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Abstract—Large-scale molecular dynamics (MD) simulations
on supercomputers play an increasingly important role in many
research areas. In this paper, we present our efforts on redesign-
ing the widely used LAMMPS MD simulator for Sunway Tai-
huLight supercomputer and its ShenWei many-core architecture
(SW26010). The memory constraints of SW26010 bring a number
of new challenges for achieving efficient MD implementation on
it. In order to overcome these constraints, we employ four levels of
optimization: (1) a hybrid memory update strategy; (2) a software
cache strategy; (3) customized transcendental math functions;
and (4) a full pipeline acceleration. Furthermore, we redesign
the code to enable all possible vectorization. Experiments show
that our redesigned software on a single SW26010 processor
can outperform over 100 E5-2650 v2 cores for running the
latest stable release (11Aug17) of LAMMPS. We also achieve
a performance of over 2.43 PFlops for a Tersoff simulation when
using 16,384 nodes on Sunway TaihuLight.

I. INTRODUCTION

Molecular dynamics (MD) simulation is one of the most
popular supercomputing applications. It solves dynamics equa-
tions in particle level to achieve accurate simulations of the
characteristic of materials or the structure of big moleculars.
There are some well implemented MD tools like LAMMPS
[18], GROMACS [2], Amber [3] and NAMD [16]. Among
those tools, LAMMPS is a very popular MD simulator with
widely supported potentials and easily extensible function
modules. In practice, LAMMPS has been widely used to
support simulations for real world applications.

LAMMPS uses neighbor lists to accelerate the N-body inter-
actions computation and it employs the domain decomposition
method to implement the MPI parallelization. While neighbor
lists can eliminate unnecessary interactions between far atoms,
it is still very compute intensive for some complex interactions
with many transcendental mathematical functions. In practice,
the simulation progress can be very time-consuming: a top-
level desktop processor could simulate only 0.4 ns per day
on a 512, 000 atoms system for the Tersoff potential, and for

more complex potentials, e.g. the ReaxFF [12], it is several
times slower.

In practice, there are high demands to accelerate large-
scale MD simulations on supercomputers. Since newly man-
ufactured supercomputers often come with many-core archi-
tectures, there have been some previous work on optimizing
LAMMPS on heterogeneous many-core platforms such as
Xeon Phis, GPUs [15], and SW26010 [4].

The Sunway TaihuLight supercomputer [8] provides a the-
oretical peak performance of 125 PFlop/s and an effective
performance-to-power ratio of over 6 GFlop/s per watt. It
consists of 40, 960 nodes with 1.4 PB attached memory.
Each node on TaihuLight is equipped with a single SW26010
processor that is subdivided into four core groups (CGs). Each
CG contains a management processing element (MPE) and 64
computing processing elements (CPEs), and 8 GB of attached
DDR3 shared memory. The 8 GB attached shared memory
can be accessed by both the MPE and the 64 CPEs via a
memory controller with a shared bandwidth of approximately
136 GB/s. The MPE has 32 KB L1 instruction cache and 32
KB L1 data cache, with 256 KB L2 cache for both instructions
and data. Each CPE has its own 16 KB L1 instruction cache
and no data cache. And each CPE can access 64 KB of fast
local device memory (LDM). Data residing in attached shared
memory can be written to LDM by using DMA intrinsics and
subsequently communicated via a broadcast to the LDM of
other CPEs.

SW26010 has a peak performance up to 3.06 TFlops/s.
However, its following memory constraints have posed great
new challenges for redesigning efficient LAMMPS on it:

1) Low memory bandwidth: The 136 GB/s peak band-
width is a big bottleneck for LAMMPS applications.

2) Lack of memory hierarchy: MPE has 256 KB L2
cache as the last level of cache, and CPEs do not have
data cache, the last buffer from each CPE to shared memory
is the 64 KB LDM. This forces us to access the shared
memory frequently for fetching or storing data. This increases
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the demand of memory bandwidth. Also, software controlled
LDM requires us predict the memory access or use inefficient
discrete memory access. Besides, There is no shared caches,
which makes us hard to store constants (e.g. math function
lookup tables).

3) DMA may block LDM access: DMA instructions
can be done asynchronously, but it may cause CPE’s LDM
access blocked. This will reduce the effect of prefetching or
overlapping.

4) The weak MPE: there is only one MPE in each CG,
and the MPE comes as a very low performance core, with
low frequency, small cache, long latency on floating point
operations. In [7], even data pack/unpack is done on CPEs
for better performance.

5) Lack of SIMD instructions on CPEs: there is no gather
or scatter instructions. MD requires many irregular memory
accesses, and thus it is difficult to implement vectorized
memory R/W without these instructions.

Based on the above characters of SW26010, we can see
that applications with regular memory accessing patters can
be usually handled efficiently on it. However, LAMMPS is
a typical N-body application with irregular memory accessing
patterns. Thus to achieve high efficiency, it will be not enough
for us to only use traditional optimization approaches to port
LAMMPS onto SW26010. In order to solve the new chal-
lenges, we have introduced the following major contributions
in the paper:

1) We provide a hybrid memory update strategy to solve
the write conflicts in three body interactions without
involving redundant computations.

2) We design a software cache strategy to fully utilize
the memory bandwidth when there are random read in
pairwise interactions.

3) We implement customized transcendental math func-
tions so that to eliminate searching lookup tables.

4) We do a full pipeline acceleration targeting the interac-
tions, integration and neighbor list building.

The rest of this paper is organized as follows: In Sec.II,
we introduce the basic MD simulation algorithm and previous
work on accelerating MD on different computer architectures.
Sec.III presents our optimization strategies and their efficient
implementation. Performance is evaluated in Sec.IV. Sec.V
concludes the paper.

