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We review the history of the parallel tempering simulation method. From its origins in data analysis, the parallel
tempering method has become a standard workhorse of physicochemical simulations. We discuss the theory
behind the method and its various generalizations. We mention a selected set of the many applications that have
become possible with the introduction of parallel tempering, and we suggest several promising avenues for

future research.

1. Introduction

The origins of the parallel tempering, or replica exchange,
simulation technique can be traced to a 1986 paper by Swend-
sen and Wang.! In this paper, a method of replica Monte Carlo
was introduced in which replicas of a system of interest were
simulated at a series of temperatures. Replicas at adjacent
temperatures undergo a partial exchange of configuration
information. The more familiar form of parallel tempering
with complete exchange of configuration information was
formulated by Geyer in 1991.% Initially, applications of the
new method were limited to problems in statistical physics.
However, following Hansmann’s use of the method in Monte
Carlo simulations of a biomolecule,® Falcioni and Deem’s use
of parallel tempering for X-ray structure determination,* and
Okamoto and Sugita’s formulation of a molecular dynamics
version of parallel tempering,’ the use of parallel tempering in
fields spanning physics, chemistry, biology, engineering and
materials science rapidly increased.

The general idea of parallel tempering is to simulate M
replicas of the original system of interest, each replica typically
in the canonical ensemble, and usually each replica at a
different temperature. The high temperature systems are gen-
erally able to sample large volumes of phase space, whereas low
temperature systems, whilst having precise sampling in a local
region of phase space, may become trapped in local energy
minima during the timescale of a typical computer simulation.
Parallel tempering achieves good sampling by allowing the
systems at different temperatures to exchange complete con-
figurations. Thus, the inclusion of higher temperature systems
ensures that the lower temperature systems can access a
representative set of low-temperature regions of phase space.
This concept is illustrated in Fig. 1.

Simulation of M replicas, rather than one, requires on the
order of M times more computational effort. This ‘extra
expense’ of parallel tempering is one of the reasons for the
initially slow adoption of the method. Eventually, it became
clear that a parallel tempering simulation is more than 1/M
times more efficient than a standard, single-temperature Monte
Carlo simulation. This increased efficiency derives from allow-
ing the lower temperature systems to sample regions of phase
space that they would not have been able to access had regular
sampling been conducted for a single-temperature simulation
that was M times as long. While not essential to the method, it
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is also the case that parallel tempering can make efficient use of
large CPU clusters, where different replicas can be run in
parallel. An additional benefit of the parallel tempering meth-
od is the generation of results for a range of temperatures,
which may also be of interest to the investigator. It is now
widely appreciated that parallel tempering is a useful and
powerful computational method.

One of the debated issues in parallel tempering regards the
details of the exchange, or swapping, of configurations between
replicas. Pertinent questions include how many different repli-
cas and at what temperatures to use, how frequently swaps
should be attempted, and the relative computational effort to
expend on the different replicas. Another emerging issue is how
to swap only part of the system, so as to overcome the growth
as v/N of the number of replicas required to simulate a system
of size N. We address these points of controversy in this review.

The widespread use of parallel tempering in the simulation
field has led to the emergence of a number of new issues. It has
become clear that temperature may not always be the best
parameter to temper, and parallel tempering can be conducted

Fig. 1 2-D representation of phase space. A simulation at lower
temperatures can become trapped in a non-representative sample of
the low free energy minima (shaded regions). At higher temperatures, a
simulation can sample more of phase space (light plus shaded areas).
Configuration swaps between the lower and higher temperature sys-
tems allow the lower temperature systems to escape from one region of
phase space where they were effectively ‘stuck’ and to sample a
representative set of the low free energy minima.
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with order parameters other than temperature, such as pair
potentials or chemical potentials. Of interest is how to choose
the order parameter whose swapping will give the most efficient
equilibration. It has also become apparent that multi-dimen-
sional parallel tempering is possible. That is, swapping between
a number of parameters in the same simulation, in a multi-
dimensional space of order parameters, is feasible and some-
times advised. The improvement in sampling resulting from the
use of parallel tempering has revealed deficiencies in some of
the most popular force fields used for atomistic simulations,
and it would seem that the use of parallel tempering will be
essential in tests of new and improved force fields.

