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Abstract

We derive thermo-mechanical continuum equations from Molecular Dynamics (MD) equations using the Generalized Mathematical
Homogenization (GMH) theory developed by the authors for 0 K applications. GMH constructs an array of atomistic unit cell problems
coupled with a thermo-mechanical continuum problem. The unit cell problem derived is a molecular dynamics problem defined for the
perturbation from the average atomistic displacements subjected to the deformation gradient and temperature extracted from the con-
tinuum problem. The coarse scale problem derived is a constitutive law-free continuum thermo-mechanical equation. Attention is
restricted to heat transfer by lattice vibration (phonons). The method is verified on several model problems against the reference mole-
cular dynamics solution.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Constructing thermo-mechanical equations of contin-
uum has been a subject of significant interest in physics,
material science and mechanics communities. There are
numerous challenges and several major obstacles to over-
come before such a link can be fully established. In this sec-
tion, we outline some of the key difficulties, then briefly
overview the state-of-the-art in the field and conclude with
the subset of issues we address in the manuscript.

The first difficulty is conceptual in nature; it deals with
the fact that physics describing continuum and fine scale
phenomena is different. While continuum description of
mechanical deformation can be explicitly derived from
the atomistics and this at a certain extend, has been suc-
cessfully demonstrated, the thermal part can be only
accounted for phenomenologically in the form of heat
transfer equation.
0045-7825/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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The second difficulty is associated with the formulation
of the base fine-scale model required for developing
phemenological heat transfer equations. The mechanism
by which heat is transferred depends on material system.
For instance, gases transfer heat by direct collisions
between molecules; non-metallic solids such as ceramics
transfer heat by lattice vibrations so that there is no net
motion of the media as the energy propagates through.
Such heat transfer is often described in terms of ‘‘pho-
nons’’, quanta of lattice vibrations. Metals, on the other
hand, have free electrons, which are not bound to any par-
ticular atom. As the electrons move, they undergo a series
of collisions; the faster electrons (on the hot side of the
solid) give off some of their energy to the slower electrons.
Conduction through electron collision is more effective
than through lattice vibration; this is why metals generally
are better heat conductors than ceramic materials, which
do not have many free electrons. This implies that for met-
als the base mathematical model that describes motion of
atoms using Newton’s laws does not contain sufficient
information for developing a complete phemenological
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Fig. 1. An atomic chain and a unit cell.
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model of heat transfer. Quantum mechanical consider-
ations are unavoidable in this case.

The third difficulty is purely computational. Determinis-
tic atomistic level computations, which solve numerically
Newton’s equations of motion, can model systems up to
the order of 4 · 109 atoms for time scales of the order of
nanoseconds [1], still orders of magnitude below continuum
length and time scales, being of the order of millimeters and
milliseconds. Continuum-level simulations operate in the
latter regimes, but do so at the expense of explicit atomistic
resolution. This difficulty can be partially circumvented by
introducing an intermediate so-called coarse-grained model
(or meso-scale model). The well-known examples of such a
coarse-grained model are dislocation dynamics and coarse-
grained molecular dynamics just to mention a few.

There have been numerous attempts to reconcile
between fine scale and continuum thermo-mechanical
descriptions. One of the most fundamental approaches is
based on statistical mechanics, which converts atomistic
data to macroscopic observables such as pressure, energy,
heat capacities. In a somewhat related effort, Zhou [2]
developed an equivalent deterministic thermo-mechanical
continuum theory based on decomposing atomistic velocity
into a structural deformation and thermal oscillation parts.
A similar starting point has been employed by Li and
Weinan [3] within the framework of the Heterogeneous
Multiscale Method (HMM) [4]. The method consists of
numerical solution of thermo-mechanical equations of con-
tinuum and finding the missing constitutive data (mechan-
ical and thermal) by performing atomistic simulations
subjected to local boundary conditions extracted from the
continuum. An extension of the quasi-continuum method
to finite temperature regime has been recently proposed
in [5] by incorporating potential of mean force (PMF) orig-
inally introduced by Kirkwood in 1935 [6]. Several other
noteworthy approaches originally developed for zero-tem-
perature applications have been recently extended to finite
temperatures. These include the Coupled Atomistics and
Discrete Dislocation (CADD) method [7], the Bridging
Scale Method [8] and the Bridging Domain Method [9].

This paper represents an initial effort aimed at deriving
thermo-mechanical continuum equations using General-
ized Mathematical Homogenization (GMH) theory origi-
nally developed by the authors for 0 K applications
[10,11]. We only address a subset of aforementioned issues.
Since the base model from which we derive continuum
equations is molecular dynamics, only heat transfer due
to lattice vibration (phonons) is accounted for. We do
not introduce an intermediate (meso) scale (see Fig. 1),
but rather focus on linking MD (describing motion of
atoms or coarse-grained discrete medium) with thermo-
mechanical continuum equations. The proposed multiscale
approach is somewhat resembles HMM [4] with the main
difference being that the coarse scale problem is derived
directly from atomistics without making any a priori

assumption about its mathematical structure. Numerical
experiments are conducted to verify the multiscale formula-
tion against the reference molecular dynamics solution.

2. Governing equations

2.1. Molecular dynamics equation of motion

We consider a periodic atomistic medium composed of
N atoms. The initial position of atom i in the reference con-
figuration is denoted by Xi, i = 1,2, . . . ,N. The displace-
ment of atom i with respect to the reference position is
designated by ui. Upon deformation, the new position of
atom i is xi, given by

xi ¼ Xi þ ui; ui ¼ uiðXi; tÞ: ð1Þ
The vector separating two atoms i and j in the reference

configuration is given by

Xij ¼ Xj � Xi: ð2Þ
The corresponding vector separating two atoms in the

deformed configuration is

xij ¼ xj � xi ¼ Xij þ ujðXj; tÞ � uiðXi; tÞ: ð3Þ
Hereafter the Roman subscripts i and j are reserved for

atoms labels and will not be subject to summation conven-
tion. Spatial directions, for which summation convention
over repeated indices is applied, will be denoted by Greek
subscripts.

For simplicity, we focus our attention to pairwise poten-
tials. However, the formulation can be extended to other
potentials governing nonmetallic materials. For pairwise
potentials, the interaction between atoms i and j is depicted
by the interatomic potential Uij(xij). The interatomic force
fij applied on atom i by atom j is evaluated as

f ij ¼
oUijðxijÞ

oxij

xij

xij
; ð4Þ
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where xij = jxijj is the distance between atoms i and j; xij/xij

is the unit vector in the direction of xij.
The equation of motion for atom i can be written as

mi€ui ¼
X
j 6¼i

f ijðxijÞ; ð5Þ

where mi is the mass of atom i; _ui ¼ dui=dt represents mate-
rial time derivative of ui. The subscript j denotes the neigh-
boring atoms which interact with atom i, such that
jxj � xij < rc, with rc being the cutoff radius. For simplicity,
external forces are not considered.

Due to periodic atomistic microstructure, the mass of
the atom mi and the interatomic force fij are assumed to
be periodic. Attention is restricted to the case where the
wavelength of the traveling signal k is much larger than
the size of the unit cell l, i.e., e = l/k� 1.

2.2. Multiple spatial and temporal scales and rescaling

of the MD equations

Due to the rapidly varying interatomic potentials, two
distinct material coordinates are employed to describe the
heterogeneity at the atomistic level: (i) the coarse scale
denoted by X, at which the atomistic features are invisible,
and (ii) the atomistic scale or fine scale, denoted by Y. The
two scales are related by

Y ¼ X=e; 0 < e� 1: ð6Þ
The corresponding scales in the spatial coordinates are

denoted by x and y, respectively, and are related by
y = x/e.

