6844 J. Phys. Chem. B004,108, 6844-6849

Optimal Allocation of Replicas to Processors in Parallel Tempering Simulations

David J. Earl and Michael W. Deem*

Department of Bioengineering and Department of Physics & Astronomy, Rieedity,
6100 Main StreetMS 142, Houston, Texas 77005-1892

Receied: December 1, 2003; In Final Form: January 14, 2004

The optimal allocation of replicas to a homogeneous or heterogeneous set of processors is derived for parallel
tempering simulations on multiprocessor machines. In the general case, it is possible without substantially

increasing wall clock time to achieve nearly perfect utilization of CPU time. Random fluctuations in the
execution time of each replica do not significantly degrade the performance of the scheduler.

1. Introduction available to swap configurations with the other replicas. This
constraint introduces a potentially large inefficiency in the
simulation, as different replicas are likely to require different
amounts of computational processing time in order to complete
a Monte Carlo step. This inefficiency is not a problem on a
single processor system, as a single processor will simply step
through all the replicas to complete the Monte Carlo steps of
ach. This inefficiency is a significant problem on multiproces-
or machines, however, where individual CPUs can spend large
quantities of time idling as they wait for other CPUs to complete
the Monte Carlo steps of other replicas.

Traditionally, each processor on multiprocessor machines has
een assigned one replica in parallel tempering simulations. It
is the experience of the authors that this type of assignment is
generally highly inefficient, with typical CPU idle times of 40
60%. When one takes into account that the lower-temperature
systems should have more moves per Monte Carlo step due to
the increased correlation times, the idle time rises to intolerable
levels that can approach 95%. The issue of idle time has not

The parallel tempering, or replica exchange, Monte Carlo
method is an effective molecular simulation technique for the
study of complex systems at low temperatures.Parallel
tempering achieves good sampling by allowing systems to
escape from low free energy minima by exchanging configura-
tions with systems at higher temperatures, which are free to
sample representative volumes of phase space. The use og
parallel tempering is now widespread in the scientific com-
munity.

The idea behind the parallel tempering technique is to sample
n replica systems, each in the canonical ensemble, and each af)
a different temperaturd;. GenerallyT; < T, < ... < T, where
T, is the low-temperature system, of which we are interested in
calculating the properties. Swaps, or exchanges, of the con-
figurational variables between systenand] are accepted with
the probability

p=min{1, expf- (5; — B)(H; — H)I} @) been previously addressed, and it is clear that a scheme which
could allocate replicas to processors in an optimal manner would
whereg; = 1/(kgT)) is the reciprocal temperature, akilis the be useful.
Hamiltonian of the configuration in systeimSwaps are typically In this paper we address the optimal allocation of replicas to
attempted between systems with adjacent temperatures, CPUs in parallel tempering simulations. The manuscript is

+ 1. Parallel tempering is an exact method in statistical organized as follows. In section 2 we present the theory for the
mechanics, in that it satisfies the detailed balance or balanceallocation of replicas to a homogeneous set of processors. In
condition? depending on the implementation. section 3 we present results where the theory is applied to several
Because of the need to satisfy the balance conditionnthe model examples. In section 4 we discuss our results, compare
different systems must be synchronized whenever a swap isthem with the conventional parallel tempering scheme, and
attempted. This synchronization is in Monte Carlo steps, rather consider the effects of including communication times and
than in real, wall clock time. In other words, all processors must randomness in execution time into our analysis. We draw our
finish one Monte Carlo step before any of the processors may conclusions in section 5. An appendix presents the theory for a
start the next Monte Carlo step. In parallel tempering, a heterogeneous set of processors.
convenient definition of Monte Carlo step is the ordered set of > Th f Replica Allocation to P
all of the Monte Carlo moves that occur between each attempted™ eory of Replica ; oc_a 1on _0 rocessors)
swap move. These Monte Carlo moves are all of the individual N @ parallel tempering simulation, balance requires that each
moves that equilibrate each system in the parallel tempering 'ePlica system be synchronized at the start of each Monte Carlo
ensemble, such as Metropolis moves, configurational bias Stép- Considering replica in every Monte Carlo step we will
moves, volume change moves, hybrid Monte Carlo moves, andattemptNmov(Ti) random Monte Carlo configurational moves,
so on. Rephrasing, the balance condition requires that at the@nd the average real wall clock time to complete one Monte
beginning of each Monte Carlo step, each replica must have Carlo move is given by(Ti). The total wall clock time for
completed the same number of Monte Carlo steps and must be'€Plicai to complete its Monte Carlo step is