Parallel tempering can be combined with most other simula-
tion methods, as the exchanges, if done correctly, maintain the
detailed balance or balance condition of the underlying simu-
lation. Thus, there is almost an unlimited scope for the
utilization of the method in computer simulation. This leads
to intriguing possibilities, such as combining parallel tempering
with quantum methods.

2. Theory
2.1 Theory of Monte Carlo parallel tempering

In a typical parallel tempering simulation we have M replicas,
each in the canonical ensemble, and each at a different tem-
perature, 7;. In general Ty < T, < ... < Ty, and T is
normally the temperature of the system of interest. Since the
replicas do not interact energetically, the partition function of
this larger ensemble is given by

Q = H%Idr{v eXp[—ﬁ,‘U(rfv)L (1)
i=1"""

where ¢; = l'[‘,-Nzl(21tm_,-kBT,-)3'/2 comes from integrating out the
momenta, m1; is the mass of atom j, r/" specifies the positions of
the N particles in system i, ; = 1/(kgT;) is the reciprocal
temperature, and U is the potential energy, or the part of the
Hamiltonian that does not involve the momenta. If the prob-
ability of performing a swap move is equal for all conditions,
exchanges between ensembles i and j are accepted with the
probability

A = min{l, exp[+(f; — FHUE) — U] @

Swaps are normally attempted between systems with adjacent
temperatures, j =i + 1.

Parallel tempering is an exact method in statistical me-
chanics, in that it satisfies the detailed balance or balance
condition,® depending on the implementation. This is an im-
portant advantage of parallel tempering over simulated anneal-
ing, as ensemble averages cannot be defined in the latter
method. Parallel tempering is complementary to any set of
Monte Carlo moves for a system at a single temperature, and
such single-system moves are performed between each at-
tempted swap. To satisfy detailed balance, the swap moves
must be performed with a certain probability, although per-
forming the swaps after a fixed number of single-temperature
Monte Carlo moves satisfies the sufficient condition of bal-
ance.® A typical sequence of swaps and single-temperature
Monte Carlo moves is shown in Fig. 2.

Kofke conducted an analysis of the average acceptance rate,
(A), of exchange trials and argued that this quantity should be
related to the entropy difference between phases.” For sys-
tems assumed to have Gaussian energy distributions, typical of
many systems that are studied using computer simulation, see
Fig. 3, he found the average acceptance ratio, (4), to be given

by
<A)—erfc{(%c L=Fi/b:

1/2
) (1+ (!3_,-/[3,-)2)1/2} ’ ®

This journal is © The Owner Societies 2005 |

Monte Carlo Step

Fig. 2 Schematic representation of parallel tempering swaps between
adjacent replicas at different temperatures. In-between the swaps,
several constant-temperature Monte Carlo moves are performed.

where C, is the heat capacity at constant volume, which is
assumed to be constant in the temperature range between f3;
and f;. Simply put, the acceptance rate for the trials depends on
the likelihood that the system sampling the higher temperature
happens to be in a region of phase space that is important at
the lower temperature. This theoretical analysis of the accep-
tance rates becomes useful when considering the optimal
choice of temperatures for a parallel tempering simulation
(see section 2.3).

2.2 Theory of molecular dynamics parallel tempering

In Monte Carlo implementations of parallel tempering, we
need only consider the positions of the particles in the simula-
tion. In molecular dynamics, we must also take into account
the momenta of all the particles in the system. Sugita and
Okamoto proposed a parallel tempering molecular dynamics
method in which after an exchange, the new momenta for

replica i, p'”’, should be determined as
N T, .

0 — new (i) 4

P Toa? 4)

where p(i) are the old momenta for replica i, and Toq and Ty
are the temperatures of the replica before and after the swap,
respectively.’ This procedure ensures that the average kinetic
energy remains equal to %NkBT. The acceptance criterion for
an exchange remains the same as for the MC implementation
(eqn (2)) and satisfies detailed balance.

When doing parallel tempering molecular dynamics, one
must take care in the interpretation of the results. A parallel
tempering exchange is an ‘unphysical’ move, and so one cannot
draw conclusions about dynamics. That is, when using parallel
tempering molecular dynamics, one is only really doing a form
of sampling and not ‘true’ molecular dynamics.

