memory. By comparison the Intel Knights Landing processor with 7.2 Flops(DP)/Byte transfer. So for many "real" applications the performance on the TaihuLight will be no where near the peak performance rate. Also the primary memory for this system is on low side at 1.3 PB (Tianhe-2 has 1.4 PB and Titan has .71 PB).


The Sunway TaihuLight system, based on a homegrown processor, demonstrates the significant progress that China has made in the domain of designing and manufacturing large-scale computation systems.

The fact that there are sizeable applications and Gordon Bell contender applications running on the system is impressive and shows that the system is capable of running real applications and not just a "stunt machine".

China has made a big push into high performance computing. In 2001 there were no supercomputers listed on the Top500 in China. Today China has 167 systems on the June 2016 Top500 list compared to 165 systems in the US. This is the first time the US has lost the lead. No other nation has seen such rapid growth. See Graphs 1 and 2. According to the Chinese national plan for the next generation of high performance computers, China will develop an exascale computer during the 13th Five-Year-Plan period (2016-2020). It is clear that they are on a path which will take them to an exascale computer by 2020, well ahead of the US plans for reaching exascale by 2023.



Graph 1: Number of Top500 Computers in China over time



Graph 2: Number of Top500 Computers in the US over time

# Table 1: Sunway TaihuLight System Summary

| CPU                           | Shenwei-64                                                                               |
|-------------------------------|------------------------------------------------------------------------------------------|
| Developer                     | NRCPC                                                                                    |
| Chip Fab                      | CPU vendor is the Shanghai High Performance IC<br>Design Center                          |
| Instruction set               | Shenwei-64 Instruction Set (this is NOT related to the DEC Alpha instruction set)        |
| Node Processor cores          | 256 CPEs (computing processing elements) plus 4<br>MPEs (management processing elements) |
| Node Peak<br>Performance      | 3.06 TFlop/s                                                                             |
| Clock Frequency               | 1.45 GHz                                                                                 |
| Process Technology            | N/A                                                                                      |
| Power                         | 15.371 MW (average for the HPL run)                                                      |
| Peak Performance of<br>system | 125.4 Pflop/s system in Wuxi                                                             |
| Targeted application          | НРС                                                                                      |
| Nodes                         | 40,960                                                                                   |
| Total memory                  | 1.31 PB                                                                                  |
| Cabinets                      | 40                                                                                       |
| Nodes per cabinet             | 1024 Nodes                                                                               |
| Cores per node                | 260 cores                                                                                |
| Total system core<br>count    | 10,649,600                                                                               |

