J. Parallel Distrib. Comput. 74 (2014) 3202-3216

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Kokkos: Enabling manycore performance portability through
polymorphic memory access patterns

P
(!) CrossMark

H. Carter Edwards *, Christian R. Trott, Daniel Sunderland
Sandia National Laboratories, PO Box 5800/MS 1318, Albuquerque, NM, 87185, United States

HIGHLIGHTS

We developed a performance portable programming model (PM) for manycore devices.
Unifying parallel dispatch and data layout is mandatory for performance portability.

The Kokkos C++-library implements this PM with pthreads, OpenMP, and CUDA back-ends.
Demonstrate Xeon Phi and NVIDIA GPU performance portability with mini-applications.
Recommend a strategy for legacy application codes to migrate to manycore.

ARTICLE INFO ABSTRACT

Article history:

Received 18 July 2013
Received in revised form

7 July 2014

Accepted 10 July 2014
Available online 22 July 2014

The manycore revolution can be characterized by increasing thread counts, decreasing memory per
thread, and diversity of continually evolving manycore architectures. High performance computing (HPC)
applications and libraries must exploit increasingly finer levels of parallelism within their codes to sustain
scalability on these devices. A major obstacle to performance portability is the diverse and conflicting set
of constraints on memory access patterns across devices. Contemporary portable programming models
address manycore parallelism (e.g., OpenMP, OpenACC, OpenCL) but fail to address memory access
patterns. The Kokkos C++ library enables applications and domain libraries to achieve performance
portability on diverse manycore architectures by unifying abstractions for both fine-grain data parallelism
Thread parallelism and memory access patterns. In this paper we describe Kokkos’ abstractions, summarize its application
Manycore programmer interface (API), present performance results for unit-test kernels and mini-applications,
GPU and outline an incremental strategy for migrating legacy C++ codes to Kokkos. The Kokkos library is
Performance portability under active research and development to incorporate capabilities from new generations of manycore
Multidimensional array architectures, and to address a growing list of applications and domain libraries.

Mini-application © 2014 Elsevier Inc. All rights reserved.

Keywords:
Parallel computing

1. Introduction

The Kokkos C++ library provides scientific and engineering
codes with a programming model that enables performance porta-
bility across diverse and evolving manycore devices. Our perfor-
mance portability objective is to maximize the amount of user code
that can be compiled for diverse devices and obtain the same
(or nearly the same) performance as a variant of the code that
is written specifically for that device. Performance portability is
our primary objective for a high performance computing (HPC)
programming model, and we address usability only within this

* Corresponding author.
E-mail addresses: hcedwar@sandia.gov (H. Carter Edwards), crtrott@sandia.gov
(C.R. Trott), dsunder@sandia.gov (D. Sunderland).

http://dx.doi.org/10.1016/j.jpdc.2014.07.003
0743-7315/© 2014 Elsevier Inc. All rights reserved.

constraint. Future usability studies will be conducted in conjunc-
tion with early adoption of Kokkos by applications and domain
libraries.

The scope of Kokkos has evolved from a hidden portability layer
for sparse linear algebra kernels [2] to a hierarchy of broadly us-
able libraries. Our earlier implementation of Kokkos’ fundamen-
tal abstractions was referred to as KokkosArray [16,17,15]. These
fundamental abstractions have persisted to the current version of
Kokkos. The semantics, syntax, and implementation of Kokkos has
significantly evolved in response to new device capabilities, perfor-
mance evaluations, and usability evaluations through an expand-
ing suite of mini-applications.

Our fundamental programming model abstractions are as
follows:

1. Kokkos executes computational kernels in fine-grain data
parallel within an execution space.

http://dx.doi.org/10.1016/j.jpdc.2014.07.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.07.003&domain=pdf
mailto:hcedwar@sandia.gov
mailto:crtrott@sandia.gov
mailto:dsunder@sandia.gov
http://dx.doi.org/10.1016/j.jpdc.2014.07.003

H. Carter Edwards et al. /J. Parallel Distrib. Comput. 74 (2014) 3202-3216 3203

Table 1
Programming models for manycore parallelism.

Programming model Portable cpu/gpu Data layout Approach
Kokkos [44] Yes Yes Library
C++ AMP [20,7] Yes Yes Language
Thrust [12] Yes No Library
SGPU2 [34] Yes No Library
XKAAPI [19,45] Yes No Library
OpenACC [31] Yes No Directives
OpenHMPP [33] Yes No Directives
StarSs [39] Yes No Directives
OmpSs [14,30] Yes No Directives
HOMPI [13] Yes No Translator
PEPPHER [37] Yes No Translator
OpenCL [32] Yes No Language
StarPU [1,42] Yes No Language
Loci [27,26] No Yes Library
Cilk Plus [10] No Yes Language
TBB [41,23] No No Library
Charm++ [24,8] No No Library
OpenMP [43] No? No Directives
CUDA[11] No® No Language

2 OpenMP 4.0 addresses GPU; however, compilers are not yet available.
b PGI compiler can generate x86 code from CUDA.

2. Computational kernels operate on multidimensional arrays
residing in memory spaces.

3. Kokkos provides these multidimensional arrays with polymor-
phic data layout, similar to the Boost.MultiArray [18] flexible
storage ordering.

Kokkos enables computational kernels to be performance por-
table across manycore architectures (i.e., CPU and GPU) by unify-
ing these abstractions. A data parallel computational kernel’s data
access pattern can have a significant impact on its performance.
On a CPU a computational kernel should have blocked data access
pattern; however, on a GPU the computational kernel should have
a coalesced data access pattern. This conflicting data access pat-
tern requirement is commonly referred to as the array of structures
(AoS) versus structure of arrays (SoA) problem. We solve the AoS
vs. SoA performance portability problem by controlling the data
parallel execution of computational kernels on a device, provid-
ing a multidimensional array data structure for those kernels to
use, and choosing the multidimensional array layout that results in
the required memory access pattern. Kokkos enables performance
portable user code if that code is implemented with Kokkos’ mul-
tidimensional arrays and parallel execution capabilities.

Many programming models control fine-grain parallel execu-
tion, as enumerated in Table 1. These programming models have
a variety of implementation approaches: a library within a stan-
dard programming language, directives added to a standard lan-
guage (e.g., #pragma statements), language extensions supported
by source-to-source translators, or language variants supported by
a compiler. Among the programming models that we surveyed (Ta-
ble 1), Kokkos is unique in that (1) it is purely a library approach,
and (2) it enables portability to CPUs and GPUs, and (3) it pro-
vides polymorphic data layout. These three characteristics of our
programming model are essential for performance portability and
maintainability of HPC applications and domain libraries that must
move to diverse and evolving manycore architectures.

Kokkos has thin back-end implementations that map portable
user code to lower level, device specialized programming mod-
els. This software design allows us to choose the most per-
formant back-end for each target device and optimize Kokkos’
implementation for that back-end. Our current back-end imple-
mentations include CUDA [11] for NVIDIA GPUs, and pthreads [21]
or OpenMP [43] for CPUs and Intel Xeon Phi. Pthreads and OpenMP
back-ends optionally use the portable hardware locality (hwloc)
library [5] for explicit placement of threads on cores. We use the

Intel Xeon Phi co-processor in self-hosted mode, where processes
run entirely on this device as opposed to using the offload model.

In this paper, we first describe Kokkos abstractions, API, and
extension points. Then, we present performance results for unit-
test kernels and mini-applications. Finally, we outline a strategy
for legacy C++ codes to migrate to manycore devices.

2. Abstraction of a manycore device

Our abstraction of a modern HPC environment is a network of
compute nodes where each compute node contains one or more
manycore devices. A typical HPC application in this environment
has at least two levels of parallelism: (1) distributed memory
parallelism typically supported through a Message Passing Inter-
face (MPI) library and (2) fine-grain shared memory parallelism
supported through one of the many thread-level programming
models.

In our abstraction, an MPI process has a single master thread
that performs serial computations, calls MPI functions, and
dispatches computational kernels for execution by worker threads
of a manycore device. This “work dispatch” or “callback” pattern is
common in numerous programming models; for example, function
objects are dispatched to C++ Standard Template Library (STL)
algorithms [22], TBB, and Thrust. A key element of this abstraction
is that a master thread executes on the CPU and worker threads
execute on a manycore device. When the master and worker
threads execute on a multicore CPU or self-hosted device (how we
use the Intel Xeon Phi) then the device is the CPU.

2.1. Execution and memory spaces

Threads execute in an execution space and data resides a mem-
ory space. For example, the master thread performs serial compu-
tations in the CPU’s execution space and operates on data in the
CPU’s memory space. Similarly, worker threads call computational
kernels in a device execution space, and these kernels operate on
data in the device memory space.

An execution space has accessibility and performance relation-
ships with memory spaces. For example, a computation in the CPU
execution space may be prohibited from accessing data residing
in a CUDA memory space. Similarly a computation in a CUDA ex-
ecution space could access data in a host-pinned memory space (a
capability supported by newer CUDA-GPU devices) with degraded
performance compared to that computation accessing data in the
CUDA memory space. A programming model for manycore ar-
chitectures should include semantics to expose execution spaces,
memory spaces, and relationships among these spaces.

2.2. Abstracting spaces

In the Kokkos API, each execution space and memory space
is defined by a unique C++ class. This API enables enforcement
of execution-memory space accessibility constraints at compile-
time. For example, the master thread in the CPU execution
space is prevented from accessing memory in the CUDA memory
space, as opposed to generating a runtime memory fault. When
devices provide virtual unified addressing across memory spaces
(e.g., NVIDIA’s host-pinned memory capability), we will define
additional memory spaces and the associated execution-memory
space relationship.

Our abstraction for execution and memory spaces is an exten-
sion point in Kokkos’ design for expressing and managing increas-
ing complex device architectures. For example, NVIDIA devices
have global and shared memory spaces with different performance
characteristics. We believe that this execution-memory space ab-
straction and extension point is critical for “future proofing” codes.

3204 H. Carter Edwards et al. / J. Parallel Distrib. Comput. 74 (2014) 3202-3216

3. Multidimensional array

A Kokkos multidimensional array consists of: (1) a set of datum
{x,} of the same value type and residing in the same memory space,
(2) an index space Xs defined by the Cartesian product of integer
ranges, and (3) a layout X;—a bijective map between the index
space and the set of datum. (Note that equality of datums’ values
does not imply the same datum: x, = x, % (= «.)

X = {x}, X, X0)
X5 = [ONo) X [ONl) X
Xi: Xs <> {XL}.

A function typically contains a sequence of nested loops over
dimensions of an array Xs and accesses array datum via the layout
X;.Thus, the composition of a function’s loop-and-indexing pattern
and the array’s layout yields a memory access pattern.

F[Xs] function implemented for X
F[Xs] o XL_1 resulting memory access pattern.

To modify the function’s memory access pattern one must either
(1) change the dimension ordering Xs and the loop-and-indexing
pattern of the function F[Xs] or (2) change the layout of the array
Xi.