2.3 Optimal choice of temperatures

How one chooses both the number of replicas employed in a
parallel tempering simulation and the temperatures of the
replicas are questions of great importance. One wishes to
achieve the best possible sampling with the minimum amount
of computational effort. The highest temperature must be
sufficiently high so as to ensure that no replicas become
trapped in local energy minima, while the number of replicas
used must be large enough to ensure that swapping occurs
between all adjacent replicas. Several suggestions for the
number and temperature of the replicas have been offered. It
is clear from Fig. 3 and eqn (2) that the energy histograms must
overlap for swaps to be accepted. Sugita ez al. and Kofke have
proposed that the acceptance probability could be made uni-
form across all of the different replicas, in an attempt to ensure
that each replica spends the same amount of simulation time at
each temperature.”’® Kofke showed that a geometric progres-
sion of temperatures (7;/T; = constant) for systems in which C,
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Fig. 3 Energy histograms for a model system at five different tem-
peratures. Overlap of the energy histograms between adjacent replicas
at different temperatures allows for acceptance of the configuration
swaps.

is constant across the temperatures results in equal acceptance
ratios. Sanbonmatsu et al. suggested that a target acceptance
ratio, Aareet» Can be obtained iteratively by solving

Alargel = eXp[AﬁAE]a (5)

where AE is the difference in the average energies of the systems
in adjacent temperatures.'® Iterative methods for adjusting the
temperatures of the different systems to ensure that acceptance
ratios stay within acceptable bounds had previously been
proposed and utilized by Falcioni'' and Schug er al.'? in
adaptive temperature control schemes. Rathore er al.'® ex-
tended these approaches to suggest a scheme for the optimal
allocation of temperatures to replicas that is also based on
iteratively altering system temperatures. In their scheme, the
lowest temperature is fixed, and the other system temperatures
are determined by iteratively solving

AE AE
N ©
T; 4 target

O—)ﬂ
for each of the temperatures, 7}, where o, = [o(T)) 4 o(T})]/2 is
the average deviation of the energies in the two systems. One
can choose the target value to achieve a desired acceptance
ratio.

Rathore et al. also consider the optimal acceptance ratio and
number of replicas in parallel tempering simulations.'® For the
case studies used in their work, they found that an acceptance
ratio of 20% yielded the best possible performance. That is,
adding more replicas once the high and low temperatures are
fixed and the acceptance ratio of 20% had been achieved
resulted in no increase in the performance of the simulation.

Recently, Kone and Kofke have provided an analysis of the
selection of temperature intervals in systems where C, is
assumed to be piecewise constant across each temperature
interval.'* They argue that although this may not always be
the case, the assumption is reasonable and does not require an
iterative scheme that can consume valuable CPU time and
which violates detailed balance. Their analysis is based on
maximising the mean square displacement, o2, of a system as it
performs the random walk over temperatures. The value of ¢°
is proportional to the number of accepted swaps and (In(f;/
$2))*. By maximizing o> with respect to the acceptance prob-
ability, they found that an acceptance probability of 23% is
optimal. This value is strikingly similar to the empirically
determined 20% of Rathore et al. Kone and Kofke suggest
“tuning” the temperature intervals to achieve the 23% accep-
tance probability during the initial equilibration of a simula-
tion. This approach appears to be an efficient method to select
temperature intervals in parallel tempering simulations that
mix efficiently.

A similar scheme for choosing the temperatures has recently
been proposed by Katzgraber et al., which uses an adaptive
feedback-optimized algorithm to minimize round-trip times
between the lowest and highest temperatures.'> This approach
more directly characterizes the mixing between the high and
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low temperature systems. In complex cases, where there are
subtle bottlenecks in the probability of exchange of configura-
tions, the round-trip time is likely to better characterize the
overall efficiency of parallel tempering than is the average
acceptance probability. The approach of Katzgraber et al. is
a promising one for such complex cases.

A related issue is how much simulation effort should be
expended on each replica. For example, it would seem that the
low temperature replicas would benefit from additional simu-
lation effort, as the correlation times at lower temperature are
longer. This issue is untouched in the literature.

Since the width of the energy histograms increases as v/N,
but the average energy increases as N, the number of replicas
increases as v N, where N is the system size.* One, therefore,
would like a method where only part of the configurational
degrees of freedom are exchanged. Interestingly, this issue was
solved in Swendsen and Wang’s 1986 paper for spin systems,'
but it has not been solved in an exact, efficient way for
atomistic systems. The main difficulty seems to be in defining
a piece of a system that can be exchanged without the penalty
of a large surface energy.

