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ABSTRACT: The spectral formulation of the stochastic finite-element method is applied to the problem of heat
conduction in a random medium. Specifically, the conductivity of the medium, as well as its heat capacity are
treated as uncorrelated random processes with spatial random fluctuations. Using the spectral stochastic finite-
element method, this paper analyzes the sensitivity of heat conduction problems to probabilistic models of
random data. In particular, both the thermal conductivity and the heat capacity of the medium are assumed to
be uncertain. The implementation of the method is demonstrated for both Gaussian and lognormal material
properties, modeled either as random variables or random processes.
INTRODUCTION

Mathematical models of physical systems, be they in the
form of partial differential equations or in some other algo-
rithmic form, are essentially abstract representations of our
observations regarding these systems. One important usage of
these models derives from their ability to predict the behavior
of the systems in response to their environment and thus allow
for the mitigation against extreme conditions under which
these systems may fail to fulfill their intended function. With
the recent technological advances in materials and computa-
tional science, the expected accuracy of these models is being
continually pushed to its limits. The engineering of materials
at the nanoscale level, for example, requires tolerances that are
vanishingly small. Also, given the capabilities of today’s com-
puters, and even more so the extrapolation of these capabilities
into the near future, ever more sophisticated models of phys-
ical systems can be solved numerically, thus providing higher
accuracy on the behavior of these systems and significantly
extending their operational boundaries.

It is therefore clear that the drive for more accurate models
is justified both by the need for the added accuracy from such
models as well as by the ability to solve numerically the cor-
responding complex equations. One way to achieve this higher
accuracy is to improve the fidelity of the parameters of the
analytical model. In many cases, the accuracy in estimating
these parameters can indeed be tightly controlled. The high
costs associated with such a control, however, make it very
desirable to be able to assess a priori the sensitivity of the
predictions with respect to specific parameters, so as to guide
future experimental investigations according to a rational cost-
effective strategy.

In this paper, these sensitivities are investigated by casting
the problem in a probabilistic context, thus providing a rig-
orous framework in which to characterize the uncertainties in
the data, to propagate them through the mathematical model,
and to study their effect on predicted field variables. A number
of papers and books have been devoted to analyzing the prop-
agation of uncertainty as described above (Shinozuka and
Lenoe 1976; Beck et al. 1985; Der Kiureghian and Liu 1986;
Liu et al. 1986, 1987; Shinozuka 1987; Deodatis and Shino-
zuka 1989; Spanos and Ghanem 1989; Deodatis 1991; Gha-
nem and Spanos 1991; Li and Der Kiureghian 1993; Fadale
and Emery 1994; Ghanem and Brzkala 1996). The framework
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set forth in this paper views the random nature of the problem
as contributing a new dimension to the problem along which
approximation techniques, such as the weighted residual
method, are applied. The details of this technique have been
published elsewhere (Ghanem and Spanos 1991), and a brief
review is included here for the sake of completeness.

In this paper an uncertain property of a medium will be
expanded according to

k(x, u) = j (u)k (x) (1)i iO
i

where u denotes the random dimension; ki represents a certain
scale of fluctuation of the property k; while ji represents its
random magnitude and hence the random contribution of that
particular scale to the overall property. Both the property and
its various scales are global quantities and depend on the spa-
tial position x; they can also be multivariate quantities. The
random medium, acting as a nonlinear filter, will couple the
uncertainties from the various scales. Thus, the solution sought
in this paper, is a multidimensional nonlinear function of the
set {ji} and will be assumed to have the following generic
form:

`

T(x, t, u) [ T({j (u)}) = T (x, t)c (u) (2)i i iO
i=0

where {Ti(x, t)} = deterministic quantities to be calculated;
and {ci(u)} is a basis in the space of random variables. This
basis will be taken to be the set of multidimensional Hermite
polynomials in the quantities {ji(u)}. This basis will be re-
ferred to as the polynomial chaos (Wiener 1938). The Monte
Carlo simulation procedure is a special case of the preceding
representation, with

