
Optimal Allocation of Replicas to Processors in Parallel Tempering Simulations†

David J. Earl and Michael W. Deem*
Department of Bioengineering and Department of Physics & Astronomy, Rice UniVersity,
6100 Main StreetsMS 142, Houston, Texas 77005-1892

ReceiVed: December 1, 2003; In Final Form: January 14, 2004

The optimal allocation of replicas to a homogeneous or heterogeneous set of processors is derived for parallel
tempering simulations on multiprocessor machines. In the general case, it is possible without substantially
increasing wall clock time to achieve nearly perfect utilization of CPU time. Random fluctuations in the
execution time of each replica do not significantly degrade the performance of the scheduler.

1. Introduction

The parallel tempering, or replica exchange, Monte Carlo
method is an effective molecular simulation technique for the
study of complex systems at low temperatures.1-3 Parallel
tempering achieves good sampling by allowing systems to
escape from low free energy minima by exchanging configura-
tions with systems at higher temperatures, which are free to
sample representative volumes of phase space. The use of
parallel tempering is now widespread in the scientific com-
munity.

The idea behind the parallel tempering technique is to sample
n replica systems, each in the canonical ensemble, and each at
a different temperature,Ti. GenerallyT1 < T2 < ... < Tn, where
T1 is the low-temperature system, of which we are interested in
calculating the properties. Swaps, or exchanges, of the con-
figurational variables between systemsi andj are accepted with
the probability

whereâi) 1/(kBTi) is the reciprocal temperature, andHi is the
Hamiltonian of the configuration in systemi. Swaps are typically
attempted between systems with adjacent temperatures,j) i
+ 1. Parallel tempering is an exact method in statistical
mechanics, in that it satisfies the detailed balance or balance
condition,4 depending on the implementation.

Because of the need to satisfy the balance condition, then
different systems must be synchronized whenever a swap is
attempted. This synchronization is in Monte Carlo steps, rather
than in real, wall clock time. In other words, all processors must
finish one Monte Carlo step before any of the processors may
start the next Monte Carlo step. In parallel tempering, a
convenient definition of Monte Carlo step is the ordered set of
all of the Monte Carlo moves that occur between each attempted
swap move. These Monte Carlo moves are all of the individual
moves that equilibrate each system in the parallel tempering
ensemble, such as Metropolis moves, configurational bias
moves, volume change moves, hybrid Monte Carlo moves, and
so on. Rephrasing, the balance condition requires that at the
beginning of each Monte Carlo step, each replica must have
completed the same number of Monte Carlo steps and must be

available to swap configurations with the other replicas. This
constraint introduces a potentially large inefficiency in the
simulation, as different replicas are likely to require different
amounts of computational processing time in order to complete
a Monte Carlo step. This inefficiency is not a problem on a
single processor system, as a single processor will simply step
through all the replicas to complete the Monte Carlo steps of
each. This inefficiency is a significant problem on multiproces-
sor machines, however, where individual CPUs can spend large
quantities of time idling as they wait for other CPUs to complete
the Monte Carlo steps of other replicas.

Traditionally, each processor on multiprocessor machines has
been assigned one replica in parallel tempering simulations. It
is the experience of the authors that this type of assignment is
generally highly inefficient, with typical CPU idle times of 40-
60%. When one takes into account that the lower-temperature
systems should have more moves per Monte Carlo step due to
the increased correlation times, the idle time rises to intolerable
levels that can approach 95%. The issue of idle time has not
been previously addressed, and it is clear that a scheme which
could allocate replicas to processors in an optimal manner would
be useful.

In this paper we address the optimal allocation of replicas to
CPUs in parallel tempering simulations. The manuscript is
organized as follows. In section 2 we present the theory for the
allocation of replicas to a homogeneous set of processors. In
section 3 we present results where the theory is applied to several
model examples. In section 4 we discuss our results, compare
them with the conventional parallel tempering scheme, and
consider the effects of including communication times and
randomness in execution time into our analysis. We draw our
conclusions in section 5. An appendix presents the theory for a
heterogeneous set of processors.