2.4 Parallel tempering with alternative parameters and
sampling methods

The general idea of parallel tempering is not limited to
exchanges or swaps between systems at different temperatures.
Investigators have developed a number of methods based on
swapping alternative parameters in order to minimize barriers
that inhibit correct sampling. Additionally, parallel tempering
can be combined with a large number of alternative sampling
methods, and its use has led to a great improvement in the
sampling of many existing computational methods.

Fukunishi ef al. developed a Hamiltonian parallel tempering
method that they applied to biomolecular systems.'® In this
approach, only part of the interaction energy between particles
is scaled between the different replicas. In their work, they
conduct case studies using two different implementations of
their approach. In the first they scale hydrophobic interactions
between replicas. In the second, they scale the van der Waals
interactions between replicas by introducing a cut-off in the
interaction, effectively allowing chains of atoms to pass through
each other. The acceptance probability in Hamiltonian parallel
tempering for a swap between replicas i and j is given by

A = min{l, exp[—B(H(X') + H(X)] — [H(X)
+ H{(X)DI}, @)

where H(X) is the Hamiltonian of configuration X in replica i,
and configurations X and X’ are the configurations in replicas i
and j, respectively, prior to the swap attempt.

Parallel tempering using multiple swapping variables was first
proposed and developed by Yan and de Pablo.'”!'® Instead of
considering a one-dimensional array of replicas at different
temperatures, they suggested using an n-dimensional array,
where each dimension represented a parameter that varied
between replicas. Swaps both within and between dimensions
were allowed in their scheme. In their first work they conducted
parallel tempering between different temperatures and chemical
potentials in the grand canonical ensemble, but the scheme they
proposed was general. They showed that extensions of parallel
tempering to multiple dimensions are limited only by the imagi-
nation of the investigator in choosing the variables to swap and
the available computational resources. Sugita et al. utilized
multdimensional exchanges in molecular dynamics studies.®

de Pablo and co-workers also implemented parallel temper-
ing in the multicanonical ensemble.?® In the multicanonical
ensemble, the probability distribution is no longer Boltzmann,
but becomes
—pua®)

p™) = (const)e w(r™) ®)
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The weight factors, w(r”), are chosen so as to lower the barriers
in the system. de Pablo and co-workers derived multicanonical
weights by an iterative process using a Boltzmann inversion of
histograms. Another way to write eqn (8) is to use instead of
the Hamiltonian U, the weighted Hamiltonian U + &(U) when
attempting swap moves, where £(U) is an umbrella potential.
By using a multicanonical ensemble, de Pablo and co-workers
were able to reduce the number of replicas required in their
simulation, due to a broader overlap of thermodynamic-prop-
erty histograms. In general, when combined with a multi-
canonical simulation, a short parallel tempering run can be
performed, and the multicanonical weight factors can be
determined by using histogram reweighting. These weights
can then be used in the multicanonical part of the calculation.?!
Parallel tempering can be combined with a multicanonical
simulation. That is, in the multicanonical simulation, a number
of replicas, each in the multicanonical ensemble but each with
different multicanonical weight factors covering different en-
ergy ranges, may be employed.>' It should be noted that far
fewer replicas are needed in this method than in typical parallel
tempering because the energy ranges covered in a multicano-
nical simulation are far wider than in a canonical simulation.
The weight factors utilized in these methods may then be
iteratively improved during the equilibration period as the
simulation proceeds, using histogram reweighting techniques.

In free energy perturbation calculations, a parameter / is
introduced. One wishes to compute the free energy difference
to go from an initial (4 = 0) state and a final (A = 1) state. For
parallel tempering with free energy perturbation one can
consider M replicas, each with a different A parameter, where
each replica has a slightly different Hamiltonian

U, = Uj—o + MU;=1 — U,—o). )

Swaps may be attempted between replicas using the Hamilto-
nian acceptance criterion (eqn (7)), and the free energy differ-
ence between two lambda parameters can be determined as in
regular free energy calculations. Of course, one may utilize a
number of different temperature replicas for each value of 1 in
a multidimensional approach. Use of parallel tempering in
multicanonical simulations, free energy calculations, and um-
brella sampling is growing.'®*