c (u) = d(u 2 u ) (3)i i

where ui is a particular outcome; and d denotes the Kronecker
delta function. In this case, the nonlinear filter action of the
porous medium is eliminated by virtue of the property of the
delta functions. Higher order interactions between the various
scales are therefore nonexistent in this case, and the scales
associated with a Monte Carlo simulation are independent.
This is as expected, since in this case, these scales represent
independent realizations of the random property of the me-
dium. It is clear, therefore, that Monte Carlo simulation pro-
vides a collocation approximation along the random dimen-
sion. This paper will present the framework that generalizes
this concept. Of course, for the approximation associated with
(3), the deterministic quantities Ti(x, t) represent individual
realizations of the solution process that are associated with the
random abscissa ui. Moreover, in a Monte Carlo setting, the
equations for Ti(x, t) are uncoupled. More generally, the equa-
tions for the Ti(x, t) will be coupled, and they must be solved



for simultaneously, thus requiring additional computational ef-
fort. However the number of terms required in the series rep-
resentation will depend on the particular basis chosen. A bal-
ance can thus be reached between the size of the final system
and the level of coupling between its components.

In addition to providing insight into the propagation of un-
certainty with respect to scales of fluctuation of the random
material properties, a format of the solution as given by (2)
has an important appeal. Specifically, having distilled the un-
certainty out of the spatial dimension through a representation
that is reminiscent of the method of separation of variables, it
becomes possible to perform a number of analytical operations
on the solution process. These may be needed to determine,
among others, the optimal sampling locations for both material
properties and field variable. The details of these calculations,
however, are not pursued further in this paper since the em-
phasis here is on developing the framework for characterizing
the solution process itself.

In the next section, the discretization of random processes
in terms of a finite number of random variables is presented.
Emphasis is placed on two expansions, namely the Karhunen-
Loève and the polynomial chaos expansions.

In the next section, random variables and stochastic pro-
cesses are briefly reviewed with emphasis on their represen-
tation in computationally tractable forms. Following that, the
nondimensional equations governing heat conduction in a ran-
domly heterogeneous medium are reviewed. Next, the dis-
cretization with respect to the spatial variables is implemented
via the finite-elements formalism, resulting in a set of nonlin-
ear ordinary differential equations with respect to the time var-
iable. In view of the randomness of the material properties of
the material, the unknowns at this stage consist of vectors of
random variables representing the temperature at the nodes.
After that, the Karhunen-Loève and the polynomial chaos ex-
pansions are used to obtain an ordinary differential equation
with deterministic coefficients. Finally, the formalism is ex-
emplified by its application to a one-dimensional (1D) prob-
lem, and the significance of the results is discussed.

REPRESENTATION OF RANDOM VARIABLES AND
STOCHASTIC PROCESSES

The development presented in this paper hinges on the def-
inition of random variables as ‘‘measurable functions’’ from
the space of elementary events to the real line. As functions,
approximation theory, as developed for deterministic func-
tions, will be applied to random variables. The main question
to be addressed, already raised in the Introduction, is the char-
acterization of the solution to a physical problem where some
parameters of the model have been modeled as stochastic pro-
cesses. The answer to this question lies in the realization that
in the deterministic finite-element method, as well as most
other numerical analysis techniques, a solution to a determin-
istic problem is known once its projection on a basis in an
appropriate function space has been evaluated. It often hap-
pens, in deterministic analysis, that the coefficients in such a
representation have an immediate physical meaning, which
distracts from the mathematical significance of the solution.
Carrying this argument over to the case involving stochastic
processes, the solution to the problem will be identified with
its projection on a set of appropriately chosen basis functions.
A random variable will thus be reviewed as a function of a
single variable, u, that refers to the space of elementary events.
A stochastic process, or field, E is then a function of n 1 1
variables where n is the physical dimension of the space over
which each realization of the process is defined. As already
mentioned in the Introduction, Monte Carlo simulation can be
viewed as a collocation along this u dimension. Other approx-
imations along this dimension are possible and are explored
in this section. This theoretical development is consistent with
the identification of the space of second-order random varia-
bles as a Hilbert space with the inner product on it defined as
the mathematical expectation operation (Loève 1977). Second-
order random variables are those random variables with finite
variance; they are mathematically similar to deterministic
functions with finite energy.

