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Abstract

We derive thermo-mechanical continuum equations from Molecular Dynamics (MD) equations using the Generalized Mathematical
Homogenization (GMH) theory developed by the authors for 0 K applications. GMH constructs an array of atomistic unit cell problems
coupled with a thermo-mechanical continuum problem. The unit cell problem derived is a molecular dynamics problem defined for the
perturbation from the average atomistic displacements subjected to the deformation gradient and temperature extracted from the con-
tinuum problem. The coarse scale problem derived is a constitutive law-free continuum thermo-mechanical equation. Attention is
restricted to heat transfer by lattice vibration (phonons). The method is verified on several model problems against the reference mole-

cular dynamics solution.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Constructing thermo-mechanical equations of contin-
uum has been a subject of significant interest in physics,
material science and mechanics communities. There are
numerous challenges and several major obstacles to over-
come before such a link can be fully established. In this sec-
tion, we outline some of the key difficulties, then briefly
overview the state-of-the-art in the field and conclude with
the subset of issues we address in the manuscript.

The first difficulty is conceptual in nature; it deals with
the fact that physics describing continuum and fine scale
phenomena is different. While continuum description of
mechanical deformation can be explicitly derived from
the atomistics and this at a certain extend, has been suc-
cessfully demonstrated, the thermal part can be only
accounted for phenomenologically in the form of heat
transfer equation.
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The second difficulty is associated with the formulation
of the base fine-scale model required for developing
phemenological heat transfer equations. The mechanism
by which heat is transferred depends on material system.
For instance, gases transfer heat by direct collisions
between molecules; non-metallic solids such as ceramics
transfer heat by lattice vibrations so that there is no net
motion of the media as the energy propagates through.
Such heat transfer is often described in terms of “pho-
nons”’, quanta of lattice vibrations. Metals, on the other
hand, have free electrons, which are not bound to any par-
ticular atom. As the electrons move, they undergo a series
of collisions; the faster electrons (on the hot side of the
solid) give off some of their energy to the slower electrons.
Conduction through electron collision is more effective
than through lattice vibration; this is why metals generally
are better heat conductors than ceramic materials, which
do not have many free electrons. This implies that for met-
als the base mathematical model that describes motion of
atoms using Newton’s laws does not contain sufficient
information for developing a complete phemenological
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Fig. 1. An atomic chain and a unit cell.

model of heat transfer. Quantum mechanical consider-
ations are unavoidable in this case.

The third difficulty is purely computational. Determinis-
tic atomistic level computations, which solve numerically
Newton’s equations of motion, can model systems up to
the order of 4 x 10° atoms for time scales of the order of
nanoseconds [1], still orders of magnitude below continuum
length and time scales, being of the order of millimeters and
milliseconds. Continuum-level simulations operate in the
latter regimes, but do so at the expense of explicit atomistic
resolution. This difficulty can be partially circumvented by
introducing an intermediate so-called coarse-grained model
(or meso-scale model). The well-known examples of such a
coarse-grained model are dislocation dynamics and coarse-
grained molecular dynamics just to mention a few.

There have been numerous attempts to reconcile
between fine scale and continuum thermo-mechanical
descriptions. One of the most fundamental approaches is
based on statistical mechanics, which converts atomistic
data to macroscopic observables such as pressure, energy,
heat capacities. In a somewhat related effort, Zhou [2]
developed an equivalent deterministic thermo-mechanical
continuum theory based on decomposing atomistic velocity
into a structural deformation and thermal oscillation parts.
A similar starting point has been employed by Li and
Weinan [3] within the framework of the Heterogeneous
Multiscale Method (HMM) [4]. The method consists of
numerical solution of thermo-mechanical equations of con-
tinuum and finding the missing constitutive data (mechan-
ical and thermal) by performing atomistic simulations
subjected to local boundary conditions extracted from the
continuum. An extension of the quasi-continuum method
to finite temperature regime has been recently proposed
in [5] by incorporating potential of mean force (PMF) orig-
inally introduced by Kirkwood in 1935 [6]. Several other
noteworthy approaches originally developed for zero-tem-
perature applications have been recently extended to finite
temperatures. These include the Coupled Atomistics and
Discrete Dislocation (CADD) method [7], the Bridging
Scale Method [8] and the Bridging Domain Method [9].

This paper represents an initial effort aimed at deriving
thermo-mechanical continuum equations using General-
ized Mathematical Homogenization (GMH) theory origi-
nally developed by the authors for 0K applications
[10,11]. We only address a subset of aforementioned issues.
Since the base model from which we derive continuum

equations is molecular dynamics, only heat transfer due
to lattice vibration (phonons) is accounted for. We do
not introduce an intermediate (meso) scale (see Fig. 1),
but rather focus on linking MD (describing motion of
atoms or coarse-grained discrete medium) with thermo-
mechanical continuum equations. The proposed multiscale
approach is somewhat resembles HMM [4] with the main
difference being that the coarse scale problem is derived
directly from atomistics without making any a priori
assumption about its mathematical structure. Numerical
experiments are conducted to verify the multiscale formula-
tion against the reference molecular dynamics solution.

2. Governing equations
2.1. Molecular dynamics equation of motion

We consider a periodic atomistic medium composed of
N atoms. The initial position of atom i in the reference con-
figuration is denoted by X;, i=1,2,...,N. The displace-
ment of atom i with respect to the reference position is
designated by u,. Upon deformation, the new position of
atom i is x;, given by
x, =X;+u, uw=u(X;?). (1)

The vector separating two atoms i and j in the reference
configuration is given by

X,-j = Xj - X[. (2)

The corresponding vector separating two atoms in the
deformed configuration is

X,'/' = Xj — X; = XU + u](X], t) — u,~(X,~, t) (3)

Hereafter the Roman subscripts i and j are reserved for
atoms labels and will not be subject to summation conven-
tion. Spatial directions, for which summation convention
over repeated indices is applied, will be denoted by Greek
subscripts.