Programming languages with built-in multidimensional arrays
have a prescribed layout. For example, FORTRAN and C languages
prescribe layouts that are reversed with respect to a similarly de-
clared index space. When using a language’s built-in array, a func-
tion’s memory access pattern can only be changed by reordering
dimensions and changing both loop and indexing patterns. Such
a function must have distinct, device-dependent versions to sat-
isfy each memory access pattern required by diverse manycore de-
vices.

Layout polymorphism. Kokkos array layouts (X;) are chosen at com-
pile time. Thus, a function’s memory access pattern (F[Xs] o XL_l)
can be changed without modifying that function’s code. Layout
polymorphism requires a function to strictly adhere to Kokkos’
mapping operator—the function does not bypass the Kokkos API
nor assumes a particular layout. Layout polymorphism enables
Kokkos to choose array layouts that lead to device-appropriate
memory access patterns. Choosing layouts at compile-time allows
back-end compilers to in-line or optimize layout mapping compu-
tations within a function.

3.1. Declaration, allocation, and access

Kokkos arrays are implemented with a C++ template class
named View (we explain why this name was chosen in the next
section). The design pattern of encapsulating multidimensional ar-
ray semantics in a C++ class, or even a C struct, has been fun-
damental to well-engineered numerically-oriented C and C++
libraries for decades [9,3]. We tailor this pervasive design pattern
to compactly declare multidimensional array dimensions, identify
memory spaces for the datum, specify layouts, and annotate be-
havioral traits.

Array declaration, allocation, and value access operations are
illustrated in Fig. 1.

The first View template argument specifies the value type,
number of dynamic dimensions (denoted by the number of “*’
tokens), and static dimensions denoted by ‘[#]" expressions. The
second template argument defines the memory space in which the
values of the array are allocated. The View constructor allocates
memory according to the layout chosen for that space, static
dimensions, and dynamic dimensions input to the constructor.
The View parentheses operator implements the layout, enforces

// The View constructor allocates an array
// in Device memory space with dimensions
// N+*Mx8%3, where each ’'*’ token denotes a
// dimension to be supplied at runtime.

// The label "A" is used in error messages
// which may occur in regard to this array.
View<doublex«*[8] [3],Device> a("A",N,M);

// The parentheses operator implements the
// layout map.
a(i,j,k,1) = value ;

Fig. 1. The fundamental declaration, allocation, and access operators shown here
are designed to be compact, intuitive, and strictly compliant with C++ language
standards.

typedef double * PtrT ;
typedef double * const ConstPtrT ;
typedef const double x PtrToConstT ;

typedef View<doublex,Device> ViewT ;
typedef const View<doublex,Device> ConstViewT ;

typedef View<const doublex,Device> ViewToConstT ;

// const-ness is enforced at compile-time:

ViewT x("myx",N); // allocate

ConstViewT y

ViewToConstT cx = x ; // this assignment is OK

ViewT e = cx ; // error: violate const-ness
y = x ; // error: reassign const

Fig. 2. The “const-ness” semantics of Views and pointers are analogous. This is
illustrated by similar declarations for pointer and View types and “const-ness”
violations.

execution-memory space relationships, and optionally enforces
index space bounds (used when debugging code).

Unconventional syntax. The syntax using *’ tokens and ‘[#]’ expres-
sions to declare array dimensions is unconventional with respect
to other multidimensional array APIs. The driving factor in this API
design was to allow a mix of static and dynamic dimensions. Per-
formance testing, early in development of Kokkos, showed that
layout computations can be optimized in the presence of static
dimensions, and that such an optimization can have a significant
impact on the performance of computational kernels. The com-
bined goals of compact notation and mixed dynamic and static di-
mensions, and strict conformance to C++ syntax standards, led
to this unconventional APL. The potential confusion of interpret-
ing a dynamic dimension (**’ token) to mean that a value type is a
pointer has not been an issue. This is because our numerical ker-
nels have consistently been clearer and perform better when they
do not “pointer chase”, and instead use indices for indirect address-
ing. Furthermore, we want to discourage the use of pointer chasing
as it impedes a compiler’s ability to optimize computations.

Const-ness. The “const-ness” semantics of Views is analogous to
the “const-ness” semantics for C++ pointers, as illustrated in
Fig. 2. Just as a const pointer cannot be reassigned a const
View cannot be reassigned. However, the memory referenced by a
const pointer can be modified; likewise the datum referenced by
aconst View can be modified. A “pointer to const” is different;
it declares that what the pointer references cannot be modified. A
“View to const” is declared by associating the const keyword
with the value type of the View. Datum referenced by a View to
const cannot be modified.

3.2. View and deep copy semantics

The class name View was chosen to inform and remind users
that View objects have shared ownership semantics as shown in
Fig. 3. In contrast to C++ standard container semantics, multiple
View objects can reference the same allocated array. View

H. Carter Edwards et al. /J. Parallel Distrib. Comput. 74 (2014) 3202-3216 3205

typedef View<doublexx[8][3],Device> my_type ;

typedef View<const doublexx[8][3],Device>
my_const_type ;

my_type a("a",N,M); // Allocate an array

{ // Begin a nested scope
// Create more views of the same array
nmy_type a2 = a ; // shallow copy assignment
my_const_type a3 = a2 ; // compatible shallow copy

// 'a’ and ’a2’ are cleared (set to ’null’)
a = my_type();

az = my_type();

// 'a3’ still views the array

} // The View destructor is called on ’a3’.
// As the last view, it deallocates the array.

Fig.3. Shared ownership semantics are illustrated with multiple views of the same
allocated array being created and cleared. The last cleared or destroyed view is
responsible for deallocating the array.

typedef View<doublexx[8][3],Device> my_array_type;
my_array_type a("a",N,M); // Allocate on Device

// my_array_type::HostMirror defines an array

// in CPU memory space with a layout mirroring

// my_array_type. If the device != Host then

// create_mirror_view allocates a compatible array,

// otherwise a view of the same array is returned.

my_array_type::HostMirror host_a =
create_mirror_view(a);

// Deep copy to a mirror does not require remap.
// If a == a_host deep copy is skipped.

deep_copy(a , host_a); // Copy device <- host
deep_copy(host_a , a); // Copy host <- device

7
7

Fig. 4. Deep copy operations between memory spaces can lead to remapping
operations. This performance penalty is avoided by using HostMirror, a view with
the device layout but values in the CPU memory space.

semantics are analogous to C++ std: :shared_ptr semantics
where allocated memory is deallocated when the last view of that
memory is destroyed or reassigned.

The View assignment operator is a shallow copy operation—
only the reference to allocated memory and layout metadata are
copied. Kokkos provides deep copy functions to copy allocated
values between two arrays. A deep copy operation is most often
used to copy array values between memory spaces, from CPU to
device and vice versa.

Deep copies between arrays with different layouts (or index
spaces) have a performance penalty of remapping data between
the layouts, and an additional performance penalty of allocating a
temporary array when copying between different memory spaces.
Recall that Kokkos chooses a layout (by default) for the array’s
device—thus a GPU and CPU have different layouts. We address
this performance issue by defining HostMirror view types as
shown in Fig. 4. AHostMirror defines a view that has the device’s
array layout but allocates memory in the CPU memory space. Thus,
deep copies between a view and its host mirror never require
remapping, and they can be implemented by the most efficient
memory-to-memory copy capability of the device.

3.3. Performance tuning extension points

In the previous sections we described fundamental capabilities
for declaring, allocating, accessing, and managing arrays in
specified memory spaces with device dependent layouts. Kokkos
supports array access performance tuning features through an

// 0ld matrix type:
// typedef View<doublex*x,Device> my_matrix ;

// Change matrix type to an 8x8 tiled layout.
typedef View< doublexx ,

LayoutTileLeft<8,8> ,

Device > my_matrix ;

my_matrix A("A",N,N); // Allocation is unchanged.
value = A(i,J); // Indexing unchanged.

// New layout-leveraging code can be introduced

// to optimize performance. Such code should be

// protected via template partial specialization.

// tile_type is View<double[8][8],LayoutLeft,Device>
my_matrix::tile_type t = A.tile(iTile,jTile);

Fig. 5. A default array layout may be overridden through an optional View
template arguments. In this example, a view is specified to have an 8 x 8 tiles
layout. Existing layout-agnostic code is unchanged and specialized code leveraging
the tiled layout can be introduced.

// Allocate an array with an overridden layout.
typedef View< double xx ,

LayoutRight ,

Device > x("x",N,M);

// Define a compatible view with

// const value type and RandomRead trait.

typedef View< const doublexx* ,
LayoutRight ,
Device ,
RandomRead > read_x = x ;

// If Device is CUDA then this operator

// uses NVIDIA texture cache capability.

value = read_x(1i,3);

Fig. 6. The parentheses operator of a View with const value type, Cuda device,
and RandomRead trait is implemented with the NVIDIA texture cache capability.
If any of these three conditions are not satisfied then the standard parentheses
operator implementation is used.

optional advanced APIL. These features leverage the extension
points in Kokkos’ software design.

Overriding the layout. Kokkos chooses a default layout for a given
device. A user may override this default layout through an optional
template argument on the View class. In addition, an advanced
user may develop new layouts for their arrays.

Fig. 5 presents an example of a View with a tiled matrix layout
that is (for example) used by PLASMA [6]. With this layout, the
parentheses operator maps input indices to a tile and then to a
value within that tile. An application or library that implements
matrices with the View class can change from a traditional column
major layout to a tiled layout simply by introducing a template
parameter. Existing code that did not assume a particular layout
will not have to be modified and will produce the same results. At
this point, new layout-specific code can be introduced to further
improve performance of computation kernels.

Behavioral traits. The View class has an optional behavioral trait
template parameter as a second extension point. A user can use
behavior traits to inform a Kokkos back-end to utilize device-
specific capabilities. For example, NVIDIA devices have a texture
cache which can be utilized to improve performance for random
accesses that frequently read values. This portable interface for
utilizing NVIDIA texture cache is illustrated in Fig. 6.

Other behavioral traits could include non-temporal hints (e.g.,
Streamingload and StreamingStore) to avoid cache pollu-
tion when data is not reused. This behavioral trait extension point
is expected to gain importance to portably take advantage of future
architectures’ increasingly complex memory subsystems.