2. Theory of Replica Allocation to Processors
In a parallel tempering simulation, balance requires that each

replica system be synchronized at the start of each Monte Carlo
step. Considering replicai, in every Monte Carlo step we will
attemptNmove(Ti) random Monte Carlo configurational moves,
and the average real wall clock time to complete one Monte
Carlo move is given byR(Ti). The total wall clock time for
replica i to complete its Monte Carlo step is

As we have already stated, the simple allocation of one replica

* Corresponding author. E-mail: mwdeem@rice.edu. Fax: 713-348-
5811.

† Part of the special issue “Hans C. Andersen Festschrift”.

p) min{1, exp[- (âi - âj)(Hj - Hi)]} (1)

τi) R(Ti)Nmove(Ti) (2)

6844 J. Phys. Chem. B2004,108,6844-6849

10.1021/jp0376626 CCC: $27.50 © 2004 American Chemical Society
Published on Web 03/13/2004

to one processor for the entire simulation is inefficient. This is
becauseR, the time per configurational move, depends on the
temperature of the system. The value ofR can typically vary
by a factor of 3 or more between the fastest and the slowest
system resulting in long idle times for the CPUs that are assigned
to the higher temperature systems. The value ofR varies because
the composition of the configurational moves and their ac-
ceptance ratio varies with temperature. Typically, but not always,
the highest temperature moves take less wall clock time on
average to complete. Additionally, it is often desirable to
perform more configurational Monte Carlo moves per Monte
Carlo step at lower temperatures because the correlation time
is longer than it is at higher temperatures. This makes the
inefficiency of allocating one replica to one processor dramati-
cally worse. In eq 2,Nmove is a function ofTi to allow for the
larger number of configurational moves that may be performed
at lower temperatures. In most simulations that are currently
performed,Nmove is the same for all replicas because of the
disastrous inefficiency implications of increasingNmovefor low-
temperature replicas, for whichR is also often larger. Using an
optimal allocation of replicas, the possibility of varyingNmove

for different replicas exists, as discussed in section 3 below.
The optimal allocation of replicas to processors is a nontrivial

problem even in remarkably simple situations. For example,
consider the case wheren) 3, τ1) 5, τ2) 4, andτ3) 3.
Using three processors is clearly inefficient, as two processors
would be idle while they are waiting for replica 3 to complete.
The optimal allocation is to split one of the replicas on two
processors, as shown in Figure 1. Only two processors are
required, and they will both run at 100% efficiency if the replica
is split correctly. Note that the splitting must be causally ordered
in time. In the example of Figure 1, replica 2 is started on
processor 2 and completed on processor 1 two time units after
being stopped on processor 2.

A general replica scheduler can be derived starting with the
assumptions that one replica cannot be simultaneously run on
more than one processor and that one processor can only run
one replica at a time, this second assumption being the simplest
and, as it turns out, the most efficient use of the processors.
The logic of the derivation comes from scheduling theory,5,6

which is frequently used to solve problems of this type in
operations research and industrial engineering. Givenn replicas,
where the time to complete replicai is τi, the total processing
time required to complete all of the replicas is

We letτlong be the CPU time of the longest replica. If we have

X processors, then the shortest possible total wall clock time
required to complete execution of all of the replicas is given
by

The optimum integer number of processors to achieve 100%
theoretical efficiency will be

wherey is the largest integer equal to or less than the real
numbery. The number of processors required to achieve the
minimum wall clock time will be

wherey is the smallest integer equal to or greater than the
real numbery. The optimal allocation can either be done for
minimum, zero percent, idle time,X(N), or minimum wall clock
time, X(N+1). Having made the choice of one of these two
numbers of processors, the optimal scheduler then proceeds by
assigning the replicas sequentially to the first processor until
that processor has filled its allocation ofτwall wall clock time.
Typically this will result in the last replica allocated to the first
processor being split, with the “remaining” time carried over
to the second processor. The remaining replicas are sequentially
allocated to the second processor, with again a possible split in
the last replica allocated. This procedure is repeated until all
the replicas have been allocated. In the minimum wall clock,
X(N+1), case, the final processor will not be completely filled
unlessW/X(N+1)) τlong, and there will be a small amount of
idle time. In the minimum idle time case, there will be no idle
time. An example of how the scheduler assigns replicas to
processors is shown in Figure 2 for a 20 replica case where
τlong/τshort) 3, whereτshort is the wall clock time of the replica
that completes its Monte Carlo step most quickly.