* Corresponding author. E-mail: mwdeem@rice.edu. Fax: 713-348- 7 = o(T)Nmoud) (@)
5811.
T Part of the special issue “Hans C. Andersen Festschrift”. As we have already stated, the simple allocation of one replica

10.1021/jp0376626 CCC: $27.50 © 2004 American Chemical Society
Published on Web 03/13/2004

Allocation of Replicas to Processors J. Phys. Chem. B, Vol. 108, No. 21, 2008845

T T T T T T a) 2020 T T T
19
_ 18418—|17
35 2 | 3 o166
E \ E1af——t4— S
c g12 12 e !
] 010 3 10 |
n 0 4 1
2 28 8 ‘
8 8 7 |
g, 1 | 2 S 6 62 ;
a ‘ o 4 430 o
2 4)
1 1 I L | I 1 ! 1 I
0 1 2 3 4 5 6 b) 1o—F8—F 49— T 20—
Time 1 15 16 | 17—18
Figure 1. Simple example of the allocation of three replicas to two 10 3 — H— 45—
processors. In this example, an efficient allocation requires that replica Eglor i A
2 be split between processors 1 and 2. The replica numbers are marked 2 7 g - % ‘g J:
on the figure. 5 6|61 7 81
25 5 | 6 |
to one processor for the entire simulation is inefficient. This is § 4 4 " % S 1
. " . b I |
because, the time per configurational move, depends on the o g 7, Y
temperature of the system. The valueootan typically vary 1 1)
1 1 1
by a factor of 3 or more between the fastest and the slowest 0 7000 2000 3000

system resulting in long idle times for the CPUs that are assigned Time / o(T))
to the hlgher.t.emperature syst.ems. The value ries becagse Figure 2. (a) Replica allocation in the traditional one replica per
the composition of the configurational moves and their ac- processor parallel tempering simulation using 20 replicas. (b) Assign-
ceptance ratio varies with temperature. Typically, but not always, ment of the same replicas to processors as optimized by the scheduler
the highest temperature moves take less wall clock time on derived in section 2. The replica numbers are marked on the figure.
average to complete. Additionally, it is often desirable to
perform more configurational Monte Carlo moves per Monte
Carlo step at lower temperatures because the correlation time
is longer than it is at higher temperatures. This makes the °Y
inefficiency of allocating one replica to one processor dramati- _
cally worse. In eq 2Nmove is @ function ofT; to allow for the Tua = MaxWX,Tign))
larger number of configurational moves that may be performed
at lower temperatures. In most simulations that are currently
performed,Nmove is the same for all replicas because of the
disastrous inefficiency implications of increasiNgoye for low- XN = Wie 0 (5)
temperature replicas, for whichis also often larger. Using an long
optimal allocation of replicas, the possibility of varyifghove
for different replicas exists, as discussed in section 3 below.
The optimal allocation of replicas to processors is a nontrivial
problem even in remarkably simple situations. For example,
consider the case where= 3,71 = 5, 72 = 4, andr; = 3. XN — Wir [(6)
Using three processors is clearly inefficient, as two processors long
would be idle while they are waiting for replica 3 to complete. \\here [yOis the smallest integer equal to or greater than the
The optimal allocation is to split one of the replicas on two qq) numbelry. The optimal allocation can either be done for
processors, as shown in Figure 1. Only two processors areminimum, zero percent, idle tim&™, or minimum wall clock
required, and they will both run at 100% efficiency if the replica time, XM+, Having made the choice of one of these two
?s split correctly. Note that the _splitting must_be cal_JsaIIy ordered umbers of processors, the optimal scheduler then proceeds by
in time. In the example of Figure 1, replica 2 is started on ,qgigning the replicas sequentially to the first processor until
processor 2 and completed on processor 1 two time units afterinat processor has filled its allocation afa wall clock time.
being stopped on processor 2. _ o Typically this will result in the last replica allocated to the first
A general replica scheduler can be derived starting with the ,-5cessor being split, with the “remaining” time carried over
assumptions that one replica cannot be simultaneously run ony, the second processor. The remaining replicas are sequentially
more than one processor and that one processor can only ruryncated to the second processor, with again a possible split in
one replica at a time, this second assumption being the simplesig |5t replica allocated. This procedure is repeated until all
and, as it tums out, the most efficient use of the processors. he replicas have been allocated. In the minimum wall clock,
The logic of the derivation comes from scheduling thewdfty, XN+ case, the final processor will not be completely filled
which _is frequently usec_zl to S(_)Ive pr_obler_ns of_this type N UnlessWIX(N+1) = Tiong: and there will be a small amount of
operations research and industrial engineering. Giverplicas, idle time. In the minimum idle time case, there will be no idle
where the time to complete repli¢as 7, the total processing ime . An example of how the scheduler assigns replicas to
time required to complete all of the replicas is processors is shown in Figure 2 for a 20 replica case where
n TiongTshort = 3, Wherershoris the wall clock time of the replica
w=Sr A3) that completes its Monte Carlo step most quickly.
It is immediately apparent that the schedUlisr extremely
simple and very effective. The scheduler may easily be applied
We letriong be the CPU time of the longest replica. If we have to existing parallel simulation codes. To apply the theory to a