Aggregate data types. An advanced computational software strategy
is to embed sensitivity or uncertainty quantification computations

3206 H. Carter Edwards et al. / J. Parallel Distrib. Comput. 74 (2014) 3202-3216

// Replace the ’scalar’ type with
// automatic differentiation type.
typedef View< AutoDeriv<double>x*x, Device> my_type;

// Allocate an array with the runtime-defined
// degree of differentiation dimension.
my_type x("x",N,M, nDeg) ;

// Parentheses operator returns a view that is
// compatible with the AutoDeriv<double> type.
AutoDeriv<double> value = x(i,3);

Fig. 7. A View instantiated with an aggregate pseudo scalar type of a dynamic
size can incorporate that length as an additional dimension that is hidden from the
parentheses operator but must be supplied to the constructor for correct allocation.

into computational kernels by replacing intrinsic scalar data types
(e.g., float or double) within the kernel with aggregate data
types [38,35,36]. For example, replacing a variable’s scalar data
type with an automatic differentiation data type embeds deriva-
tive calculations for that variable without having to modify the re-
mainder of the kernel’s source code. Replacing an intrinsic scalar
type with an aggregate type will alter the memory access pat-
tern of a computation, potentially resulting in a loss in perfor-
mance. Even worse, when the size of the aggregate type is defined
at runtime (i.e., the degree of automatic differentiation), then an
implementation of that aggregate type may cause frequent small
memory allocations and deallocations which are detrimental to
performance.

The View class incorporates aggregate data types into the data
layout. In the example shown in Fig. 7, the AutoDeriv class con-
tains a scalar value and its derivatives. The View implementation
includes this aggregate data type as an additional (mostly) hidden
dimension in the index space and polymorphic layout. In this ex-
ample the parentheses operator returns a reference to the aggre-
gate data type as if the additional dimension did not exist.

The capability to embed aggregate data types within a View
is a design extension point to support advanced computational
software strategies such as embedding automatic differentiation
or stochastic bases data types.

4. Parallel execution

Parallel execution patterns [28] are divided into two categories:
(1) data parallel or single instruction multiple data (SIMD) and (2)
task parallel or multiple instruction multiple data (MIMD). Kokkos
currently implements data parallel execution with parallel_
for, parallel_reduce, and parallel_scan operations. The
parallel_scanoperation wasimplemented after the initial sub-
mission of this paper and is not described here. Research and devel-
opment is in progress for hierarchical task-data parallelism where
interdependent data parallel tasks are scheduled to execute on the
device.

A data parallel operation maps NWork units of works onto
threads that execute on the device. Units of work are independent
if they do not write, or write-and-read, the same data. For example,
adding two vectors of length N can be performed in parallel
by independently adding its N members. Units of work may be
dependent by updating the same data via global or local reduction
operations. Kokkos supports deterministic global reductions (e.g.,
an inner product) with the parallel_reduce operation and
local reductions (e.g., a map reduce) with atomic updates. Atomic
updates must be used cautiously as they will introduce non-
deterministic behavior and may lead to race conditions.

A data parallel computational kernel is currently implemented
as a functor. A functor is a C++ class that contains one or more
callback functions, shared parameters, and references to data
upon which the callback function operates. The C++11 standard

// Template on the Device for portability.
template< class Type , class Device >
class AXPY_Functor {
public:
// Requirement: Identify execution space.
typedef Device device_type ;

// Requirement: Provide work callback as
// 'void operator () (integer_type iw) const’
// where ’iw’ is the work index.
// KOKKOS_INLINE_FUNCTION is a #define macro
// for compiler directives such as
// "inline __device__ ' for Cuda.
KOKKOS_INLINE_FUNCTION
void operator () (int iw) const

{ y(iw) = alpha * x(iw) + y(iw) ; }

const View< Typex,Device> y ;
const View<const Typex*,Device> x ;
const Type alpha ;

bi

// Call the functor NWork times on up to NWork
// worker threads. Each call is passed a unique
// work index in the range [0..NWork) .
parallel for (NWork ,

AXPY_Functor<double,Cuda>(a , X , Y));

Fig. 8. Interface requirements for parallel_for functors are illustrated with this
example AXPY functor that performs “Y = «X+Y” onarrays. The trivial constructor
for initializing alpha, x, and y data members is omitted.

introduced lambda language feature which can significantly
improve the syntax and usability of the functor pattern. Extension
of Kokkos to accept lambda-based computational kernels will be
straight-forward when vendor support for lambdas is sufficient.

4.1. Parallel for

A parallel_for functor is a C++ class that contains a work
callback function, shared input parameters, and views to arrays
upon which the callback function operates. The functor’s work
callback function is called to perform NWork independent units
of work where each unit is identified by a unique work index in
therange [0. .NWork). Default array layouts are chosen assuming
that the left-most index of an array is the parallel work index.

The API of a parallel_for functor has two simple require-
ments illustrated in Fig. 8: to (1) identify the execution space and
(2) provide a work callback. We recommend that a functor’s class
be templated on the execution space for device portability. This al-
lows a functor to be compiled for two different devices in the same
executable to enable hybrid execution.

4.2. Parallel reduce

Aparallel_reduce functor has a work callback, a reduction
callback, shared input parameters, views to arrays upon which
the work callback operates, and reduction parameters. Each call to
a parallel_reduce work callback generates a contribution to
the reduction parameters that must be reduced by a commutative
and mathematically associative reduction callback. The numerical
implementation of a reduction callback could be non-associative
due to numerical round-off in floating point operations.

The API requirements for a parallel_reduce functor are
illustrated in Fig. 9. These requirements are: (1) identify the
execution space, (2) identify a value_type for the reduction pa-
rameters (the result), (3) provide a work callback, and (4) pro-
vide two reduction callback functions. The reduction parameter
value_type must satisfy the plain old data type conditions; e.g., a
plain memory-copy of values will have the correct result. This type
is typically a simple intrinsic value such as double. The example

H. Carter Edwards et al. /J. Parallel Distrib. Comput. 74 (2014) 3202-3216 3207

template< class Scalar , class Device >
class CentroidFunctor {
public:
// Required: Identify execution space.
typedef Device device_type ;
// Required: Identify reduction parameters
typedef struct { Scalar point[3], mass ; }
value_type ;

// Required: Work callback contributes to the
// reduction via the ’update’ argument.
KOKKOS_INLINE_FUNCTION

void operator () (int iw ,
value_type & update) const
{ update.mass += mass (iw) ;
update.point [0:2] += mass (iw) *point (iw,0:2); }

// Required: Reduction callback to join ’update’

// with ’'input’ from a different thread.

// These arguments are ’‘volatile’ to force

// communication of values among threads.

KOKKOS_INLINE_FUNCTION

static void join(volatile value_type & update ,

const volatile value_type & input)

{ /* update += input =/ }

// Required: Reduction callback to initialize
// temporary reduction parameters’ values.
KOKKOS_INLINE_FUNCTION
static void init(value_type & update)

{ /» update = 0 */ }

View<Scalarx, Device> mass ;
View<Scalar=[3],Device> point ;
bi

// Reduction ’‘value_type’ is output in ’‘result’.
parallel reduce(NWork,

CentroidFunctor<double,Cuda> (mass,point), result);
// Final serial step for centroid computation.
result.point[0:2] /= result.mass ;

Fig.9. Interface requirements for parallel_reduce functors areillustrated with
an example computation of the mass weighted sum of points. Such a functor is
the parallel portion of a centroid computation. Portions of this example have been
abbreviated; e.g., a loop from 0 to 2 has been abbreviated with 0:2.

value_type in Fig. 9 is a struct to illustrate the need for reduc-
tions of non-intrinsic types. The reduction callback functions have
two responsibilities: initialize a temporary reduction value to the
appropriate value (e.g. zero) and join two reduction values into a
single value.

The parallel_reduce functor APl requirements are defined
so that Kokkos can provide scalable and deterministic global
reductions. For large thread counts the global reduction follows a
traditional log, (NT) fan-in algorithm (NT = number of threads).
The fan-in algorithm requires thread-local copies of the reduction
parameters which are reduced to a single global value through
a defined sequence of concurrent pair-wise reductions. This
sequence is derived from the number of threads, NT, and number
of work items, NWork, and guarantees a deterministic result when
given the same NT and NWork.

4.3. Local parallel reductions via atomics

Local parallel reductions are supported through atomic reduc-
tion operations: e.g., atomic addition. An atomic operation serial-
izes concurrent updates to a datum but does not guarantee the
ordering of these updates among threads. Thus a non-associative
local reduction operation (e.g., floating point addition) is likely to
yield nondeterministic results for local parallel reductions.

Atomic operations’ serialization will introduce scalability bot-
tlenecks when there are too many concurrent atomic reductions;
where “too many” is dependent upon the number of threads and
the device’s capabilities. Typically atomic operations should only

be used when the number of atomic updates to a particular da-
tum is much smaller than the number of work items. Otherwise
functors with reductions should be implemented with atomic-free
algorithms where feasible, such as using parallel_reduce.

4.4. Threaded scalability and performance

The composition of parallel work dispatch and polymorphic
array layout capabilities enables performance portable implemen-
tations of parallel algorithms. Atomic operations supports thread-
safe implementations of algorithms with local parallel reductions,
which could be performant given an adequate ratio of compu-
tation to atomic operations and a low frequency of collisions.
However, Kokkos cannot automatically make serial algorithms, or
algorithms with serial bottlenecks, scalable with respect to the
number of threads. Such a computation will require a redesign of
its algorithm to achieve threaded scalability.

One such kernel is the molecular dynamics force computation
evaluated in Section 5.2. The original implementation of this algo-
rithm was optimized for a non-threaded environment and thread-
safety was not a concern. Migration of this kernel to a threaded
environment (described in Section 7.4) required a different thread-
scalable algorithm that performs 2 x redundant computations but
is now fully scalable to thousands of concurrent threads.

Threaded scalability is necessary to effectively utilize devices’
increasing core counts and decreasing memory per thread. How-
ever, this may not result in the best achievable performance for
a particular computation on a given device with its particular ca-
pabilities and limitations. A computation that is critical for an
application’s performance may require tailoring to work around
limitations of a device or leverage device specific capabilities. This
situation was encountered during the migration of the molecular
dynamic force computation described in Section 7.4. Fortunately
the required algorithmic specialization for this particular compu-
tation had no negative impact across architectures and was applied
to the portable version of the computation. Based upon this experi-
ence we recommend that the performance of threaded algorithms
be evaluated across diverse architectures (which Kokkos facilitates
with its portable API) and with large thread counts.

Kokkos supports device specific specializations of functors
through C++ template partial specialization—a functor that is
templated with respect to the device can have a device-specific
implementation that is automatically and transparently picked up
by the C++ compiler. Such specializations are most frequently
used to replace portable implementations of commonly used
functions with calls to equivalent functions in device-optimized
libraries, typically provided by the device’s vendor. Such a
specialization is described in Section 7.5.

5. Performance evaluation with simple kernels

We evaluate Kokkos performance with simple kernels and
mini-applications (Section 6). Performance testing is carried out
on our Compton and Shannon testbed clusters. Compton is used
for Intel Xeon and Intel Xeon Phi tests, and Shannon is used for
NVIDIA Kepler (K20x) tests. Testbed configuration details are given
in Table 2. Note that in these configurations device refers to a
dual socket Xeon node, a single Xeon Phi, and a single Kepler GPU
respectively.

Results presented in this paper are for pre-production Intel
Xeon Phi co-processors (codenamed Knights Corner) and pre-
production versions of Intel’'s Xeon Phi software stack. Perfor-
mance and configuration of the co-processors may be different in
final production releases.