It is immediately apparent that the scheduler7 is extremely
simple and very effective. The scheduler may easily be applied
to existing parallel simulation codes. To apply the theory to a

Figure 1. Simple example of the allocation of three replicas to two
processors. In this example, an efficient allocation requires that replica
2 be split between processors 1 and 2. The replica numbers are marked
on the figure.

W) ∑
i)1

n

τi (3)

Figure 2. (a) Replica allocation in the traditional one replica per
processor parallel tempering simulation using 20 replicas. (b) Assign-
ment of the same replicas to processors as optimized by the scheduler
derived in section 2. The replica numbers are marked on the figure.

τwall) max(W/X,τlong) (4)

X(N)) W/τlong (5)

X(N+1)) W/τlong (6)

Allocation of Replicas to Processors J. Phys. Chem. B, Vol. 108, No. 21, 20046845

practical simulation, one must first perform a short preliminary
simulation for each replica to obtain an estimate ofR(Ti), and
henceτi from eq 2. We note that the scheduler could be run
after each Monte Carlo step, since the calculation time associated
with the scheduler is minimal. Such use of the scheduler would
automatically lead to an adaptive or cumulative estimate ofR.
Note that at all times, the balance properties of the underlying
Monte Carlo scheme are unaffected by the replica allocations
of the scheduler. It is also worthy of comment that the scheduler
could be run with parallel tempering in multiple dimensions,
for example differing chemical potentials8,9,10or pair potentials11

for each replica, in addition to variations in temperature.
Increasing the number of order parameters that we use in the
parallel tempering not only may improve sampling but also may
provide a better estimate ofR, since the estimate ofR as a local
function of phase space increases as the number of order
parameters increases.

In this section we have derived the scheduler for a homoge-
neous cluster of processors. In the Appendix we derive a similar
scheme for a heterogeneous cluster.

3. Results
In this section, we apply the optimal replica scheduler to three

different parallel tempering simulation examples. Details of the
three different examples are given below, and the performance
of the scheduler can be seen in Table 1. Results are shown in
the table for the minimum idle time, minimum wall clock time,
and traditional one-replica-per-processor cases. For each case
we show the number of processors used, the CPU idle time as
a percentage of the overall time for one Monte Carlo step, and
the real wall clock time for the simulation relative to that of
the traditional parallel tempering approach. To motivate the
parameter values chosen for the examples, we note that, in our
experience with simulations of the 20-50 amino acid peptides
from the innate immune system that are known as cystine-knot
peptides, we find the ratio of correlation times between the low
and high-temperature replicas can vary by a factor of 102-105,
Nmove(T1)/Nmove(Tn)) 102-105, on the order ofNmove(Tn))
103-105 configurational Monte Carlo moves are typically
performed during each Monte Carlo step at the highest tem-
perature, andNmove) 106 configurational Monte Carlo moves
take on the order of 24 h to complete.

Example 1.For example 1, the simulation system is chosen
such thatn) 20, andR(T1)/R(Tn)) 3. In parallel tempering
simulations, it is usual for the temperature to increase expo-
nentially fromT1 to Tn, since higher temperature systems have

wider energy histograms, and so higher temperature replicas
can be spaced more widely than lower temperature replicas.12

For specificity, we assume that the wall clock time per
configurational step also increases exponentially fromR(Tn) to
R(T1). We takeNmove to be constant for each of the replicas.
The allocation of the replicas to the different processors is shown
in Figure 2, parts a and b, for the traditional and zero idle time
cases, respectively. This example is typical of most parallel
tempering simulations that are currently being performed on
multiprocessor systems.

Example 2.For example 2, we usen andR(Ti) from example
1. We, furthermore, consider that the correlation times of the
lower temperature replicas are longer, and so there should be
more configurational moves per Monte Carlo step at the lower
temperatures. We considerNmoveto increase exponentially from
Nmove(Tn) to Nmove(T1) such thatNmove(T1)/Nmove(Tn)) 100. With
the values forR(T) from example 1, we findτlong/τshort) 300.