# Table 2: Comparison with Top 3 Machines

|                          | <b>ORNL</b> Titan                                                                                       | NUDT Tianhe-2                                                                                    | Sunway TaihuLight                                                                                                                                         |
|--------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Theoretical              | 27 Pflop/s =                                                                                            | 54.9 Pflop/s =                                                                                   | 125.4  Pflop/s = CPEs + MPEs                                                                                                                              |
| Peak                     | (2.6  CPU + 24.5)                                                                                       | (6.75 CPU + 48.14                                                                                | Cores per Node = $256 \text{ CPEs} + 4$                                                                                                                   |
|                          | GPU) Pflop/s                                                                                            | Coprocessor)                                                                                     | MPEs                                                                                                                                                      |
|                          | , <b>1</b>                                                                                              | Pflop/s                                                                                          | Supernode = 256 Nodes                                                                                                                                     |
|                          |                                                                                                         | -                                                                                                | System = 160 Supernodes                                                                                                                                   |
|                          |                                                                                                         |                                                                                                  | Cores = 260 * 256 * 160 = 10.6M                                                                                                                           |
| HPL                      | 17.6 Pflop/s                                                                                            | 30.65 Pflop/s                                                                                    | 93 Pflop/s                                                                                                                                                |
| Benchmark                | _                                                                                                       | _                                                                                                |                                                                                                                                                           |
| Flop/s                   |                                                                                                         |                                                                                                  |                                                                                                                                                           |
| HPL % Peak               | 65.19%                                                                                                  | 55.83%                                                                                           | 74.16%                                                                                                                                                    |
| HPCG                     | 0.322 Pflop/s                                                                                           | 0.580 Pflop/s                                                                                    | .371 Pflop/s                                                                                                                                              |
| Benchmark                | 1                                                                                                       | 1                                                                                                | -                                                                                                                                                         |
| HPCG % Peak              | 1.2%                                                                                                    | 1.1%                                                                                             | 0.30%                                                                                                                                                     |
| <b>Compute Nodes</b>     | 18,688                                                                                                  | 16,000                                                                                           | 40,960                                                                                                                                                    |
| Node                     | AMD Optron<br>Interlagos (16<br>cores, 2.2 GHz)<br>plus Nvidia<br>Tesla K20x (14<br>cores, .732<br>GHz) | 2 – Intel Ivy Bridge<br>(12 cores, 2.2 GHz)<br>plus 3 - Intel Xeon<br>Phi (57 cores, 1.1<br>GHz) | 256 CPEs + 4 MPEs                                                                                                                                         |
| Sockets                  | 18,688<br>Interlagos +<br>18,688 Nvidia<br>boards                                                       | 32,000 Ivy Bridge<br>+ 48,000 Xeon Phi<br>boards                                                 | 40,960 nodes with 256 CPEs and 4 MPEs per node                                                                                                            |
| Node peak<br>performance | 1.4508 Tflop/s<br>=<br>(.1408 CPU +<br>1.31 GPU)<br>Tflop/s                                             | 3.431 Tflop/s =<br>(2*.2112 CPU +<br>3*1.003<br>Coprocessor)<br>Tflop/s                          | 3.06 Tflop/s<br>CPE: 8 flops/core/cycle<br>(1.45 GHz*8*256 = 2.969 Tflop/s)<br>MPE (2 pipelines)<br>2*4*8 flops/core/cycle<br>(1.45 GHz*1= 0.0928Tflop/s) |
| Node Memory              | 32 GB CPU + 6<br>GB GPU                                                                                 | 64 GB CPU + 3*8<br>GB Coprocessor                                                                | 32 GB per node                                                                                                                                            |
| System Memory            | .710 PB =<br>(.598 PB CPU<br>and .112 PB<br>GPU)                                                        | 1.4 PB =<br>(1.024 PB CPU and<br>.384 PB<br>Coprocessor)                                         | 1.31 PB (32 GB*40,960 nodes)                                                                                                                              |
| Configuration            | 4 nodes per<br>blade, 24 blades                                                                         | 2 nodes per blade,<br>16 blades per                                                              | Node peak performance is 3.06<br>Tflop/s, or 11.7 Gflop/s per core.                                                                                       |

|                                          | per cabinet, and<br>200 cabinets in<br>the system                   | frame, 4 frames per<br>cabinet, and 162<br>cabinets in the<br>system                | <ul> <li>260 cores / node</li> <li>CPE: 8 flops/core/cycle (1.45</li> <li>GHz*8*256 = 2.969 Tflop/s)</li> <li>MPE (2 pipelines)</li> <li>2*4*8 flops/core/cycle (1.45</li> <li>GHz*1= 0.0928Tflop/s)</li> <li>Node peak performance: 3.06</li> <li>Tflop/s</li> <li>1 thread / core</li> <li>Nodes connected using PCI-E</li> <li>The topology is Sunway network</li> <li>256 nodes = a supernode (256*3.06</li> <li>Tflop/s = . 783 Pflop/s)</li> <li>160 supernodes make up the whole system (125.4PFlop/s)</li> <li>The network system consists of three different levels, with the central switching network at the top, the super node network in the middle, and the resource-sharing network at the bottom.</li> <li>4 supernodes (3 Tflop/s each) per cabinet</li> <li>40 cabinets ~ 125 Pflop/s</li> </ul> |
|------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          | 560,640 cores =<br>(299,008 AMD<br>cores + 261,632<br>Nvidia cores) | 3,120,000 Cores =<br>(384,000 Ivy<br>Bridge cores +<br>2,736,000 Xeon<br>Phi cores) | 10,649,600 cores = Node (260) *<br>supernodes(256 nodes) * 160<br>supernodes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (processors,<br>memory,<br>interconnect) | 9 MWatts                                                            | 17.8 MWatts                                                                         | 15.3 MWatts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Size                                     | $404 \text{ m}^2$                                                   | $720 \text{ m}^2$                                                                   | $605 \text{ m}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Table 3: | Comparison | of Top | 6 Sy | ystems |
|----------|------------|--------|------|--------|
|----------|------------|--------|------|--------|