In addition to the usual time scale, we introduce a fast
time scale s in order to model lattice vibration (phonons)
at finite temperature. The fast time scale is related to the
usual time scale by

s ¼ t=e; 0 < e� 1: ð7Þ
The resulting displacement field and its derivatives are

functions of X, Y, t and s. Prior to carrying out the multiple
scale asymptotic analysis it is necessary to rescale the molec-
ular dynamics Eq. (5) so that terms appearing in the equa-
tion would be of order one. We start by considering
continuum equations of motion, q0€uðX; tÞ � rX � P ¼ 0,
where q0 is the mass density; P is the first Piola–Kirchhoff
stress tensor; $X Æ P = divP denotes the divergence of the
stress tensor. For homogeneous media, stress derivatives
are of order one, whereas for heterogeneous systems,
certain components of stresses may be discontinuous, and
therefore stress derivatives could be of O(e�1). Assuming
q0 � O(1) and the characteristic size of the unit cell
l � O(e) then the volume of the unit cell H � O(e3) and
mi � q0H � O(e3). Dividing (5) by the volume of the unit
cell, yields

k1q0€uiðXi;Yi; t; sÞ ¼
1

k2e3

X
j 6¼i

f ijðxijÞ; ð8Þ

where k1 and k2 are O(1) constants. Comparing (8) with the
continuum equation of motion it follows that
f ijðxijÞ � Oðe2Þ: ð9Þ
To this end, we introduce the following normalized

quantities:

�mi ¼ mi=e
3 � Oð1Þ; �f ijðxijÞ ¼ f ijðxijÞ=e2 � Oð1Þ: ð10Þ

Due to periodicity of masses, we have �mi ¼ �miðYiÞ. The
Lagrangian description of the rescaled MD equations of
motion is

�miðYiÞ€uiðXi;Yi; t; sÞ ¼
1

e

X
j 6¼i

�f ijðxijÞ; ð11Þ

where ui(Xi, Yi, t, s) � O(1) in the stretched coordinate
system Y.

3. The generalized mathematical homogenization (GMH)

theory

3.1. Multiple-scale asymptotic analysis

We assume that the coarse scale coordinate X takes con-
tinuous series of values and displacements ui(Xi, Yi, t, s) are
continuous and differentiable in X, while the fine scale
coordinate Y is discrete. We denote the displacement of
atom i by u(X, Yi, t, s) with X = Xi. The displacements of
the neighboring atoms uj(Xj, Yj, t, s) can be expanded using
Taylor series around the point X as

uj ¼ ujðXj;Yj; t; sÞ
¼ uðX;Yj; t; sÞ þ rXuðX;Yj; t; sÞ � Xij

þ 1

2
rXrXuðX;Yj; t; sÞ : ðXij � XijÞ þ � � � ; ð12Þ

where the dot denotes contraction and � designates dyadic
or tensor product. In the indicial notation, the components
of the gradient of the displacement field u with respect to
the coarse scale reference configuration X are given as

½rXuðX;Yj; t; sÞ�ab ¼
ouaðX;Yj; t; sÞ

oX b
: ð13Þ

From (12) we have

uj � ui ¼ ujðXj;Yj; t; sÞ � uiðXi;Yi; t; sÞ
¼ uðX;Yj; t; sÞ � uðX;Yi; t; sÞ þ rXuðX;Yj; t; sÞ � Xij

þ 1

2
rXrXuðX;Yj; t; sÞ : ðXij � XijÞ þ � � � ð14Þ

Since the coarse and fine scales coordinates are related
by Eq. (6), we have

Xij ¼ eYij ¼ eðYj � YiÞ; ð15Þ
where Yij � O(1). Substituting (15) into (14) yields

uj � ui ¼ ujðXj;Yj; t; sÞ � uiðXi;Yi; t; sÞ
¼ uðX;Yj; t; sÞ � uðX;Yi; t; sÞ þ erXuðX;Yj; t; sÞ � Yij

þ e2

2
rXrXuðX;Yj; t; sÞ : ðYij � YijÞ þ � � � ð16Þ
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A multiple scale asymptotic expansion is employed to
approximate the displacement as:

uðX;Y; t; sÞ ¼ u0ðX; tÞ þ eu1ðX;Y; t; sÞ þ � � � ; ð17Þ

where as usual the leading order term u0 is assumed to be
independent of the fine scale coordinates Y and s; only
the first two terms in the asymptotic expansion are con-
sidered whereas the remaining higher order terms are
neglected.

Substituting the asymptotic expansion (17) into (16)
yields

uj � ui ¼ ujðXj;Yj; t; sÞ � uiðXi;Yi; t; sÞ
¼ e½u1ðX;Yj; t; sÞ � u1ðX;Yi; t; sÞ þ rXu0ðX; tÞ � Yij�
þ e2½rXu1ðX;Yj; t; sÞ � Yij

þ 1

2
rXrXu0ðX; tÞ : ðYij � YijÞ� þ � � � ð18Þ

Inserting (15) and (18) into (3) yields

xij ¼ Xij þ uj � ui

¼ e/ijðX;Y; t; sÞ þ e2wijðX;Y; t; sÞ þ � � � ; ð19Þ

where

/ijðX;Y; t;sÞ¼F0ðX; tÞ �Yijþu1ðX;Yj; t;sÞ�u1ðX;Yi; t;sÞ;

wijðX;Y; t;sÞ¼rXu1ðX;Yj; t;sÞ �Yijþ
1

2
rXrXu0ðX; tÞ : ðYij�YijÞ

ð20Þ

with

F0ðX; tÞ ¼ IþrXu0ðX; tÞ ð21Þ

being the deformation gradient and I the identity tensor.
Since /ij(X, Y, t, s) � O(1) and wij(X, Y, t, s) � O(1), we

have

ke2wijðX;Y; t; sÞk
ke/ijðX;Y; t; sÞk

� OðeÞ; ð22Þ

where k Æ k denotes the vector norm. Following (22) the
interatomic force field can be expanded as

�f ijðxijÞ ¼ �f ijðe/ij þ e2wij þ � � �Þ

¼ �f ijð/̂ijÞ þ
o�f ij

o/̂ij

� ðe2wij þ � � �Þ þOðe2wij þ � � �Þ;

ð23Þ

where

/̂ijðX;Y; t; sÞ ¼ e/ijðX;Y; t; sÞ: ð24Þ

We further define the normalized gradient, �f 0ijð/̂ijÞ �
Oð1Þ, as

�f 0ijð/̂ijÞ ¼
o�f ijðe/ijÞ

o/ij

¼ e
o�f ijð/̂ijÞ

o/̂ij

: ð25Þ
Eq. (23) can be rearranged as

�f ijðxijÞ ¼ �f ijðe/ijÞ þ e�f 0ijð/̂ijÞ � ðwij þ � � �Þ þOðe2wij þ � � �Þ:
ð26Þ

Utilizing the chain rule, we have

_uiðXi;Yi; t; sÞ ¼ _uðX;Yi; t; sÞ ¼
ou

ot
þ e�1 ou

os
;

€uiðXi;Yi; t; sÞ ¼
o

ot
þ e�1 o

os

� �
ou

ot
þ e�1 ou

os

� �
:

ð27Þ

Inserting the asymptotic expansion (17) into (27) yields

€uiðXi;Yi; t; sÞ ¼ e�1 o2u1

os2
þ o2u0

ot2
þ 2

o2u1

otos
þ e

o2u1

ot2
þOðe2Þ:

ð28Þ
Substituting (26) and (28) into the rescaled MD equa-

tions of motion (11) yields

�miðYiÞ e�1 o
2u1

os2
þ o

2u0

ot2
þ 2

o
2u1

otos
þ e

o
2u1

ot2
þOðe2Þ

� �

¼ 1

e

X
j 6¼i

½�f ijðe/ijÞ þ e�f 0ijð/̂ijÞ � ðwij þ � � �Þ þOðe2wij þ � � �Þ�:

ð29Þ
Collecting terms of equal power of e, gives the equilib-

rium equations at different orders starting at O(e�1):

Oðe�1Þ : �miðYiÞ
o2u1ðX;Yi; t; sÞ

os2
¼
X
j 6¼i

�f ijð/̂ijÞ; ð30Þ

Oðe0Þ : �miðYiÞ
o2u0ðX; tÞ

ot2
þ 2

o2u1ðX;Yi; t; sÞ
otos

� �

¼
X
j 6¼i

�f 0ijð/̂ijÞ � wij

h i
: ð31Þ
3.2. The dynamic atomistic unit cell problem

Consider the O(e�1) equilibrium Eq. (30) first. Substitut-
ing the normalized mass and interatomic force (10) into
(30) yields the dynamic atomistic unit cell problem

miðYiÞ
o2û1ðX;Yi; t; sÞ

os2
¼ e2

X
j 6¼i

f ijð/̂ijÞ 8i ; ð32Þ

where

û1ðX;Yi; t; sÞ ¼ eu1ðX;Yi; t; sÞ: ð33Þ
In the above u1 can be interpreted as a correction to the

classical Cauchy–Born rule. Eq. (32) reflects the fact that
when a macroscopically uniform deformation gradient is
subjected onto the atomistic unit cell, the deformation field
is generally non-uniform, i.e., an internal relaxation occurs
and the corresponding inhomogeneous atomic displace-
ments are determined by the equilibrium condition of each
atom in the unit cell. Note that the atomistic unit cell prob-
lem (32), which describes the lattice vibration (phonons),
depends on the fast time coordinate.
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3.3. The coarse scale equations of motion

We proceed by considering O(e0) equilibrium Eq. (31).
Substituting the normalized mass and interatomic force
(10) into (31) yields

miðYiÞ
o2u0ðX; tÞ

ot2
þ 2

o2u1ðX;Yi; t; sÞ
otos

� �
¼ e

X
j6¼i

½f 0ijð/̂ijÞ � wij�:

ð34Þ

Summing up Eq. (34) for all atoms in the unit cell and
dividing the resulting equation by the volume of the unit
cell H, yields

1

H

Xn

i¼1

miðYiÞ
o

2u0ðX; tÞ
ot2

þ 2
o

2u1ðX;Yi; t; sÞ
otos

� �� �

¼ e
H

Xn

i¼1

X
j 6¼i

½f 0ijð/̂ijÞ � wij�: ð35Þ

We further define the temporal averaging operator as

hvðsÞi ¼ 1

s0

Z s0

0

vðsÞds; ð36Þ

where s0 is a period of the function v(s).
Applying the temporal averaging operator to (35), we

have

1

H

Xn

i¼1

miðYiÞ
o2u0ðX; tÞ

ot2

� �* +

¼ e
H

Xn

i¼1

X
j 6¼i

f 0ijð/̂ijÞ � wij

h i* +
; ð37Þ

where we accounted for the fact that the second term van-
ishes due to the periodicity in s. Note that in (37) the term
inside the temporal averaging operator on the left-hand-
side is independent of the fast time s and u0(X, t) is con-
stant in the atomistic unit cell; therefore, we have

q0

o2u0ðX; tÞ
ot2

¼ e
H

Xn

i¼1

X
j 6¼i

½f 0ijð/̂ijÞ � wij�
* +

; ð38Þ

where

q0 ¼
1

H

Xn

i¼1

miðYiÞ ð39Þ

is the mass density. Exploiting the chain rule yields

rXf ijð/̂ijÞ ¼
of ijð/̂ijÞ

o/ij

�
o/ij

oX

¼ f 0ijð/̂ijÞ � ½rXrXu0ðX; tÞ � Yij þrXu1ðX;Yj; t; sÞ

� rXu1ðX;Yi; t; sÞ�: ð40Þ
From (20) and (40), we have

f 0ijðe/ijÞ � wij ¼ f 0ijð/̂ijÞ �
�
rXu1ðX;Yj; t; sÞ � Yij

þ 1

2
rXrXu0ðX; tÞ : ðYij � YijÞ

�

¼ 1

2
f 0ijð/̂ijÞ � ½2rXu1ðX;Yj; t; sÞ

þ rXrXu0ðX; tÞ � Yij� � Yij

¼ 1

2
f 0ijð/̂ijÞ � ½rXu1ðX;Yj; t; sÞ

� rXu1ðX;Yi; t; sÞ þ rXrXu0ðX; tÞ � Yij� � Yij

þ 1

2
f 0ijð/̂ijÞ � ½rXu1ðX;Yj; t; sÞ

þ rXu1ðX;Yi; t; sÞ� � Yij

¼ 1

2
rXf ijðe/ijÞ � Yij þ

1

2
f 0ijð/̂ijÞ � ½rXu1ðX;Yi; t; sÞ

þ rXu1ðX;Yj; t; sÞ� � Yij: ð41Þ

To proceed with the derivation, we will exploit the
following relation

rX � ðv� wÞ ¼ vrX � wþrXv � w; ð42Þ
where v and w are vectors; for the special case of w being
independent of X, we have

rX � ðv� wÞ ¼ rXv � w: ð43Þ
In view of the relation (43), (41) can be written as

f 0ijðe/ijÞ � wij ¼
1

2
rX � ½f ijð/̂ijÞ � Yij� þ

1

2
f 0ijð/̂ijÞ

� rX½u1ðX;Yi; t; sÞ þ u1ðX;Yj; t; sÞ� � Yij:

ð44Þ
Substituting (44) into (38) yields

q0

o2u0ðX; tÞ
ot2

¼ 1

2H

Xn

i¼1

X
j6¼i

½rX � ½f ijð/̂ijÞ�Xij�
* +

þ e
2H

Xn

i¼1

X
j6¼i

ff 0ijð/̂ijÞ �rX½u1ðX;Yi; t;sÞþu1ðX;Yj; t;sÞ� �Yijg
* +

:

ð45Þ

In the remaining of this section we show that the second
term in (45) vanishes for a periodic atomistic medium. We
start by recalling

xji ¼ xi � xj ¼ Xi � Xj þ ui � uj ¼ �xij

¼ e/jiðX;Y; t; sÞ þ e2wjiðX;Y; t; sÞ þ � � � ; ð46Þ
where

/jiðX;Y; t; sÞ ¼ �/ijðX;Y; t; sÞ
¼ F0ðX; tÞ � Yji þ u1ðX;Yi; t; sÞ � u1ðX;Yj; t; sÞ;