X processors, then the shortest possible total wall clock time
required to complete execution of all of the replicas is given

The optimum integer number of processors to achieve 100%
theoretical efficiency will be

where [yOis the largest integer equal to or less than the real
numbery. The number of processors required to achieve the
minimum wall clock time will be

6846 J. Phys. Chem. B, Vol. 108, No. 21, 2004 Earl and Deem

TABLE 1: Results for the Parallel Tempering Job Allocation Optimized by the Scheduler for Run Time or Number of CPUs
and for the Traditional Allocation

I (%) C (%) I (%) C (%) I (%) C (%)
X (%) C(%) y=0.1 y=0.1 y=05 y=05 y=1.0 y=1.0
Example 1

maximum efficiency 12 0.0 101.66 10.850.02 113.81t0.05 36.96t0.06 163.26t0.23 54.55+0.10 227.59+ 0.46
minimum run time 13 6.16 100.0 16.H60.02 112.16£0.05 41.10+0.06 161.4A40.23 57.65-0.10 225.7H-0.48
traditional 20 39.0 100.0 41.120.03 104.12£0.06 57.35£0.06 147.18:0.29 69.65+0.07 208.72+0.60

Example 2
maximum efficiency 3 0.0 128.20 4.650.02 134.62£0.07 19.2%0.09 160.33:0.33 34.50+0.73 193.76+ 0.66
minimum run time 4 393 100.0 9.8#0.02 106.75£0.06 27.49+0.09 134.82£0.28 43.34:0.15 171.60+ 0.55
traditional 20 80.77 100.0 80.620.01 100.0Gt0.10 82.55t0.02 116.60Gt0.31 86.41+0.03 149.97A 0.48

Example 3
maximum efficiency 6 0.0 11053 7.250.02 119.28:0.05 27.70+0.07 154.55+0.22 44.20+0.13 200.60+ 0.44
minimum run time 7 526 100.0 12.980.03 108.95-0.05 33.70+0.10 144.92-0.23 49.59+0.15 191.20+ 0.444
traditional 50 86.74 100.0 86.7560.01 100.78:0.11 89.07+0.03 126.69t0.38 97.76+0.03 169.56+ 0.66

@ Results are shown for the three example systems described in section 3. Shown are the number of pXcekegrsrcentage CPU idle time
(1), and the wall clock time of the simulation relative to the results for the traditional allocation without randor@helsie(time and wall clock
time are also shown for the case where the CPU time required for each replica is a stochastic quantity, eg & @With0.5, and 1.0.