For simplicity, we focus our attention to pairwise poten-
tials. However, the formulation can be extended to other
potentials governing nonmetallic materials. For pairwise
potentials, the interaction between atoms i and j is depicted
by the interatomic potential ®;(x;). The interatomic force
f;; applied on atom i by atom j is evaluated as

x5 xtli’

i

4)
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where x; = |x;]| is the distance between atoms i and j; X;/x;;
is the unit vector in the direction of x;;.

The equation of motion for atom i can be written as

mily = £(xy), (5)
J#i

where m; is the mass of atom 7; w; = du;/df represents mate-

rial time derivative of u,;. The subscript j denotes the neigh-

boring atoms which interact with atom i, such that

|x; — x;| <r., with r. being the cutoff radius. For simplicity,

external forces are not considered.

Due to periodic atomistic microstructure, the mass of
the atom m; and the interatomic force f; are assumed to
be periodic. Attention is restricted to the case where the
wavelength of the traveling signal 1 is much larger than
the size of the unit cell /, i.e., e =1/ < 1.

2.2. Multiple spatial and temporal scales and rescaling
of the MD equations

Due to the rapidly varying interatomic potentials, two
distinct material coordinates are employed to describe the
heterogeneity at the atomistic level: (i) the coarse scale
denoted by X, at which the atomistic features are invisible,
and (ii) the atomistic scale or fine scale, denoted by Y. The
two scales are related by

Y=X/; 0<e< 1. (6)

The corresponding scales in the spatial coordinates are
denoted by x and y, respectively, and are related by
y = x/e.

In addition to the usual time scale, we introduce a fast
time scale 7 in order to model lattice vibration (phonons)
at finite temperature. The fast time scale is related to the
usual time scale by

T=tlg, 0<e<kl. (7)

The resulting displacement field and its derivatives are
functions of X, Y, ¢ and . Prior to carrying out the multiple
scale asymptotic analysis it is necessary fo rescale the molec-
ular dynamics Eq. (5) so that terms appearing in the equa-
tion would be of order one. We start by considering
continuum equations of motion, pi(X,f) — Vx-P =0,
where po is the mass density; P is the first Piola—Kirchhoff
stress tensor; Vx - P = divP denotes the divergence of the
stress tensor. For homogeneous media, stress derivatives
are of order one, whereas for heterogeneous systems,
certain components of stresses may be discontinuous, and
therefore stress derivatives could be of O(¢'). Assuming
po~ O(1) and the characteristic size of the unit cell
I~ O(¢) then the volume of the unit cell @ ~ O(c*) and
m; ~ po® ~ O(&’). Dividing (5) by the volume of the unit
cell, yields

. 1
kipoi(Xi, Yir t, 1) = kot Zf,:,—(x,:,—), (8)
2z
where k, and k, are O(1) constants. Comparing (8) with the
continuum equation of motion it follows that

f,(x;) ~ O(e). )
To this end, we introduce the following normalized

quantities:

mi=m;/e8 ~O(1), f(x;) = f;(x;)/& ~O(1). (10)

Due to periodicity of masses, we have m; = m;(Y;). The
Lagrangian description of the rescaled MD equations of
motion is

_ . l 5
mi(Y3)ui(X;, Y, 1,7) = Zfij(xi/‘)v (11)
i

where u{(X;, Y, #,7) ~O(l) in the stretched coordinate
system Y.

3. The generalized mathematical homogenization (GMH)
theory

3.1. Multiple-scale asymptotic analysis

We assume that the coarse scale coordinate X takes con-
tinuous series of values and displacements u,(X;, Y;, ¢, 7) are
continuous and differentiable in X, while the fine scale
coordinate Y is discrete. We denote the displacement of
atom i by u(X, Y;, #, 1) with X = X,. The displacements of
the neighboring atoms u/(X;, Y, ¢, 1) can be expanded using
Taylor series around the point X as

u =w(X;, Y, 1,7)
= u(X, Yj, t, 'L') + VXU(X, Yj, t, T) . XU

1
+§VXVXU(X,Yj7t, T) : (XU®X’])+’ (12)

where the dot denotes contraction and ® designates dyadic
or tensor product. In the indicial notation, the components
of the gradient of the displacement field u with respect to
the coarse scale reference configuration X are given as

_ ou,(X, Y, 1,17)

[qu(X, Yj7ta T)]oc/i - 6)(,;

. (13)

From (12) we have
u—u = uf(X/'?Yj’ t T) - ll,-(X,-,Yl-, 2 T)
=uX Y, t,7) —uX, Y, 1, 71) + VxuX, Y, £, 1) - Xj;
1
+§VXVXU(X,Yj7t, T) N (XU®XU) + (14)
Since the coarse and fine scales coordinates are related
by Eq. (6), we have
where Y;; ~ O(1). Substituting (15) into (14) yields
u —u = ui(Xiij? Z T) - ll,-(X,-, Yi7 Z T)
= U(X, Yj7 t, T) - u(X, Yi; t, T) + SVX“(X, Yj, t, T) . Yl/

2
+%vxvxu(x, Y, 01 (Y, @Y) + (16)
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A multiple scale asymptotic expansion is employed to
approximate the displacement as:

uX, Y, #,7) =u’(X,t) +eu' (X, Y, 2, 7) + - -, (17)

where as usual the leading order term u’ is assumed to be
independent of the fine scale coordinates Y and t; only
the first two terms in the asymptotic expansion are con-
sidered whereas the remaining higher order terms are
neglected.
Substituting the asymptotic expansion (17) into (16)
yields
u; — = UJ(X Y , 1, T) ui(X,‘,Y,',t, T)
=eu' (X, Y, t,7) —u' (X, Y, £,7) + Vxu'(X,2) - Y]
+ &[Vxu' (X, Y, 4,1) - Y