Karhunen-Loève Expansion

The Karhunen-Loève expansion (Loève 1977) of a stochas-
tic process E(x, u) is based on the spectral expansion of its
covariance function REE(x, y). Here, x and y are used to denote
spatial coordinates, while the argument u indicates the random
nature of the corresponding quantity. The covariance function
being symmetrical and positive definite, by definition has all
of its eigenfunctions mutually orthogonal, and they form a
complete set spanning the function space to which E(x, u)
belongs. It can be shown that if this deterministic set is used
to represent the process E(x, u), then the random coefficients
used in the expansion are also orthogonal. The expansion then
takes the following form:

`

¯E(x, u) = E(x) 1 l j (u)f (x) (4)Ï i i iO
i=1

where Ē(x) denotes the mean of the stochastic process; and
{ji(u)} forms a set of orthogonal random variables. Further-
more, {fi(x)} are the eigenfunctions and {l i} are the eigen-
values, of the covariance kernel, and can be evaluated as the
solution to the following integral equation

R (x, y)f (y) dy = l f (x) (5)EE i i iE
D

where D denotes the spatial domain over which the process
E(x, u) is defined. The most important aspect of this spectral
representation is that the spatial random fluctuations have been
decomposed into a set of deterministic functions in the spatial
variables multiplying random coefficients that are independent
of these variables. If the random process being expanded, E(x,
u), is Gaussian, then the random variables {ji} form an or-
thonormal Gaussian vector. The Karhunen-Loève expansion is
mean-square convergent irrespective of the probabilistic struc-
ture of the process being expanded, provided it has a finite
variance (Loève 1977). Moreover, the closer a process is to
white noise, the more terms are required in its expansion,
while at the other limit, a random variable can be represented
by a single term. In physical systems, it can be expected that
material properties vary smoothly at the scales of interest in
most applications, and therefore only few terms in the Kar-
hunen-Loève expansion can capture most of the uncertainty in
the process.

Polynomial Chaos Expansion

The covariance function of the solution process is not
known a priori, and hence the Karhunen-Loève expansion can-
not be used to represent it. Since the solution process is a
function of the material properties, nodal temperatures T(u)
can be formally expressed as some nonlinear functional of the
set {ji(u)} used to represent the material stochasticity. It has
been shown (Cameron and Martin 1947) that this functional
dependence can be expanded in terms of polynomials in
Gaussian random variables, referred to as polynomial chaoses.
Namely
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`

T(u) = a G 1 a G (j (u))0 0 i 1 iO 1 1
i =11

` i1

1 a G (j (u), j (u)) 1 ???i i 2 i iOO 1 2 1 2
i =1 i =11 2 (6)

In this equation, the symbol . . . , denotes theG (j , j )n i i1 n

polynomial chaos (Wiener 1938; Kallianpur 1980) of order n
in the variables . . . , These are generalizations of the(j , j ).i i1 n

multidimensional Hermite polynomials to the case where the
independent variables are functions measurable with respect to
the Wiener measure. Eq. (6) has been shown (Cameron 1947)
to be a mean-square convergent representation for second-or-
der random variables. This validity of the covergence of this
expansion is irrespective of the constitutive mechanistic be-
havior of the material, and it merely states that a general ran-
dom variable, with unknown probabilistic behavior, can be ex-
panded as a polynomial in Gaussian variables according to the
expansion given by (6). It should also be noted that other
expansions in terms of polynomials of non-Gaussian variables
are not guaranteed to converge. Introducing a one-to-one map-
ping to a set with ordered indices denoted by {ci(u)} and
truncating the polynomial chaos expansion after the pth term,
(6) can be rewritten as

p

T(u) = T c (u) (7)j jO
j=0

These polynomials are orthogonal in the sense that their inner
product ^cjck&, which is defined as the statistical average of
their product, is equal to zero for j ≠ k. Moreover, they can
be shown to form a complete basis in the space of second-
order random variables. A complete probabilistic character-
ization of the process T(u) is obtained once the deterministic
coefficients Tj have been calculated. A given truncated series
can be refined along the random dimension either by adding
more random variables to the set {ji} or by increasing the
maximum order of polynomials included in the polynomial
chaos expansion. The first refinement takes into account higher
frequency random fluctuations of the underlying stochastic
process, while the second refinement captures strong nonlinear
dependence of the solution process on this underlying process.

It should be noted at this point that the polynomial chaos
expansion can be used to represent, in addition to the solution
process, stochastic processes that model non-Gaussian material
properties. The processes representing the material properties
are thus expressed as the output of a nonlinear system to a
Gaussian input.