| Rank | Site                                                               | Manufacture                                            | Name                           | System                                                                                                                                            | Gflops/<br>Watt |
|------|--------------------------------------------------------------------|--------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 1    | National<br>Supercomputing<br>Center in Wuxi                       | Shanghai<br>High<br>Performance<br>IC Design<br>Center | Sunway<br>TaihuLight<br>system | ShenWei -64<br>10,649,600 cores =<br>Node (260) *<br>supernodes(256<br>nodes) * 160<br>supernodes<br>Connected with<br>Infiniband<br>interconnect | 6               |
| 2    | National<br>Supercomputer<br>Center in<br>Guangzhou                | NUDT                                                   | Tianhe-2                       | 32,000 Intel Xeon<br>CPU's + 48,000<br>Xeon Phi's (+ 4096<br>FT-1500 CPU's<br>frontend)<br>Connected with<br>Infiniband<br>interconnet            | 1.95            |
| 3    | DOE/SC/Oak Ridge<br>National Laboratory                            | Cray Inc.                                              | Titan                          | Cray XK7, Opteron<br>6274 16C 2.200GHz<br>& NVIDIA K20x,<br>Cray Gemini<br>interconnect                                                           | 2.143           |
| 4    | DOE/NNSA/LLNL                                                      | IBM                                                    | Sequoia                        | BlueGene/Q, Power<br>BQC 16C 1.60 GHz,<br>Custom                                                                                                  | 2.069           |
| 5    | RIKEN Advanced<br>Institute for<br>Computational<br>Science (AICS) | Fujitsu                                                | К                              | K computer,<br>SPARC64 VIIIfx<br>2.0GHz, Tofu<br>interconnect                                                                                     | 0.830           |
| 6    | DOE/SC/Argonne<br>National Laboratory                              | IBM                                                    | Mira                           | BlueGene/Q, Power<br>BQC 16C 1.60GHz,<br>Custom<br>Interconnect                                                                                   | 2.069           |

| FEATURE                  | INTEL® XEON PHI™<br>COPROCESSOR 7120P                                                                                                                                     | Intel® Xeon Phi™<br>Processor (codename<br>Knights Landing)                                                                                                                                           | Sunway TaihuLight Node                                                                                                                                                                  |  |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Processor Cores          | Up to 61 enhanced P54C<br>Cores                                                                                                                                           | Up to 72 enhanced<br>Silvermont cores                                                                                                                                                                 | 260 cores / node                                                                                                                                                                        |  |  |
| Key Core Features        | In order, 4 threads / core,<br>2 wide                                                                                                                                     | Out of order, 4 threads / core, 2 wide                                                                                                                                                                | 1 thread / core                                                                                                                                                                         |  |  |
| High Speed Memory        | Up to 16 32-bit channels GDDR5 @ up to 5.5GT/s                                                                                                                            | Eight 128-bit channels<br>MCDRAM @ 7.2 GT/s                                                                                                                                                           | Up to 4 128-bit channels                                                                                                                                                                |  |  |
| Off Package Memory       | None                                                                                                                                                                      | 6 channels DDR4<br>2400MHz                                                                                                                                                                            | 4*128 channels DDR3 at 2133<br>MHz                                                                                                                                                      |  |  |
| Memory Bandwidth         | Up to 181 GB/s<br>STREAM Triad<br>(GDDR5)                                                                                                                                 | ~ 490 GB/s STREAM Triad<br>(to MCDRAM) + ~<br>90GB/s STREAM Triad (to<br>DDR4)                                                                                                                        | 136 GB/s 128-bit DDR3-2133                                                                                                                                                              |  |  |
| Memory Capacity          | Up to 16 GB on-package<br>GDDR5                                                                                                                                           | 16 GB on package memory<br>(MCDRAM) + Up to 384<br>GB off package DDR4                                                                                                                                | 32 GB off package DDR3                                                                                                                                                                  |  |  |
| Peak FLOPS               | SP: 2.416 TFLOPs;<br>DP: 1.208 TFLOPs                                                                                                                                     | Up to SP 6.912 TFs (at<br>1.5GHz TDP freq)<br>Up to DP 3.456 TFs (at<br>1.5GHz TDP freq)                                                                                                              | DP: 3.06 Tflop/s                                                                                                                                                                        |  |  |
| FLOPS/Byte (from memory) | 1.208 Tflop/s / 181 GB/s<br>= 6.67 Flops/Byte                                                                                                                             | 3.456 TFLOP/s at 490<br>GB/s = 7.05 Flops/Byte                                                                                                                                                        | 3.06 Tflop/s / 136.51 GB/s = 22.4<br>Flops/Byte                                                                                                                                         |  |  |
| Scalar Performance       | 1X                                                                                                                                                                        | Up to 3x higher                                                                                                                                                                                       |                                                                                                                                                                                         |  |  |
| Power Efficiency         | Up to 3.5 GF/watt,<br>DGEMM                                                                                                                                               | Up to 9.6 GF/watt,<br>DGEMM (CPU only)                                                                                                                                                                | 6.074 Gflops/W                                                                                                                                                                          |  |  |
| Fabric I/O               | No integrated fabric and accessed through host                                                                                                                            | Up to 50 GB/s with<br>integrated fabric<br>(bidirectional BW, both<br>ports)                                                                                                                          | <mark>??</mark>                                                                                                                                                                         |  |  |
| Configurations           | Coprocessor only                                                                                                                                                          | Stand-alone host processor,<br>stand-alone host processor<br>with integrated fabric (and<br>coprocessor)                                                                                              | Coprocessor, stand-alone<br>processor, stand-alone processor<br>with integrated fabric                                                                                                  |  |  |
| On-die Interconnect      | Bidirectional Ring<br>Interconnect                                                                                                                                        | Mesh of Rings Interconnect                                                                                                                                                                            | Mesh and NoC interconnect                                                                                                                                                               |  |  |
| Vector ISA               | <ul> <li>x87, (no Intel® SSE or<br/>MMX<sup>TM</sup>), Intel IMIC</li> <li>16 floating point<br/>operations per cycle per<br/>core (64 bit floating<br/>point)</li> </ul> | x87, SSE, SSE2, SSE3,<br>SSSE3, SSE4.1, SSE4.2,<br>Intel® AVX, AVX2, AVX-<br>512 (no Intel® TSX), and<br>AVX-512 extensions<br>32 double precision floating<br>point operations per cycle<br>per core | 8 floating point operations per<br>cycle per core (64 bit floating<br>point) for the CPEs<br>16 floating point operations per<br>cycle per core (64 bit floating<br>point) for the MPEs |  |  |