1
+ EVXVXUO(X, t) : (Yij X Yl'j)] + .- (18)
Inserting (15) and (18) into (3) yields

X = Xy +u; —

=2, (X, Y, 1,7) + &Y, (X, Y, 0,7) + -+, (19)
where
¢,(X,Y,,1) =F'(X,0) Y, +u' (X, Y, t,7) —u' (X, Y;,1,7),
¥, (X, Y, 1,1) = Vxu' (X, Y;,1,7)- Yij—&-%VXVXuO(XJ) (Y, ®Y;)
(20)
with
F'(X, 1) =1+ Vxu’(X,?) (21)

being the deformation gradient and I the identity tensor.
Since (X, Y, t, 1) ~ O(1) and y;(X, Y, #, 1) ~ O(1), we
have

nglpij(xv Y7 t7 T) H

e, (X, Y10y~ 0@ (22)

where || - || denotes the vector norm. Following (22) the
interatomic force field can be expanded as

fI‘/’(Xz’j) = f“<3¢ij + 82'[’1‘] + )
=1 (¢u) flj ’ (32%/' +)+ O(szlﬁij +0),
(23)
where
$y(X,Y,1,7) = e, (X, Y, 1, 7). (24)

We further define the normalized gradient, f/,(¢;) ~
O(1), as

R af;,(?¢ )_ @f,/(qﬁ,j)
f.(¢;) = ¢, —° od; 2

Eq. (23) can be rearranged as

f(xy) = T(ey) + &f);(by) - (P + ) + O, + ).
(26)
Utilizing the chain rule, we have
Ou 0
ﬁi(Xi7Yiat7‘C) :ﬁ(X’Yht»I) a + - au
§ (27)

0 0 [/Ou Ou
u (X, Yi,2,7) = | = o)+ )
(X;, Y5, £,7) (af“" az)(at“ 6‘5)

Inserting the asymptotic expansion (17) into (27) yields

. 0 ot ol oM
ui(Xz‘aYiatv‘f):slﬁ“rWﬂ- ﬁ—'— 2 +0(e )
(28)

Substituting (26) and (28) into the rescaled MD equa-
tions of motion (11) yields

o'u' o’ o' o'
o —1 e e 2
’"’(Y’>[8 o T o T2t i TOE)

:_Z ij 8¢U +3f/ ¢lj).(llllj+'.

J#

)+ 0(32‘/’1]' +-))

(29)

Collecting terms of equal power of &, gives the equilib-
rium equations at different orders starting at O(¢ ™ !):

o) m(v) T EYED g 5 (30)
J#
o) (v [T o PN,
= Z [ﬂ,‘(‘ﬁif) : l/,ij:|' (31)

J#i
3.2. The dynamic atomistic unit cell problem
Consider the O(¢ ') equilibrium Eq. (30) first. Substitut-

ing the normalized mass and interatomic force (10) into
(30) yields the dynamic atomistic unit cell problem

u' (X, Y 1,1 .
mi(Y, ,)(— &> f,(¢y) Vil (32)
J#i
where
o'(X,Y,;,t,1) = e (X, Y, 1, 7). (33)

In the above u' can be interpreted as a correction to the
classical Cauchy-Born rule. Eq. (32) reflects the fact that
when a macroscopically uniform deformation gradient is
subjected onto the atomistic unit cell, the deformation field
is generally non-uniform, i.e., an internal relaxation occurs
and the corresponding inhomogeneous atomic displace-
ments are determined by the equilibrium condition of each
atom in the unit cell. Note that the atomistic unit cell prob-
lem (32), which describes the lattice vibration (phonons),
depends on the fast time coordinate.
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3.3. The coarse scale equations of motion

We proceed by considering O(¢°) equilibrium Eq. (31).
Substituting the normalized mass and interatomic force
(10) into (31) yields

2.0 21 .
m(Y,) ou’(X, 1) +26 u' (X, Y, ¢, r)}

or* otot ¢ Z[f;j((i)ﬁ) ‘ l/,ij]'

J#i
(34)
Summing up Eq. (34) for all atoms in the unit cell and

dividing the resulting equation by the volume of the unit
cell O, yields

8 2 {mv
:_Z > I () - W) (35)

=1 j#i

62 (X, 1) 262u1(X,Y,~,t, 7)
or? otort

We further define the temporal averaging operator as

1 [o
o) = [ aoe (36)
TO 0
where 7 is a period of the function y(7).
Applying the temporal averaging operator to (35), we
have

= g <i Z [f;j((}i/) ' ./’ij:| >> (37)

=1 jAi

where we accounted for the fact that the second term van-
ishes due to the periodicity in t. Note that in (37) the term
inside the temporal averaging operator on the left-hand-
side is independent of the fast time t and u’(X, 7) is con-
stant in the atomistic unit cell; therefore, we have

p, X0 <ZZ - > (38)

=1 j#i
where
1 n
Po = Iz} Z m;(Y;) (39)
=1
is the mass density. Exploiting the chain rule yields
7 @f,,(qbl/) d’,/
fol/(¢’/) - a¢lj aX
=1,(¢y) - [VxVxu'(X,1) - Y;; + Vxu' (X, Y}, 1,7)
— Vxu' (X, Y, ,7)]. (40)

From (20) and (40), we have

£,(epy) -y, = () - | Vxu' (X, Y, 1,7) - Yy

1
+§VXVX“O(X, t) : (Y” 029 Y,/)

1 ~
= Ef:’(¢”) . [ZVXHI(X, Y/', t, ‘C)
+ VXVXUO(X, t) . Ylj] . YU
1 A
= Ef:]((bl]) : [vXul (X7 Yja t T)
- qul (X, Y, 2,7) + VxVxu’(X,7) - Y;;] - Y
+5 f, (¢U) [qul (X7 Yj7 Z, T)
+ qu (X, Y,‘, t, T)] . Y,‘j
1 1, -
=5 Vxfi(edy) - Yy + 5 15(y) [Vxu' (X, Y, 1,7)
+Vxu' (X, Y,,1,7)] - Yy (41)