II. BACKGROUND

A. Molecular Dynamics Simulations

There are two categories of molecular simulation methods:
MD and Monte Carlo (MC). Compared to MC, MD uses actual
time evolution so that trajectory information can be acquired
from MD results, enabling people to research a molecular
procedure in a femtosecond scale. MD simulation usually
contains two parts, the integration part and the interaction part.~vk+1 = ~vk + ck

~F (xk)

m
t

~xk+1 = ~xk + dk~vk+1t

(1)

The integration part do time domain integration following
a set of simple motion equations with symplectic methods.
For example, if the volume is constant and the energy is
constrained, it follows Equation (1), where ~x, ~v and m is the
coordinate, velocity and mass of an atom separately. t denotes
timestep and ~F is the force that atom affected by. c and d
are parameters for the symplectic method. For instance, in the
verlet method, c1 = 0, c2 = 1, d1 = d2 = 1

2 .
V =

N∑
i,j

V2(rij) +
N∑
i,j,k

V3(rij , rik, θijk) + · · ·

~Fi = −∇~riV

(2)

Equation (2) shows the basic principle of interaction part.
There are various approaches for analyzing the V2, V3, · · · ,
which are also called potentials.

Also, since the atoms in a far distance contributes little
effects to an atom, a neighbor list containing only short-
range neighbors is often involved in MD for reducing the
computation workload.

Our work targets both the Lennard-Jones (L-J) potential [13]
and the Tersoff potential [20]. L-J potential is one of the most
simple potentials in LAMMPS. It approximates the sum of
Pauli Repulsion and van der Walls Force as follows:

Vij(r) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

(3)

In Equation (3), rij stands for the distance between atom
i and atom j. As shown in Equation (1), the L-J potential is
not difficult to compute. It just iterates over the neighbors of
each atom and computes forces between atom pair (i, j) and
then sums up the forces.

Tersoff potential is far more complex than L-J potential. Its
Vij is described as follows:

Vij = fC(rij)[fR(rij) + bijfA(rij)] (4)

where fC(r) is a smooth cutoff function which contains
trigonometric functions, fR(r) = Ae−λ1r and fA(r) =
−Be−λ2r are repulsive and attractive terms.

What matters the most is the bij term, it is calculated by a
few functions:

bij =
1

(1 + βnζnij)
1
2n

ζij =
N∑

k 6=i,j

fC(rij)g(θijk)e
λ3
3(rij−rik)

3

g(θ) = 1 +
c2

d2
− c2

d2 + (h− cos θ)2

(5)

.
As we can see from Equation (5), asymmetric three body

interactions is needed to calculate Tersoff potential. Also, since
the three body interactions is involved, it has better accuracy
than L-J potential when simulating crystalline materials.



B. Previous Work on Accelerating MD

There have been a variety of techniques used to accelerate
MD simulations. They range from typical high performance
computing (HPC) strategies such as clustering to novel pro-
cessing architectures. In this section, we discuss the various
strategies used in accelerating MD. We broadly classify these
strategies into two categories: coarse-grained and fine-grained.

The architectures in the coarse-grained category include
general-purpose supercomputers and PC clusters. In the year
of 2002, NAMD [17] won the Gordon Bell prize by scaling
MD to thousands of processor cores. Using supercomputers
such as Blue Gene [6] for MD can also provide a tremendous
performance. In addition, as many accurate simulation using a
long-range solver like PPPM, W. Mcdoniel et al. [14] present
an approach to optimizing the computational kernels with an
implementation of PPPM particularly suitable by means of
vectorization on the Knights Landing self-boot processors.

Computer architectures in the fine-grained category include
special-purpose architectures, reconfigurable architectures and
GPUs. D.E. Shaw et al. introduce their new machine Anton
[19] which is a completed special-purpose supercomputer
designed for MD simulations of biomolecular systems with
customized ASICs to gain better performance.

Reconfigurable systems are based on programmable logic
such as field-programmable gate arrays (FPGAs), expecially
for short-ranged potentials, N. Varini et al. [21] present an
implementation about Clathrate Hydrates on a specialized
hardware platforms within a FPGA-based accelerator MD-
GRAPE 3. Besides, S. Kasap et al. [11] give the first attempt
to port LAMMPS to a FPGA-based parallel computers.

As for GPUs, the main advantage of them is that they are
commodity components. Glaser. J et al. [9] offer an approach
called HOOMD-blue [1], and they scale the L-J potential to
3, 375 GPUs simulating 108 million particles. Z. Fan et al.
do a further research on GPUs as they propose a new force
computation algorithm, GPUMD [5], which is free of write
conflicts because the force, virial stress, and heat status of an
atom can be accumulated in each thread.

The paper presented by W. Dong et al. [4] and M.
Höhnerbach et al. [10] are close to the approach presented
in this paper. The work by W. Dong also used Sunway
TaihuiLight and its SW26010 to accelerate LAMMPS. How-
ever, it supports only the already well-studied L-J poten-
tial. And memory access optimizations are mainly done by
software based prefetching, which can not make full use of
the bandwidth of SW26010. Also, the vector read/write in
it was done in the scalar form which is less efficient. Our
approach utilizes vectorized shuffle instructions to reduce the
number of load/store so that to achieve much higher memory
access efficiency. The work by M. Höhnerbach implemented
a very impressive and efficient vectorization strategy for the
Tersoff potential and optimization techniques mainly from the
computation side were carried out. This work does not have to
do much memory access optimization since platforms involved
in it have sufficient bandwidth. In our work ,however, we
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Fig. 1. Two forms of neighbor list for pairwise interactions.

have to face more new challenges from the memory access
side. This is mainly because many memory constraints of
SW26010 (see Sec.I) have made the efficient redesigning
for both the pair L-J and the complex multi-body Tersoff
potentials in LAMMPS a very difficult task. The solution
presented in this paper overcomes these memory constraints
by using a combination of optimization techniques mainly
from the memory access side. In particular, our solutions can
handle the irregular memory accessing patterns in LAMMPS
efficiently on SW26010. Experiments show that both the
L-J and Tersoff potentials in LAMMPS can be efficiently
parallelized on SW26010 using our approaches.

III. OPTIMIZATION

In order to make full use of the computing power of
SW26010 and overcome its memory constraints mentioned in
Sec.I, we have applied various optimization techniques which
are introduced in this section. Our optimization methods are
generic and can be applied to potentials with similar algorithm
characteristics.