ð47Þ
wjiðX;Y; t; sÞ ¼ �wijðX;Y; t; sÞ ¼ rXu1ðX;Yj; t; sÞ � Yji

� 1

2
rXrXu0ðX; tÞ : ðYji � YjiÞ: ð48Þ
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The Newton’s third law requires

f ijðe/ijÞ ¼ �fjið/̂jiÞ: ð49Þ

From (47) and (49) we have the following relation

f 0ijðe/ijÞ ¼
of ijðe/ijÞ

o/ij

¼ �
ofjiðe/jiÞ

o/ij

¼ �
ofjiðe/jiÞ
oð�/jiÞ

¼ ofjið/̂jiÞ
o/ji

� f 0jið/̂jiÞ: ð50Þ

Let the interacting neighbor atoms of atom i be denoted
as n1,n2, . . . ,np, . . . ,nk where k is the number of the interact-
ing atoms such that jxnp � xþ ij < rc, p = 1, 2, . . . ,k, with
rc being the cutoff radius. The following summation over
the atomistic unit cell can be expanded as

Xn

i¼1

X
j 6¼i

ff 0ijð/̂ijÞ � rX½u1ðX;Yi; t; sÞ þ u1ðX;Yj; t; sÞ� � Yijg

¼
Xn

i¼1

ff 0in1
ð/̂in1
Þ � rX½u1ðYiÞ þ u1ðYn1

Þ� � ðYn1
� YiÞ

þ f 0in2
ð/̂in2
Þ � rX½u1ðYiÞ þ u1ðYn2

Þ� � ðYn2
� YiÞ

þ f 0in3
ð/̂in3
Þ � rX½u1ðYiÞ þ u1ðYn3

Þ� � ðYn3
� YiÞ þ � � �

þ f 0inp
ð/̂inpÞ � rX½u1ðYiÞ þ u1ðYnpÞ� � ðYnp � YiÞ þ � � �

þ f 0ink
ð/̂ink Þ � rX½u1ðYiÞ þ u1ðYnk Þ� � ðYnk � YiÞg: ð51Þ

The summation in (51) is carried out over all atoms in
the unit cell. First, we consider the case that both atom i

and any of its interacting neighboring atoms np(p =
1,2, . . . ,k) are in the unit cell. For each interacting atom
pair (i, np), there are two terms in the summation (51) given
by

f 0inp
ð/̂inpÞ � rX½u1ðYiÞ þ u1ðYnpÞ� � ðYnp � YiÞ

þ f 0npið/̂npiÞ � rX½u1ðYnpÞ þ u1ðYiÞ� � ðYi � YnpÞ ¼ 0

ðp ¼ 1; 2; . . . ; kÞ: ð52Þ

The above identity follows from (50). If any of the inter-
acting atom np lies outside the unit cell, by periodicity, the
displacement and force vector of atom np take the same
value as the corresponding atom in the unit cell and thus
summation (52) holds.

In view of (51) and (52), we have

Xn

i¼1

X
j 6¼i

ff 0ijð/̂ijÞ � rX½u1ðX;Yi; t; sÞ þ u1ðX;Yj; t; sÞ� � Yijg ¼ 0:

ð53Þ

Substituting (53) into (45) yields the macroscopic equa-
tions of motion

q0
o

2u0ðX; tÞ
ot2 �rX � hPi ¼ 0;

PðX; t; sÞ ¼ 1
2H

Pn
i¼1

P
j 6¼i
½f ijð/̂ijÞ � Xij�;

ð54Þ
where P(X, t, s) is the First Piola–Kirchhoff stress tensor. It
is similar to the virial stress except for the dynamic term,
which is absent. The first equation of Eq. (54) is the
Lagrangian description of the conservation of the linear
momentum.

3.4. The thermal equation

The temperature is directly related to the kinetic energy
of the system as follows

K ¼
Xn

i¼1

jpij
2

2mi
¼ kBT

2
nNd ; ð55Þ

where pi is the total momentum of atom i and mi is its mass;
kB is the Boltzmann constant and T is the temperature of
the ensemble. According to the theorem of the equiparti-
tion of energy, each degree-of-freedom contributes kBT/2.
For n atoms, each with Nd degrees-of-freedom, the kinetic
energy is nNdkBT/2.

The square of the momentum of an atom is

jpij
2 ¼ pi � pi ¼ m2

i _ui � _ui

¼ m2
i

oui

ot
þ e�1 oui

os

� �
� oui

ot
þ e�1 oui

os

� �
: ð56Þ

Inserting the asymptotic expansion (17) into (56) yields

jpij
2 ¼ m2

i

ou0
i

ot
þ ou1

i

os

� �
� ou0

i

ot
þ ou1

i

os

� �
þOðeÞ

� �
: ð57Þ

Substituting (57) into (55) and neglecting terms of O(e)
and higher, we have

Xn

i¼1

mi
ou0

i

ot
þ ou1

i

os

� �
� ou0

i

ot
þ ou1

i

os

� �� �
¼ nkBN dT ðX; t; sÞ;

ð58Þ

where u0
i ¼ u0

i ðX; tÞ and u1
i ¼ u1ðX;Yi; t; sÞ.

From (58) follows

o

ot

Xn

i¼1

mi
ou0

i

ot
þ ou1

i

os

� �
� ou0

i

ot
þ ou1

i

os

� �� �" #
¼ nkBN d

oT
ot

ð59Þ
and writing out gives

Xn

i¼1

mi
ou0

i

ot
� o

2u0
i

ot2
þ ou0

i

ot
� o

2u1
i

otos
þ ou1

i

os
� o

2u0
i

ot2
þ o

2u1
i

otos

� �� �

¼ nkBN d

2

oT
ot
: ð60Þ

Multiplying both sides of (34) by ou0
i =ot and summing

up over all atoms in the unit cell yields

Xn

i¼1

miðYiÞ
ou0

i

ot
� o

2u0
i

ot2
þ 2

o
2u1

i

otos

� �� �

¼ e
Xn

i¼1

X
j 6¼i

ou0
i

ot
� f 0ijð/̂ijÞ � wij

� �
: ð61Þ
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In view of (60), (61) can be written as

nkBNd

2

oT
ot

þ
Xn

i¼1

miðYiÞ
ou0

i

ot
� o

2u1
i

otos
� ou1

i

os
� o

2u0
i

ot2
� ou1

i

os
� o

2u1
i

otos

� �� �

¼ e
Xn

i¼1

X
j 6¼i

ou0
i

ot
� f 0ijð/̂ijÞ � wij

� �
:

ð62Þ
Applying the temporal averaging operator to (62), we

have

nkBNd

2

ohT i
ot
�

Xn

i¼1

miðYiÞ
ou1

i

os
� o

2u1
i

otos

* +

¼ e
Xn

i¼1

X
j 6¼i

ou0
i

ot
� f 0ijð/̂ijÞ � wij

� �* +
; ð63Þ

where we accounted for the fact that the second and third
terms vanish due to periodicity in the fast time s. Multiply-
ing both sides of (34) by ou1

i =os and summing up over all
atoms in the unit cell yields

Xn

i¼1

miðYiÞ
ou1

i

os
� o

2u0
i

ot2
þ 2

ou1
i

os
� o

2u1
i

otos

� �� �

¼ e
Xn

i¼1

ou1
i

os
�
X
j 6¼i

f 0ijð/̂ijÞ � wij

" #
: ð64Þ

Applying the temporal averaging operator to the above
equation and accounting for the fact that the first term
vanish due to periodicity in the fast time s gives

Xn

i¼1

miðYiÞ
ou1

i

os
� o

2u1
i

otos

* +
¼ e

2

Xn

i¼1

X
j 6¼i

ou1
i

os
� f 0ijð/̂ijÞ � wij

� �* +
:

ð65Þ
Substituting (65) into (63) yields

nkBNd

2

ohT i
ot
¼ e

2

Xn

i¼1

X
j 6¼i

2
ou0

i

ot
þ ou1

i

os

� �
� f 0ijð/̂ijÞ � wij

� �* +
:

ð66Þ
From (41) and (53) follows

Xn

i¼1

X
j 6¼i

2
ou0

i

ot
þ ou1

i

os

� �
� f 0ijðe/ijÞ � wij

� �

¼
Xn

i¼1

X
j 6¼i

ou0
i ðX; tÞ
ot

� rX � ðf ijð/̂ijÞ � YijÞ
� �

þ 1

2

Xn

i¼1

X
j6¼i

ou1
i

os
� ½rX � ðf ijðe/ijÞ � YijÞ

�

þ f 0ijð/̂ijÞ � rXðu1ðYiÞ þ u1ðYjÞÞ � Yij�
�
: ð67Þ
Substituting (67) into (66) and dividing by the volume
of the atomistic unit cell yields

nkBN d

2H
ohT i
ot
¼ ou0ðX; tÞ

ot
� 1

2H

Xn

i¼1

X
j6¼i

½rX � ðf ijð/̂ijÞ � XijÞ�
* +

þ e
4H

Xn

i¼1

X
j 6¼i

ou1
i

os
� ½rX � ðf ijðe/ijÞ � YijÞ

�*

þf 0ijð/̂ijÞ � rXðu1ðYiÞ þ u1ðYjÞÞ � Yij�
�+

: ð68Þ

The second term in (68) can also be recast as the diver-
gence of a vector field. For this reason we utilize the follow-
ing well-known relations (see [12,13]).

rX � ðST � vÞ ¼ S : rXvþ v � rX � S; ð69Þ
S � v ¼ v � ST ; ð70Þ
ðu� vÞ : S ¼ u � S � v; ð71Þ

where S is a second-order tensor; u and v are vectors;
the superscript T denotes the transpose of a tensor; and
S:U = SijUij.

Based on the chain rule, we have

of ijðe/ijÞ
os

¼ of ijð/̂ijÞ
o/ij

�
o/ij

os

¼ f 0ijð/̂ijÞ �
ou1ðYjÞ

os
� ou1ðYiÞ

os

� �
ð72Þ

and from (69) and (70) follows

ou1
i

os
� rX � f ijðe/ijÞ � Yij

� 	
¼ rX � ðYij � f ijðe/ijÞÞ �

ou1
i

os

� �
� ½f ijð/̂ijÞ � Yij� : rX

ou1
i

os

¼ rX �
ou1

i

os
� ðf ijðe/ijÞ � YijÞ

� �
� ½f ijð/̂ijÞ � Yij� : rX

ou1
i

os
:

ð73Þ

Differentiating ðf ijð/̂ijÞ � YijÞ : rXu1
i with respect to fast

time gives

o

os
½ðf ijðe/ijÞ � YijÞ : rXu1

i �

¼ of ijð/̂ijÞ
os

� Yij

" #
: rXu1

i þ ½f ijð/̂ijÞ � Yij� : rX

ou1
i

os
:

ð74Þ

From (74) follows

½f ijðe/ijÞ � Yij� : rX

ou1
i

os

¼ o

os
ðf ijð/̂ijÞ � YijÞ : rXu1

i

h i
� of ijð/̂ijÞ

os
� Yij

" #
: rXu1

i :

ð75Þ
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Substituting (75) into (73) yields

ou1
i

os
� rX � ½f ijðe/ijÞ � Yij�

¼ rX �
ou1

i

os
� ðf ijð/̂ijÞ � YijÞ

� �
� o

os
½ðf ijð/̂ijÞ � YijÞ : rXu1

i �

þ of ijð/̂ijÞ
os

� Yij

" #
: rXu1

i : ð76Þ

From (76) follows
ou1

i

os
� frX � ½f ijðe/ijÞ � Yij� þ f 0ijð/̂ijÞ � rX½u1ðYiÞ þ u1ðYjÞ� � Yijg

¼ rX �
ou1

i

os
� ðf ijðe/ijÞ � YijÞ

� �
� o

os
½ðf ijð/̂ijÞ � YijÞ : rXu1

i �

þ of ijð/̂ijÞ
os

� Yij

" #
: rXu1

i þ
ou1

i

os
� f 0ijð/̂ijÞ � rX½u1ðYiÞ

þ u1ðYjÞ� � Yij: ð77Þ
Based on (71) and (72), we have

of ijð/̂ijÞ
os

� Yij

" #
: rXu1

i þ
ou1

i

os
� f 0ijð/̂ijÞ � rX½u1ðYiÞ þ u1ðYjÞ� � Yij

¼ of ijð/̂ijÞ
os

� rXu1
i � Yij þ

ou1
i

os
� f 0ijð/̂ijÞ � rX½u1ðYiÞ þ u1ðYjÞ� � Yij

¼ f 0ijð/̂ijÞ �
ou1ðYjÞ

os
� ou1ðYiÞ

os

� �� �
� rXu1

i � Yij

þ ou1
i

os
� f 0ijð/̂ijÞ � rX½u1ðYiÞ þ u1ðYjÞ� � Yij

¼ f 0ijðe/ijÞ �
ou1ðYjÞ

os
� rXu1

i � Yij � f 0ijð/̂ijÞ �
ou1ðYiÞ

os
� rXu1

i � Yij

þ ou1
i

os
� f 0ijðe/ijÞ � rXu1ðYiÞ � Yij þ

ou1
i

os
� f 0ijð/̂ijÞ � rXu1ðYjÞ � Yij

¼ f 0ijðe/ijÞ �
ou1ðYjÞ

os
� rXu1

i � Yij þ
ou1

i

os
� f 0ijð/̂ijÞ � rXu1ðYjÞ � Yij:

ð78Þ
Substituting (78) into (77) yields

ou1
i

os
� frX � ½f ijðe/ijÞ �Yij� þ f 0ijð/̂ijÞ � rX½u1ðYiÞ þ u1ðYjÞ� �Yijg

¼ rX �
ou1

i

os
� ðf ijðe/ijÞ �YijÞ

� �
� o

os
½ðf ijð/̂ijÞ �YijÞ :rXu1

i �

þ f 0ijðe/ijÞ �
ou1ðYjÞ

os
� rXu1

i �Yij þ
ou1

i

os
� f 0ijð/̂ijÞ � rXu1ðYjÞ �Yij:

ð79Þ
From (79) follows

Xn

i¼1

X
j 6¼i

ou1
i

os
� ½rX � ðf ijðe/ijÞ � YijÞ þ f 0ijð/̂ijÞ � rXðu1ðYiÞ

�*

þ u1ðYjÞÞ � Yij�
�+
¼ rX �

Xn

i¼1

X
j6¼i

ou1
i

os
� ðf ijð/̂ijÞ � YijÞ

� �* +

þ
Xn

i¼1

X
j6¼i

f 0ijðe/ijÞ �
ou1ðYjÞ

os
� rXu1

i � Yij

�*

þ ou1
i

os
� f 0ijð/̂ijÞ � rXu1ðYjÞ � Yij

�+
; ð80Þ
where we have made use of the fact that the temporal
average of the second term on the right-hand-side of (79)
vanishes due to periodicity in the fast time scale.