To proceed with the derivation, we will exploit the
following relation

Vx:-(v@W)=vVx -w+ Vxv-w, (42)

where v and w are vectors; for the special case of w being
independent of X, we have

Vx - (v@w) = Vxv-w. (43)
In view of the relation (43), (41) can be written as
1 N
f(edy) Wy = EVX [f(dy) @ Yyl + 5 f/ (¢u)
'VX[UI(X,Yi,t,T)+u (X7Yj,t7'f)} Y,j

(44)
Substituting (44) into (38) yields
poézu;(;(,t)
<Z}Z{% ) Vxlu' (X, Y, 1,7) +u! (X,Yj,t,'c)]~Y,-j}>,
o (45)

In the remaining of this section we show that the second
term in (45) vanishes for a periodic atomistic medium. We
start by recalling

Xj[:X[—Xj:X[—Xj+ui—Uj:—X[j

=& ji(Xvatvf)_ng ji(X7Y7taf)+"'a (46)
where
¢jl(X7 Y7 t7 T) = _¢ij(X7 Y7 tv T)
=F'(X,0) Y; +u' (X, Y, t,7) —u' (X, Y}, 1,7),
(47)
V(XY 1) = (X, Y, 8,1) = vxu' (X, Y, 4,7) - Y,
1
— 5 VxVxu' (X, 1) : (Y; ® Yj). (48)

2
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The Newton’s third law requires
fi(ep,) = —Li(¢). (49)
From (47) and (49) we have the following relation

f/j(S(]blj) 6fzj(‘c¢tj) afji(g ji) _ afj,-(s ji)

a¢,/ a¢ij a(_¢ji>
() _
- 6(]5], = j[(¢/l) (50)

Let the interacting neighbor atoms of atom i be denoted
as ny,na,. .., Np,. .., where k is the number of the interact-
ing atoms such that |x,, —x+i| <r., p=1,2,...,k, with
r. being the cutoff radius. The following summation over
the atomistic unit cell can be expanded as

i Z{ffj({p’/) ’ VX[ul X, Y, 1,7) + u (X, Y1, T)] ’ Yii}

=1 j#i

= Zn:{fﬁnl (i) - Vx[u' (o) +u' (V)] - (Y, = Y))

+ finz(éﬁmz) Vx[u'(Y;) +u'(Y,,)] - (Y, — Y

1, (i) - Vxlu' (V) +u' (V)] - (Y., = V) +

+ 1, (Bin,) - Vx[u' (Vo) +u' (V)] - (Y, — Vi) +

+ 1, (b)) - Vx[u' (Y2) +u'(Y,,)] - (Y, =Y} (51)

The summation in (51) is carried out over all atoms in
the unit cell. First, we consider the case that both atom i
and any of its interacting neighboring atoms n,(p =
1,2,...,k) are in the unit cell. For each interacting atom
pair (i, np), there are two terms in the summation (51) given
by

£, (én,) - Vxlu' (Y) +u'(Y,)] - (Y, - Y,)
+ f;lpl-(¢npi) : VX[ (an) +u (Y )] : (Yi - an) =0
(p=1,2,...,k). (52)
The above identity follows from (50). If any of the inter-
acting atom #, lies outside the unit cell, by periodicity, the
displacement and force vector of atom 7, take the same
value as the corresponding atom in the unit cell and thus

summation (52) holds.
In view of (51) and (52), we have

Z > {1 (4y) -

=1 j#i

W' (X,Y,t,7) +u'(X,Y;,7,7)] - Y;} = 0.

(53)

Substituting (53) into (45) yields the macroscopic equa-
tions of motion

PRI SO R A
(54)
P(X,t,1) = 2@ ; Z#:[ zj(¢t/) ®Xu]

where P(X, ¢, 1) is the First Piola—Kirchhoff stress tensor. It
is similar to the virial stress except for the dynamic term,
which is absent. The first equation of Eq. (54) is the
Lagrangian description of the conservation of the linear
momentum.

3.4. The thermal equation

The temperature is directly related to the kinetic energy
of the system as follows

-y 5 BTy, (55)

2m;

where p; is the total momentum of atom i and m; is its mass;
kg is the Boltzmann constant and T is the temperature of
the ensemble. According to the theorem of the equiparti-
tion of energy, each degree-of-freedom contributes kg77/2.
For n atoms, each with N, degrees-of-freedom, the kinetic
energy is nNkgT/2.

The square of the momentum of an atom is

pl* =D B = i
Ou; Ou; ou; Ou;
2 -1 77 i —1 i
_mf<at+8 6‘[) (az+8 af)' (56)

Inserting the asymptotic expansion (17) into (56) yields

ou?  Ou! ou! Ou!
2 2 . i i
wf ot (E+30) (B3 +ow]. o
Substituting (57) into (55) and neglecting terms of O(e)
and higher, we have

" ou?  Ou! ou)  Ou;
Z{ (ar * ar> ' (at +6r>} Nl 7,

i=1

(58)

where u! = uw’(X,7) and u! =u'(X,Y,,7,7).
From (58) follows

0| < ou?  Ou! ou?  Ou! or
o [Z:{ (ar * af> ' <6t * &)H = nhkaNa 5

(59)

and writing out gives

2": ouf o ow Tw Qi (Tw  Du
— o o2 ordr ' or \ o2 | arde

_nkBNda_T
2 o

(60)

Multiplying both sides of (34) by du’/0¢ and summing
up over all atoms in the unit cell yields

< ou’ /% o’u!
lYl l. ] 2 ]
Z{m( T (azz * atarﬂ

i=1

P

i=1  j#i

' ,, ‘Esu '/I[j:|' (61)
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In view of (60), (61) can be written as