A. Hybrid Memory Updating Strategy

Random memory updating in pairwise interactions is one of
the largest challenges in parallelization of LAMMPS. Original
algorithm in LAMMPS uses Newton’s 3rd Law as shown
in Fig. 1(a) to save computation costs. In Fig. 1(a), i-atom
is accessed sequentially while j-atom is accessed randomly,
and this brings high cost for maintaining data consistency in
parallel implementation.

We use an existing redundant computation approach (RCA)
on GPUs [15] which changes the list to a full neighbor list
shown in Fig. 1(b). RCA is used to trade computation for
memory accessing. In this case, we can write only i-side of
the pair (i, j), and the j-side will be written when computing
pair (j, i).

But for three body interactions, the above method will
require almost triple computation workload, which is too
expensive for us. Moreover, RCA will generate more data
swapping between CPEs and shared memory. This is not
feasible on SW26010 since we do not have enough memory
bandwidth.

The workflow of RCA is shown in Algorithm 1. Loop at
line 1 computes the short range repulsive term of Tersoff and



Algorithm 1 RCA for Tersoff
Require:

FETCH: fetch data from shared memory.
STORE: store data to shared memory.
CLEAN: clean a list
PUSH: add an element to a list.
IDX(x): x’s index in short neighbor list.
FILTER: filter atoms not needed to sum up in short neighbor
as much as possible.
SYNC: Sync across the cores.

1: for i ∈ atoms do
2: FETCH(neighbor(i))
3: for j ∈ neighbor(i) do
4: if R(i, j) < cutoff then
5: Fi ← Fi + REPULSIVE(i, j) . Repulsive term
6: if R(i, j) < cutoff short then
7: PUSH(short neighbor(i), j) . Filtration
8: STORE(Fi)

9: for i ∈ atoms do
10: FETCH(short neighbor(i), Fi)
11: for j ∈ short neighbor(i) do
12: ζij,fw ← 0
13: ζij,rev ← 0
14: for k ∈ short neighbor(i) do
15: ζij,fw ← ζij,fw + ZETA(i, j, k) . Sum ζij

16: FETCH(short neighbor(j))
17: for k ∈ short neighbor(j) do
18: ζij,rev ← ζij,rev + ZETA(j, i, k) . Sum ζji

19: Fi ← Fi + FORCE-ZETA(i, j, ζij,fw)
20: Fi ← Fi + FORCE-ZETA(j, i, ζij,rev)

21: STORE(Fi, ζij)

22: for i ∈ atoms do
23: FETCH(short neighbor(i), Fi)
24: for j ∈ short neighbor(i) do
25: for k ∈ short neighbor(i) do
26: (fi, fj, fk)← ATTRACTIVE(i, j, k, ζij,fw)
27: Fi ← Fi + fi . Accumulate attractive term
28: FETCH(short neighbor(j))
29: for k ∈ short neighbor(j) do
30: (fj, fi, fk)← ATTRACTIVE(j, i, k, ζij,rev)
31: Fi ← Fi + fi . Accumulate attractive term
32: (fj, fk, fi)← ATTRACTIVE(j, k, i, ζjk,fw)
33: Fi ← Fi + fi . Accumulate attractive term
34: STORE(Fi)

filters shorter ranged neighbors for three body interactions.
Loop at line 9 and line 22 computes attractive term. Since
the attractive term is not symmetric for atom i, j, k, RCA has
to calculate this term for i as both center (line 26) and end
atom (line 30 and line 32). As we can see, the computation of
ZETA is doubled and ATTRACTIVE is tripled. This method also
requires short neigh and ζ to be swapped to shared memory,
and the access of short neighbor(j) is also repeated for each
neighbor (line 16 and line 28). RCA may be useful for three
body interactions on GPUs since they have so many threads
and a good GDDR/HBM bandwidth.

In our work, we notice that short neighbor repre-
sents atoms in a bonded range. Thus, the number of
short neighbor should be small enough to be put in the
LDM. Based on this fact, we can compute three body inter-
actions in parallel but summing up them serially. Fortunately,

Algorithm 2 Hybrid memory updating for Tersoff
Require:

Refer to Algorithm 1 for predefined operations.
1: for i ∈ atoms do . Parallellized by CPEs
2: CLEAN(short neighbor(i))
3: FETCH(neighbor(i))
4: for j ∈ neighbor(i) do
5: FETCH(atomj)
6: if R(i, j) < cutoff then
7: Fi ← Fi + REPULSIVE(i, j)

8: if R(i, j) < cutoff short then
9: PUSH(short neighbor(i), j)

10: F endi,∗ ← 0
11: for j ∈ short neighbor(i) do
12: ζij ← 0
13: for k ∈ short neighbor(i) do
14: ζij ← ζij + ZETA(i, j, k)

15: fpair ← FORCE-ZETA(i, j, ζij)
16: Fi ← Fi + fpair
17: F endi,IDX(j) ← F endi,IDX(j) − fpair
18: for j ∈ short neighbor(i) do
19: for k ∈ short neighbor(i) do
20: (fi, fj, fk)← ATTRACTIVE(i, j, k, ζij)
21: Fi ← Fi + fi
22: F endi,IDX(j) ← F endi,IDX(j) + fj
23: F endi,IDX(k) ← F endi,IDX(k) + fk

24: FILTER(short neighbor(i), F endi,∗)
25: STORE(Fi, F endi,∗, short neighbor(i))

26: for i ∈ atoms do . Done by MPE
27: SPIN-WAIT(size(short neighbor(i)) ≥ 0)
28: for j ∈ short neighbor(i) do
29: F end sumj ← F end sumj + F endi,IDX(j)

30: SYNC(MPE,CPEs)
31: for i ∈ atoms do . Parallelized by CPEs
32: Fi ← F end sumi + Fi

CPE ClusterMPE

Three body
interactions

j k

i

F_end_sumj

+ =

F_endi,IDX(j)

Memory

F_end_sum

F_end

ShortNeigh

F

NeighList

Pairwise interactions

ji

Fig. 2. MPE-CPE cooperation in three body interactions computation.

we have not assigned any computation task to MPE yet, and
we can use MPE for summing up the forces. Then it comes
to our hybrid memory updating strategy.