One of the most fruitful combinations of parallel tempering
with existing sampling techniques has been with density of
states methods based on Wang-Landau sampling.?® Density of
states methods are similar to multicanonical ones in that the
weight factor is the reciprocal of the density of states. However,
in density of states methods a random walk in energy space is
conducted, and a running estimate of the inverse of the density
of states as a function of the energy is performed. Alternatively
the configurational temperature is collected as a function of the
energy and the density of states determined by integrating the
inverse temperature.?” Other sets of conjugate variables can
also profitably be used.?® These methods effectively circumvent
the tedious and time consuming process of calculating weight
factors in multicanonical simulations. de Pablo and co-workers
have proposed extended ensemble density of states methods
where overlapping windows or replicas of different energy or
reaction/transition coordinate values are utilized.?> Configura-
tional swaps between windows are attempted at regular inter-
vals to prevent the simulations in the parallel replicas from
becoming stuck in non-representative regions of phase space. A
combination of density of states methods and parallel temper-
ing has successfully been used to study protein folding**? and
solid-liquid equilibria.*

Vlugt and Smit applied parallel tempering to the transition
path sampling method.** They showed that parallel tempering
conducted between different temperatures and between differ-
ent regions along transition paths is able to overcome the
problem of multiple saddle points on a free energy surface.
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Parallel tempering transition path sampling can provide for
more accurate estimates of transition rates between stable
states than single-temperature Monte Carlo transition path
sampling.

Parallel tempering has been combined with a number of
other computational methods, and in almost all cases its use
has resulted in better sampling and an increase in the accuracy
of the computational method. Prominent examples include
parallel tempering with cavity bias to study the phase diagram
of Lennard-Jones fluids,>> with analytical rebridging for the
simulation of cyclic peptides,® and with the wormhole algo-
rithm to explore the phase behavior of random copolymer
melts.*’

Very recently an extension to parallel tempering, known as
virtual-move parallel tempering, has been proposed by Coluzza
and Frenkel.*® In their scheme they include information about
all possible parallel tempering moves between all replicas in the
system, rather than just between adjacent replicas, when
accumulating statistical averages. This approach is essentially
a parallel tempering version of the “waste recycling” Monte
Carlo method of Frenkel®” and has been shown to improve
statistical averaging by up to a factor of 20.

2.5 Non-Boltzmann distributions

Since their introduction in the late 1980s, Tsallis statistics have
become increasingly important in statistical mechanics.** Due
to their power-law, rather than Boltzmann, properties, Tsallis
statistics generally lead to smaller energy barriers. Therefore,
optimization with Tsallis, rather than Boltzmann, statistics can
be very useful in energy minimization problems. Whitfield et al.
have developed a version of the parallel tempering algorithm
that is based upon Tsallis statistics.*' This method has been
used, for example, for fast conformational searches of peptide
molecules.*?

3. Applications
3.1 Polymers

Simulations of polymeric systems are notoriously difficult due
to chain tangling, the high density of the systems of interest,
and the large system sizes required to accurately model high
molecular weight species. The first application of parallel
tempering to polymeric systems was by Yan and de Pablo to
high molecular weight species.'® Bunker and Dunweg® were
the first to utilize excluded volume parallel tempering, where
different replicas have different core potentials. They studied
polymer melts for polymer chain lengths ranging from 60 to
200 monomers. Their method created a thermodynamic path
from the full excluded volume system to an ideal gas of random
walks and increased the efficiency of all their simulations.
Bedrov and Smith** studied fully atomistic polymer melts of
1,4-polybutadiene at a range of temperatures, performing
parallel tempering swaps isobarically. They showed that their
parallel tempering approach provided a substantial improve-
ment in equilibration and sampling of conformational phase
space when compared to regular MD simulations. See Fig. 4.
Theodorou and co-workers studied cis-1,4 polyisoprene melts
using parallel tempering and once again found that use of
parallel tempering resulted in far quicker equilibration over a
range of temperatures.* More recently, Banaszak er al. have
utilized hyperparallel tempering in an osmotic ensemble to
study the solubility of ethylene in low-density polyethylene.*®
Using their novel method they were able to examine the effect
of both polyethylene chain length and branching on the
solubility of ethylene.
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Fig. 4 End-to-end correlation function for polymeric 1,4-polybuta-
diene. The parallel tempering simulation relaxes much more quickly,
and is, thus, a more efficient simulation. Used with permission.**
Copyright 2001, American Institute of Physics.