GOVERNING EQUATIONS

Since it will be assumed in the foregoing that the material
properties of the medium are spatially varying, it will be nec-
essary to carefully develop the nondimensional form of the
heat conduction equations. The heat equation for a spatially
varying medium is given by

T
c 2 = ?k=T = 0, x [ V (8)

t

subjected to the following initial and boundary conditions

T(0, x) = T (9a)0

T(t, x) = T , x [ G (9b)b 1

T
2k = q , x [ G (9c)b 2

n
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In these equations, V denotes the spatial domain of definition
of the problem, G1 denotes a subset of its boundary along
which essential boundary conditions are applied, while G2 de-
notes that portion of the boundary along which natural con-
ditions are applied and x. Moreover, k and c denote, respec-
tively, the conductivity tensor and the volumetric heat capacity
of the medium which will be assumed to be a spatially varying
random process. Let

¯k = [k ] = k [a ] (10)ij 11 ij

where a = anisotropy tensor, equal to the identity tensor for a
homogeneous and isotropic material; and denotes the meank̄11

of the conductivity tensor in direction 11. Moreover, we intro-
duce the following nondimensional space and time variables

x t1z = ; t = (11a,b)
L t*

where L = some representative spatial scale; and t* = repre-
sentative time scale, and let the new nondimensional temper-
ature be given by

T 2 T01T = (12)
q L/kb 11

The governing equation can then be rewritten as

1 ¯c T k11 12 = ?a=T = 0 (13)1 2t* t L

or

2 1cL T 12 = ?a=T = 0 (14)1k̄ t* t11

Denoting by a the diffusivity of the medium

k̄11
a = (15)

c̄

the governing equation can be rewritten as

2 1cL T 12 = ?a=T = 0 (16)1c̄at* t

Choosing the representative time scale according to

2L at1t* = ; t = (17a,b)2a L

results in the final form of the governing equation

1T 1d 2 = ?a=T = 0 (18)1t

where

c
d = (19)

c̄

The initial and boundary conditions, associated with the new
nondimensional variables are given by

1T (0, z) = 0 (20a)

T 2 Tb 01T (t, z) = , z [ G (20b)1
q Lkb 11

T
2a = 1, z [ G (20c)2

n

Following the presentation in the second section of this pa-
per, the conductivity tensor and the volumetric heat capacity



can be represented using their Karhunen-Loève expansions in
the form

N Nc c

d(z) = 1 1 j d (z) = j d (z) (21)i i i iO O
i=1 i=0

and

N Nk k

a(z) = I 1 j a (z) = j a (z) (22)i i i iO O
i=1 i=0

Assuming that the processes a and d are independent, the ran-
dom variables ji appearing in their respective expansions are
also independent. Statistical independence in this context re-
flects the more basic assumption that the randomness in the
thermal conductivity and the heat capacity are introduced by
two different phenomena at the microstructure level. This as-
sumption may need to be revised once enough studies have
been conducted to explain the propagation of uncertainty from
microscale processes to the macroscale coefficients appearing
in the differential equations.

Thus, denoting

N = N 1 N (23)c k

(21) and (22) can be rewritten as

N

d(z) = 1 1 j d (z), d = 0, i > N (24)i i i cO
i=1

and

N

a(z) = I 1 j a (z), a = 0, i # N (25)i i i cO
i=1

Substituting these two expansions into the governing equation
yields

N N
T

1 1 j d (z) 2 = ? 1 1 j a (z) =T = 0 (26)i i i iS O D S O D1ti=1 i=1

It is emphasized at this point that the representations given by
(24) and (25) should not be construed as constitutive relations
for the material behavior. They merely represent a mathemat-
ically concise and consistent description of the spatial fluctu-
ations of the material property. In the next section, the finite-
element method will be implemented to reduce this partial
differential equation into an algebraic system of equations
while taking proper consideration of the randomness of all
quantities involved.

STOCHASTIC FINITE ELEMENT

In the spirit of the finite-element method, this last equation
is projected onto a basis consisting of test function, which is
taken here to be the set of local polynomials. This results in
the following integral equation:

N N1T 1j d (z) H(z) dz 2 = ? j a (z) =T H(z) dz = 0i i i iOE E SO D1ti=0 i=0V V

(27)

where H = traditional finite-element shape function vector. Ap-
plying Stokes’ theorem to the second integral results in

N N1T 1j d (z)H(z) dz 1 j =H(z)a (z)=T dzi i i iO E O E1ti=0 i=0V V

N 1T
= 2 j a (z) dGi iO E

ni=0 G (28)
The integral on the right-hand side of this equation can be
rewritten as