We proceed to prove that the second term in the right-
hand-side of (80) vanishes. As in the previous section, we
assume that for atom i, its interacting neighbor atoms are
n1,n2, . . . ,np, . . . ,nk where k is the number of the interacting
atoms such that jxnp

� xij < rc, p = 1,2, . . . ,k. The following
summation over the atomistic unit cell can be expanded asXn

i¼1

X
j 6¼i

f 0ijðe/ijÞ �
ou1ðYjÞ

os
� rXu1

i � Yij

�

þ ou1
i

os
� f 0ijð/̂ijÞ � rXu1ðYjÞ � Yij

�

¼
Xn

i¼1

f 0in1
ðe/in1

Þ � ou1ðYn1
Þ

os
� rXu1

i � ðYn1
� YiÞ

�

þ ou1
i

os
� f 0in1
ð/̂in1
Þ � rXu1ðYn1

Þ � ðYn1
� YiÞ

þ f 0in2
ðe/in2

Þ � ou1ðYn2
Þ

os
� rXu1

i � ðYn2
� YiÞ

þ ou1
i

os
� f 0in2
ð/̂in2
Þ � rXu1ðYn2

Þ � ðYn2
� YiÞ þ � � �

þ f 0inp
ðe/inp

Þ �
ou1ðYnpÞ

os
� rXu1

i � ðYnp � YiÞ

þ ou1
i

os
� f 0inp
ð/̂inpÞ � rXu1ðYnpÞ � ðYnp � YiÞ þ � � �

þ f 0ink
ð/̂ink Þ �

ou1ðYnk Þ
os

� rXu1
i � ðYnk � YiÞ

þ ou1
i

os
� f 0ink
ð/̂ink Þ � rXu1ðYnk Þ � ðYnk � YiÞ

�
: ð81Þ

The summation in (81) is carried out over all atoms in the
unit cell. First, we consider the case that both atom i and
any of its interacting neighboring atoms np (p = 1,2, . . . ,k)
are in the unit cell. For each interacting atom pair (i, np),
there are two terms in the summation (81) given by

f 0inp
ðe/inp

Þ �
ou1ðYnpÞ

os
� rXu1

i � ðYnp � YiÞ

þ ou1
i

os
� f 0inp
ð/̂inpÞ � rXu1ðYnpÞ � ðYnp � YiÞ

þ f 0npiðe/npiÞ �
ou1ðYiÞ

os
� rXu1

np
� ðYi � YnpÞ

þ
ou1

np

os
� f 0npið/̂npiÞ � rXu1ðYiÞ � ðYi � YnpÞ

¼ f 0inp
ðe/inp

Þ �
ou1ðYnpÞ

os
� rXu1

i � ðYnp � YiÞ

þ ou1
i

os
� f 0inp
ð/̂inpÞ � rXu1ðYnpÞ � ðYnp � YiÞ

� f 0inp
ðe/inp

Þ � ou1ðYiÞ
os

� rXu1
np
� ðYnp � YiÞ

�
ou1

np

os
� f 0inp
ð/̂inpÞ � rXu1ðYiÞ � ðYnp � YiÞ ¼ 0

ðp ¼ 1; 2; . . . ; kÞ; ð82Þ
where we have exploited the identity f 0inp

ðe/inp
Þ ¼ f 0npiðe/npiÞ

as proved in (50).
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If any of the interacting neighbor atom np lies outside
the unit cell, by periodicity, the displacement and force vec-
tor of atom np take the same value as the corresponding
atom in the unit cell and thus summation in (82) also
vanishes.

In view of (81) and (82) we have

Xn

i¼1

X
j 6¼i

½f 0ijðe/ijÞ �
ou1ðYjÞ

os
� rXu1

i � Yij

þ ou1
i

os
� f 0ijð/̂ijÞ � rXu1ðYjÞ � Yij� ¼ 0: ð83Þ

Substituting (83) into (80) and then the resulting equa-
tion into (68) yields

nkBN d

H
ohT i
ot
¼ 2

ou0ðX; tÞ
ot

� rX �
1

2H

Xn

i¼1

X
j 6¼i

½f ijð/̂ijÞ � Xij�
* +

þrX �
1

2H

Xn

i¼1

X
j6¼i

ou1
i

os
� ðf ijð/̂ijÞ � XijÞ

� �* +
:

ð84Þ

We further define

C ¼ nkBNd=H ð85Þ

and make use of the macroscopic equations of motion (54)
to obtain the thermal equation

C
ohT i
ot
�rX � hqðX; t; sÞi ¼ 2q0

ou0ðX; tÞ
ot

� o
2u0ðX; tÞ

ot2
;

qðX; t; sÞ ¼ 1

2H

Xn

i¼1

X
j 6¼i

ou1
i

os
� ðf ijð/̂ijÞ � XijÞ

� �
;

ð86Þ

where we identify q(X, t, s) as the heat flux vector.
The thermal equation can be rewritten in an alternative

form as follows. Recalling the tensor identities (69) and
(70) we have

rX � ðv � SÞ ¼ S : rXvþ v � rX � S: ð87Þ
Utilizing (87) we may write

rX �
ou0

ot
� hPi

� �
¼ hPi : rX

ou0

ot
þ ou0

ot
� rX � hPi ð88Þ

and thus

ou0

ot
� rX � Ph i ¼ rX �

ou0

ot
� Ph i

� �
� Ph i : rX

ou0

ot
: ð89Þ

Eq. (84) can be written as

C
ohT i
ot
¼ 2

ou0

ot
� rX � thPi þ rX

� 1

2H

Xn

i¼1

X
j 6¼i

ou1
i

os
� ðf ijð/̂ijÞ � XijÞ

� �* +
: ð90Þ
Inserting (89) into (90) yields

C
ohT i
ot
¼ 2rX �

ou0

ot
� Ph i

� �
� 2thPi : rX

ou0

ot

þrX �
1

2H

Xn

i¼1

X
j 6¼i

ou1
i

os
� ðf ijð/̂ijÞ � XijÞ

� �* +
:

ð91Þ
Making use of the expressions of the First Piola–Kirch-

hoff stress tensor, macroscopic deformation gradient and
the macroscopic equation of motion, we have the following
alternative form of the thermal equation

C
ohT i
ot
�rX � h~qðX; t; sÞi ¼ �2hPðX; t; sÞi :

oF0

ot
;

~qðX; t; sÞ ¼ 1

2H

Xn

i¼1

X
j 6¼i

2
ou0

ot
þ ou1

i

os

� �
� ðf ijð/̂ijÞ � XijÞ

� �
;

ð92Þ
where ~qðX; t; sÞ is an alternative form of the heat flux vec-
tor; P(X, t, s) is the First Piola–Kirchhoff stress tensor de-
fined in (54). In both forms given in (86) and (92) the
unknown field is the temporal average of temperature
hTi. In (92) we recognize the divergence term div~qðX; t; sÞ
and the work power hPðX; t; sÞi : oF0=ot. Note that all
quantities appear as time averages and the temporal deriv-
ative of hTi and F0 is with respect to the slow time scale t.
Numerical experiments reveal that (86) is numerically more
stable than (92). For the purpose of numerical verification
we adopt the form of the thermal equation given in (86).

4. Finite element implementation and numerical verification

In this Section, we provide implementation details and
give some preliminary verification results.

The two-scale problems described by (32), (54) and (86)
is solved as follows:

With the initial conditions, for every Gauss point in the
coarse scale, calculate the coarse scale deformation gradi-
ent F0(X, t); solve the dynamic unit cell problem for
û1ðX;Yi; t; sÞ using (32); compute the fast temporal average
of the First Piola–Kirchhoff stress tensor and heat flux
vector using (54b) and (86b), respectively.