The workflow of our hybrid memory updating strategy is
shown in Algorithm 2 and Fig. 2. In our method, we use
pairwise interactions to filter the shorter range neighbors for
three body interactions. The CPE cluster calculates the three
body interactions, and we put the force status of the i-atom
as usual (F ). But for the j/k-atoms, we accumulate the force
grouped by the short neighbor index (F end), and then the



F end is accumulated to F end sum on the MPE. Finally,
we just need to sum up F and F end sum to acquire the
total force that an atom affected by.

In this way, there is no dependency of ζjk, and we can fuse
the loops to reduce data transportation. Besides, the cache of
MPE is utilized for summing up the forces.

To guarantee the data consistency, we put the number of
short range neighbors to shared memory after the three body
interactions of a center atom is completely done, and the MPE
spin waits until it comes to a non-negative value. Therefore
we have a solution for the three-body interactions without
redundant computation or random memory writing.

Furthermore, we add a filter before storing F end and
short neighbor, which will filter out ghost atoms, merge the
short neighbor list across i-atom blocks, and pad the block
to a multiplier of 8. Then we can eliminate the conditional
statements of MPE’s code and unroll the loop on MPE so that
we can keep a balanced workload between MPE and CPEs.

B. Software Cache Strategy

Usually, the pairwise interactions is the first one to be done
before other interactions, and it also filters neighbor lists for
shorter-ranged interactions. Therefore the pairwise interactions
faces a random memory reading for the original neighbor lists.

Some projects based on Sunway TaihuLight use pre-
processing to reduce the cost of random memory access, for
example, swsptrsv [22] accelerates sparse matrix solving by
pre-processing. But for MD applications, the neighbor list is
always changing, making it difficult to accelerate iterations by
pre-processing.

We can not make the memory access predictable, but we
can try to enlarge the memory accessing block to an acceptable
size, and reuse data as much as possible to reduce the require-
ment of memory bandwidth. In our work, we have designed
and implemented a software cache strategy to simulate cache
behaviors by software logic and preserve some LDM space
for caching data.

To gain a good cache performance, the key task is to reduce
the Average Memory Access Time (AMAT)[23].

AMAT = HC +MR ·AMP (6)

Equation (6) shows how AMAT is determined, where HC
is the number of cycles to load data when cache hits, MR
is cache-miss ratio and AMP is average number of cycles to
load data to cache when cache-miss. This shows that we must
keep a balance of the three terms to acquire a good cache
performance.

Usually, the cache design should concentrate on MR,
but for simulating caches, HC is also critical because of
software’s overhead. To our best effort, we consider doing this
by bit operations. By setting the cache line count and cache
line size to power of 2, we can do the cache hit decision
by using bit-wise operations, which can minimize the cost of
cache hit decision.

For the MR term, we want to decrease it as much as
possible. As it is known, the MR is usually determined
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Fig. 3. Packing data for DMA access with an additional p to make the
memory access aligned.

by cache size and cache strategy. We can not increase the
cache size due to the limited size of LDM, so we choose
a total cache size of 32 KB, which is the largest power
of 2 less than the size of LDM. For the strategy, we try
direct-mapped cache and group-associative cache methods.
We evaluate the two strategies by applying them to CPE
parallelized version of L-J potential, as a result, the MR of
direct-mapped cache is ∼ 18% while the MR of the group-
associative cache is ∼ 15%. But for the group-associative
cache, HC is much larger than direct-mapped cache, thus
leading to lower performance.

At last, we consider reducing the AMP term by accel-
erating DMA operations to fetch data to LDM. Like many
platforms, memory access performance is related to the align-
ment and size of memory access block. DMA instructions
almost follow the same rules: 1) alignment: DMA can achieve
its peak bandwidth only if the accessed address is in an
alignment of 128 bytes. 2) size: DMA access is done by a
128-byte accessing block physically. But in our test, a 128-
byte accessing block can achieve its peak bandwidth only if
the accessed address is increased sequentially. Also, when an
accessing block has a size of 256 bytes, it will reach the peak
bandwidth even if the accessed address is distributed randomly.

According to above preconditions, we carefully design our
caching strategy in the following way: 1) Total size of the
cache is 32 KB, which is the maximum possible value to use
bit-wise operations for cache hit decision. 2) Cache line size is
256 B. This is the minimum size to achieve peak bandwidth
for random memory access, and a larger size will increase
MR and AMP . 3) The size of each cache line should be a
multiplier of the atom data size, or we must do a transform
between atom index and memory address, which has a penalty
on HC.

To achieve 3) in the strategy above, we consider reorga-
nizing the atom data from SoA (structure of arrays) form to
AoS (array of structures) form as shown in Fig. 3. And an
additional 4-byte padding is appended to the structure, thus
we have an atom data structure of 32 bytes. By forming cache
lines of 8 atoms (256 bytes), we align memory access blocks
whichever cache line we fetch from memory.

After all preconditions are ready, we can implement a cache
module and plug it into pairwise interactions as shown in
Algorithm 3. The cache checking is done before the calcu-



Algorithm 3 The Caching Strategy
Require:

1: nlines← 2n

2: linesize← 2m

3: lmask ← nlines− 1
4: emask ← linesize− 1
5: for i atom ∈ all atoms do
6: for j ∈ neighbors(i) do
7: tag j ← SHIFT-RIGHT(j, n+m)
8: line j ← SHIFT-RIGHT(j,m) ∧ lmask
9: off j ← j ∧ emask

10: if tag(line j) 6= tag j then
11: line off ← j ∧ ¬emask
12: DMA(mem(line off), cache(line j))
13: tag(line j)← tag j

14: j atom← cache(line j, off j)
15: PAIRWISE-INTERACTION(i atom, j atom)

(a) Bining atoms and scan
bins.

(b) Bundling bins for scan-
ning.

Fig. 4. Difference between original bin scanning method and bundled bin
scanning method in a 2-D case.

lation of pairwise interactions of atoms (i, j), and we firstly
determine whether the data of atom j is in cache. If it is
missing, we use DMA to fetch the corresponding cache line
from shared memory. Then we calculate the cache mapping
address and obtain atom j’s data from LDM.