3.2 Proteins

Biological systems, particularly proteins, are computationally
challenging because they have particularly rugged energy land-
scapes that are difficult for regular Monte Carlo and molecular
dynamics techniques to traverse. Hansmann was the first to
apply parallel tempering to biological molecules in a Monte
Carlo based study of the simple 7-amino acid Met-enkephalin
peptide.> Hansmann showed that parallel tempering based
simulations could overcome the ‘“‘simulation slowdown’ pro-
blem and were more efficient than regular canonical Monte
Carlo simulations. The application of parallel tempering to
biological problems, however, did not take off until Sugita and
Okamoto’s work that introduced the use of molecular dy-
namics parallel tempering.® They applied their approach to
Met-enkephalin and demonstrated that their parallel temper-
ing based method did not get trapped in local energy minima,
unlike regular microcanonical molecular dynamics simulations
of the same molecule.

Following demonstration of the power of parallel tempering
for molecular systems, its use in the biological simulation
community rapidly expanded. Parallel tempering has been used
to determine folding free energy contour maps for a number of
proteins, revealing details about folding mechanisms and
intermediate state structures*’ >! and has facilitated the simu-
lation of membrane proteins.’>>> Parallel tempering has
proved to be particularly powerful when applied to NMR
structure refinement and in the interpretation of data from
NMR,** circular dichroism,®’ IR spectra,®® and electric
deflection data® of proteins and peptides. For models of
globular proteins and oligomeric peptides, parallel tempering
has been used to study previously unexplored regions of phase
diagrams and to sample aggregate transitions.**% In the study
of sucrose solutions near the glass transition temperature,
parallel tempering simulations showed a much better fit to
experimental data than did conventional NPT MC results.%
Other interesting work using parallel tempering includes stu-
dies of the thermodynamics of fibril formation using an inter-
mediate resolution protein model®” and of the hypervariable
regions of an antibody domain where the chief interactions
governing conformational equilibria in these systems were
determined.®®

With this increased sampling ability of parallel tempering
has come the realization that current force fields for biological
simulation are lacking in some respects. Parallel tempering
simulations of solvated biological molecules have also revealed
deficiencies in popular implicit solvent models.’"*7" As par-
allel tempering can also be used with explicit solvent models,
the differences between the treatments can be determined, and
in the future such simulations could be used to improve
implicit solvent models.

Brooks and co-workers have developed a multiscale model-
ing toolkit that can interface with the popular CHARMM and
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AMBER molecular simulation codes.”’ Parallel tempering is
implemented in the toolkit to allow enhanced sampling and is
used to study the ab initio folding of peptides from first
principles. Parallel tempering has clearly become the method
of choice in ab initio protein folding as evidenced by the work
of Skolnick and co-workers,”* Garcia and Sanbonmatsu,'%7374
and Yang et al.”

When examining the biological and chemical literature of
parallel tempering, it is apparent that the vast majority of work
is based on molecular dynamics, rather than Monte Carlo. As
one is not doing ‘true’ MD when using parallel tempering,
there is no reason why Monte Carlo methodologies cannot be
implemented more frequently in the biological and chemical
communities. Indeed, we expect this to be a promising avenue
for future research.

3.3 Solid state

Crystal structure solution provided one of the first mainstream
atomistic simulation examples of the power of parallel temper-
ing. Falcioni and Deem used parallel tempering in a biased MC
scheme to determine the structures of zeolites from powder
diffraction data.”® For complicated zeolite structures contain-
ing more than eight unique tetrahedral atoms, simulated
annealing is unable to solve the crystal structures. However,
parallel tempering simulations were shown to be able to solve
the structures of all complex zeolites, including the most
complicated zeolite structure, ZSM-5, which contains twelve
unique tetrahedral atoms. Zefsall has since been successfully
used to solve the structures of at least a dozen newly synthe-
sized zeolites and is freely downloadable on the web. A similar
approach to crystal structure determination from powder
diffraction data has been implemented by Favre-Nicolin
et al.,”” and this method has been successful in solving several
structures.”® %0

A seminal simulation study of the rate of crystal nucleation
by Auer and Frenkel utilized the parallel tempering method by
allowing swaps between ‘windows’ at different points along the
reaction co-ordinate from the liquid to solid state.®! This work
introduced, for the first time, the ability to calculate nucleation
rates from first principles.