Example 3.For example 3, we usen) 50, modelingR(Ti)
in the same way as in examples 1 and 2,R(T1)/R(Tn)) 3. We
model Nmove in the same way as in example 2, but in this
example setNmove(T1)/Nmove(Tn)) 1000, since the reason for
the increased number of replicas would have been the poor and
slow equilibration at the lowest temperatures. We findτlong/
τshort) 3000.

4. Discussion
From Table 1, it is clear that the scheduler substantially

improves the CPU utilization in parallel tempering simulations.
This allows the multiprocessor cluster to be used with confi-
dence, for example, for other jobs or simulations at other
parameter values of interest. Example 1 demonstrates that the
number of processors used can be reduced by 40% with an
increase of only 1.66% in wall clock time. Alternatively, the
number of processors can be reduced by 35% and result in no
increase in wall clock time relative to the traditional parallel
tempering method. As Example 1 is conservative in its
characterization of most multiprocessor parallel tempering
simulations currently being performed; we anticipate that
utilization of the optimal scheduler presented here will result
in a large increase in the computational efficiency of parallel
tempering simulations.

It is interesting to note that, for all examples, as we increase
the number of processors used in the simulations,X, from 1,
the wall clock time decreases until the number of pro-
cessors that result in minimum wall clock time is used,X(n+1)

) W/τlong. Increasing the number of processors still further,

TABLE 1: Results for the Parallel Tempering Job Allocation Optimized by the Scheduler for Run Time or Number of CPUs
and for the Traditional Allocation

X I (%) C (%)
I (%)

γ) 0.1
C (%)

γ) 0.1
I (%)

γ) 0.5
C (%)

γ) 0.5
I (%)

γ) 1.0
C (%)

γ) 1.0

Example 1
maximum efficiency 12 0.0 101.66 10.55(0.02 113.81(0.05 36.96(0.06 163.26(0.23 54.55(0.10 227.59(0.46
minimum run time 13 6.16 100.0 16.16(0.02 112.10(0.05 41.10(0.06 161.47(0.23 57.65(0.10 225.71(0.48
traditional 20 39.0 100.0 41.12(0.03 104.12(0.06 57.35(0.06 147.18(0.29 69.65(0.07 208.72(0.60

Example 2
maximum efficiency 3 0.0 128.20 4.65(0.02 134.62(0.07 19.29(0.09 160.33(0.33 34.50(0.73 193.76(0.66
minimum run time 4 3.93 100.0 9.81(0.02 106.75(0.06 27.49(0.09 134.82(0.28 43.34(0.15 171.60(0.55
traditional 20 80.77 100.0 80.62(0.01 100.00(0.10 82.55(0.02 116.60(0.31 86.41(0.03 149.97(0.48

Example 3
maximum efficiency 6 0.0 110.53 7.25(0.02 119.28(0.05 27.70(0.07 154.55(0.22 44.20(0.13 200.60(0.44
minimum run time 7 5.26 100.0 12.93(0.03 108.95(0.05 33.70(0.10 144.92(0.23 49.59(0.15 191.20(0.444
traditional 50 86.74 100.0 86.75(0.01 100.78(0.11 89.07(0.03 126.69(0.38 97.76(0.03 169.56(0.66

a Results are shown for the three example systems described in section 3. Shown are the number of processors (X), the percentage CPU idle time
(I), and the wall clock time of the simulation relative to the results for the traditional allocation without randomness (C). Idle time and wall clock
time are also shown for the case where the CPU time required for each replica is a stochastic quantity, eq 8, withγ) 0.1, 0.5, and 1.0.