# Table 4: Comparison to Intel's KNC and KNL

| Top500 List          | Computer                                 | r_max     | n_max      | Hours            | MW            |
|----------------------|------------------------------------------|-----------|------------|------------------|---------------|
| (# of times)         |                                          | (Tflop/s) |            | For<br>Benchmark | under<br>load |
| 6/93 (1)             | TMC CM-5/1024                            | .060      | 52224      | 0.4              | IOau          |
| 11/93 (1)            | Fujitsu Numerical Wind Tunnel            | .124      | 31920      | 0.1              | 1.            |
| 6/94 (1)             | Intel XP/S140                            | .143      | 55700      | 0.2              |               |
| 11/94 - 11/95<br>(3) | Fujitsu Numerical Wind Tunnel            | .170      | 42000      | 0.1              | 1.            |
| 6/96 (1)             | Hitachi SR2201/1024                      | .220      | 138,240    | 2.2              |               |
| 11/96 (1)            | Hitachi CP-PACS/2048                     | .368      | 103,680    | 0.6              |               |
| 6/97 - 6/00 (7)      | Intel ASCI Red                           | 2.38      | 362,880    | 3.7              | .85           |
| 11/00 - 11/01<br>(3) | IBM ASCI White, SP Power3 375 MHz        | 7.23      | 518,096    | 3.6              |               |
| 6/02 - 6/04 (5)      | NEC Earth-Simulator                      | 35.9      | 1,000,000  | 5.2              | 6.4           |
| 11/04 - 11/07<br>(7) | IBM BlueGene/L                           | 478.      | 1,000,000  | 0.4              | 1.4           |
| 6/08 - 6/09 (3)      | IBM Roadrunner – PowerXCell 8i 3.2 Ghz   | 1,105.    | 2,329,599  | 2.1              | 2.3           |
| 11/09 - 6/10 (2)     | Cray Jaguar - XT5-HE 2.6 GHz             | 1,759.    | 5,474,272  | 17.3             | 6.9           |
| 11/10(1)             | NUDT Tianhe-1A, X5670 2.93Ghz NVIDIA     | 2,566.    | 3,600,000  | 3.4              | 4.0           |
| 6/11 - 11/11 (2)     | Fujitsu K computer, SPARC64 VIIIfx       | 10,510.   | 11,870,208 | 29.5             | 9.9           |
| 6/12 (1)             | IBM Sequoia BlueGene/Q                   | 16,324.   | 12,681,215 | 23.1             | 7.9           |
| 11/12 (1)            | Cray XK7 Titan AMD + NVIDIA Kepler       | 17,590.   | 4,423,680  | 0.9              | 8.2           |
| 6/13 – 11/15(6)      | NUDT Tianhe-2 Intel IvyBridge & Xeon Phi | 33,862.   | 9,960,000  | 5.4              | 17.8          |
| 6/16 -               | Sunway TaihuLight System                 | 93,014.   | 12,288,000 | 3.7              | 15.4          |