practical simulation, one must first perform a short preliminary wider energy histograms, and so higher temperature replicas
simulation for each replica to obtain an estimaten¢f;), and can be spaced more widely than lower temperature repfcas.
hencer; from eq 2. We note that the scheduler could be run For specificity, we assume that the wall clock time per
after each Monte Carlo step, since the calculation time associatecconfigurational step also increases exponentially fogf},) to

with the scheduler is minimal. Such use of the scheduler would o(T;). We takeNmove to be constant for each of the replicas.
automatically lead to an adaptive or cumulative estimate.of The allocation of the replicas to the different processors is shown
Note that at all times, the balance properties of the underlying in Figure 2, parts a and b, for the traditional and zero idle time
Monte Carlo scheme are unaffected by the replica allocations cases, respectively. This example is typical of most parallel
of the scheduler. It is also worthy of comment that the scheduler tempering simulations that are currently being performed on
could be run with parallel tempering in multiple dimensions, multiprocessor systems.

for example differing chemical potenti&fsloor pair potentialst Example 2.For example 2, we useanda(T;) from example

for each replica, in addition to variations in temperature. 1. We, furthermore, consider that the correlation times of the
Increasing the number of order parameters that we use in thelower temperature replicas are longer, and so there should be
parallel tempering not only may improve sampling but also may more configurational moves per Monte Carlo step at the lower
provide a better estimate af since the estimate of as a local temperatures. We considfoveto increase exponentially from
function of phase space increases as the number of ordeMmovdTn) t0 NmovdT1) such thalNmovd T1)/Nmove(Tn) = 100. With
parameters increases. the values foi(T) from example 1, we findiong/Tshorr = 300.

In this section we have derived the scheduler for a homoge- Example 3.For example 3, we use = 50, modelingo(T;)
neous cluster of processors. In the Appendix we derive a similar in the same way as in examples 1 and@l1)/a(T,) = 3. We
scheme for a heterogeneous cluster. model Nmove in the same way as in example 2, but in this
3 Results example seNmove(Tl)/Nmove(Tn) = 1000, since the reason for

) the increased number of replicas would have been the poor and

In this section, we apply the optimal replica scheduler to three gjgw equilibration at the lowest temperatures. We fingly/
different parallel tempering simulation examples. Details of the Tshort = 3000.

three different examples are given below, and the performance) .
of the scheduler can be seen in Table 1. Results are shown ir#- Discussion
the table for the minimum idle time, minimum wall clock time, From Table 1, it is clear that the scheduler substantially
and traditional one-replica-per-processor cases. For each casénproves the CPU utilization in parallel tempering simulations.
we show the number of processors used, the CPU idle time asThis allows the multiprocessor cluster to be used with confi-
a percentage of the overall time for one Monte Carlo step, and dence, for example, for other jobs or simulations at other
the real wall clock time for the simulation relative to that of parameter values of interest. Example 1 demonstrates that the
the traditional parallel tempering approach. To motivate the number of processors used can be reduced by 40% with an
parameter values chosen for the examples, we note that, in outincrease of only 1.66% in wall clock time. Alternatively, the
experience with simulations of the 280 amino acid peptides number of processors can be reduced by 35% and result in no
from the innate immune system that are known as cystine-knotincrease in wall clock time relative to the traditional parallel
peptides, we find the ratio of correlation times between the low tempering method. As Example 1 is conservative in its
and high-temperature replicas can vary by a factor &f-1@P, characterization of most multiprocessor parallel tempering
Nmovel T1)/NmovdTn) = 10?—1CP, on the order oMNmodTy) = simulations currently being performed; we anticipate that
10*—1C° configurational Monte Carlo moves are typically utilization of the optimal scheduler presented here will result
performed during each Monte Carlo step at the highest tem-in a large increase in the computational efficiency of parallel
perature, andmeve = 10° configurational Monte Carlo moves tempering simulations.
take on the order of 24 h to complete. It is interesting to note that, for all examples, as we increase
Example 1.For example 1, the simulation system is chosen the number of processors used in the simulatiofhdrom 1,
such thatn = 20, anda(Ty)/a(T,) = 3. In parallel tempering the wall clock time decreases until the number of pro-
simulations, it is usual for the temperature to increase expo- cessors that result in minimum wall clock time is usg™
nentially fromT; to T, since higher temperature systems have = W/tongll Increasing the number of processors still further,