3208 H. Carter Edwards et al. / J. Parallel Distrib. Comput. 74 (2014) 3202-3216

Table 2
Configurations of testbed clusters.
Name Compton Shannon
Nodes 32 32
CPU 2x Intel E5-2670 HT-on 2x Intel E5-2670 HT-off
Co-Processor 2 x Intel Xeon Phi 57¢ 1.1 GHz 2x K20x ECCon
Memory 64 GB 128 GB
Interconnect QDR IB QDR IB
[0 RedHat 6.1 RedHat 6.2
Compiler ICC13.1.2 GCC4.4.6 + CUDA 5.5
RC
MPI IMPI 4.1.1.036 MVAPICH2 1.9
Other MPSS 2.1.3653-8 Driver: 319.23

5.1. Modified Gram-Schmidt kernel

The modified Gram-Schmidt (MGS) algorithm orthonormal-
izes a collection of vectors through a sequence of inner products
and scaled vector addition computations. These computations
are performed with a sequence of parallel_reduce and
parallel_for operations. The ratio of floating point operations
to memory access operations is approximately 2/3. Thus, perfor-
mance is limited by memory bandwidth reading and writing vec-
tors and the overhead of dispatching and synchronizing parallel
operations. The collection of M vectors of length N is stored in
contiguous memory with padding between vectors for appropri-
ate memory alignment.

For a given N % M problem size the MGS net bandwidth, B,gs,
is a function of the read/write memory bandwidth (assumed to be
equal), B, and the parallel dispatch-synchronization time, S. The
MGS algorithm reads and writes vectors multiple times. When the
problem size is small enough for some of the M vectors to reside
in the Xeon’s L3 cache memory then reads and writes of those
vectors will occur at cache memory bandwidth, as opposed to main
memory bandwidth. For the MGS algorithm, memory bandwidth is
a function of problem size, B(N, M), ranging from L3 cache memory
bandwidth for small problem size to main memory bandwidth for
large problem size. For the Kepler and Xeon Phi we assume that B
is constant.

We derive the following simple performance model for Bpgs
(b = byte size of a vector element).

Bings & LI B 1«<M (1)
mes ~ \B(N,M) ' 5Nb) '

For small N, performance is limited by the parallel dispatch-
synchronization time. For large N, performance approaches band-
width to global memory as vectors are no longer cache resident,
and the global memory read + write time dominates on all devices.

The MGS net bandwidth was measured with 16 double preci-
sion vectors over a range of vector lengths N, as presented in Fig. 10.
For large N (limited by bandwidth to main memory) we achieve
174 GB/s or 78% of peak on the Kepler, 78 GB/s or 71% of peak
on the Xeon, and 92 GB/s or 46% of peak on the Xeon Phi using
4 threads/core. On Kepler and Xeon Phi small N performance is
limited by the parallel dispatch-synchronization as expected. On
Xeon, where the core-count is low and the small N problem is fully
cache resident, the increase in bandwidth compensates for the dis-
patch-synchronization time, resulting in higher net bandwidth.

We fit Eq. (1) to the data in Fig. 10. Resulting parameters for
the bandwidth B(N, M) are 54.9 GB/s, 96.9 GB/s, and 176.2 GB/s
respectively on Xeon Phi with 1 thread per core, Xeon Phi with
4 threads per core and the K20x Kepler GPU. The corresponding
average dispatch-synchronization times are 21.1 s, 108.0 s,
and 20.0 ps per kernel, most of which is likely spend for the
reduction in the dot products.

200 -y — ——————

@@ Xecon - 1 thread/core
Kepler

160 w—v Xeon Phi - 1 thread/core
B Xeon Phi - 4 threads/core

.

T T
P

L
P

120

T
|

80

|

T
P

40

T
|

MGS net bandwidth in GB/s

T
P

OHA L ool L M| L L

100 k IM 10M
Vector Length (N)

Fig. 10. Modified Gram-Schmidt algorithm’s net bandwidth on NVIDIA Kepler
(K20x), Intel Xeon, and Intel Xeon Phi for M = 16 double precision vectors. For large
vectors performance is limited by bandwidth to main memory. For small vectors
performance is limited by a dispatch-synchronization time, or bandwidth to L3
cache memory for the Xeon.

// Parallel iteration of all atoms in the system
for (i=0;i<natoms;i++) {
double x_1i[3], £_1i[3];
X_1[0:2] = x(1,0:2);
f i[0:2] = 0;
// Iterate the precomputed list of neighbors
for (jj=0; jj<num_neighbors (i) ;jj++) {
int j = neighbors (i, jj);
double d_ij[3] , d ;
d _1j[0:2] = x_1[0:2] - x(3j,0:2);
d = norm(d_ij);
if (d<r_cut) {
const double sr2 = 1.0/ (dxd);
const double sr6 = sr2+sr2%sr2;
const double force = 48.0%sr6x*(sr6-0.5)xsr2;
f_i1[0:2] += force x d_ij[0:2];
}
}
£(i,0:2) = £.i[0:2];

Fig. 11. Pseudo code for the thread safe Lennard-Jones molecular dynamics kernel
(LJ-kernel) using full neighbor lists implemented in MiniMD. Note that the 0:2
abbreviates replication of the statement with 0, 1, and 2 as the index.

We use the MGS test case as a tool to identify, quantify,
and improve performance with respect to a devices’ dispatch-
synchronization capabilities, or Kokkos back-end’s use of those
capabilities. As demonstrated in Fig. 10, when the Xeon Phi
is fully populated with threads (4 threads/core) the dispatch-
synchronization time is noticeably larger for small N. However,
reducing thread count results in significant performance loss
for large N problems. Thus improvement of Kokkos’ dispatch-
synchronization performance on Xeon Phi and Kepler K20x is an
active research focus.

5.2. Molecular dynamics force kernel

The Lennard-Jones molecular dynamics force kernel (LJ-kernel),
shown in Fig. 11, loops over atoms and calculates the forces
between pairs of atoms with a distance d;; smaller than a cutoff
. Performance of this algorithm is improved by a search phase
that, for each atom i, precomputes a list of neighbor atoms that will
likely be within that cutoff radius. In Fig. 11 this list is implemented
by the two dimensional neighbors array.

The LJ-kernel test case parameters are presented in Table 3.
In this test case there are, on average, 77 neighbors of which
55 pass the distance check. This results in an average of 1408
Flops and 311 memory accesses per atom i. In the L]-kernel,

H. Carter Edwards et al. /J. Parallel Distrib. Comput. 74 (2014) 3202-3216 3209

Table 3
LJ-kernel and MiniMD test problem configuration.

Atoms (LJ-kernel test) 864,000

Atoms (miniMD test) 2,048,000

Units Lennard-Jones

Density 0.8442 0,

Initial temperature 1.44

Initial config FCC lattice

Force cutoff 2509

Neighbor cutoff 2.8 0p

Neighbor type Full

Reneighboring every 20

Sorting every 20

Thermo calculation every 100

Threads on Xeon 32

Threads on Xeon Phi 224

200
[|IEEEEE Optimal settings 1
@ [Texture fetch disabled (Kepler)]
% 150 Wrong data layout |
i L 1
<) []
£ L i
Y 100 - -
g []
g []
5 s0- .
& L 1
0

Xeon Phi

Xeon

Kepler

Fig. 12. LJ-kernel performance in miniMD on Intel Xeon CPU, Intel Xeon Phi, and a
NVIDIA Kepler GPU for the miniMD default test problem with 864,000 atoms. The
solid blue bars show performance with device-appropriate data layout, the striped
orange bars show performance with the wrong data layout for the neighbors
array, and the green checkerboard bar shows performance on the GPU with the
correct layout but without using texture cache. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

neighbors(i,jj) has a regular memory access pattern and
x(j,0:2) has arandom memory access pattern. However, when
atoms are ordered according to spatial locality it is possible to
achieve high cache reuse for random reads of x(j,0:2). This
reuse, of up to 77 times on average, drastically reduces the actual
number of loads from main memory.

The importance of polymorphic array layouts is highlighted in
reading the neighbor index array, neighbors (i, jj).Ona CPU
or Xeon Phi this array should have row major ordering so that a
read cache line contains values for the next iteration step of the in-
ner loop over jj.On a GPU this array should have column major
ordering so that the read is coalesced for threads working on dif-
ferent atoms i. In addition, on a GPU the random read performance
for x(j,0:2) is significantly improved through the use of texture
cache.

Fig. 12 shows gigaflops/second performance of this kernel ap-
plied to a 864,000 atom problem on a single node of the Compton
and Shannon testbeds (Table 2). We run this performance test with
the appropriate layout and use of GPU texture cache, and compare
to results obtained from manually forcing Kokkos to use the wrong
layout and not use GPU texture cache. Note that the wrong layout
on a CPU is the appropriate layout on a GPU, and vice versa. Forc-
ing the wrong layout causes a performance drop of 1.9x, 3.4x, and
6.6 x on the CPU, Xeon Phi, and GPU testbed nodes respectively. In
addition, using the correct layout but not using texture cache re-
sults in a 3.6x slowdown for on the GPU node.

6. Performance evaluation with mini-applications

6.1. MiniFE

MiniFE is a hybrid parallel (MPI + X) finite element mini-
application that (1) constructs a linear system of equations for a
3D heat diffusion problem and (2) performs 200 iterations of a
conjugate gradient (CG) solver on that linear system. This mini-
application is designed to capture important performance charac-
teristics of an implicit parallel finite element code. MiniFE has been
implemented in numerous programming models, some of which
are available through the Mantevo suite of mini-applications’
available at mantevo.org.

We compare the performance of miniFE implemented with
Kokkos (miniFE-Kokkos) with miniFE implemented directly with
OpenMP (miniFE-OpenMP) and CUDA (miniFE-CUDA). The miniFE-
Kokkos back-end used on Xeon and Xeon Phi nodes is OpenMP,
and the back-end use on Kepler GPUs is CUDA. The miniFE-CUDA
variant is based upon miniFE-Kokkos where all linear algebra sub-
program functions are replaced with calls to NVIDIA’s cuBLAS and
cuSparse functions. Both miniFE-Kokkos and miniFE-OpenMP are
part of the 2.0 release of miniFE. The majority of miniFE optimiza-
tion efforts have concentrated on the CG-solver; therefore, we limit
performance testing to this phase of miniFE execution.

Our miniFE test case is a weak scaling problem with 8M el-
ements per device, consuming 3.3 GB of main memory per de-
vice. Tests are run with a single MPI process per device, except
for miniFE-OpenMP tests on the dual socket Xeon nodes which are
run with only one MPI process per socket. We make this excep-
tion because the execution time more than doubles when miniFE-
OpenMP is run with one MPI process per node. This slowdown is
a result of the problem construction phase performing an implicit
nonuniform memory access (NUMA) first touch on the linear sys-
tem that is incompatible with the subsequent access pattern dur-
ing the CG-solve phase. Consequently, during the CG-solve phase
threads access memory in the wrong NUMA domain and incur the
associated cross-NUMA bandwidth penalty. Kokkos transparently
handles this NUMA issue by running a parallel_for first touch
initialization on each new allocation, where this first touch is com-
patible with subsequent data parallel kernels. For tests on the Ke-
pler GPU, we use the MVAPICH2 1.9 [29,25] implementation of MPI
so that MPI can directly access GPU memory via CUDA GPU-Direct.
Thus, explicit data copies are not necessary between the device and
the CPU during the CG-solve.