I’lkBNd oT

2 o

: ou) o’u] du O’u
iY[

+.Z {m( (6t st o oR

SO

=1 j#i

ou! o%u!
ot 6t61>]

() !ﬁ,-,] :

(62)

Applying the temporal averaging operator to (62), we
have

nkgN, o(T) d ou! ou!
2 o Z’”(Y)ar a0t

(3% [M

=l j#i

£ > (63)

where we accounted for the fact that the second and third
terms vanish due to periodicity in the fast time . Multiply-
ing both sides of (34) by du/! /0t and summing up over all
atoms in the unit cell yields

z ou! ow® _oul o%u!
2 [’”"(Y‘)(ar e T e 6t6r)}

n a 1 R
=2 [a"; gf;,(mw]- (64)

Applying the temporal averaging operator to the above
equation and accounting for the fact that the first term
vanish due to periodicity in the fast time t gives

(Smon S8 55 [Hone

=1 j#i

Substituting (65) into (63) yields
k !
. ];Nd <Z Z |:< > ’ z/(¢lj) l/’zj:|>
i=1

From (41) and (53) follows

R o
e
»3

ou!
. 2 { afl [Vx - (fi(ed,) @ Yy)
= A

H‘M

x - (f5(¢hy) @ Y,-,)}

+

N —

1(dy) - T (Y) +u'(Y)) ~Y,-,]}. (67)

Substituting (67) into (66) and dividing by the volume
of the atomistic unit cell yields

I’lkBNd 6<T> all
20 o o <2@ ; ; Vx- (£5() ®Xu)]>
ou!
(S T s nen

() - Vx(' (V) +u'(Y))) - Y, } > (68)

The second term in (68) can also be recast as the diver-
gence of a vector field. For this reason we utilize the follow-
ing well-known relations (see [12,13]).

Vx-(ST-v)=S:Vxv+v: Vx-S, (69)
S.v=v-S, (70)
(u®@v):S=u-S-v, (71)

where S is a second-order tensor; u and v are vectors;
the superscript 7" denotes the transpose of a tensor; and
Based on the chain rule, we have

of;(edy) _ ofy(¢y) 00,

ot 0o, ot

— f;j(&sij) ) {aua(TYj) B aua(:f,-)} (72)

and from (69) and (70) follows

ou!
al;l : : [fij(g‘sz/) @ Ylﬁ/}
ou! , Ou;
=Vx- [(Yzj @ f;(ed;;)) alﬂ = [f(¢y) @Yy : Vx aurl
ou! ; Ou;
=Vx- |:i‘; (fij(8¢ij) ® Y,-j):| - [f[j(¢ij) & Yij] : Vx al:
(73)

Differentiating (f;(¢;) ® Y;;) : Vxu! with respect to fast
time gives

O ((6y(ey) © Y,) - V]

ot
of (¢, . ou!
= ﬂ@?‘( LV o+ [f(dy) © Y] - Vx At
ot ot
(74)
From (74) follows
Ou!
[fij(ed;) @ Yi] : Vx 3
0 N of;: (¢,
== (fij(di) @Yy) : qug} l ]G(j)j) ® Y| : Vxul.
(75)
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Substituting (75) into (73) yields

ou!
5, Vx o [fi(edy;) @Y
Ou! . 0 N .
= Vx- 3 (fi;(¢y) @ Yy) | — % [(f;(;) @ Y;) : Vxu;]

From (76) follows

[fi(edy) @ Yyl + f;j(;bij) - Vx[u'(Y) +u' (Y))] - Yy}
1 ~

=Vx- {%_’ (fij(e;) ® Y[j)] - % [(£5(dy) © Yy) : Vxu]]

of(¢)
ot

VX[UI (Y,)

(77)

ou! 5
+ ®Yij : vXu,-l + a,; 'f;f(qsij)'

+u'(Y)] - Yy
Based on (71) and (72) we have

[afa(‘“® £, () - Tl (V) ' (V)Y
D) Gty B )l (V) (Y)Y,
e s dul( j) ou'(Y)) 1
= [fij(¢ij) : ( P T)} “Vxu; - Y

au () - Vx[u'(Y) +u'(Y))] - Yy
= f;j(sqﬁij) . auléTYj) : VXU,-I Y — f/“(‘;l’i') w : VX“; Y

ou! ou!
+a__;'f;j(8¢ii) -Vxu' (Y)Y + B0 () - Vxu'(Y)) - Yy,
du ,'

du' (Y )
ot

= f;j(BqSi/') - Vxu ll YU + ’ 1](¢U) vXul(Yj) 'Yij~

(78)
Substituting (78) into (77) yields
Ou!

‘[fzif(3¢;j)®Yzji}+fi¢,-(<i’f/)' x[u' () +u' (Y))] - Yy}

Ou! 9 R
=Vx- [% “(f(ed) @Yy) | — P [(f;(dy) ®Yy) : Vxu!]

du'(Y)) a !
ot

+f;j(8¢ij) : -Vxu; - Yy,

1,(¢y) - Vxu'(Y)) - Yy
(79)
From (79) follows

(s

=1 j#i

+u' (Y)Y > <
J#i
(

<zz{ :

=1 j#i

[Vx - U(F‘ﬁ”) ® Yz/) + f, (¢U) VX(U (Y:)

au - (£ ¢,/ ®Y,,)]>

-Vxu! Y

a“} /(0 1
+5, fi(dy) - Vxu (Y) - Yy ),

where we have made use of the fact that the temporal
average of the second term on the right-hand-side of (79)
vanishes due to periodicity in the fast time scale.