Allocation of Replicas to Processors J. Phys. Chem. B, Vol. 108, No. 21, 2008847

100 T T T o
= a(Ti)Nmove(To{ 1+ ,} ™

3 80F [Nmove(Ti)/(S(Ti)]12
_qé 60F whereo is a Gaussian random number, ahis a value that is
© proportional to the correlation time. As we generally choose
2 40 Nmove t0 be proportional to the correlation time, we expect
x Nmovdd to be constant. Thus, we use
O 20

0 | 1 I Ti = a(Ti)Nmove(Ti)[l + 70] (8)

0 5 10 15 20

Number of processors

Figure 3. CPU idle time as a function of number of processors used
to solve the 20-replica example 2 from section 3.

to model the fluctuations. We examine the cases where

0.1, 0.5, and 1.0. To analyze the performance of the scheduler
in the presence of the randomness, we take into account that a
to say the number of replicas, results in no reduction in overall processor may be idle while it is waiting for another processor
simulation time and only increases the CPU idle time. This to complete its share of calculations on a replica system that is
behavior is demonstrated in Figure 3, where the idle time is shared between the two processors.

shown as a function oX for example 2. This figure highlights Table 1 shows the results of including randomness into our
the importance of proper job scheduling on large, multiprocessor model for examples43. The averages and standard errors are
clusters. The use of the optimal scheduler derived here is needegg|culated from the average results from 10 blocks, each
in order for the simulation to make the best use of a large containing 1000 runs of the simulation system. The CPU idle
100% efficiency on multiprocessor systems, making them ideal gre complex systems wheNnove is varied, the inefficiency

for parallel tempering simulations. This is especially important introduced by the randomness is smaller, since the randomness
in cases where it is desirable to vaioe between different of several replicas is typically averaged over on most of the
replicas (examples 2 and 3). Taking into account the dependenceyrocessors. The results are encouraging and show that the
of the correlation time on temperature is computationally efficiency of the parallel tempering simulations organized by
disastrous for the traditional one-replica-per-processor methodihe scheduler remains within an acceptable limit, even when
of performing parallel tempering simulations, as CPU idle times yg|atively large fluctuations are considered. Increadipg,ewill

easily become-90%. However, the optimal scheduler makes |ead to lower fluctuations, with the observed efficiency converg-
the simulation of this case feasible, opening the door 0 ing to they— 0 limit as O(1/Nmove?).

performing parallel tempering simulations that sample configu-
rational space more effectiyely and efficiently. 5. Conclusions

In the results presented in section 3, we have not explicitly
taken into account communication times or the time taken to In this paper, we have introduced a theory for the optimal
conduct swap moves. Swap moves that exchange configurationgllocation of replicas to processors in parallel tempering
between replicas occur at the beginning of each Monte Carlo simulations. The scheduler leaves intact the balance or detailed
step and replica allocations occur at the beginning and possiblybalance properties of the underlying parallel tempering scheme.
once within each Monte Carlo step. These operations are The optimal scheduler derived from the theory allows multi-
extremely rapid compared to tHenee configuration moves processor machines to be efficiently used for parallel tempering
performed for each replica, as one can show. Recalling from simulations. The allocation of replicas to CPUs produced by
the Results section that one configurational move takes ap-the scheduler results in a significant enhancement of CPU usage
proximately 0.1 s and knowing that a typical communication in comparison to the traditional one-replica-per-processor ap-
time for interprocessor message passing is on the orderdf 10 proach to multiprocessor parallel tempering. The optimal
s, we find that example 3 contains the most communication scheduling vastly reduces the number of required processors to
time. In example 3, the increase in idle time due to communica- complete a simulation, allowing an increased number of jobs
tion from the zero idle time case is less than 0.00001%. This to be run on a cluster. The computational efficiency of the
demonstrates that communication time is not a significant effect scheduler also makes it feasible to vary the number of
in these types of simulations. Communication effects can, thus, configurational moves per Monte Carlo step, which was not
safely be ignored. practicable using the one-replica-per-processor scheme, due to