1 1 1T T T
2 a(z) dG = 2 a(z) dG 1 2 a(z) dGE E E

n n nG G G1 2

1T
= q(z) dG 2 a(z) dGE E

nG G2 1

It is important to note in this last equation that the natural
boundary condition is applied with probability 1 to the bound-
ary G2. The final finite-element equation can be obtained upon
carrying out the Galerkin procedure. This results in the fol-
lowing system of algebraic equations:

N N

˙j C T 1 j K T = q (29)i i i iO O
i=0 i=0

where the matrices Ci and Ki are obtained by assembling the
elemental matrices given by

(e) TC = d (z)H(z)H (z) d(z) (30)i iE
(e)V

and

(e) TK = =H (z)a (z)=H(z) d(z) (31)i iE
(e)V

and the right-hand side of vector is obtained by assembling
the following elemental vectors

(e)q = H(z) dG (32)E
(e)G

The essential boundary conditions can then be implemented
according to standard finite-element procedures, assuming they
are to be imposed with probability 1. For each realization of
the random variables ji, the preceding equations can be solved
for a corresponding realization of the temperature T through-
out the domain. Next, a procedure is developed that imple-
ments the concepts developed in the second section of this
paper. Specifically, the temperature field T is represented as

M

T = c T (33)j jO
i=0

and a framework is developed for evaluating the deterministic
coefficients Tj in this expansion. Substituting this expansion
in (29) yields

M N M N

˙j c C T 1 j c K T = q (34)i j i j i j i jOO OO
j=0 i=0 j=0 i=0

Multiplying this last equation by each of the ck and taking the
ensemble average results in the following equation:

M N M N

˙^j c c &C T 1 ^j c c &K Ti j k i j i j k i jOO OO
j=0 i=0 j=0 i=0

= ^qc &, k = 1, . . . , Mk (35)

This last procedure is mathematically equivalent to forcing the
error in the approximation for the temperature to be orthogonal
to the approximating space as defined by the basis {ci}. Fi-
nally, denoting ^jicjck& by dijk, and ^qck& by qk, this last equa-
tion becomes

M N M N

˙d C T 1 d K T = q , k = 1, . . . , Mijk i j ijk i j kOO OO
j=0 i=0 j=0 i=0

(36)
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TABLE 1. Nonzero Values of dijk for M = 1; 1D Polynomials

i 1 1
(1)

j 1 1
(2)

k 1 1
(3)

dijk

(4)

1 1 1 1
1 2 2 1
1 3 3 2
1 4 4 6
1 5 5 24
2 1 2 1
2 2 1 1
2 2 3 2
2 3 2 2
2 3 4 6
2 4 3 6
2 4 5 24
2 5 4 24
3 1 3 2
3 2 2 2
3 2 4 6
3 3 1 2
3 3 3 8
3 3 5 24
3 4 2 6
3 4 4 36
3 5 3 24
3 5 5 192
4 1 4 6
4 2 3 6
4 2 5 24
4 3 2 6
4 3 4 36
4 4 1 6
4 4 3 36
4 4 5 216
4 5 2 24
4 5 4 216
5 1 5 24
5 2 4 24
5 3 3 24
5 3 5 192
5 4 2 24
5 4 4 216
5 5 1 24
5 5 3 192
5 5 5 1,728

This is a deterministic equation that can be solved for the
unknown coefficients Ci. Values for the coefficients dijk can be
calculated ahead of time and tabulated. Table 1 shows one
such table for the 1D case where a single random variable j1

is used to characterize the randomness of the problem; this
would correspond to the case where only one property is mod-
eled as a random variable.

Once the coefficients in the expansion of the solution pro-
cess have been evaluated, the variance of the solution can be
readily obtained. Noting that the polynomial chaos basis is
orthogonal, a simple expression for the covariance matrix of
the solution process is given by

N

T 2R = T T ^c & (37)TT i i iO
i=1

The variance of the solution at any modal point is then ob-
tained as the diagonal elements of RTT. Of course, additional
information is contained in the expansion coefficients Ti, be-
yond this second-order characterization. Indeed, a complete
probabilistic characterization is condensed in these coeffi-
cients. Simulated realizations of the solution can be simply
obtained by generating a set of random variables ji from which
the polynomial chaoses are formed and used in the expansion
of the temperature field. The coefficients of the first-order ex-
pansion (those multiplying the first-order polynomials, j1, j2,
j3, j4) can be viewed as the first-order sensitivity coefficients
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FIG. 1. Approximation of Lognormal Variables by Successive
Polynomial Chaos; COV = 0.1