Weak scaling performance of the miniFE CG-solve phase is
shown in Fig. 13. These tests are run on the testbeds (Table 2). For
each data point, the best time out of twelve runs was used.

Overall, miniFE-Kokkos delivers similar performance as the
native implementations of miniFE. It is faster than miniFE-CUDA in
Kepler tests by roughly 13%, it is marginally slower than miniFE-
OpenMP in Xeon tests, and it is about 10% slower than miniFE-
OpenMP on Xeon Phi. Excellent weak scaling is observed on both
on Xeon and Kepler GPU test-beds, where miniFE-Kokkos has
about 95% parallel efficiency with 32 MPI ranks. MiniFE-OpenMP
shows slightly worse scaling efficiency, which is likely due to using
two MPI ranks per CPU node. The scaling issue on Xeon Phi can be
attributed to the poor MPI performance on our Xeon Phi testbed.
Peak bandwidth between two Xeon Phi co-processors is as low as
300 MB/s if at least one of the co-processors sits in a socket without
an Infiniband adapter. In comparison, the Xeon and Kepler GPU
runs’ peak MPI bandwidth is about 3.5 GB/s. This Xeon Phi MPI

1 Recipient of a 2013 R&D 100 Award, www.rdmag.com/award-winners/2013/
07/2013-r-d- 100-award-winners.

http://mantevo.org
www.rdmag.com/award-winners/2013/07/2013-r-d-100-award-winners
www.rdmag.com/award-winners/2013/07/2013-r-d-100-award-winners
www.rdmag.com/award-winners/2013/07/2013-r-d-100-award-winners
www.rdmag.com/award-winners/2013/07/2013-r-d-100-award-winners
www.rdmag.com/award-winners/2013/07/2013-r-d-100-award-winners
www.rdmag.com/award-winners/2013/07/2013-r-d-100-award-winners
www.rdmag.com/award-winners/2013/07/2013-r-d-100-award-winners

3210 H. Carter Edwards et al. / J. Parallel Distrib. Comput. 74 (2014) 3202-3216

T T T T T T T
12 —
2 101 |
17} L _ @—@ Xeon - Kokkos I
K= - @ -@ Xeon - OpenMP
o [_ B—& Xeon Phi - Kokkos]
= F __m = 1 Xeon Phi - OpenMP H
'Fj S =~ - Kepler - Kokkos H
L Kepler - Cuda
6 -
1 1 1 1 1 1 1
1 2 4 8 16 32 64

of Devices

Fig.13. Time for CG-solve 200 iterations with miniFE variants on different testbeds.
The problem size is weak scaled, with 8M elements per device. The solid lines
represent runs using miniFE-Kokkos, while the dashed lines show results with peer
variants. For each data point the best time out of 12 runs was used.

25¢ T T]

L Manual copies|]

20k GPU-Direct | 7

o L 1
3151]
s]
Gé) L 1
101]
SF]
ol | | | | L

1 2 4 8 16 32
of Devices

Fig. 14. Time for 200 iterations of miniFE-Kokkos CG-solve on the Shannon GPU
testbed. The problem size is weak scaled, with 8M elements per device. The solid
line represents runs using the GPU-Direct capabilities of MVAPICH2-1.9, while the
dashed line shows results with manual deep copies during the communication
phase. For each data point the best time out of 12 runs was used.

issue is expected to be solved with a new runtime software stack.
At that point a Xeon Phi-based systems should see similar scaling
behavior as the Kepler GPU-based system.

When repeatedly running the same performance test on the
Xeon Phi there are occasional outliers in the runtimes. These
outliers are almost twice as long as the mean time, without the
outliers. The underlying cause of this performance anomaly is
under investigation.

As previously mentioned, GPU-Direct capabilities were used
for the GPU tests. In Fig. 14 we compare performance running
miniFE with and without GPU-Direct. Without GPU-Direct the CG-
solve algorithm must deep copy vectors from GPU to CPU memory,
communicate vectors in CPU memory via MPI, and then deep copy
vectors from CPU back to GPU memory. The addition of these
deep copy operations causes more than a 2 x slowdown in the CG-
solve. This performance loss could be mitigated, but would not be
eliminated, through a more complex operation that deep copies
only the portions of the vectors that are communicated.

6.2. MiniMD

MiniMD serves as a proxy for classical molecular dynamics
(MD) codes. It closely resembles some of the core functionalities
of the MD code LAMMPS [40], but is much more limited. In

300 T T T T T R
/
[| ®—® Xeon - Kokkos , T
250 @ -@ Xeon - OpenMP |
19} B—& Xeon Phi - Kokkos
Q + | = -m Xeon Phi - OpenMP 4 4
) Kepler - Kokkos

8 200 g
]

= L 4
=]

=150 .
Q

£]
=

= 100+ .
=

o E 4
B

50+ b

0 1 1 1 1 1 1

1 2 4 8 16 32
of Devices

Fig. 15. Total time consumed for running 1000 simulation steps of a 2,048,000
atom Lennard-Jones simulation with miniMD variants on different test-beds. Note
that a horizontal line indicates perfect strong scaling and an upward trend indicates
a loss in parallel efficiency. The solid lines represent runs using miniMD-Kokkos,
while the dashed lines show results with peer variants. For each data point the
average of the best 8 runs out of 12 was used.

particular miniMD implemented only two types of models: (1) a
simple Lennard-Jones system using the microcanonical ensemble
and (2) an EAM simulation using the microcanonical ensemble.
The miniMD code has four main components: (a) the force class
calculates atoms’ interactions, (b) the neighbor class creates the
list of neighbors j for each atom i, (c) the comm class handles
communication, and (d) the integrate class performs the time
integration.

We compare miniMD-Kokkos, with OpenMP back-end, to the
miniMD-OpenMP variant. Since there is no pure CUDA version
of miniMD, no comparison is done on GPUs. For all tests the
respective version 1.2 of miniMD has been used. The miniMD
performance test is for strong scaling with 2,048,000 atoms, in
contrast to the miniFE weak scaling test. This problem size falls into
the range of typical MD simulations between 10° and 107 atoms.
Details of the test problem configuration are given in Table 3.

The code was run with a single MPI rank per device, with 32 and
224 threads on Xeon and Xeon Phi respectively. MiniMD-OpenMP
was compiled with a chunk size of 64 for the static OpenMP
scheduling. Each test is run twelve times and the best eight times
are included in the results.

Total time consumed performance metric. Our performance metric
for strong scaling tests is the total time consumed (or total time),
which is the wall-clock time of the test times the number of devices
used. This metric is similar to the commonly used billing metric
of CPU hours. The traditional parallel efficiency measure is the
inverse of this total time metric normalized to some reference
time (e.g., time to run on a single device). We present results
in the total time consumed metric to allow a direct comparison
of performance across devices, and a breakdown of performance
among components of miniMD.

The total time consumed for 1000 simulation steps on 1 to
32 devices is given in Fig. 15. The first observation from these
results is that strong scaling is much worse on Xeon Phi and
Kepler GPUs than on the Xeon CPUs. The Xeon Phi result can
be explained by the poor MPI performance previously noted in
Section 6.1. A comparison between miniMD-Kokkos and miniMD-
OpenMP shows that Kokkos introduces minimal runtime overhead
versus using OpenMP directly. While miniMD-Kokkos is about 10%
slower than miniMD-OpenMP on the Xeon Phi system, the reverse
is true for the CPU runs.

Timings from the four miniMD computations (force calcula-
tion, neighborlist construction, communication, and time integra-
tion), shown in Fig. 16, are obtained to gain additional insight

H. Carter Edwards et al. /J. Parallel Distrib. Comput. 74 (2014) 3202-3216 3211

FoT I I I I 4 F 1 I I I I I
100 — force — neigh —{ 100
80 — - - — 80
60—EZZE|::1:%&—"2|— — — 60
40 - — —H40 o
% 20 |- — — 20 -&;
e B 1 r 7 =
= 0 I I I I I I I | | | I 0 £
Q
g 3 F1 [[[I - £
= 100 — | @@ Xeon - Kokkos integ — 100 -7:
g 4 } | @ -@ Xeon - OpenMP - =
£ 80 — || m—= Xeon Phi - Kokkos —s80 F
-4 | | B - Xeon Phi - OpenMP -
60 -1 Kepler - Kokkos — 60
e 1 i
40 D — 40
20 — _—E 20
0 ' === = 0

32

of Devices

Fig. 16. Breakdown of total time consumed for running 1000 simulation steps of a 2,048,000 atoms Lennard-Jones simulations with miniMD variants on different test-beds.
Note that a horizontal line would indicate perfect strong scaling and an upward trend indicates a loss in parallel efficiency. The solid lines represent runs using miniMD-
Kokkos, while the dashed lines show results with peer variants. For each data point the average of the best 8 runs out of 12 used. The subfigures show the time for the force
calculation (upper left), neighborlist construction (upper right), interprocess communication (lower left), and integration (lower right).

into miniMD performance. First, the increase in total time cor-
related with increasing MPI ranks is almost entirely caused by
the communication routines. Second, on the Xeon Phi miniMD-
Kokkos is slower than miniMD-OpenMP due to the neighborlist
computation; even though this computation is virtually identical
in both variants. Third, on the Xeon Phi miniMD-Kokkos is slightly
faster than miniMD-OpenMP in the integration computation; even
though this computation is virtually identical in both variants.
Analysis of these differences will require comparison via perfor-
mance analysis tools or inspection of generated assembly code.

7. Legacy code migration strategy

The legacy code migration strategy presented here was devel-
oped based upon our experience implementing Kokkos variants
of miniMD and miniFE. This strategy has five steps: (1) change
data structures, (2) develop functors, (3) enable dispatch (offload
model) for GPU execution, (4) optimize algorithms for threading,
and (5) specialize kernels for specific architectures. These steps can
be carried out either for the whole legacy, or incrementally within
components of the legacy code. We described these steps using
MiniMD and MiniFE examples.

7.1. Data structures

The original MiniFE and miniMD data structures represent two
typical situations found in a wide range of legacy codes. MiniMD
uses “raw” allocated memory accessed via pointers for its arrays.
MiniFE uses storage containers (in particular std: :vector) for
its arrays.

We created the Kokkos: :vector as a thin wrapper of a
one dimensional Kokkos: : View to allow simple replacement of
std: :vector objects with Kokkos: :vector. This class does
not have the full functionality of std: : vector. Code executing
in device space has access to operator [], begin(), and end ()
functions. Code execution in CPU space has access to begin () and

end () functions, and also has access to common modifying func-
tions such as resize () and push_back(). Kokkos: :vector
also functions to manage deep copy operations when compiling for
a GPU device.