We have characterized the execution time of each replica in the associated large inefficiencies. This flexibility to vary the
a deterministic fashion, but in reality the execution time is a number of configurational steps is desirable because the
stochastic quantity due to noise in variables not among the correlation time at lower temperatures is often much longer than
degrees of freedom chosen for the parallel tempering. To modelthat at higher temperatures.
the simulation times more realistically, we have also included Our results show that randomness does not have a significant
randomness into our analysis. That is, the value & assumed effect fory < 0.1, and the performance is still quite tolerable
to fluctuate during each configurational step. As previously even for the extreme case ¢of = 1. Despite the random
mentioned, the accuracy of the estimatiorudé dependenton execution times, the replica allocation produced by the optimal
the number of order parameters used to parametrize it. Thus,scheduler is always significantly more efficient than the
fluctuations ina will be smaller for systems that use parallel traditional one-replica-per-processor approach. The idle time
tempering in multiple dimensions. We note that for the case caused by random execution times is reduced as the number of
where the temperature is the only parameter used to characterizeonfigurational moves per Monte Carlo step is increased.
a, fluctuations ina can be as high as #50%. This results in Furthermore, parallel tempering in more than one dimension,
a fluctuation in the time required to complete replicavhich with order parameters other than temperature, allows for a more
can be represented mathematically as accurate determination of the CPU time per replica. For the

6848 J. Phys. Chem. B, Vol. 108, No. 21, 2004 Earl and Deem

same reason, these extra dimensions will also aid the samplingassignment of replicas to processors is cycled at the end of each
efficiency of the underlying parallel tempering algorithm. 1/r of wall clock time until the entire time step is completed.
On the other hand if > s, the replicas are assigned to the
Acknowledgment. This work was supported by the U.S. processors by splitting the time interval in each processor

Department of Energy, Office of Basic Energy Sciences. times, and assigning the replicas to spend one short time interval
) being processed in each processor. This is accomplished by
Appendix assigning the first processor to execute sequentially replicas 1,
Allocation Scheme for a Heterogeneous ClusterUsing 2, ...,r. The second processor is assigned a cyclic permutation

scheduling theoBfit is possible to derive an allocation scheme ©Of the replicas to execute sequentially: replicas 2, .1, In

for a multiprocessor machine with heterogeneous processors 9€neral processorexecutes a cyclic permutation of the replica

It is assumed that the number of CPU cycles required for each Seduence of processor- 1. This allocation leads to each replica

replica to complete one Monte Carlo step and the speed of eactP€ing executed for an equal amount of wall clock time on each

of the processors in the machine are known. In this general Processor. A singe repllca,_moreov_er, is never allocated to more

scheme, the number of processors used by the schethjlisr, than one processor at a single point in time.

adjusted downward until an acceptably low idle time and total !f there are still processors remaining to be allocated, the

wall clock time are achieved. replicas at the next lower priority level are allocated by this
Forn replicas, where; is the number of CPU cycles required ~S&Me process. The procedure is repeated until all processors

to complete replica, the total number of CPU cycles required, Nave been allocated or all replicas have been allocated.
W, is given in eq 3. We now define The replica assignment for wall clock timet s now

complete. Replicas are reassigned for the next period of wall

i clock time using the same rules. If the time intervaljsichosen
W, = Zfi, 1<j=n (A-1) to be small enough, then the total wall clock time of the

i= simulation tends toward,. After the wall clock time of the
entire Monte Carlo step has been assigned, the simulation can
be performed.

There is some flexibility in the use of this general optimal

scheduler for a heterogeneous multiprocessor machine. In

For m processors, wherk is the speed of each processor in
CPU cycles per unit time, witl; > ko > ... = kq, the total
number of CPU cycles available per unit time is

m general, the best value af is not known in closed form. It is
K= Zk (A-2) found by choosing the smallest value of that gives an
= acceptably low value of the wall clock time, eq A-4, and an

acceptably low idle time in the derived allocation. The time
We define step for the schedulertdmust also be chosen. It should be
chosen to be small, but not so small that communication effects
become significant. Moreover, there must be many configura-
tional Monte Carlo steps per time step, atherwise the splitting
of replicas among processors required by the algorithm will
The shortest possible wall clock time to execute the Monte Carlo not be possible. The computational time associated with the

i
K=Yk 1=j=m (A-3)

step for all the replicas is then scheduler will generally be very much smaller than that
associated with the simulation. The scheduler may, therefore,
Tyan = MaxWIK,zjq,0) (A-4) be run after each Monte Carlo step. Such use of the scheduler
would automatically lead to an adaptive or cumulative estimate
wheretiong is the maximum value ofVj/Kj, 1 < j < m. of the execution times required by each replica.