We proceed to prove that the second term in the right-
hand-side of (80) vanishes. As in the previous section, we
assume that for atom i, its interacting neighbor atoms are
N1, . . . Ry, .., Where k is the number of the interacting
atoms such that |xnp — x4 <r,,p=1,2,...,k. The following
summation over the atomistic unit cell can be expanded as

33 [t S vy,
i=1 /721
Ou; W o5 1
+o5, Tildy) - Vxu (Y)) - Yy
du' (Y,
Z { iny m] ’ # ’ vXui1 ’ (Ym - Yz)
a ! |
6 zn1(¢1n1) VXu (Ynl) : (Ynl - Yz)
ou (Y,
+f;nv( ¢m2) : ° é‘[ 2) : vXull . (Ynz - Yz)
o,
A () Txu! (Vo) - (Yo, = Yi)
ou' (Y,
i, (e, 20wl v, vy
au |
: mp((ﬁmp) vXu (an) : (an - Yz) + -
1
' Y,
+ f:m (¢ink) : % ’ vXuzl ’ (Y”k - Yl)
Ou!

St () T (V) (V- Y0 (81)

The summation in (81) is carried out over all atoms in the
unit cell. First, we consider the case that both atom i and
any of its interacting neighboring atoms n, (p = 1,2,...,k)
are in the unit cell. For each interacting atom pair (i, n,),
there are two terms in the summation (81) given by

oul(Y,
f;’n (8¢in ) : . ( p) . VX“; : (Yn _Yi)
P P 61 p
all} /(g 1
50 T, (Dun,) - Vxw (Y,,) - (Y, = Y0)
ou'(Y;
+ f; 7( ¢npi) . ua(’C ) : qu,lip . (Y; - an)
Ou! ) 1
+—= 6 — fnpl(¢"pl) vXu (Yl) : (Yl - an)
ou' (Y,
- f:n ( ¢1n ) : . ( ﬁ) . vXull ' (an - Yt)
P 'p ot
6u
mp(¢mp) vXul (an) : (an - Yl)
ou' (Y;
_f:n ( ¢m ) L) VX“:, : (Yn - Yz)
'p P 6’[ p 'p
ou, .
. f,, (¢in,) - Vxu'(Y;) - (Y, = Y;) =0

(p=12,...,k), )

(82
where we have exploited the identity f;, (e¢;, ) =1, (¢4, ;)
as proved in (50).
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If any of the interacting neighbor atom n, lies outside
the unit cell, by periodicity, the displacement and force vec-
tor of atom n, take the same value as the corresponding
atom in the unit cell and thus summation in (82) also
vanishes.

In view of (81) and (82) we have

3 St 2 v,
=1 j#i
1

+ aa () Tl (¥) ¥,] =0, (83)

Substituting (83) into (80) and then the resulting equa-
tion into (68) yields

I’lkBNd 6<T> allo(
o o % 2@22”@’ 2%

J#i
Vi % >[5 wiex) >

(84)
We further define

and make use of the macroscopic equations of motion (54)
to obtain the thermal equation

o(T) (X, (X,
CT—VX' (q(X,1,1)) = 2p, o o2

1 n a 1 .
aX,t,71) =55 Z > {al; (f;;(ds) @ Xy) |,

(86)

where we identify q(X, 7, t) as the heat flux vector.

The thermal equation can be rewritten in an alternative
form as follows. Recalling the tensor identities (69) and
(70) we have

Vx - (v:S)=S:Vxv+v - Vx-S. (87)

Utilizing (87) we may write

ou’ ou’ ou’

Vx'(at'<P>)<P>~vxat+at'vx'<P> (88)
and thus
Mo @) = v () v s
o N o T

Eq. (84) can be written as

orT) au

<2@ Z Z { - (f ¢U ®XU):| > (90)
=1 j#i

Inserting (89) into (90) yields

oT) ou’ _

Vx - <% lznl: ; [aai‘; (fi(dy) ® Xij)} >

ou’
ot

(1)

Making use of the expressions of the First Piola—Kirch-

hoff stress tensor, macroscopic deformation gradient and

the macroscopic equation of motion, we have the following
alternative form of the thermal equation

o(T) OF
Cm = V- (@(X,1,7)) = =2(P(X,1,0)) : -,
aX, 1) 2@22[( Qu? au)-(ﬂ/(&’zﬁi)@&/)}

(92)
where (X, ¢,7) is an alternative form of the heat flux vec-
tor; P(X, ¢, 7) is the First Piola—Kirchhoff stress tensor de-
fined in (54). In both forms given in (86) and (92) the
unknown field is the temporal average of temperature
(T). In (92) we recognize the divergence term divq(X,z, 1)
and the work power (P(X,t,17)):0F’/dt. Note that all
quantities appear as time averages and the temporal deriv-
ative of (T) and F° is with respect to the slow time scale 7.
Numerical experiments reveal that (86) is numerically more
stable than (92). For the purpose of numerical verification
we adopt the form of the thermal equation given in (86).

4. Finite element implementation and numerical verification

In this Section, we provide implementation details and
give some preliminary verification results.

The two-scale problems described by (32), (54) and (86)
is solved as follows:

With the initial conditions, for every Gauss point in the
coarse scale, calculate the coarse scale deformation gradi-
ent F'(X, 7); solve the dynamic unit cell problem for
u! (X, Y;,,1) using (32); compute the fast temporal average
of the First Piola—Kirchhoff stress tensor and heat flux
vector using (54b) and (86b), respectively.

Solve the coarse scale problems (54a) and (86a) with
appropriate initial and boundary conditions) using finite
element semidiscretization in space and explicit time inte-
gration; evaluate the coarse scale deformation gradient
F’(X, ¢) and go to .

4.1. Weak forms and semidiscretization of the macroscopic
thermal-mechanical equations

The initial and boundary conditions for the macroscopic
equations of motion (54) are chosen as

W(X,0) =p(X). B (X,0) = g(X) 93)
X, t)=u(X,-)onT,; t(P)-n=%tonT, (94)
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where u(X, #) and 7 are vectors of prescribed displacement
and traction, respectively; I', NI, =0, I',UTI';=1T is the
boundary of the domain under consideration; n is the out-
ward norm of the boundary.