MiniMD uses one and two dimensional “raw” arrays. The most
significant miniMD arrays are the positions, velocities and forces of
particles (double **x, **v, *x*f;) the number of neighbors
for each particle (int* numneighs;), and the neighborlist
(int** neighbors;). We introduce appropriate typedef
declarations as shorthands for the various View types, as shown
in Fig. 17. We declare separate types position, velocity and force
arrays to allow mixed precision computations. For example, force
calculations can be performed in single precision and precision
critical time integration can still be performed in double precision.
In addition, we declare View types with traits such as const and
random access.

After all required array type declarations are introduced, the
miniMD code is incrementally changed. First, every array al-
location statement is changed to a View allocation as shown
in Fig. 18. Incremental migration to the new data structures is
achieved by temporarily wrapping MiniMD’s old array-of-pointers
data structures around View allocated data, as shown in Fig. 18.
This temporary wrapping strategy introduces two restrictions:
(1) the wrapped array-of-pointers data structure can only be ac-
cessed on the CPU and (2) the View layout is forced to match the
original data structure’s layout. This phase is complete when min-
iMD passes its test suite.

“Raw” array-of-pointer variables are now incrementally re-
placed with View variables. This requires replacing the array-of-
pointer access syntax, x [i] [j], to View syntax, x (i, j). After
these replacements are completed the temporary wrappers can be
removed.

Some parts of the original MiniMD use flat array access to en-
able vectorizing. This is possible since the “raw” two-dimensional
arrays are allocated as two arrays: (1) a one dimensional array of
data and (2) an array-of-pointers into the array of data. With View
variables this manual optimization is no longer necessary.

3212 H. Carter Edwards et al. / J. Parallel Distrib. Comput. 74 (2014) 3202-3216

typedef Kokkos::Host DefaultDevice;

// Precision for position, velocity, and force
typedef double X_Float;
typedef double V_Float;
typedef double F_Float;

// Particle positions always use right layout
// to improve cache line usage with random access
typedef View< X_Float«*[3],
LayoutRight,
DefaultDevice> t_x_array ;
typedef View< const X_Floatx[3],
LayoutRight,
DefaultDevice,
ReadRandom > t_x_array_rnd;
typedef t_x_array::HostMirror t_x_array_host ;

// Particle velocities use default layout for

// appropriate contiguous access pattern

typedef View<V_Floatx[3],DefaultDevice> t_v_array ;
typedfe t_v_array::HostMirror t_v_array_host ;

// Neighborlist uses default layout for
// device-appropriate access pattern
typedef View<intsx ,DefaultDevice> t_neighs;
typedef View<const intxx* ,

DefaultDevice> t_neighs_const;

Fig. 17. C++ type definitions for some MiniMD-Kokkos array data structures.

// Original array variables
double x*x, *xv, *xf;

// Kokkos array variables

t_x_array d_x; t_x_array_host h_x;
t_v_array d_v; t_v_array_host h_v;
t_f_array d_f; t_f_ array_host h_f;

// Allocate on the device
t_x_array d_x = t_x_array("X",natoms);

// View or allocate a CPU copy
t_x_array_host h_x = create_mirror_view(d_x);

// Temporarily wrap old data structure:
double **x = new doublex*[natoms];
for(int i = 0; i<natoms; i++)

x[1i] = & h_x(1i,0);

Fig. 18. Migration of miniMD “raw” arrays to corresponding View types
requires replacing array declarations and allocations. Incremental migration can be
accomplished by temporarily wrapping the original array data structures around
View allocated data.

// Original access syntax
double** x = atom->x;
const X_Float ytmp = x[il[1];

// Optimized original access syntax
doublex* x = &atom->x[0][0];
const X_Float ytmp = x[i * 3 + 1];

// Kokkos access syntax
t_x_array x = atom->x;
const X_Float ytmp = x(i,1);

7.2. Functors

Threaded execution with parallel_for or parallel_
reduce requires encapsulation of computations in functors, until
C+-+11 lambda capability is available. In miniMD, nearly all
computations are performed by class member functions that loop
over arrays. We developed the following porting strategy in order
to minimize changes to the original miniMD code.

Given a class member function containing a loop, we modify the
class and create a corresponding functor, as shown in Fig. 19. This

// Original class member function

class C {
public:
void f (double k, int N) {
for(int 1 = 0; i<N; i++) {

// loop body
}
}
bi

// Modified class with a functor-wrapper
class C {
public:
double k ;
void f (double ktmp, int N) {
k = ktmp;
f_functor<DefaultDevice> func (*this);
parallel_for (N, func);
}

void f_item(int i) const {
// loop body
}
Vi

template<class Device>
struct f_functor {
typedef Device device_type

C @8
f_functor (C &c_in): c(c_in) {};
operator () (int i) const {

c.f_item(i);
}
bi

Fig. 19. Illustration of our strategy to port miniMD to Kokkos and minimize
changes to miniMD class’ source code by wrapping loop bodies within functors.
Given C++11 lambda capability a syntactically cleaner strategy could be used.

modification can be introduced in the following steps.

(1) Modify the original function to copy all incoming arguments
into class member data.

(2) Create a new class member function (C: : f_item(int i) in

Fig. 19) that contains the original function’s loop body and a

loop index as its only argument.

Replace the loop body within the function with a call to the

new loop body function and test the modified code.

(4) Create a wrapper functor (f _functor in Fig. 19) that has an
instance of the original class as a member and a parentheses
operator that calls the new loop body function.

(5) Change the original class member function to create and dis-
patch the wrapper functor via parallel_for orparallel_
reduce.

3

=

Note that when C++11 lambda functionality is sufficiently sup-
ported this strategy can be superseded by a syntactically simpler
lambda strategy.

In miniFE functions are not members of a class. The functor-
wrapper migration strategy is similar, as shown in Fig. 20. The
difference is that incoming arguments of the original function
become members of the functor and the original loop-body is
directly copied into the functor’s operator.

These porting steps are typically sufficient to use Kokkos with
a single thread. However, this strategy does not guarantee that the
loop body functions are thread-safe—that thread parallel execution
of the loop bodies does not have write conflicts or other race
conditions. A developer must still identify all write conflicts or
other race conditions in the loop body function and appropriately
mitigate those conditions. In many cases the simplest way to
mitigate write conflicts is to use atomic update functions. Kokkos
wraps a collection of commonly available and compiler dependent
atomic update functions under a portable interface.

An example where atomic updates could be used is porting the
original loop body of the Lennard-Jones kernel given in Fig. 21. In its

H. Carter Edwards et al. /J. Parallel Distrib. Comput. 74 (2014) 3202-3216 3213

// old code
void f (double k, int N) {
for(int 1 = 0; i<N; i++) {
// loop body
}
}

// new code
template<class Device>
struct f_functor {
typedef Device device_type;

double k;
f_functor (double ktmp): k(ktmp) {};
operator () (int i) const {

// loop body
}
bi

void f (double k, int N) {
f_functor<DefaultDevice> func (k) ;
parallel_for (N, func);

}

Fig. 20. Our strategy for porting miniFE to Kokkos minimized changes to miniFE
functions’ source code by wrapping loop bodies within functors.

int numneighs =
double x_1i[0:2]
double f_i[0:2]

numneigh([i];
x(i, 0:2);
0;

for(int k = 0; k < numneighs; k++) {
int j = neighbors(i, k);
double d_1ij[0:2] = x_1[0:2] - t_x(j, 0:2);
double rsq = d_1j[0]*d_1ij[0] + ... ;

if (rsq < cutforcesq) {
double sr2 = 1.0 / rsqg;
double sr6 = sSr2 x sr2 * Sr2;
double force = 48.0 x sr6 x (sr6 - 0.5) % sr2;

// Write conflict is not thread safe !!!
f_i[0:2] += d_ij[0:2] % force;

if(j < nlocal) {
// Write conflict is not thread safe !!!
£(j,0:2) -= d_ij[0:2] % force;
}
}
}

// Write conflict is not thread safe !!!
£(i,0:2) += f£_1i[0:2];

Fig. 21. The original Lennard-Jones kernel in miniMD is not thread-safe due to
multiple statements with potential write conflicts.

original non-thread parallel form, the L]-kernel takes advantage of
Newton'’s third law: it computes the force between a pair of atoms
once and then adds the opposite force to both atoms (compute f;
on atom i due to atom j and then f; = —fj). In this algorithm,
the neighborlist of a particle only needs to contain half of its
actual neighbors; thus we refer to it as the half-neighbor algorithm.
Accumulation of forces in the half-neighbor algorithm has several
write conflicts, as identified in Fig. 21.

The original kernel can be made thread-safe by replacing the
force updates with calls to atomic_fetch_add ().

// old force update
£(j,0:2) -= d_ij[0:2] * force;

// new code
atomic_fetch_add (&f(j,0:2) , -d_ij[0:2] * force);

Atomic functions can be a straightforward and expedient ap-
proach to make serial code thread-safe. However, this approach
may not result in the most performant implementation. Atomic
update functions introduce a noticeable performance overhead,
even when executing on a single thread. Modifying kernels to be

thread-safe and performant often involves redesigning their algo-
rithms with strategies such as coloring, redundant computation,
or redundant storage with subsequent reductions. Such algorith-
mic redesign should be delayed until it is known that a kernel’s
performance has a significant negative impact on the overall per-
formance of the application.

7.3. Enable GPU execution

The migration strategy presented so far is typically sufficient
to enable threaded execution on CPUs or Xeon Phi. For execution
on GPUs, it is often necessary to add explicit management of the
different memory spaces, especially when the code is not fully mi-
grated to Kokkos. For example, the current setup phase of miniFE is
not GPU ready due to the use of std :map. Thus, all arrays are cur-
rently maintained on the CPU in View: :HostMirror variables.
For the miniFE CG-Solve phase, all arrays associated with the lin-
ear system are deep copied to the GPU and CG-Solve computations
are performed on the GPU.

7.4. Optimizing algorithms for thread scalability

Once a code is running thread parallel on all devices, it can
be necessary to redesign some of the original serial algorithms
for thread scalability. Kernels which show poor strong scaling
performance, with respect to the number of threads, are candidates
for redesign. In miniMD, the original LJ force kernel is one such
candidate since using atomic updates in the inner-most loop is very
expensive.

When running the standard miniMD problem with 864k atoms,
this kernel requires about 22.4 s using 32 MPI ranks (single thread)
on our Compton test-bed’s Xeon CPUs. Running the same problem
with 1 MPI rank, 32 threads, and using atomic updates results in
the kernel’s time increasing to 71.4 s. After modifying the kernel to
eliminate all possible write conflicts, at the cost of doing twice as
much calculations (using full neighbor lists), the same computation
takes 27.7 s. For a 32 MPI ranks versus 32 threads test case on
a single compute node the threaded version is still slower than
the original MPI-only kernel. However, it is not always possible or
performant to execute an MPI process on each core. For example,
running MPI-only on a GPU or on every core in a cluster of Xeon Phi
is not feasible due to memory and network interface limitations.