C. Bundled Bin Scan for Neighbor List Build

The building of neighbor list is another hotspot in LAMMPS
since the rebuilding may happen frequently during the itera-
tions. The mostly used method to build a neighbor list is the
bin method.

As shown in Fig. 4(a) and Algorithm 4, the traditional bin
method firstly puts all particles into different bins (the grid
in Fig. 4(a)) according to their coordinates, and then scans
the bins around each atom’s bin (STENCIL-BIN) to find its
neighbors (the arrows in Fig. 4(a)).

Since the outer loop is used to handle the atom level, this
will contribute a bad locality. In our method, we readjust
the loop order and take bins as the outer loop as shown in
Algorithm 5. In our case, a few atoms in a same bin will have
Algorithm 4 Original bin scanning algorithm for scanning

1: for atomi ∈ atoms do
2: bini ← ATOM2BIN(atomi)
3: for binj ∈ STENCIL-BINS(bini) do
4: for atomj in binj do
5: if R(atomi, atomj) < cut r then
6: PUSH(neigh list(atomi), atomj)

Algorithm 5 Use bins for outer loop
1: for bini ∈ bins do
2: for binj ∈ STENCIL-BINS(bini) do
3: for atomi in bini do
4: for atomj in binj do
5: if R(atomi, atomj) < cut r then
6: PUSH(neigh list(atomi), atomj)
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Fig. 5. Calculation of exponential functions, x is divided to a quotient part
and remainder part and calculated by different methods.

the same stencil-bins, which can reduce the total amount of
memory access and increase computation locality.

In addition, we notice that adjacent bins share quite a
few stencil-bins, so we bundle bins for CPE parallelized
implementation, that means, one CPE will be distributed more
bins (yellow cells in Fig. 4(b)), so that they can share some
stencil-bins (e.g. the green bin in Fig. 4(b)) to reduce the
pressure from memory bandwidth.

D. Eliminate Lookup Table in Transcendental Functions

Since the GNU libm implementations for transcendental
functions on CPEs need to search lookup tables whose size
is usually beyond the available LDM. This is because for
transcendental functions used in Tersoff potential, sin and
cos share a 4, 096-byte lookup table while pow and exp
occupy another 8, 432 bytes, that is around 12 KB in size.
Since 32 KB of LDM is reserved for software cache and
another > 20 KB is used by various buffers, if 12 KB of
LDM is occupied by lookup tables, LDM will overflow. But
if we just leave the tables in the shared DDR3 memory, the
performance will not be satisfying. Therefore in our work, we
have designed a polynomial based approach to approximate
these transcendental functions.

Our approach is illustrated in Fig. 5. We change the ex to
ep·ln2 · eq = 2p · eq and 0 < q < ln2 in Fig. 5. The 2p can be
calculated by setting the exponential part to a floating point
number. For the eq , we use a polynomial P (x) to approximate
it. When the order of P (x) is 11, |P (x) − ex| < 10−14 for
0 < x < ln2, which is accurate enough for the computation of
Tersoff potential. Then we can calculate eq by that polynomial.
Finally, ex is calculated by multiplying 2p and eq .

In the similar way, we implement ln(x) = ln(2p · q)
by calculating ln(2p) = p · ln(2) and approximating ln(q)
by polynomials. Then pow is implemented by combining ln
and exp. Also, sin and cos in (−π, π) is approximated by
polynomials while other inputs will be mapped to this range
according to sin(2kπ + x) = sin(x).

In addition, we notice that for the calculation of polynomi-
als, a naive implementation of Horner’s method (Algorithm 6,
line 1) can be accelerated easily by using FMA instructions,
but the inter-instruction data dependency on p prevents us



Algorithm 6 Compare of naive implementation Horner’s
method and our adjusted method

1: function NAIVE-HORNER(x, a, n)
2: p← 0
3: for i ∈ [n, n− 1, ..., 2, 1, 0] do
4: p← p · x+ ai

return p

5: function ADJUSTED-HORNER(x, a, n)
6: peven ← 0
7: podd ← 0
8: xsq ← x2

9: for i ∈ [bn
2
c, bn

2
c − 1, ..., 2, 1, 0] do

. Assume n is odd
10: podd ← podd · xsq + a2i+1

11: peven ← peven · xsq + a2i
return peven + podd · x

j-atom j-atom1 j-atom2 j-atom3 j-atom4

= −d0 xi0 xj0

= −d1 xi1 xj1

= −d2 xi2 xj2

...

V = simd_vsub(V , V )d0 xi0 xj0

V = simd_vsub(V , V )d1 xi1 xj1

V = simd_vsub(V , V )d2 xi2 xj2

...

Scalar form Inter j­atom vectorization form

Fig. 6. Inter j atom vectorization. We can have four operations at once using
SIMD instructions.

from utilizing Instruction Level Parallelism (ILP). We have
adjusted it to a more pipeline friendly method (Algorithm 6,
line 5) by accumulating even and odd terms of the polynomial
separately to achieve a slightly better utilization of ILP. Since
the pipeline is still far from full, our modification can provide
about 80% speedup in calculating the 11-order polynomial in
the calculation of ex.

Our customized transcendental functions not only save a
lot of space on LDM, but also make the vectorization more
friendly. Performance of our implementation is a little slower
than loading the table to LDM to compute for scalars. But vec-
torized version is slightly faster than manufacturer’s version
of vectorized math functions.

E. Vectorization

In our work, we have also implemented vectorization to
exploit the available 256-bit SIMD vector registers.

Since the pairwise interactions computation need to com-
pute a number of j-atoms for each i-atom, we prefer to
use the Sunway’s SIMD extension on CPEs to calculate the
interactions of four j-atoms at once for the same i-atom in a
low parallelization level. As there are a lot of scalar operations
in the pairwise interactions, we decide to use an inter-j-atoms
vectorization method shown in Fig. 6.