The initial and boundary conditions for the macroscopic
thermal Eq. (86) are chosen as

(T)(X,0) = (To)(X) (95)
(M (X,0)=T(X,t) on I'r; (q)-n=qX,t)onT, (96)

where T(X,?) and q(X,¢) are the prescribed temperature
and boundary heat flux, respectively; I'rNI,=0,
FT U Fq - F

The weak form of the thermo-mechanical equation is
stated as follows:

For 1€ (0,7 ™), find u’(X,7) € %<, (T)(X,t) € %’, such
that for all w/(X) € 7, w’(X) € 7" the following holds:

o™’ (X, 1)

[ powix) =555 a0~ [ wix) vy - pyan —o.

(97)
/Q CWG(X)%dQ— /Q w!(X)Vy - (q)dQ
=2p, /Q w"(X)%-aa—;dQ (98)

subjected to the initial conditions (93) and (95), where

w! =’ (X, ) (X,0) e H'(Q),u’(X,¢) =u(X,s) on T, },

(99)
)= {({T)(X,)(T)(X,1) € H'(Q),(T)(X,0) =T(X,1) on I'r}
(100)

are the trial solution spaces, and
7 = {w(X)|w(X) € H'(Q),w(X)=0o0n T}, (101)
70 = {w(X)|w(X) € H'(Q),w(X) =0 on I';} (102)

are the weight function spaces. The Sobolev space H'(Q)
consists of all functions over domain Q whose values and
their first derivatives are square integrable.
Exploiting the relations
w/(X) - Vx - (P) = Vx - (W (P) : Vxw’(X),
(103)
w (X)Vx - (@) = Vx - (' (X)(@)) — (@) - Vx»"(X)  (104)
we have from (97), (98), (103) and (104) by making use of

the divergence theorem and the boundary conditions (94)
and (96)

(X) - (P)) -

/ powd(X).az“;E§7’) dQ+ / (P): Vxw!(X)dQ = / w!(X)-7dr",
O (10s)
o(T)
. /g Cwe(X)FdQ—i-/Q (q) - Vxu'(X)dQ
0 2 0
=/1_ w“(X)q(X,t)dFJero/Qwo(X)% 667(19 (106)

q

After introducing the finite element discretization in
space, we have the following semidiscrete thermo-mechan-
ical equations

M@;“@ L (d(0) = £ (1), (107)
4 Qv (o) = s(0) (108)

with the initial conditions

40) = o, S(0)=v, 0(0) =0, (109)

where d(7) and 0(¢) are vectors of nodal displacements and
temperatures, respectively;

nel
M> < / poN N dQe) k%
e=1 Q.
nel
c=) o7 ( / CNSNY dQe)ff
e=1 Q.

are the mass and capacity matrices, respectively; &, is
the scatter operator relating element and global solution
vectors.

(110)

nel

" (d fo” / BY (P)dQ,,

nel
=> @7 / B;' (q)dQ,

e= e

Q" (0(1)) (111)

are nodal internal force and heat flux vectors, respectively;

nel
=3 27 /r NTids, (112)
e=1 t
nel nel 0 2.0
Ou 6
el el eT

(113)

are nodal external force and heat source vectors, respec-
tively; N¢ and Nj are matrices of finite element shape func-
tions for displacements and temperatures, respectively;
B4 = Ny Bocy, = Njc,, With 4 and C denoting finite ele-
ment degrees-of-freedom and o= 1,2, 3 for 3D case (or
o=1,2 for 2D case); superscript e dej,noted finite element
numbers. Since nodal internal force f"(d(7)) and heat flux
Q™(6(1)) vectors depend on the displacement and tempera-
ture fields, the semidiscrete equation of motion and thermal
equation are coupled.

The semidiscrete equations of motion (107) and the ther-
mal Eq. (108) can be integrated using explicit time integra-
tion schemes, such as for instance the central difference
and forward difference, respectively

o'd
(&), - -

(%) = (0,1 — 0,)/Ar,

| = 2d, + dyy) /AP, (114)

(115)
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2 2 2 2 - i
where (0°d/0r%), = 0d/or (1), d,=d(¢), d,_ =d(r — A1), 0, =0,+AC'[S, —Q"(6,)]. (117)
d,; =d(z + Ar); (00/01), = 00/01(1), 0,,=0(t) and 0, =
0(t + Ar). L. . . .
Inserting (114) and (115) into (107) and (108) yields Similarly, the dynamic atomistic unit cell problem (32)
_ ) is integrated in the fast time using the central difference
- CX 1n
dp1 =2d, —d,. — ACM[f7() — £7(d,)], (116)  scheme.
14
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Fig. 2. Snapshots of temperature and displacements along the atomistic chain at different time instances.
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4.2. Verification

We firstly consider a model problem of an atomistic
chain consisting of 1201 atoms schematically depicted in
Fig. 1. Suppose that the atoms are initially equally spaced
with spacing ¢ and each atom interacting with its nearest
neighbors. The atomistic chain is assumed to possess peri-
odic microstructure with a unit cell of length / composed of
three atoms with masses m; and m,. The chain is subjected
to two initial bell-shaped temperature distribution at both
ends with amplitude Tp.x and width 26 = 1/4L, where L
is the total length of the atomic chain. The temperatures
at the two ends of the atomistic chain are constant in time.
The interatomic potentials take the form of the Lennard-
Jones potential. The interatomic potential between the first
and the second atom in the unit cell is @; and that between
the second and the third atom is @, given by

o= [(9)"- ()
o1=[(9)" - ()]

where ¢; and &, are characteristic energy scales of the inter-
action and o the characteristic length scale of the inter-
action. We assume that the initial configuration of the
atomistic chain is in equilibrium without external forces
so that a = 2"%.