Results from this miniMD migration process is given in Fig. 22.
The total time for the miniMD 2,048,000 atom test problem is
plotted for one and 16 compute nodes using (a) MPI-only with
half neighborlists, (b) a single MPI rank per node with threads and
half neighborlist using atomic operations, and (c) a single MPI rank
with threads and full neighborlists. MPI-only is the most efficient
way to run the problem when using only CPUs on a single node. In
every other configuration, the write conflict free full neighborlist
approach has better performance.

Performance limitations of MPI-only on a Xeon Phi are apparent
using a single device. Threaded execution of the half neighborlist
and atomic update kernel is competitive with the MPI-only
approach, and the full neighborlist kernel is 40% faster. When
trying to run more than one Xeon Phi in MPI-only mode, limitations
of the current software stack prevented us from using more than
56 ranks per Xeon Phi (1 rank per core). Consequently, MPI-only
performance becomes almost 80% worse than the full neighborlist
kernel.

Three common strategies for redesigning algorithms for im-
proved thread scalability are: redundant computations, redundant
storage followed by thread-safe reductions, and coloring. Redun-
dant computations were used for the LJ-kernel because it has only
a 2x redundancy, is more scalable and memory efficient than re-
dundant storage, and is much simpler to implement than strategy

3214 H. Carter Edwards et al. / J. Parallel Distrib. Comput. 74 (2014) 3202-3216

500 i T T T]

r |IEEE Threads/Fullneigh Eég ST]

L . 1oy J

MPI/Halfneigh e

3 400 B #3 Threads/Halfneigh IE:;]
wa u

1 =]

QT = 1

= 300 e]

E 2]

s [i]

E 200 i gg]

3 | 2 7]

g [2 o]

& 100+ 2 'E:3 7 7

i 3 E%]

ol 4 &]

1 16 1 16 1 16

Xeon Xeon Phi Kepler

Fig. 22. Total time consumed for running 1000 simulation steps of a 2,048,000
atom Lennard-Jones simulation with miniMD variants on different test-beds. A
comparison is shown of running miniMD on 1 and 16 nodes or devices with MPI-
only using half neighborlists, threads with half neighborlists, and threads with full
neighborlists. On Xeon and Xeon Phi testbeds 32 and 224 MPI ranks or threads have
been used per node or device. An exception is the Xeon Phi run with 16 devices,
where 224 MPI ranks per device did not run and 56 (one per core) had to be used
instead. On the Kepler GPU testbed running in MPI only mode is not possible.

350 T T T

I Sorting on
Sorting off

(%
S
S
T
|

NS

o

(=)
T
1

NS

=

S
T

—

W

(=)
T

100 -

Total time in node-sec

W
(=)
T

Xeon Xeon Phi Kepler

Fig. 23. MiniMD performance is significantly improved on Xeon Phi by sorting
atom arrays to improve locality of neighbor atoms.

coloring. Redundant storage can work well on CPUs with ample
main memory and cache; however, it can be inherently unscalable
on devices with a small amount of memory per thread.

As mentioned in Section 4.4, threaded scalability may not be
sufficient for an algorithm to obtain the best performance on a
given architecture. This was the situation with miniMD where
the array of atoms is sorted to improve data locality for neighbor
atoms. Fig. 23 shows the total time with and without sorting
activated for the previously described miniMD tests using 16 nodes
or devices. For the CPU and GPU the performance difference is
less than 10%; however, without sorting performance on the Xeon
Phi decreases by more than 30%. In this situation, an algorithmic
modification was critical for Xeon Phi performance (30%) and was
also slightly beneficial for CPU and GPU performance.

7.5. Specialize kernels for specific architectures

In some cases, it is not possible to design a single algorithm
which is nearly optimal on all architectures. For example, a de-
vice specific feature can be leveraged for a more performant im-
plementation of an algorithm on that device. In other situations,

template<int TPRow> // threads per row
void operator () (const int threadId) const ({
//For OpenMP or pthreads back-end iRow=threadId;
//and lane=0;
const int iRow = threadId/TPRow;
const int lane = threadId$%TPRow;
scalar_type sum = 0;

if (doalpha != -1) {
const SparseRowView<CrsMatrix> row=m_A.row (iRow) ;

#pragma loop count (15)
#pragma unroll
for (int i=lane; i<row.length; i+=TPRow) {
sum += row.value(i) * m_x(row.colidx(i));
} else {
const SparseRowView<CrsMatrix> row=m_A.row (iRow) ;

#pragma loop count (15)

#pragma unroll

for (int i=lane; i<row.length; i+=TPRow) {
sum -= row.value(i) * m_x(row.colidx(i));

}

//Perform reduction on GPUs

//For OpenMP or pthreads back-end, compiler will
//optimize reduction away since TPRow=1

if (TPRow > 1) sum += shfl_down(sum, 1, TPRow);

if (TPRow > 2) sum += shfl_down (sum, 2, TPRow) ;

if (TPRow > 4) sum += shfl_down(sum, 4, TPRow);

if (TPRow > 8) sum += shfl_down (sum, 8, TPRow) ;

if (TPRow > 16)sum += shfl_down (sum, 16, TPRow) ;

//0On GPUs only one thread writes result back

if (lane==0) {
if (doalpha * doalpha != 1) sum %= alpha(0);
if (dobeta == 0) m_y (iRow) = sum ;
else if(dobeta == 1) m_y(iRow) += sum ;
else if (dobeta == -1)m_y(iRow) = -m_y (iRow)+sum;
else m_y(iRow) = beta(0) » m_y(iRow) + sum;

Fig. 24. Sparse matrix-vector multiplication specialized according to the number
of threads used per row. This number is always equal to one on CPU and Xeon Phi,
and is greater than one on a GPU. The GPU implementation utilizes the inter-thread
shuffle operation to optimize inter-row reductions.

optimal algorithms might be different due to the large differ-
ence in the number of concurrent threads (e.g, 0(10°) for GPU,
0(10?) for Xeon Phi, and 0(10') for CPU). In these situations, it
can be necessary to introduce a device-specialized version of a
computation.

This situation occurred in miniFE for the sparse matrix-vector
multiplication shown in Fig. 24. On a CPU or Xeon Phi each row
of the matrix is handled by a single thread; however, on a GPU
it is beneficial to use multiple threads per row [4]. Furthermore,
on NVIDIA’s Kepler generation of GPUs the shuffle operations can
be used to optimize intra-row reductions. By using the number of
threads per row as a template argument to this function we are
able to differentiate the code for GPUs without having a negative
impact on CPU execution.

A similar situation occurs in miniMD’s neighborlist construc-
tion. The first part of this construction algorithm assigns atoms to
bins in space and is the same across all devices. The second part
of the algorithm builds the neighborlist from these bins and must
have a specialized version for a GPU. On CPUs or Xeon Phi, each
thread works independently on a single atom at a time. It deter-
mines the bin of its atom, and then loops over all bins within the
neighbor cutoff to find all neighbor atoms. On a GPU shared mem-
ory can be used to make this process more efficient. Instead of
assigning single atoms to threads, bins are assigned to a team of
threads with access to GPU shared memory (i.e., a CUDA thread
block is assigned to each bin). Threads in a team load the coordi-
nates of atoms in neighboring bins into shared memory and then

H. Carter Edwards et al. /J. Parallel Distrib. Comput. 74 (2014) 3202-3216 3215

work from this shared memory. In that way the coordinates are
used multiple times for each original load from the slower main
memory.

8. Conclusion

The Kokkos C++ library implements our strategy for manycore
performance portable HPC applications and libraries. Two foun-
dational abstractions are implemented: (1) dispatching parallel
functors to a manycore device and (2) managing the layout of
multidimensional arrays so that those functors have device-
appropriate memory access patterns. We defined Kokkos’ many-
core parallel abstractions and summarized the C++ APIL.

We demonstrated performance portability unit test kernels and
mini-applications that achieve at least 90% of the performance
of architecture specific, optimized variants of those test cases.
Finally we described a strategy by which legacy C++ applications
and libraries can use Kokkos to migrate to manycore parallelism.
Migration of our mini-applications to Kokkos demonstrated that
sometimes legacy computational kernels are inherently not thread
scalable and must be redesigned.

Kokkos will update existing, or adopt new, back-end imple-
mentations as manycore architectures and their programming
models evolve. In this way, HPC applications and libraries us-
ing Kokkos can immediately benefit from new manycore capabili-
ties. Furthermore, our ongoing analysis of manycore architectures’
performance drives continued optimization of back-end imple-
mentations.

Kokkos is under active research and development focusing
on improving performance, supporting new layouts and aggre-
gate “scalar” value types (Section 3.3), and enabling hierarchi-
cal task-data parallel dispatch. Development has begun on higher
level libraries such as sparse linear algebra and array-based con-
tainers (e.g., hash-maps).

Kokkos is publicly available through the Trilinos repository at
www.trilinos.org and is being used to migrate the Trilinos suite
of libraries to manycore architectures. An effort has begun to
refactor LAMMPS [40] to use Kokkos for thread level parallelism.
MiniMD and miniFE are available through the Mantevo repository
at www.mantevo.org.

Acknowledgments

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the US Department
of Energy’s National Nuclear Security Administration under con-
tract DE-AC04-94AL85000. This paper is cross-referenced at Sandia
as SAND2013-5603].

References

[1] C. Augonnet, S. Thibault, R. Namyst, P. Wacrenier, StarPU: a unified platform
for task scheduling on heterogeneous multicore architectures, Concurr.
Comput.: Pract. Exp. 23 (2011) 187-198. Special Issue: Euro-Par 2009. URL:
http://runtime.bordeaux.inria.fr/StarPU/.

C.G. Baker, M.A. Heroux, H.C. Edwards, A.B. Williams, A light-weight API for
portable multicore programming, in: 2010 18th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP),
IEEE, 2010, pp. 601-606. http://dx.doi.org/10.1109/PDP.2010.49.

S. Balay, W.D. Gropp, L.C. McInnes, B.F. Smith, Efficient management of
parallelism in object oriented numerical software libraries, in: E. Arge,
A.M. Bruaset, H.P. Langtangen (Eds.), Modern Software Tools in Scientific
Computing, Birkhduser Press, 1997, pp. 163-202.

N. Bell, M. Garland, Efficient sparse matrix-vector multiplication on CUDA,
NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation, December
2008.

2

3

[4

[5] F. Broquedis,]. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier,
S. Thibault, R. Namyst, hwloc: a generic framework for managing hardware
affinities in HPC applications, in: IEEE (Ed.), PDP 2010—The 18th Euromi-
cro International Conference on Parallel, Distributed and Network-Based
Computing, Pisa, Italie, 2010. http://dx.doi.org/10.1109/PDP.2010.67.