# Table 5: #1 System on the Top500 Over the Past 24 Years (17 machines)

# Table 6: The Top 10 Machines on the Top500

| Rank | Site                                                    | Computer                                                                     | Country         | Cores      | Rmax     | % of | Power | GFlops/Watt |
|------|---------------------------------------------------------|------------------------------------------------------------------------------|-----------------|------------|----------|------|-------|-------------|
|      |                                                         |                                                                              |                 |            | [Pflops] | Peak | [MW]  |             |
| 1    | National<br>Super<br>Computing<br>Center in<br>Wuxi     | Sunway<br>TaihuLight<br>System<br>SW26010<br>(260c) +<br>Custom              | China           | 10,649,600 | 93.0     | 74   | 15.3  | 6.07        |
| 2    | National<br>Super<br>Computer<br>Center in<br>Guangzhou | Tianhe-2<br>NUDT,<br>Xeon 12C +<br>IntelXeon Phi<br>(57c) +<br>Custom        | China           | 3,120,000  | 33.9     | 62   | 17.8  | 1.905       |
| 3    | DOE / OS<br>Oak Ridge<br>Nat Lab                        | Titan, Cray<br>XK7, AMD<br>(16C) +<br>Nvidia Kepler<br>GPU (14c) +<br>Custom | USA             | 560,640    | 17.6     | 65   | 8.3   | 2.120       |
| 4    | DOE /<br>NNSA<br>L Livermore<br>Nat Lab                 | Sequoia,<br>BlueGene/Q<br>(16c) +<br>custom                                  | USA             | 1,572,864  | 17.2     | 85   | 7.9   | 2.063       |
| 5    | RIKEN<br>Advanced<br>Inst for<br>Comp Sci               | K computer<br>Fujitsu<br>SPARC64<br>VIIIfx (8c) +<br>Custom                  | Japan           | 705,024    | 10.5     | 93   | 12.7  | .830        |
| 6    | DOE / OS<br>Argonne Nat<br>Lab                          | Mira,<br>BlueGene/Q<br>(16c) +<br>Custom                                     | USA             | 786,432    | 8.59     | 85   | 3.95  | 2.176       |
| 7    | DOE /<br>NNSA /<br>Los Alamos<br>& Sandia               | Trinity, Cray<br>XC40,Xeon<br>16C +<br>Custom                                | USA             | 301,056    | 8.10     | 80   |       |             |
| 8    | Swiss CSCS                                              | Piz Daint,<br>Cray XC30,<br>Xeon 8C +<br>Nvidia Kepler<br>(14c) +<br>Custom  | Swiss           | 115,984    | 6.27     | 81   | 2.3   | 2.726       |
| 9    | HLRS<br>Stuttgart                                       | Hazel Hen,<br>Cray XC40,<br>Xeon 12C+<br>Custom                              | Germany         | 185,088    | 5.64     | 76   |       |             |
| 10   | KAUST                                                   | Shaheen II,<br>Cray XC40,<br>Xeon 16C +<br>Custom                            | Saudi<br>Arabia | 196,608    | 5.54     | 77   | 2.8   | 1.954       |