The interatomic forces are evaluated as

=S 2 (Y],

-ty ()]

For the three-atom unit cell under consideration, the
instantaneous First Piola—Kirchhoff stress (54b) and the
heat flux (86b) are

(118)

(119)

PO 1,7) = 3 fo (o) + o (o),

g(X,1,1) = "SR (Y )P 1), (120)
2m1
where
g 0 mp+my .
oo =(1 +HX)G+T1” (Y1),
&5]2:(1+u§)a—¥ﬁl(ﬂ). (121)
1
The linear mass density is given by
12
Po ZY;mi(Y) = (my +my)/1. (122)

Material parameters are m,/m; =5 and &/e; =2. The
amplitude of the initial temperature is set to be T, = 1 K.
The snapshots of temperature and displacement fields at
different time instances over the atomic chain are plotted
in Fig. 2. As expected, the maximum temperatures drops

compared with the initial temperature as the wave propa-
gates towards the center.

The CPU time of homogenization in comparison with
that of Molecular Dynamics at different atomistic chain
sizes is plotted in Fig. 3. For all cases considered, the con-
tinnum mesh was sufficiently fine to resolve the macro-
scopic solution gradients. It can be observed that as chain
size increases, the ratio of the CPU time between GMH
MD simulations are increased without compromising on
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600 -

CPU time MD/GMH

200

0 . 1 . 1 . 1 . | . 1 . 1
0 20000 40000 60000 80000 100000 120000
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Fig. 3. The speed-up of GMH over MD in terms of CPU time for
atomistic chains of different length.
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Fig. 4. Continuum and atomistic unit cell models.
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solution accuracy. For atomistic chain of 120,001 atoms
the speed-up factor is approximately 1500.

We have investigated the ratio of m,/m; on accuracy and
CPU ratio between MD and GMH. We have kept m, con-
stant and varied the ratio m,/m; from 1 to 100. Results pre-
dicted by GMH remained accurate, while the CPU ratio
remained practically unaffected.

For the second example, we consider a three-dimen-
sional model of a beam consisting of 100 x 10 x 10 body-
centered cubic lattice structure schematically depicted in
Fig. 4. The total number of atoms occupying the volume
of the beam is 22221. All atoms are assumed to have equal
mass m. The beam is clamped at the two ends and is sub-
jected to an initial bell-shaped temperature distribution
with amplitude 7., =40 K and width 26 = L, where L
is the total length of the atomic chain. The interatomic
potentials take the form of the Lennard-Jones potential.

The continuum was discretized with 25 hexahedral ele-
ments whereas the atomistic unit is composed of 35 atoms
as shown in Fig. 5. We considered hexahedral elements
with eight-point Gauss quadrature and one-point Gauss-
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quadrature with stabilization [14]. In comparison to MD,
the CPU speed-up factor was approximately 190 in case
of eight-point quadrature, and over 1350 in case of one-
point quadrature with stabilization.

The axial displacement solution of a center atom at the
cross x = 3/5L as obtained by the GMH and the reference
MD solution are plotted in Fig. 5. It can be observed that
the coarse scale displacement predicted by GMH closely
matches that of the MD. Fig. 6 shows that the temperature
field at x = 3/5L obtained by GMH is in good agreement
with that obtained by MD.

The snapshots of temperature fields at different time
instances over the atomic chain are plotted in Fig. 7. It can
be seen that as time increases, the temperature in the middle
area drops, whereas temperatures at the two ends increases.

5. Conclusions and future research directions
The primary goal of this paper was to develop a mathe-

matical framework aimed at reconciling between fine scale
and continuum thermo-mechanical descriptions. We
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Fig. 6. Temperatures at observation area.
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Fig. 7. Snapshots of temperatures along the long axis.

derived a dynamic atomistic unit cell problem for the per-
turbation u!

' (X, Y, 1,1 5
(a#) =& qu-(FO(X, 1) Xy
J#i

+eau!(X,Y;,1,7)
—ea!(X,Y,,1,7)) Vi

m;(Y;)

coupled with thermo-mechanical continuum equations for
(T) and u® given as

ou’
1 & .
P(X,t,7) = 20 Z Z[fij(¢ij) ® Xy,
=1 jti
0 oF°
O vy (@0 1) = 2P 1 0) a0

These equations have a familiar structure. The expression
of stress is similar to the virial stress formula except for the
inertia term, which is absent. It is important to note that this
form of stress is not new. Many investigators including

Srolovitz et al. [15], Horstemeyer and Baskes [16] and Alber
et al. [17] among others adopted this form as a measure of
the continuum stress. Perhaps the only expression that we
were not able to trace the origin of is that of flux.

We have considered pairwise potentials only, which are
usually inadequate for modeling of solids. The methodol-
ogy developed, however, is generic and is not limited to
pair potentials. For three-body potentials, the final expres-
sions will be more complex (see for instance Appendix in
Ref. [3] for additional terms arising from the Stillinger—
Webber and Tersoff potential.

Despite of some of the encouraging results, development
of a complete mathematical and computational framework
aimed at linking continuum thermo-mechanical and fine
scale descriptions remains an elusive task. The conceptual
challenge remains; can the electronic scale be brought into
the atomistic description in the form of interatomic poten-
tials and/or as an additional term in MD so that the math-
ematical framework proposed could be extended to
conductors? The computational complexity has been only
partially addressed. The number of Gauss points in the
continuum could be of order of thousands if not millions.
The atomistic unit cell may include millions of atoms if
defects to be included. The two-scale algorithm outlined
is fully coupled, i.e., at every slow time step, the solution
at every unit cell has to be advanced. This creates a tremen-
dous computational challenge that can be only addressed
by a combination of innovative scale bridging approaches
(such as GMH, HMM or others), coarse-grained models
and parallel machines.
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