Solve the coarse scale problems (54a) and (86a) with
appropriate initial and boundary conditions) using finite
element semidiscretization in space and explicit time inte-
gration; evaluate the coarse scale deformation gradient
F0(X, t) and go to I.

4.1. Weak forms and semidiscretization of the macroscopic

thermal-mechanical equations

The initial and boundary conditions for the macroscopic
equations of motion (54) are chosen as

u0ðX; 0Þ ¼ pðXÞ; ou0

ot
ðX; 0Þ ¼ gðXÞ; ð93Þ

u0ðX; tÞ ¼ �uðX; tÞ on Cu; thPi � n ¼ �t on Ct ð94Þ
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where �uðX; tÞ and �t are vectors of prescribed displacement
and traction, respectively; Cu \ Ct = ;, Cu [ Ct = C is the
boundary of the domain under consideration; n is the out-
ward norm of the boundary.

The initial and boundary conditions for the macroscopic
thermal Eq. (86) are chosen as

hT iðX; 0Þ ¼ hT 0iðXÞ ð95Þ
hT iðX; tÞ ¼ T ðX; tÞ on CT ; hqi � n ¼ �qðX; tÞ on Cq ð96Þ

where T ðX; tÞ and �qðX; tÞ are the prescribed temperature
and boundary heat flux, respectively; CT \ Cq = ;,
CT [ Cq = C.

The weak form of the thermo-mechanical equation is
stated as follows:

For t 2 (0,T in], find u0ðX; tÞ 2 Ud
t , hT iðX; tÞ 2 Uh

t , such
that for all wdðXÞ 2Vd , whðXÞ 2Vh the following holds:Z

X
q0wdðXÞ � o

2u0ðX; tÞ
ot2

dX�
Z

X
wdðXÞ � rX � hPidX ¼ 0;

ð97ÞZ
X

CwhðXÞ ohT i
ot

dX�
Z

X
whðXÞrX � hqidX

¼ 2q0

Z
X

whðXÞ ou0

ot
� o

2u0

ot2
dX ð98Þ

subjected to the initial conditions (93) and (95), where

Ud
t ¼fu0ðX; tÞju0ðX; tÞ 2H 1ðXÞ;u0ðX; tÞ¼ �uðX; tÞ on Cug;

ð99Þ
Uh

t ¼fhT iðX; tÞjhT iðX; tÞ 2H 1ðXÞ;hT iðX; tÞ¼ T ðX; tÞ on CTg
ð100Þ

are the trial solution spaces, and

Vd ¼ fwðXÞjwðXÞ 2 H 1ðXÞ;wðXÞ ¼ 0 on Cug; ð101Þ
Vh ¼ fwðXÞjwðXÞ 2 H 1ðXÞ;wðXÞ ¼ 0 on CTg ð102Þ

are the weight function spaces. The Sobolev space H1(X)
consists of all functions over domain X whose values and
their first derivatives are square integrable.

Exploiting the relations

wdðXÞ � rX � hPi ¼ rX � ðwdðXÞ � hPiÞ � hPi : rXwdðXÞ;
ð103Þ

whðXÞrX � hqi ¼ rX � ðwhðXÞhqiÞ � hqi � rXwhðXÞ ð104Þ

we have from (97), (98), (103) and (104) by making use of
the divergence theorem and the boundary conditions (94)
and (96)Z

X
q0wdðXÞ �o

2u0ðX; tÞ
ot2

dXþ
Z

X
hPi :rXwdðXÞdX¼

Z
Ct

wdðXÞ ��tdC;

ð105ÞZ
X

CwhðXÞohT i
ot

dXþ
Z

X
hqi �rXwhðXÞdX

¼
Z

Cq

whðXÞ�qðX; tÞdCþ2q0

Z
X

whðXÞou0

ot
�o

2u0

ot2
dX: ð106Þ
After introducing the finite element discretization in
space, we have the following semidiscrete thermo-mechan-
ical equations

M
o2dðtÞ
ot2

þ f inðdðtÞÞ ¼ fexðtÞ; ð107Þ

C
ohðtÞ
ot
þQinðhðtÞÞ ¼ SðtÞ ð108Þ

with the initial conditions

dð0Þ ¼ d0;
od

ot
ð0Þ ¼ v0; hð0Þ ¼ h0; ð109Þ

where d(t) and h(t) are vectors of nodal displacements and
temperatures, respectively;

M
Xnel

e¼1

LeT

Z
Xe

q0NeT
d Ne

d dXe

� �
Le;

C ¼
Xnel

e¼1

LeT

Z
Xe

CNeT
h Ne

h dXe

� �
Le ð110Þ

are the mass and capacity matrices, respectively; Le is
the scatter operator relating element and global solution
vectors.

f inðdðtÞÞ ¼
Xnel

e¼1

LeT

Z
Xe

BeT
d hPidXe;

QinðhðtÞÞ ¼
Xnel

e¼1

LeT

Z
Xe

BeT
h hqidXe ð111Þ

are nodal internal force and heat flux vectors, respectively;

fexðtÞ ¼
Xnel

e¼1

LeT

Z
Ct

NeT
d

�tdS; ð112Þ

SðtÞ ¼
Xnel

e¼1

LeT

Z
Cq

NeT
h �qdCþ 2q0

Xnel

e¼1

LeT

Z
Xe

NeT
h

ou0

ot
� o

2u0

ot2
dXe

ð113Þ

are nodal external force and heat source vectors, respec-
tively; Ne

d and Ne
h are matrices of finite element shape func-

tions for displacements and temperatures, respectively;
Be

dAa ¼ N e
dA;a, Be

hCa ¼ Ne
hC;a with A and C denoting finite ele-

ment degrees-of-freedom and a = 1, 2, 3 for 3D case (or
a = 1, 2 for 2D case); superscript e denoted finite element
numbers. Since nodal internal force fin(d(t)) and heat flux
Qin(h(t)) vectors depend on the displacement and tempera-
ture fields, the semidiscrete equation of motion and thermal
equation are coupled.

The semidiscrete equations of motion (107) and the ther-
mal Eq. (108) can be integrated using explicit time integra-
tion schemes, such as for instance the central difference
and forward difference, respectively

o
2d

ot2

� �
n

¼ ðdn�1 � 2dn þ dnþ1Þ=Dt2; ð114Þ

oh

ot

� �
n

¼ ðhnþ1 � hnÞ=Dt; ð115Þ
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where (o2d/ot2)n = o2d/ot2(t), dn = d(t), dn�1 = d(t � Dt),
dn+1 = d(t + Dt); (oh/ot)n = oh/ot(t), hn = h(t) and hn+1 =
h(t + Dt).

Inserting (114) and (115) into (107) and (108) yields

dnþ1 ¼ 2dn � dn�1 � Dt2M�1½fexðtÞ � f inðdnÞ�; ð116Þ
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Fig. 2. Snapshots of temperature and displacements al
hnþ1 ¼ hn þ DtC�1½Sn �QinðhnÞ�: ð117Þ
Similarly, the dynamic atomistic unit cell problem (32)
is integrated in the fast time using the central difference
scheme.
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Fig. 3. The speed-up of GMH over MD in terms of CPU time for
atomistic chains of different length.