| Rank | Site                                                     | Computer                                                                                        | Cores      | HPL<br>Rmax<br>Pflops | HPCG<br>Pflops | HPCG<br>/ HPL | % of<br>Peak |
|------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------|-----------------------|----------------|---------------|--------------|
| 1    | NSCC / Guangzhou                                         | Tianhe-2 NUDT,<br>Xeon 12C 2.2GHz +<br>Intel Xeon Phi 57C +<br>Custom                           | 3,120,000  | 33.86                 | 0.580          | 1.7%          | 1.1%         |
| 2    | RIKEN Advanced<br>Institute for<br>Computational Science | K computer,<br>SPARC64 VIIIfx<br>2.0GHz, Tofu<br>interconnect                                   | 705,024    | 10.51                 | 0.550          | 5.2%          | 4.9%         |
| 3    | NSCC / Wuxi                                              | Sunway TaihuLight<br>System 1.45 GHz +<br>Custom                                                | 10,649,600 | 93.02                 | 0.371          | 0.4%          | 0.3%         |
| 4    | DOE/SC/Oak Ridge Nat<br>Lab                              | Titan - Cray XK7 ,<br>Opteron 6274 16C<br>2.200GHz, Cray<br>Gemini interconnect,<br>NVIDIA K20x | 560,640    | 17.59                 | 0.322          | 1.8%          | 1.2%         |
| 5    | DOE/NNSA/LANL/SNL                                        | Trinity - Cray XC40,<br>Intel E5-2698v3,<br>Aries custom                                        | 301,056    | 8.10                  | 0.182          | 2.3%          | 1.6%         |
| 6    | DOE/SC/Argonne<br>National Laboratory                    | Mira - BlueGene/Q,<br>Power BQC 16C<br>1.60GHz, Custom                                          | 786,432    | 8.58                  | 0.167          | 1.9%          | 1.7%         |
| 7    | NASA / Mountain View                                     | Pleiades - SGI ICE X,<br>Intel E5-2680, E5-<br>2680V2, E5-2680V3,<br>Infiniband FDR             | 185,344    | 4.08                  | 0.156          | 3.8%          | 2.7%         |
| 8    | HLRS/University of<br>Stuttgart                          | Hazel Hen - Cray<br>XC40, Intel E5-<br>2680v3, Infiniband<br>FDR                                | 185,088    | 5.64                  | 0.138          | 2.4%          | 1.9%         |
| 9    | Swiss National<br>Supercomputing Centre<br>/ CSCS        | Piz Daint - Cray<br>XC30, Xeon E5-2670<br>8C 2.600GHz, Aries<br>interconnect ,<br>NVIDIA K20x   | 115,984    | 6.27                  | 0.124          | 2.0%          | 1.6%         |
| 10   | KAUST / Jeda                                             | Shaheen II - Cray<br>XC40, Intel Haswell<br>2.3 GHz 16C, Cray<br>Aries                          | 196,608    | 5.53                  | 0.113          | 2.1%          | 1.6%         |

## **Wuxi Supercomputer Center**

Operated together by Jiangsu Province, Wuxi City and Tsinghua University, the National Supercomputing Center in Wuxi (NSCC-Wuxi) hosts the new generation of Sunway Taihu-Light Supercomputer: a supercomputer that is able to provide a peak performance of over 100 PetaFlops. The NSCC-Wuxi now mainly focuses on providing sufficient computing power for the Technological innovation and industrial upgrading of many areas.

Guangwen Yang is the director of the National Supercomputer Center at Wuxi, and a professor in the Department of Computer Science and Technology. He is also the director of the Institute of High Performance Computing at Tsinghua University, and the director of the Ministry of Education Key Lab on Earth System Modeling. His research interests include parallel algorithms, cloud computing, and the earth system model.

Wuxi is one of six National Supercomputing Centers in China:

- Guangzhou (formerly known as Canton), the site of Tianhe-2;
- Wuxi, not far from Shanghai, which is the location of the Sunway TaihuLight System based on the ShenWei processor;
- Changsha, the capital of Hunan Province in south-central China, which hosts a Tianhe-1A machine;
- Tianjin, one of China's largest cities, sited near the coast to the south-east of Beijing, which also hosts a Tianhe-1A machine;
- Jinan, the capital of Shandong province in Eastern China, south of Tianjin and south-east of Beijing, where the current ShenWei Bluelight is located; and
- Shenzhen, in Guangdong Province just north of Hong Kong, where Nebulae, the Dawning TC3600 Blade System (also known as the Dawning-6000) operates.

### **Other ShenWei Processors**

### ShenWei SW-1

- First generation, 2006
- Single-core
- 900 MHz

### ShenWei SW-2

- Second generation, 2008
- Dual-core
- 1400 MHz
- SMIC 130 nm process
- 70–100 W

### ShenWei SW-3

- Third generation, 2010
- 16-core, 64-bit RISC
- 975–1200 MHz
- 65 nm process
- 140.8 GFLOPS @ 1.1 GHz
- Max memory capacity: 16 GB
- Peak memory bandwidth: 68 GB/s
- Quad-channel 128-bit DDR3

### Acknowledgement:

The images in this report come from the following paper: "The Sunway TaihuLight Supercomputer: System and Applications", by Fu H H, Liao J F, Yang J Z, et al. that will appear in Sci. China Inf. Sci., 2016, 59(7): 072001, doi: 10.1007/s11432-016-5588-7.