Other examples of solid-state parallel tempering simulations
include the computation of sodium ion distributions in zeo-
lites,? studying the finite temperature behavior of Cgy clus-
ters,®® the simulation of Si surfaces,?*®° and the explanation of
the titration behavior of MbCO over a range of pH values.%¢

3.4 Spin glass

Spin glasses have provided a severe test of the effectiveness of
parallel tempering.®’ In the Parisi solution of the infinite range
Edwards—Anderson model, widely believed by many but not all
physicists to apply to finite-range spin glasses as well, there is a
finite energy for excitations above the ground state, and the
boundary of these excitations has a space-filling structure.
Initial simulations for the Edwards—Anderson model con-
firmed the finite excitation energy.®® Initial suggestions for a
fractal surface®® were ruled out by later simulations.*” For the
vector spin glass model, the excitation energy was again found
to be finite.”® Initial suggestions of a fractal surface were also
largely ruled out in later simulations.”’

3.5 Quantum

Quantum level systems, whilst being far more computationally
demanding than classical systems, may benefit from the im-
proved sampling provided by parallel tempering. So far, the
main application of parallel tempering at the quantum level has
been in studies of phase transitions and in the location of
energy minima in complex systems. Parallel tempering is ideal

| This journal is © The Owner Societies 2005



for these studies, as dynamics are not of interest. Okamoto and
co-workers conducted parallel tempering based ab initio corre-
lated electronic structure calculations.”” In their studies of Li
clusters, they demonstrated that parallel tempering could be
successfully applied to systems described with a high level of
detail. Sengupta et al. combined quantum Monte Carlo with
parallel tempering to study the phase diagram of a 1-D
Hubbard model.”®> Quantum parallel tempering was found to
significantly reduce ‘“‘sticking” effects, where the simulation
gets stuck in the incorrect phase close to the phase boundary.

Shin et al. have studied quantum phase transitions of water
clusters,” where the rotational modes can be highly quantum.
Parallel tempering allowed for efficient conformational sam-
pling. They remark that “combining Car—Parrinello approach
with replica exchange [parallel tempering] and path integral
molecular dynamics can provide an ideal methodology for
studying quantum behavior of clusters.” Although the sug-
gested approach is highly computationally expensive, it may
become increasingly feasible in future years. Parallel tempering
has also been successfully employed in a study of the finite
temperature optical spectroscopy of CaAr, clusters’® and in
quantum path integral simulations of the solid-liquid phase
diagrams of Ne3 and (p-Hy) 3 clusters.”®

3.6 General optimization problems

Parallel tempering has been successfully used in a number of
general optimization problems. Habeck et al. developed a
sampling algorithm for the exploration of probability densities
that arise in Bayesian data analysis.”” Their approach utilized
Tsallis statistics, and the effectiveness of parallel tempering was
demonstrated by interpreting experimental NMR data for a
folded protein. In image analysis, parallel tempering has been
shown to lead to an improvement by a factor of two for both
success rate and mean position error when compared to
simulated annealing approaches.”® Parallel tempering has also
been utilized to locate the global minima of complex and
rugged potential energy surfaces that arise in atomistic models
of receptor—ligand docking® and in risk analysis.!%

4. Conclusion

In this review we have given an overview of the history of
parallel tempering. We have described the basic theory and
many of the extensions to the original method. Several exam-
ples in a variety of physicochemical arenas have been dis-
cussed. Highlighted technical aspects to sort out include best
allocations to cluster computers,'®' determination of the opti-
mal amount of simulation effort to expend on each replica, and
partial swapping of configuration information for atomistic
systems.

A number of potential new areas for application of parallel
tempering occur to us. One rather large one is the application of
parallel tempering, rather than simulated annealing,'** to X-ray
single-crystal structure solution. A related issue is the prediction
of polymorphs for crystals of small, organic drug molecules.
Also related is use of parallel tempering in rational drug
design—most current approaches use grid searching, tradi-
tional Monte Carlo, or at best simulated annealing.103 Another
physical application where enhanced sampling might be of use
is in field theories for polymeric systems with non-trivial phase
structure.'® Also possible would be the complementary inclu-
sion in ab initio molecular dynamics, if sampling only is desired.
Even experimental applications could be possible in materials
discovery'® or laboratory protein evolution.'%
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