The general scheduler works with a time interval granularity In practical application of the results of this general scheduler,
of dt. At the start of the simulation and at the end of each time the processor allocation will typically be reordered to an
interval, we assign a level of priority to the replicas. The highest equivalent one. For example, in the case of two replicas of equal
priority is given to the replica with the largest number of CPU |ength to be assigned to a single processor, the algorithm given
cycles required for completion, and the lowest priority is given above will switch between execution of each replica at each
to the replica with the least number of CPU cycles remaining. time step, ¢ rather than complete execution of each replica
A loop is performed through the priority levels, starting at the sequentially. A reordering of the output of the general scheduler,
highest priority. If there arereplicas in the priority level under therefore, will generally lead to a simpler processor allocation.
consideration and remaining unassigned processors and if Consistent with the constraints of causality, replica execution
< s, then ther replicas are assigned to be executed on the fastestin time on a single processor may be reordered. Allocation of
r number of processors. If the processors have different speedsyeplicas to processors at each time stépnay also be permuted
each replica must spend an equal amount of wall clock time on among the processors as along as the idle time so introduced is
each of the processors during the time interval, Tche total tolerable.
wall clock time for the step is computed from the processor Alternatively, the schedule optimization for heterogeneous
speeds and the required number of CPU cycles. The number ofprocessors can be cast as a linear programming problem. With
configurational moves that equals bf the wall clock time on & penalty for each switch between replicas on a processor, an
each processor is computed, and this number is the number ofoptimized schedule may be derived at the onset by solving the
configurational moves that each replica will perform on each linear programming problem with a time resolution af d
processor. For the first dbf the wall clock time, the replicas
are assigned sequentially to th@rocessors. For the nextrl/ References and Notes

i i i (1) Geyer, C. J. Markov Chain Monte Carlo Maximum Likelihood. In
of the wall clock time, the assignment of the replicas to the Computing Science and Statistics: Proceedings of the 23rd Symposium on

processors is cyclically permuted, i:e., replica 1 to processor 2, yne |nterfacekeramidas, E. M., Ed.; American Statistical Association: New
replica 2 to processor 3, ..., replicato processor 1. The York, 1991.

Allocation of Replicas to Processors J. Phys. Chem. B, Vol. 108, No. 21, 2008849

(2) Geyer, C. J.; Thompson, E. A. Am. Stat. Assrl995 90, 909. (7) Scheduler is available under the GPL at http://www.mwdeem.ri-
(3) Marinari, E.; Parisi, G.; Ruiz-Lorenzo, J. Numerical Simulations ce.edu/scheduler.
of Spin Glass Systems. I18pin Glasses and Random Field%ung, A., (8) Yan, Q.; de Pablo, J. J. Chem. Phys1999 111, 9509.
Ed.; World Scientific: Singapore, 1998; Vol 12. (9) Yan, Q.; de Pablo, J. J. Chem. Ph
b ; 8 , Q. ,J.d. . Phys200Q 113 1276.
275%"') Manousiouthakis, V. 1.; Deem, M. W. Chem. Phys1999 110 (10) Faller, R.; Yan, Q. L.; de Pablo, J. J. Chem. Phys2002 116,
- 5419.

(5) Coffman, E. G.Computer and Job-Shop Scheduling Theory;
Wiley: New York, 1976. (11) Bunker, A.; Dunweg, BPhys. Re. E 2001, 63, 010902.

(6) Ashour, SSequencing Theorgpringer-Verlag: New York, 1972. (12) Kofke, D. A.J. Chem. Phys2002 117, 6911.