6846 J. Phys. Chem. B, Vol. 108, No. 21, 2004 Earl and Deem

to say the number of replicas, results in no reduction in overall
simulation time and only increases the CPU idle time. This
behavior is demonstrated in Figure 3, where the idle time is
shown as a function ofX for example 2. This figure highlights
the importance of proper job scheduling on large, multiprocessor
clusters. The use of the optimal scheduler derived here is needed
in order for the simulation to make the best use of a large
number of CPU cycles. It is theoretically possible to achieve
100% efficiency on multiprocessor systems, making them ideal
for parallel tempering simulations. This is especially important
in cases where it is desirable to varyNmove between different
replicas (examples 2 and 3). Taking into account the dependence
of the correlation time on temperature is computationally
disastrous for the traditional one-replica-per-processor method
of performing parallel tempering simulations, as CPU idle times
easily become>90%. However, the optimal scheduler makes
the simulation of this case feasible, opening the door to
performing parallel tempering simulations that sample configu-
rational space more effectively and efficiently.

In the results presented in section 3, we have not explicitly
taken into account communication times or the time taken to
conduct swap moves. Swap moves that exchange configurations
between replicas occur at the beginning of each Monte Carlo
step and replica allocations occur at the beginning and possibly
once within each Monte Carlo step. These operations are
extremely rapid compared to theNmove configuration moves
performed for each replica, as one can show. Recalling from
the Results section that one configurational move takes ap-
proximately 0.1 s and knowing that a typical communication
time for interprocessor message passing is on the order of 10-4

s, we find that example 3 contains the most communication
time. In example 3, the increase in idle time due to communica-
tion from the zero idle time case is less than 0.00001%. This
demonstrates that communication time is not a significant effect
in these types of simulations. Communication effects can, thus,
safely be ignored.

We have characterized the execution time of each replica in
a deterministic fashion, but in reality the execution time is a
stochastic quantity due to noise in variables not among the
degrees of freedom chosen for the parallel tempering. To model
the simulation times more realistically, we have also included
randomness into our analysis. That is, the value ofR is assumed
to fluctuate during each configurational step. As previously
mentioned, the accuracy of the estimation ofR is dependent on
the number of order parameters used to parametrize it. Thus,
fluctuations inR will be smaller for systems that use parallel
tempering in multiple dimensions. We note that for the case
where the temperature is the only parameter used to characterize
R, fluctuations inR can be as high as 10-50%. This results in
a fluctuation in the time required to complete replicai, which
can be represented mathematically as

whereσ is a Gaussian random number, andδ is a value that is
proportional to the correlation time. As we generally choose
Nmove to be proportional to the correlation time, we expect
Nmove/δ to be constant. Thus, we use

to model the fluctuations. We examine the cases whereγ)
0.1, 0.5, and 1.0. To analyze the performance of the scheduler
in the presence of the randomness, we take into account that a
processor may be idle while it is waiting for another processor
to complete its share of calculations on a replica system that is
shared between the two processors.

Table 1 shows the results of including randomness into our
model for examples 1-3. The averages and standard errors are
calculated from the average results from 10 blocks, each
containing 1000 runs of the simulation system. The CPU idle
time increases monotonically and nonlinearly withγ. For the
more complex systems whereNmove is varied, the inefficiency
introduced by the randomness is smaller, since the randomness
of several replicas is typically averaged over on most of the
processors. The results are encouraging and show that the
efficiency of the parallel tempering simulations organized by
the scheduler remains within an acceptable limit, even when
relatively large fluctuations are considered. IncreasingNmovewill
lead to lower fluctuations, with the observed efficiency converg-
ing to theγf 0 limit as O(1/Nmove

1/2).

5. Conclusions

In this paper, we have introduced a theory for the optimal
allocation of replicas to processors in parallel tempering
simulations. The scheduler leaves intact the balance or detailed
balance properties of the underlying parallel tempering scheme.
The optimal scheduler derived from the theory allows multi-
processor machines to be efficiently used for parallel tempering
simulations. The allocation of replicas to CPUs produced by
the scheduler results in a significant enhancement of CPU usage
in comparison to the traditional one-replica-per-processor ap-
proach to multiprocessor parallel tempering. The optimal
scheduling vastly reduces the number of required processors to
complete a simulation, allowing an increased number of jobs
to be run on a cluster. The computational efficiency of the
scheduler also makes it feasible to vary the number of
configurational moves per Monte Carlo step, which was not
practicable using the one-replica-per-processor scheme, due to
the associated large inefficiencies. This flexibility to vary the
number of configurational steps is desirable because the
correlation time at lower temperatures is often much longer than
that at higher temperatures.