Fig. 4. Continuum and atomistic unit cell models.
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4.2. Verification

We firstly consider a model problem of an atomistic
chain consisting of 1201 atoms schematically depicted in
Fig. 1. Suppose that the atoms are initially equally spaced
with spacing a and each atom interacting with its nearest
neighbors. The atomistic chain is assumed to possess peri-
odic microstructure with a unit cell of length l composed of
three atoms with masses m1 and m2. The chain is subjected
to two initial bell-shaped temperature distribution at both
ends with amplitude Tmax and width 2d = 1/4L, where L

is the total length of the atomic chain. The temperatures
at the two ends of the atomistic chain are constant in time.
The interatomic potentials take the form of the Lennard-
Jones potential. The interatomic potential between the first
and the second atom in the unit cell is U1 and that between
the second and the third atom is U2 given by

U1ðrÞ ¼ 4e1

r
r


 �12

� r
r


 �6
� �

;

U2ðrÞ ¼ 4e2

r
r


 �12

� r
r


 �6
� �

; ð118Þ

where e1 and e2 are characteristic energy scales of the inter-
action and r the characteristic length scale of the inter-
action. We assume that the initial configuration of the
atomistic chain is in equilibrium without external forces
so that a = 21/6r.

The interatomic forces are evaluated as

f01 ¼
dU1

dr
¼ 24e1

r
r
r


 �7

� 2
r
r


 �13
� �

;

f 12 ¼
dU2

dr
¼ 24e2

r
r
r


 �7

� 2
r
r


 �13
� �

: ð119Þ

For the three-atom unit cell under consideration, the
instantaneous First Piola–Kirchhoff stress (54b) and the
heat flux (86b) are

P ðX ; t; sÞ ¼ 1

2
½f01ðe/01Þ� þ ½f12ðe/12Þ�;

qðX ; t; sÞ ¼ m1 � m2

2m1

u1
sðY 1ÞP ðX ; t; sÞ; ð120Þ

where

/̂01 ¼ ð1þ u0
X Þaþ

m1 þ m2

m1

û1ðY 1Þ;

/̂12 ¼ ð1þ u0
X Þa�

m1 þ m2

m1

û1ðY 1Þ: ð121Þ

The linear mass density is given by

q0 ¼
1

l

X2

i¼1

miðY Þ ¼ ðm1 þ m2Þ=l: ð122Þ

Material parameters are m2/m1 = 5 and e2/e1 = 2. The
amplitude of the initial temperature is set to be Tmax = 1 K.

The snapshots of temperature and displacement fields at
different time instances over the atomic chain are plotted
in Fig. 2. As expected, the maximum temperatures drops
compared with the initial temperature as the wave propa-
gates towards the center.

The CPU time of homogenization in comparison with
that of Molecular Dynamics at different atomistic chain
sizes is plotted in Fig. 3. For all cases considered, the con-
tinuum mesh was sufficiently fine to resolve the macro-
scopic solution gradients. It can be observed that as chain
size increases, the ratio of the CPU time between GMH
MD simulations are increased without compromising on
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solution accuracy. For atomistic chain of 120,001 atoms
the speed-up factor is approximately 1500.

We have investigated the ratio of m2/m1 on accuracy and
CPU ratio between MD and GMH. We have kept m1 con-
stant and varied the ratio m2/m1 from 1 to 100. Results pre-
dicted by GMH remained accurate, while the CPU ratio
remained practically unaffected.

For the second example, we consider a three-dimen-
sional model of a beam consisting of 100 · 10 · 10 body-
centered cubic lattice structure schematically depicted in
Fig. 4. The total number of atoms occupying the volume
of the beam is 22221. All atoms are assumed to have equal
mass m. The beam is clamped at the two ends and is sub-
jected to an initial bell-shaped temperature distribution
with amplitude Tmax = 40 K and width 2d = L, where L

is the total length of the atomic chain. The interatomic
potentials take the form of the Lennard-Jones potential.

The continuum was discretized with 25 hexahedral ele-
ments whereas the atomistic unit is composed of 35 atoms
as shown in Fig. 5. We considered hexahedral elements
with eight-point Gauss quadrature and one-point Gauss-
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quadrature with stabilization [14]. In comparison to MD,
the CPU speed-up factor was approximately 190 in case
of eight-point quadrature, and over 1350 in case of one-
point quadrature with stabilization.

The axial displacement solution of a center atom at the
cross x = 3/5L as obtained by the GMH and the reference
MD solution are plotted in Fig. 5. It can be observed that
the coarse scale displacement predicted by GMH closely
matches that of the MD. Fig. 6 shows that the temperature
field at x = 3/5L obtained by GMH is in good agreement
with that obtained by MD.

The snapshots of temperature fields at different time
instances over the atomic chain are plotted in Fig. 7. It can
be seen that as time increases, the temperature in the middle
area drops, whereas temperatures at the two ends increases.

5. Conclusions and future research directions

The primary goal of this paper was to develop a mathe-
matical framework aimed at reconciling between fine scale
and continuum thermo-mechanical descriptions. We
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Fig. 7. Snapshots of temperatures along the long axis.
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derived a dynamic atomistic unit cell problem for the per-
turbation û1

miðYiÞ o
2û1ðX;Yi; t; sÞ

os2 ¼ e2
P
j 6¼i

f̂ ijðF0ðX; tÞ � Xij

þ eu1ðX;Yj; t; sÞ
� eu1ðX;Yi; t; sÞÞ 8i

coupled with thermo-mechanical continuum equations for
hTi and u0 given as

q0

o2u0ðX; tÞ
ot2

�rX � hPi ¼ 0

PðX; t; sÞ ¼ 1

2H

Xn

i¼1

X
j 6¼i

½f ijð/̂ijÞ � Xij�;

C
ohT i
ot
�rX � h~qðX; t; sÞi ¼ �2hPðX; t; sÞi :

oF0

ot
~qðX; t; sÞ

¼ 1

2H

Xn

i¼1

X
j 6¼i

2
ou0

ot
þ ou1

i

os

� ��

�ðf ijð/̂ijÞ � XijÞ
�
:

These equations have a familiar structure. The expression
of stress is similar to the virial stress formula except for the
inertia term, which is absent. It is important to note that this
form of stress is not new. Many investigators including
Srolovitz et al. [15], Horstemeyer and Baskes [16] and Alber
et al. [17] among others adopted this form as a measure of
the continuum stress. Perhaps the only expression that we
were not able to trace the origin of is that of flux.

We have considered pairwise potentials only, which are
usually inadequate for modeling of solids. The methodol-
ogy developed, however, is generic and is not limited to
pair potentials. For three-body potentials, the final expres-
sions will be more complex (see for instance Appendix in
Ref. [3] for additional terms arising from the Stillinger–
Webber and Tersoff potential.

Despite of some of the encouraging results, development
of a complete mathematical and computational framework
aimed at linking continuum thermo-mechanical and fine
scale descriptions remains an elusive task. The conceptual
challenge remains; can the electronic scale be brought into
the atomistic description in the form of interatomic poten-
tials and/or as an additional term in MD so that the math-
ematical framework proposed could be extended to
conductors? The computational complexity has been only
partially addressed. The number of Gauss points in the
continuum could be of order of thousands if not millions.
The atomistic unit cell may include millions of atoms if
defects to be included. The two-scale algorithm outlined
is fully coupled, i.e., at every slow time step, the solution
at every unit cell has to be advanced. This creates a tremen-
dous computational challenge that can be only addressed
by a combination of innovative scale bridging approaches
(such as GMH, HMM or others), coarse-grained models
and parallel machines.
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