In practice, there are still some cases that prevent efficient
vectorization. Three typical cases are shown in Algorithm 7,

Algorithm 7 A simplified workflow for pairwise interaction
for pair (i,j)

1: itype← type(i)
2: jtype← type(j) . Load types from LDM
3: dij ← xj − xi
4: r2 ← |dij |2
5: if r2 < cut2(itype, jtype) then
6: pmij ← pm(itype, jtype)
7: fpair ← PAIR-WISE-INTERACTIONS(i, j, dij , pmij)
8: fi ← fi + dij ∗ fpair
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(a) Using transpose for loading j-atom data

pj0 pj1 pj2 pj3tj0 tj1 tj2 tj3

tj0 tj1 tj2 tj3

3 1 2 0

pmi0 pmi1 pmi2 shufflepmi3 pmi3 pmi1 pmi2 pmi0

(b) Using shuffle for parameter lookup

Fig. 7. Two methods to organize the vectors needed to access LDM efficiently.

they include:

1) Irregular memory access for index j in line 2 and line
3.

2) Seeking type(i), type(j) in a parameter table in line 6.
3) The if statement about the cutoff radius in line 5.

It is hard to solve case 1) because we cannot decide whether
the four adjacent j are in LDM with no gather instruction
supported. In our method, we access the data by j index
and use vector loading for a cache entry of that atom. Then
we make a transpose on the four entries to make an SIMD
approach like Fig. 7(a). Meanwhile, the type is also loaded
and transposed during the process.

For case 2), we have two solutions: one is to reorganize all
parameters to an AoS form, then solve it like case 1). The
other solution can only be used when the number of atom
types is less than 4. By forming the 4 jtypes as a mask, and
loading pmi∗ in a vector, we can use shuffle instruction to get
the pmij vectors. The latter solution is shown in Fig. 7(b).
The pm in both Algorithm 7 and Fig. 7(b) denotes parameters
which depend on the types of atoms.

For case 3), there is no masked instructions, but we have
select instructions to combine values from two vectors by a
condition. Therefore, adding a select instructions to clear the
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Fig. 8. Vectorization of Tersoff potential (based on our hybrid memory
updating strategy in Algorithm 2). sn∗ means the short neighbor-data. Zijk is
the computation of ZETA(i, j, k), ζ is the computation of FORCE-ZETA(i, j),
and Aijk is the computation of ATTRACTIVE(i, j, k), and ∅ denotes that cell
does not need computation since j = k, and its result is cleared by select
instructions.

TABLE I
CONFIGURATION OF OUR BENCHMARK

Potential L-J Tersoff
Units lj metal

Lattice 0.8442 FCC 5.431 Diamond
Cutoff 2.5 3.2
Skin 0.3 1.0

Timestep 0.005 tau 0.001 psec
Neigh modify 20 5

Fix NVE NVE
Potential Specific Parameters sigma: 1 Potential file: Si.tersoff

epsilon: 1

fpair for j-atoms not in the cutoff can solve this problem.
For three-body interactions of short neighbors in the work-

flow of Tersoff , we notice that FORCE-ZETA in Algorithm
2 procedure is at the level of j-loop, so we choose to use
this level for vectorization instead of the inner level k-loop
as shown in Fig. 8, which can keep FORCE-ZETA vectorized.
Parameter loading can be done which is almost the same as
pairwise interactions.

F. Discussion of the Portability of Our Strategies

While our optimizations target TaihuLight, but some of
our ideas are also portable to other platforms: 1) The im-
plementation of software cache strategy can be abstracted as
a general-purpose module. In order to use this module on a
similar architecture, we only need to re-implement the memory
accessing part by replacing the current DMA instructions
with specific memory accessing instructions. 2) The hybrid
memory updating strategy is also portable to shared memory
architectures to avoid write conflicts. 3) Our customized tran-
scendental functions can be abstracted to a frontend + backend
framework. The frontend contains a series of math operations
while the backend translates those operations to corresponding
hardware instructions, so it can be ported to most architectures
by implementing the backend.

IV. EVALUATION

We evaluate our optimized version of LAMMPS on Taihu-
Light. The single node performance, scalability and correct-
ness are all evaluated, and performance result is acquired by
calculating the average value of 5 runs. Also, as a comparison,
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Fig. 9. The average iteration time of the two potentials among different
optimization steps. RCA in Fig. 9(b) means redundant computation approach
while HMU means hybrid memory updating.

TABLE II
THE TIME DECOMPOSITION OF OPTIMIZED L-J AND Tersoff

POTENTIALS ON EACH SECTION IN PERCENTAGE.

Potential1 Section2

Force Neigh Comm Modify Other
Ref-MPE-L-J 83.34 11.68 1.29 3.33 0.35
Opt-CPE-L-J 52.13 20.39 16.72 4.92 5.84
Ref-MPE-Tersoff 96.96 1.12 0.65 1.15 0.12
Opt-CPE-Tersoff 64.08 14.95 13.81 3.29 3.88
1 Ref version of code means pure MPE running reference code,

including L-J and Tersoff potential. Opt version of code means
CPEs running code for L-J and Tersoff potential.

2 There are five sections in L-J and Tersoff potentials. Force is the
computation of the potential. Neigh is the building the neighbour
list. Comm is the exchanging of atoms migration and boundary
atom information with neighbouring processors. The section Mod-
ify updates the integration steps for velocities and positions. Other
is any remaining time.

we compare our optimization on a single node of TaihuLight to
the reference implementation and Intel version of LAMMPS.

Our optimization is based on the 11Aug17 stable version
of LAMMPS. In order to compare results of TaihuLight with
other platforms, the test cases are selected from a standard
LAMMPS benchmark for the simulation. Detailed benchmark
sets are shown in Table I. The potential file of Tersoff in Table
I is Si.tersoff which is provided by the LAMMPS package.

A. Single Node Evaluation

As shown in Fig. 9(a), initially, the pairwise interactions
kernel’s performance is heavily dominated by memory access
patterns, and we have an obvious speedup for this kernel after
using the software cache method. The idea of packing some
atomic data also provides a slight speedup since it can avoid
a number of unaligned DMA access.

For the Tersoff potential, we can see that the HMU method
is many times faster than RCA. And we also try to filter the
F end list on CPEs which will also gain a little speedup.

Vectorization also provides a slight speedup in L-J and Ter-
soff kernel. At last we gain a total memory access bandwidth
of ∼ 112 GB/s for L-J and ∼ 98 GB/s for Tersoff , which
almost reaches the peak memory bandwidth.