Our results show that randomness does not have a significant
effect for γ < 0.1, and the performance is still quite tolerable
even for the extreme case ofγ) 1. Despite the random
execution times, the replica allocation produced by the optimal
scheduler is always significantly more efficient than the
traditional one-replica-per-processor approach. The idle time
caused by random execution times is reduced as the number of
configurational moves per Monte Carlo step is increased.
Furthermore, parallel tempering in more than one dimension,
with order parameters other than temperature, allows for a more
accurate determination of the CPU time per replica. For the

Figure 3. CPU idle time as a function of number of processors used
to solve the 20-replica example 2 from section 3.

τi) R(Ti)Nmove(Ti){1 + σ
[Nmove(Ti)/δ(Ti)]

1/2} (7)

τi) R(Ti)Nmove(Ti)[1 + γσ] (8)

Allocation of Replicas to Processors J. Phys. Chem. B, Vol. 108, No. 21, 20046847

same reason, these extra dimensions will also aid the sampling
efficiency of the underlying parallel tempering algorithm.

Acknowledgment. This work was supported by the U.S.
Department of Energy, Office of Basic Energy Sciences.

Appendix

Allocation Scheme for a Heterogeneous Cluster.Using
scheduling theory5,6 it is possible to derive an allocation scheme
for a multiprocessor machine with heterogeneous processors.
It is assumed that the number of CPU cycles required for each
replica to complete one Monte Carlo step and the speed of each
of the processors in the machine are known. In this general
scheme, the number of processors used by the scheduler,m, is
adjusted downward until an acceptably low idle time and total
wall clock time are achieved.

Forn replicas, whereτi is the number of CPU cycles required
to complete replicai, the total number of CPU cycles required,
W, is given in eq 3. We now define

For m processors, whereki is the speed of each processor in
CPU cycles per unit time, withk1 g k2 g ... g km, the total
number of CPU cycles available per unit time is

We define

The shortest possible wall clock time to execute the Monte Carlo
step for all the replicas is then

whereτlong is the maximum value ofWj/Kj, 1 e j e m.
The general scheduler works with a time interval granularity

of dt. At the start of the simulation and at the end of each time
interval, we assign a level of priority to the replicas. The highest
priority is given to the replica with the largest number of CPU
cycles required for completion, and the lowest priority is given
to the replica with the least number of CPU cycles remaining.
A loop is performed through the priority levels, starting at the
highest priority. If there arer replicas in the priority level under
consideration ands remaining unassigned processors and ifr
e s, then ther replicas are assigned to be executed on the fastest
r number of processors. If the processors have different speeds,
each replica must spend an equal amount of wall clock time on
each of the processors during the time interval, dt. The total
wall clock time for the step is computed from the processor
speeds and the required number of CPU cycles. The number of
configurational moves that equals 1/r of the wall clock time on
each processor is computed, and this number is the number of
configurational moves that each replica will perform on each
processor. For the first 1/r of the wall clock time, the replicas
are assigned sequentially to ther processors. For the next 1/r
of the wall clock time, the assignment of the replicas to the
processors is cyclically permuted, i.e., replica 1 to processor 2,
replica 2 to processor 3, ..., replicar to processor 1. The

assignment of replicas to processors is cycled at the end of each
1/r of wall clock time until the entire time step is completed.
On the other hand ifr > s, the replicas are assigned to the
processors by splitting the time interval in each processorr
times, and assigning the replicas to spend one short time interval
being processed in each processor. This is accomplished by
assigning the first processor to execute sequentially replicas 1,
2, ...,r. The second processor is assigned a cyclic permutation
of the replicas to execute sequentially: replicas 2, 3, ...,r, 1. In
general processori executes a cyclic permutation of the replica
sequence of processori - 1. This allocation leads to each replica
being executed for an equal amount of wall clock time on each
processor. A singe replica, moreover, is never allocated to more
than one processor at a single point in time.