[6] A.Buttari,]. Langou, J. Kurzak, J. Dongarra, A class of parallel tiled linear algebra
algorithms for multicore architectures, Parallel Comput. 35 (2009) 38-53.

[7] C+-+ Amp Home Page, July 2013.
http://msdn.microsoft.com/en-us/library/vstudio/hh265137.aspx.

[8] Charm++ Home Page, July 2013. http://charm.cs.illinois.edu/.

[9] A. Chtchelkanova, C. Edwards,]. Gunnels, G. Morrow,]. Overfelt, R. van de
Geijn, Towards usable and lean parallel linear algebra libraries, Technical
Report TR-96-09, Department of Computer Sciences, University of Texas at
Austin, May 1996.

[10] Cilk Plus Home Page, July 2013. http://cilkplus.org/.

[11] CUDA Home Page, June 2013. www.nvidia.com/object/~cuda_home_new.html.

[12] CUDA Toolkit Thrust Documentation, June 2013..

[13] V.V. Dimakopoulos, P.E. Hadjidoukas, HOMPI: a hybrid programming frame-
work for expressing and deploying task-based parallelism, in: Euro-Par 2011
Parallel Processing, Springer, 2011, pp. 14-26.

[14] A. Duran, E. Ayguadé, R. Badia,]. Labarta, L. Martinell, X. Martorell, . Planas,
OmpSs: a proposal for programming heterogeneous multi-core architectures,
Parallel Process. Lett. 21 (2) (2011) 173-193. cited By (since 1996)18.

[15] H.C. Edwards, D. Sunderland, Kokkos Array performance-portable manycore
programming model, in: PMAM, 2012, pp. 1-10.

[16] H.C. Edwards, D. Sunderland, C. Amsler, S. Mish, Multicore/GPGPU portable
computational kernels via multidimensional arrays, in: 2011 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER), IEEE, 2011, pp. 363-370.
http://dx.doi.org/10.1109/CLUSTER.2011.47.

[17] H.C. Edwards, D. Sunderland, V. Porter, C. Amsler, S. Mish, Manycore
performance-portability: Kokkos multidimensional array library, Sci. Pro-
gram. (2012) 89-114. http://dx.doi.org/10.3233/SPR-2012-0343.

[18] R. Garcia, J. Siek, A. Lumsdaine, Boost.MultiArray, June 2013.
www.boost.org/libs/multi_array.

[19] T. Gautier, J.V.F. Lima, N. Maillard, B. Raffin, et al. XKAAPI: a runtime system
for data-flow task programming on heterogeneous architectures, in: 27th
IEEE International Parallel & Distributed Processing Symposium, IPDPS, 2013.

[20] K. Gregory, A. Miller, C++ Amp, Accelerated Massive Parallelism with

Microsoft Visual C++, Microsoft Press, 2012.
[21] IEEE Std 1003.1, 2004 Edition, <pthread.h>, 2004.

[22] Information Technology Industry Council, Programming Languages—C++,
International Standard ISO/IEC 14882, first ed., American National Standards
Institute, 11 West 42nd Street, New York, New York 10036, 1998.

[23] Intel Threading Building Blocks Home Page, July 2013.

[24] L.Kalé, S. Krishnan, CHARM++-: a portable concurrent object oriented system
based on C++, in: A. Paepcke (Ed.), Proceedings of OOPSLA’93, ACM Press,
1993, pp. 91-108.

[25] J. Liy, J. Wu, D.K. Panda, High performance RDMA-based MPI implementation
over infiniband, Int. J. Parallel Program. 32 (3) (2004) 167-198.

[26] Loci Home Page, July 2013. http://www.cse.msstate.edu/~luke/loci/.

[27] E.A. Luke, T. George, Loci: a rule-based framework for parallel multi-
disciplinary simulation synthesis, J. Funct. Programming 15 (2005) 477-502.
http://dx.doi.org/10.1017/S0956796805005514.

[28] T. Mattson, B. Sanders, B. Massingill, Patterns for Parallel Programming, first
ed., Addison-Wesley Professional, 2004.

[29] MVAPICH Home Page, June 2013..

[30] OmpSs Home Page, July 2013. http://pm.bsc.es/fompss.

[31] OpenACC Home Page, July 2013. http://openacc.org/.

[32] OpenCL Home Page, July 2013. http://www.khronos.org/opencl/.

[33] OpenHMPP Home Page, July 2013.
http://www.caps-entreprise.com/openhmpp-directives/.

[34] M. Ospici, D. Komatitsch, J.-F. Mehaut, T. Deutsch, SGPU 2: a runtime system
for using of large applications on clusters of hybrid nodes, in: Second Work-
shop on Hybrid Multi-Core Computing, Held in Conjunction with HiPC, 2011,
pp. 1-8.

[35] R.P. Pawlowski, E. Phipps, A.G. Salinger, Automating embedded analysis
capabilities and managing software complexity in multiphysics simulation,
part [: template-based generic programming, Sci. Program. 20 (2012)
197-219.

[36] R.P. Pawlowski, E.T. Phipps, A.G. Salinger, S.J. Owen, C.M. Siefert, M.L. Staten,
Automating embedded analysis capabilities and managing software complex-
ity in multiphysics simulation part II: application to partial differential equa-
tions, Sci. Program. 20 (2012) 327-345.

[37] PEPPHER Home Page, July 2013. http://www.peppher.eu/.

[38] E.T. Phipps, RA. Bartlett, D.M. Gay, RJ. Hoekstra, Large-scale transient
sensitivity analysis of a radiation-damaged bipolar junction transistor via
automatic differentiation, in: C.H. Bischof, H.M. Biicker, P.D. Hovland,
U. Naumann, J. Utke (Eds.), Advances in Automatic Differentiation, Springer,
2008, pp. 351-362.

[39] J. Planas, R.M. Badia, E. Ayguadé, |. Labarta, Hierarchical task-based program-
ming with starss, Int.]. High Perform. Comput. Appl. 23 (3) (2009) 284-299.

http://www.trilinos.org
http://www.mantevo.org
http://runtime.bordeaux.inria.fr/StarPU/
http://dx.doi.org/doi:10.1109/PDP.2010.49
http://refhub.elsevier.com/S0743-7315(14)00125-7/sbref3
http://dx.doi.org/10.1109/PDP.2010.67
http://refhub.elsevier.com/S0743-7315(14)00125-7/sbref6
http://msdn.microsoft.com/en-us/library/vstudio/hh265137.aspx
http://charm.cs.illinois.edu/
http://cilkplus.org/
http://www.nvidia.com/object/~cuda_home_new.html
http://refhub.elsevier.com/S0743-7315(14)00125-7/sbref13
http://refhub.elsevier.com/S0743-7315(14)00125-7/sbref14
http://dx.doi.org/doi:10.1109/CLUSTER.2011.47
http://dx.doi.org/doi:10.3233/SPR-2012-0343
http://www.boost.org/libs/multi_array
http://refhub.elsevier.com/S0743-7315(14)00125-7/sbref20
http://refhub.elsevier.com/S0743-7315(14)00125-7/sbref24
http://refhub.elsevier.com/S0743-7315(14)00125-7/sbref25
http://www.cse.msstate.edu/~luke/loci/
http://dx.doi.org/doi:10.1017/S0956796805005514
http://refhub.elsevier.com/S0743-7315(14)00125-7/sbref28
http://pm.bsc.es/ompss
http://openacc.org/
http://www.khronos.org/opencl/
http://www.caps-entreprise.com/openhmpp-directives/
http://refhub.elsevier.com/S0743-7315(14)00125-7/sbref35
http://refhub.elsevier.com/S0743-7315(14)00125-7/sbref36
http://www.peppher.eu/
http://refhub.elsevier.com/S0743-7315(14)00125-7/sbref38
http://refhub.elsevier.com/S0743-7315(14)00125-7/sbref39

3216 H. Carter Edwards et al. / J. Parallel Distrib. Comput. 74 (2014) 3202-3216

[40] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics,
J. Comput. Phys. 117 (1995) 1-19.

[41] J. Reinders, Intel Threading Building Blocks, O’Reilly, 2007.

[42] StarPU Home Page, July 2013. http://runtime.bordeaux.inria.fr/StarPU/.

[43] The OpenMP API Specification for Parallel Programming, June 2013..

[44] Trilinos Website, August 2011..

[45] XKAAPI Home Page, July 2013. http://kaapi.gforge.inria.fr.

Christian R. Trott is a high performance computing expert
with experience in designing and implementing software
for GPU and MIC compute-clusters.

He earned a Dr. rer. nat. from the University of Tech-
nology Ilmenau in theoretical physics. Prior scientific work
focused on computational material research using Ab-
Initio calculations, molecular dynamic simulations and
Monte Carlo methods for investigations of ion-conducting
glass materials. As of 2012 Christian is a postdoctoral ap-
pointee at the Sandia National Laboratories and is working

H. Carter Edwards has over three decades of experience on developing scientific codes for future manycore archi-
developing software for simulations of a variety of en- tectures.

gineering domains. He is an expert in high performance
computing (HPC) and is currently focusing on thread-
scalable algorithms and data structures for heterogeneous
manycore architectures such as NVIDIA GPU and Intel
Xeon Phi.

He has a B.S. and M.S. in aerospace engineering from
the University of Texas at Austin, and worked for ten years
at the Johnson Space Center in the domain of spacecraft
guidance, navigation, and control. He has a Ph.D. in com-
putational and applled mathematics, also from the University of Texas at Austin. He
has been researching and developing software for HPC algorithms and data struc-
tures for the past sixteen years at Sandia National Laboratories.

Daniel Sunderland is an expert in high performance com-
puting who specializes in designing scalable data stru-
ctures and algorithms for manycore architectures.

He earned his master’s from Utah State University in
computer science. Since 2009 he has been employed by
Sandia National Laboratories developing and maintaining
multi-physics engineering codes for current and future
HPC architectures.

http://refhub.elsevier.com/S0743-7315(14)00125-7/sbref40
http://refhub.elsevier.com/S0743-7315(14)00125-7/sbref41
http://runtime.bordeaux.inria.fr/StarPU/
http://kaapi.gforge.inria.fr

	Kokkos: Enabling manycore performance portability through polymorphic memory access patterns
	Introduction
	Abstraction of a manycore device
	Execution and memory spaces
	Abstracting spaces

	Multidimensional array
	Declaration, allocation, and access
	View and deep copy semantics
	Performance tuning extension points

	Parallel execution
	Parallel for
	Parallel reduce
	Local parallel reductions via atomics
	Threaded scalability and performance

	Performance evaluation with simple kernels
	Modified Gram--Schmidt kernel
	Molecular dynamics force kernel

	Performance evaluation with mini-applications
	MiniFE
	MiniMD

	Legacy code migration strategy
	Data structures
	Functors
	Enable GPU execution
	Optimizing algorithms for thread scalability
	Specialize kernels for specific architectures

	Conclusion
	Acknowledgments
	References