Table II shows the time decomposition of running the refer-
ence implementation and our optimized implementation. The
parallelized neighbor list building and update procedure do not



TABLE III
THE CONFIGURATION OF EVALUATED VERSION OF LAMMPS.

Evaluation Platform Version1 Memroy Scale
Ref-MPE SW26010 Ref 4-channel DDR3 4 Core
Ref-Intel E5-2650 v2 Ref 8-channel DDR3 4 Core
Opt-CPE SW26010 CPE 4-channel DDR3 1 Node
Vec-KNL Phi 7210 Vec HBW (MCDRAM) 1 Node
1 Which contains three types: Ref, CPE and Vec. Ref is the original

code in the LAMMPS for MPE and Intel, Vec means the vectorized
version on KNL by M.Höhnerbach et al.[10] and CPE is our optimized
implementation.
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Fig. 10. Compare performance with other platforms, the configuration of
each evaluation is shown in Table III. y axis is logarithmic scaled.

have a good speedup compared to the potential computation
since they are more memory bounded.

B. Comparison to Other Implementations

We also compare the performance of our implementation to
other popular LAMMPS implementations.

Table III shows the configuration of these evaluations, and
test cases are described in the beginning of Sec.IV.

C. Single Node Evaluation

Fig. 10 gives a comparison of the evaluated versions, which
shows an SW26010 processor can match ∼ 12 E5-2650 v2
cores for L-J potential and ∼ 100 for Tersoff potential.

As is shown, our implementation of Tersoff has a good
performance, which is just a little slower than the KNL
version. We take a look at our performance and KNL’s. In
the evaluation of L-J at 512 K atoms, our performance on
an SW26010 processor is almost 1/4 of KNL’s. While the
memory bandwidth is only ∼ 112 GB/s, which is close to
the theoretical bandwidth of the SW26010 processor. For the
KNL evaluations, they requires less than 8 GB of memory, so
we can deduce that all data are binded in the MCDRAM with
∼ 400 GB/s bandwidth.

Even though we know that there is a number of memory
access operations issued by software, we can not deduce the
memory bandwidth requirement directly due to the cache. And
it is easy to prove that if we know the cache missing rate, the
memory access amount and the time to fulfill the memory
access can be deduced using the following equations.

RAA = LAA ·MR (7)

TTF =
RAA

BW
(8)

TABLE IV
COMPARISON TO OUR KNOWN IMPLEMENTATIONS ON THE TAIHULIGHT

Source Target Speedup1

Software Potential Force Overall
[24] GROMACS Non-bonded2 16 5
[4] LAMMPS L-J 24 8
Opt-CPE-L-J LAMMPS L-J 32 16
Opt-CPE-Tersoff LAMMPS Tersoff 68 62

1 Which is the maximum reported CPE parallelized speedup over MPE in the
paper, both the speedup of force kernel and overall iteration are collected.

2 Which is the non-bonded potential of GROMACS, which may contain
many components, e.g. combining L-J potential and Coulomb Forces.
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In Equation (7), RAA means real access amount, which is
the real amount of data loaded/stored from/to memory. LAA
means logical access amount, which is the amount of data
access required by software. MR means cache missing ratio.
In Equation (8), time to fulfill (TTF ) the memory accesses is
decided by RAA and bandwidth (BW ).

By acquiring our MR with code injection and KNL’s MR
with VTune, we know that our MR is ∼ 18% while KNL’s
MR is ∼ 10%. Now assume that we have the same LAA,
then we have:

TTFSW
TTFKNL

=
LAA·MRSW

BWSW

LAA·MRKNL

BWKNL

=
MRSW ·BWKNL

MRKNL ·BWSW
≈ 5.5

(9)
From Equation (9) we can see that SW26010’s TTF is

about 5.5 times as many as KNL’s. As we know that L-J is
a kind of memory bounded kernel on our machine, thus we
almost have done our best to accelerate memory accessing to
gain the current performance.

Also, we have collected a set of previous work for porting
MD on TaihuLight and compared our performance to them.
We have compared the maximum speedup over an MPE, which
are shown in Table IV.

To our best knowledge, we are the first to implement
parallelized MD with effective speedup on the SW26010
processor to gain a more than 10 fold overall speedup.
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Fig. 12. Strong Scalability for 230 atoms with x and y axes logarithmic
scaled. The number below the line is the parallel efficiency and the number
above is the Flops.

D. Accuracy

In order to validate the accuracy of our implementation,
we test the pressure of the system in a 50, 000-running steps
with 512 K atoms both for Tersoff and L-J potentials. The
two subgraphs at the right of the Fig. 11 are the blown-up
contrasts of the final pressures of last 5, 000 steps for L-J and
Tersoff potentials on CPE and Intel platforms. Although there
is a difference between the CPE and Intel results, they are
stable enough to be similar in long time running steps.

E. Scalability

We also evaluate the scalability of our optimized version
of LAMMPS. The parallel efficiency for the strong scalability
and weak scalability are calculated using Equation (10) and
Equation (11) separately. In these two equations, Tx is the
execution time of x processes.

Effstrong(N) =
T256

N
256 ∗ TN

(10)

Effweak(N) =
T16
TN

(11)

For the strong scalability, we use a case of 1, 073, 741, 824
(230) atoms, and take the performance of 256 processes as
baseline. When the number of processes varies from 256 to
65, 536, the timesteps/s is shown in Fig. 12. When the number
of atoms drops to 1

256 of the number, the efficiency drops from
100% to ∼ 50%. It shows that Tersoff has worse efficiency
than L-J, because Tersoff has more operations on ghost atoms,
and the ratio of ghost atoms is increasing as the simulation box
of one process is shrinking.