If there are still processors remaining to be allocated, the
replicas at the next lower priority level are allocated by this
same process. The procedure is repeated until all processors
have been allocated or all replicas have been allocated.

The replica assignment for wall clock time dt is now
complete. Replicas are reassigned for the next period of wall
clock time using the same rules. If the time interval, dt, is chosen
to be small enough, then the total wall clock time of the
simulation tends towardτwall. After the wall clock time of the
entire Monte Carlo step has been assigned, the simulation can
be performed.

There is some flexibility in the use of this general optimal
scheduler for a heterogeneous multiprocessor machine. In
general, the best value ofm is not known in closed form. It is
found by choosing the smallest value ofm that gives an
acceptably low value of the wall clock time, eq A-4, and an
acceptably low idle time in the derived allocation. The time
step for the scheduler, dt, must also be chosen. It should be
chosen to be small, but not so small that communication effects
become significant. Moreover, there must be many configura-
tional Monte Carlo steps per time step, dt, otherwise the splitting
of replicas amongr processors required by the algorithm will
not be possible. The computational time associated with the
scheduler will generally be very much smaller than that
associated with the simulation. The scheduler may, therefore,
be run after each Monte Carlo step. Such use of the scheduler
would automatically lead to an adaptive or cumulative estimate
of the execution times required by each replica.

In practical application of the results of this general scheduler,
the processor allocation will typically be reordered to an
equivalent one. For example, in the case of two replicas of equal
length to be assigned to a single processor, the algorithm given
above will switch between execution of each replica at each
time step, dt, rather than complete execution of each replica
sequentially. A reordering of the output of the general scheduler,
therefore, will generally lead to a simpler processor allocation.
Consistent with the constraints of causality, replica execution
in time on a single processor may be reordered. Allocation of
replicas to processors at each time step, dt, may also be permuted
among the processors as along as the idle time so introduced is
tolerable.

Alternatively, the schedule optimization for heterogeneous
processors can be cast as a linear programming problem. With
a penalty for each switch between replicas on a processor, an
optimized schedule may be derived at the onset by solving the
linear programming problem with a time resolution of dt.

References and Notes
(1) Geyer, C. J. Markov Chain Monte Carlo Maximum Likelihood. In

Computing Science and Statistics: Proceedings of the 23rd Symposium on
the Interface; Keramidas, E. M., Ed.; American Statistical Association: New
York, 1991.

Wj) ∑
i)1

j

τi, 1 e j e n (A-1)

K) ∑
i)1

m

k (A-2)

Kj) ∑
i)1

j

ki, 1 e j e m (A-3)

τwall) max(W/K,τlong) (A-4)

6848 J. Phys. Chem. B, Vol. 108, No. 21, 2004 Earl and Deem

(2) Geyer, C. J.; Thompson, E. A.J. Am. Stat. Assn.1995, 90, 909.
(3) Marinari, E.; Parisi, G.; Ruiz-Lorenzo, J. Numerical Simulations

of Spin Glass Systems. InSpin Glasses and Random Fields; Young, A.,
Ed.; World Scientific: Singapore, 1998; Vol 12.

(4) Manousiouthakis, V. I.; Deem, M. W.J. Chem. Phys.1999, 110,
2753.

(5) Coffman, E. G.Computer and Job-Shop Scheduling Theory;
Wiley: New York, 1976.

(6) Ashour, S.Sequencing Theory; Springer-Verlag: New York, 1972.

(7) Scheduler is available under the GPL at http://www.mwdeem.ri-
ce.edu/scheduler.

(8) Yan, Q.; de Pablo, J. J.J. Chem. Phys.1999, 111, 9509.
(9) Yan, Q.; de Pablo, J. J.J. Chem. Phys.2000, 113, 1276.

(10) Faller, R.; Yan, Q. L.; de Pablo, J. J.J. Chem. Phys.2002, 116,
5419.

(11) Bunker, A.; Dunweg, B.Phys. ReV. E 2001, 63, 010902.
(12) Kofke, D. A.J. Chem. Phys.2002, 117, 6911.

Allocation of Replicas to Processors J. Phys. Chem. B, Vol. 108, No. 21, 20046849