Fig. 13 shows the weak scaling performance. We initialize
force fields with an average of 4, 194, 304 atoms per process
and take the performance of 16 processes as baseline. At
last, it reaches ∼ 275 billions of atoms and achieves a peak
performance of 2.43 PFlops (collected from sampling mode
of hardware counters). It can be seen that as the number of
atoms increases, as expected, it has almost linear speedup and
finally reaches 65, 536 processes. This indicates that we have
the ability to simulate large scale force field with large scale
parallelism.
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Fig. 13. Weak scalability for 4, 194, 304 (222) atoms per process, with both
x and y axes logarithmic scaled. The number below the line is the parallel
efficiency and the number above is the Flops. In the computation of Tersoff
potential on 65, 536 processes, we reach an performance of 2.43 PFlops.

V. CONCLUSION

In this paper, we present an efficient and scalable parallel
implementation of LAMMPS for both L-J and Tersoff po-
tentials on Sunway TaihuLight supercomputer and its fourth-
generation SW26010 processor. We have employed a combi-
nation of optimization techniques to overcome the memory-
bound and the compute-bound bottlenecks in LAMMPS for
both pair and multi-body potentials. In particular, in order to
break the memory constraints of SW26010, we have designed
and implemented a number of memory access optimization
strategies. Experiments show that our redesigned software on
a single SW26010 processor can outperform over 100 E5-
2650 v2 cores for running the latest stable release (11Aug17)
of LAMMPS. We also achieve a performance of over 2.43
PFlops for a Tersoff simulation when using 16, 384 nodes on
Sunway TaihuLight.

The optimization techniques presented in this paper are
quite generic. And they can also be adapted to map similar
applications such as Gromacs and NAMD onto the heteroge-
neous many-core cluster architecture of Sunway TaihuLight.
Also, while this work is targeting TaihuLight and its SW26010
processor, we expect the presented methods to be portable to
similar type of architectures, such as integrated heterogeneous
many-core platforms like hUMA enabled APUs and the next
generation ShenWei processor.
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APPENDIX A
ARTIFACT DESCRIPTION APPENDIX: [REDESIGNING

LAMMPS FOR PETA-SCALE AND
HUNDRED-BILLION-ATOM SIMULATION ON SUNWAY

TAIHULIGHT]
A. Abstract

Large-scale molecular dynamics (MD) simulations on su-
percomputers play an increasingly important role in many
research areas. In this paper, we present our efforts on
redesigning the widely used LAMMPS MD simulator for
Sunway TaihuLight supercomputer and its ShenWei many-core
architecture (SW26010). The memory constraints of SW26010
bring a number of new challenges for achieving efficient MD
implementation on it. In order to overcome these constraints,
we employ four levels of optimization: (1) a hybrid memory
update strategy; (2) a software cache strategy; (3) customized
transcendental math functions; and (4) a full pipeline accelera-
tion. Furthermore, we redesign the code to enable all possible
vectorization. Experiments show that our redesigned software
on a single SW26010 processor can outperform over 100 E5-
2650 v2 cores for running the latest stable release (11Aug17)
of LAMMPS. We also achieve a performance of over 2.43
PFlops for a Tersoff simulation when using 16,384 nodes on
Sunway TaihuLight.

B. Description
1) Check-list (artifact meta information):
• Algorithm: Tersoff potential and L-J potential.
• Program: LAMMPS.
• Compilation: Shenwei 5 Compiler Collection.
• Transformations: See MAKE/MACHINES/Makefile.sunway.
• Data set: LAMMPS provided benchmark or modified bench-

mark for TaihuLight.
• Run-time environment: Shenwei MPI
• Hardware: TaihuLight.
• Execution: By the job system.
• Output: Reported performance in LAMMPS.
• Experiment workflow: See below.
• Publicly available?: Yes.

2) How software can be obtained: The code of Sun-
way’s version of LAMMPS is available at https://github.com/
dxhisboy/lammps-sunway.

3) Hardware dependencies: Apply an account of NSCC
Wuxi at http://www.nsccwx.cn/wxcyw/. Then the experimental
queue can adopt most of small scale experiments.

4) Software dependencies: Sunway’s version of GPTL and
printing utils (available from the same repo).

5) Datasets: Original datasets for LAMMPS benchmark is
in LAMMPS’s benchmark directory.

Modified benchmark datasets for TaihuLight is in the direc-
tory of SUNWAY-TESTS.

C. Installation

Pull the source and replace it to the 11Aug17 version of
LAMMPS. Use:

make sunway -j <njobs for compiling>

to compile the source code.

D. Experiment workflow

When the complation is done, there will be an binary file
named lmp sunway.

Submit it to the experimental job queue using:

bsub -I -b -cgsp 64 -share_size 6144 \
-host_stack 16 -priv_size 4 \
-p -m 1 -sw3runarg "-q" -n <nprocs> \
./lmp_sunway -sf sunway -var N off \
-in <input script>

to start an experiment. Caution: each 4 processes share a
node, so reproducing our result of 1 node requires submitting
4 processes to the job queue.

Some modified benchmark scripts is available in SUNWAY-
TESTS directory for testing LAMMPS on TaihuLight work
easier.

The in.sunway.lj and in.sunway.tersoff are the modified
benchmark. The modification mainly contains variable con-
trolled size of simulation box, output steps and running steps.
Also, for the Tersoff potential, the neighbor list building is
changed to constant frequency instead of checking for avoiding
MPI ALL REDUCE in large scale simulations.

E. Evaluation and expected result

The expected thermo output should near the output of
reference version of LAMMPS compiled on X86 processors.

The performance will be written by LAMMPS in console.
For the evaluation of 512K atoms, the first 10 steps of

evaluations, L-J should have a Timestep/s of ∼ 49 while
Tersoff should have a Timestep/s of ∼ 34.

For the long time evaluations, L-J should have a Timestep/s
of ∼ 30 while Tersoff should have a Timestep/s of ∼ 26.

F. Experiment customization

Append -var S 20 to the command line arguments for the
simulation of 4,096K atoms.

G. Notes

Due to the limitation of memory size, It is not promised
a simulation of over 4,096K atoms in one CG, and some
memory allocation does not come with fail-fast feature, may
be there will be unexpected result if a too large atoms/process
defined for a simulation instead of an error message.

If there are conflicts between the github README file and
this appendix, follow that README.

https://github.com/dxhisboy/lammps-sunway
https://github.com/dxhisboy/lammps-sunway
http://www.nsccwx.cn/wxcyw/
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