TABLE 2. ci (h) Used in Evaluating Polynomial Chaos Coeffi-
cients of Lognormal Process

ci(j)
(1)

ci(h)
(2)

^ci(h)&
(3)

ji hi 1 gi gi

jijj 2 dij (hi 1 gi)(h j 1 gj) 2 dij gigj

jijjjk 2 jidjk 2 jjdik 2
jkdij

(hi 1 gi)(hi 1 gj)(h j 1 gk) 2 gidjk 2
gjdik 2 gkdij gigjgk

similar to those obtained from a perturbation-based analysis of
the problem (Fadale and Emery 1994).

IMPLEMENTATION DETAILS

The stochastic finite-element method presented in this paper
can be readily integrated into an existing deterministic finite-
element program. The necessary steps for doing so are as fol-
lows:

1. Decompose the random material properties into their ba-
sic scales of fluctuation using the Karhunen-Loève ex-
pansion. For the case of a random variable, these reduce
to a single scale of constant value.

2. Construct the capacitance and conductance matrices us-
ing, in turn, each of these scales as the material property.
Denote each of the matrices by Ci and Ki corresponding
to scale i.

3. Construct a large matrix of dimension n 3 N where n
denotes the number of degrees-of-freedom in a deter-



FIG. 2. Approximation of Lognormal Variables by Successive
Polynomial Chaos; COV = 0.3

ministic problem, and N denotes the number of terms
retained in the random expansion. Index the submatrices
by j and k.

4. Multiply each Ci and Ki by the coefficient dijk for each j
and k and add the product thus obtained to the j-k sub-
matrix in the large matrix.

5. Only the first block of the right-hand side vector is non-
zero and is equal to its deterministic value. This of course
is only true under the assumption that the applied fluxes
are deterministic, and the procedure must be modified
accordingly for random fluxes.

6. Essential boundary conditions are applied to the nodes
associated with the mean term in the expansion (the first
block). Homogeneous boundary conditions of the same
type applied to the first block are applied to all of the
other blocks. This will ensure that the boundary condi-
tions are satisfied with probability one.

7. The large system of equations is solved for the coeffi-
cients in the expansion for the temperature field.

8. The variance of the temperature can be evaluated using
(39).

The framework presented in the previous sections is now
applied to a simple example. Consider a 1D domain defined
over z [ [0, 1], with both random heat capacity and random
conductivity. Assume each of these two random quantities to
be specified, in a probabilistic sense, by its mean value and
its correlation function. Note that in the case of a random
variable, this mean value would be a constant, and the corre-
lation function would be equal to the variance of the random
FIG. 3. Coefficients in Expansion of Temperature. Determinis-
tic Parameters

variable. The two random processes can then be represented
in the following form:

¯C = C 1 j C (38)1 1

and

¯K = K 1 j K 1 j K 1 j K (39)1 1 2 2 3 3

where the random variables ji appearing in both expansions
are orthogonal. The inclusion of two terms in the representa-
tion of the heat capacity reflects the hypothesis that it varies
slowly over space, while the inclusion of four terms in the
representation for the conductivity corresponds to the hypoth-
esis that this property varies more significantly over space. To
combine both expansions in the same computational frame-
work, it is expedient to rewrite them as follows:

4

¯C = C 1 j 0 1 j 0 1 j 0 1 j C = j C (40)1 2 3 4 4 i iO
i=0

and
4

¯K = K 1 j K 1 j K 1 j K 1 j 0 = j K (41)1 1 2 2 3 3 4 i iO
i=0

Moreover, an expansion of the temperature field will be sought
in the form

2¯T = T 1 j T 1 j T 1 j T 1 j T 1 (j 2 1)T 1 (j j )T1 1 2 2 3 3 4 4 1 5 1 2 6

21 (j j )T 1 (j j )T 1 (j 2 1)T 1 (j j )T 1 (j j )T1 3 7 1 4 8 2 9 2 3 10 2 4 11

14

2 21 (j 2 1)T 1 (j j )T 1 (j 21)T = c T3 12 3 4 13 4 14 i iO
i=0 (42)
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This expansion includes all of the second-order terms in the
four variables ji defining the material properties and thus
serves as an approximation of the temperature field as a sur-
face in the space defined by these variables (recall that j0 [
1 and is thus not considered as one of the basic variables).
The indexing on the coefficients in all of the preceding ex-
pansions is compatible with a four-dimensional (4D) expan-
sion. For lower dimensional expansion, the same indexing can
still be used with only the coefficients referencing the active
ji variables not equal to zero. For higher order expansions, on
the other hand, the indexing scheme must be modified to insert
the polynomials with respect to the new variables at their ap-
propriate location. The significance of the various terms in (42)
is of great relevance in applications. In particular, to the extent
that each ji represents the contribution of the ith scale of fluc-
tuation of a specific material property, the coefficients of the
first-order terms in the expansion of the temperature field (i.e.,
those terms multiplying the first-order polynomials), represent
the first-order sensitivity of the temperature with respect to that
specific scale. The first-order sensitivity of the temperature
with respect to the overall property is obtained by adding the
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contribution from all scales making up that property. The res-
olution of the sensitivity at the levels of individual scales,
however, is of great significance in itself. Indeed, it permits
the identification of the significant scales of the property, thus
indicating a preferred strategy for the experimental estimation
of that property. Through a judicious spacing of measurements
along a specimen, a specific scale of fluctuation of the material
property can be evaluated. The higher order terms in the ex-
pansion can be used to refine the estimated values of these
sensitivities to within target accuracy.

NON-GAUSSIAN MATERIAL PROPERTIES

For non-Gaussian material properties the method presented
in this paper is still applicable, provided the polynomial chaos
expansion is used to represent the material property instead of
the Karhunen-Loève expansion. Assume, for example that the
conductivity process k11 is a lognormal process and is thus
obtained as the exponential of a Gaussian process g defined
as

g = ḡ 1 j g 1 j g 1 j g (43)1 1 2 2 3 3
FIG. 4. Coefficients in Expansion of Temperature. Gaussian Conductivity; COV Conductivity = 0.1; COV Heat Capacity = 0



Then k11 can be written as a polynomial in the three variables,
j1, j2, and j3. In particular, a form is sought in terms of the
polynomial chaos polynomials, resulting in the following re-
lation:

N

gk = e = k c (44)11 i iO
i=0

In view of the orthogonality of the ci variables, the coefficients
ki can be obtained as

g^c e &i
k = (45)i 2^c &i

The denominator in this last equation is easy to calculate and
tabulate. The numerator, on the other hand, requires special
treatment (Ghanem, unpublished paper, 1997). Specifically, it
can be rewritten as

`

1g T^ce & = c(j)exp g 2 j j dj (46)E F G22`
This integral can be evaluated in closed form resulting in
N

^c (h)& 1i 2k = exp ḡ 1 g (47)i jF O G2^c & 2i j=1

with ci(h) given in Table 2. For the case where the process g
is reduced to a random variable, thus resulting in a single term
in its expansion, the lognormal variable k can then be written
as a 1D polynomial in this Gaussian variable according to

`2 js sg g
k = exp ḡ 1 c (48)jF G O2 j!j=0

Figs. 1 and 2 show the probability density function of a log-
normal variable being approximated in this fashion. Fig. 1 cor-
responds to a coefficient of variation (COV) of the lognormal
variable equal to 0.1 while Fig. 2 corresponds to a COV equal
to 0.3. Each of these figures shows the probability density
function associated with successively higher levels of approx-
imation, with the first level being equal to the Gaussian ap-
proximation.

If the random process for the heat capacity c is also non-
FIG. 5. Coefficients in Expansion of Temperature. Gaussian Conductivity; COV Conductivity = 0.4; COV Heat Capacity = 0
JOURNAL OF ENGINEERING MECHANICS / JANUARY 1999 / 33



Gaussian and is also represented as a polynomial in a Gaussian
variable j4 then the preceding equations for the capacitance
matrix C and, and the conductivity matrix K, are replaced by
the following two equations:

2¯C = C 1 j 0 1 j 0 1 j 0 1 j C 1 (j 2 1)0 1 (j j )01 2 3 4 4 1 1 2

21 (j j )0 1 (j j )0 1 (j 2 1)0 1 (j j )0 1 (j j )01 3 1 4 2 2 3 2 4

14

2 21 (j 2 1)0 1 (j j )0 1 (j 2 1)C 4 = c C (49)3 3 4 4 1 i iO
i=0

and

2¯K = K 1 j K 1 j K 1 j K 1 j 0 1 (j 2 1)K 1 (j j )K1 1 2 2 3 3 4 1 5 1 2 6

21 (j j )K 1 (j j )K 1 (j 2 1)K 1 (j j )K 1 (j j )K1 3 7 1 4 8 2 9 2 3 10 2 4 11

14

2 21 (j 2 1)K 1 (j j )K 1 (j 2 1)0 = c K3 12 3 4 13 4 i iO
i=0 (50)

The expansion for the temperature field remains unchanged.
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In the case of either the conductivity or the heat capacity being
modeled as a random variable as opposed to a random process,
the preceding expansions simplify by restricting them to a sin-
gle variable ji and all of its 1D polynomials. This is consistent
with the notion that a random variable is a limiting case of a
stochastic process as its correlation length becomes very large,
thus allowing one term in its Karhunen-Loève expansion to
substantially dominate over all others.

Obviously, the coefficients dijk associated with the 4D ex-
pansions in this example must be obtained from a table similar
to Table 1 developed specifically for the 4D (or higher) case.
Such tables can be readily developed using any of the readily
available symbolic manipulation packages such as Macsyma
or Mathematica.

NUMERICAL EXAMPLE

The method described earlier is now exemplified by its ap-
plication to a simple problem. Consider a 1D domain of unit
length subjected to a constant heat flux, qb = 1, at one end and
perfectly insulated at the other end. Let the initial temperature
FIG. 6. Coefficients in Expansion of Temperature. Gaussian Conductivity and Heat Capacity; COV Conductivity = 0.4; COV Heat Ca-
pacity = 0.4



of the domain be at 3007C. The spatial domain is divided into
a uniform mesh of 10 elements. Fig. 3 shows the evolution
with time of the temperature at various nodal points in the
domain under the assumption of a homogeneous medium. The
remaining figures show the results associated with the thermal
conductivity and the heat capacity having nonzero COV. In all
of the following cases, the material will be assumed to be
isotropic with random fluctuations having an exponentially de-
caying correlation function. Figs. 4 and 5 correspond to a ran-
dom conductivity with COVs = 0.1 and 0.4, respectively. Fig.
6 corresponds to the case where both the conductivity and the
heat capacity are random with each of their COVs = 0.4. The
subscript on the temperature in all the figures refers to the
expansion given in (44). In the case where only one of the
properties is random, the coefficients of the other property, as
given in (43) and (44), are automatically set to zero since they
are proportional to the COV of the property. This explains the
zero value of some of the coefficients in the figures whenever
one of the properties is deterministic. Both material properties
have thus far been assumed to have a Gaussian distribution.
Fig. 7 shows results associated with the conductivity having a
lognormal distribution with a COV = 0.4. It is observed that
the effect of non-Gaussian material randomness increases sub-
stantially with the level of random fluctuations as described
by the COV. In Fig. 7 the heat capacity is assumed to be
deterministic, and three terms are used in expanding the log-
normal conductivity [four terms in (50) including the mean].
This corresponds to the terms K0, K1, K5 and K15 in (52) being
nonzero. Note that the terms T15 and T34 are not shown in
(44). They refer to the third-order term in the expansion of the
conductivity and the third-order term in the expansion of the
heat capacity, and their associated polynomials have the form
c15 = 2 3j1 and c34 = 2 3j4.

3 3j j1 4

In all of the aforementioned results, the correlation length
of the conductivity process is taken to be very large (10,000),
and a single term is included in its expansion. Figs. 8 and 9
show results similar to those in Figs. 4 and 5 except now the
correlation length of the conductivity process is taken to be
equal to 0.2, and two terms are included in the expansion of
the process. These results correspond to the case of a Gaussian
FIG. 7. Coefficients in Expansion of Temperature. Lognormal Conductivity; COV Conductivity = 0.4; COV Heat Capacity = 0
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conductivity process. This implies that the terms multiplying
the polynomials in j1 and j2 are now activated. The first-order
sensitivity, captured by the terms multiplying j1 and j2, is now
resolved with respect to each of these scales. Given the short
correlation length used in this example, the contribution from
the two scales is of the same order of magnitude. The scales
of fluctuation represent the frequencies of fluctuation of the
data at which the contributions to the overall property are un-
correlated. It is clear from these results that the sensitivity of
the temperature field with respect to the uncertainties in the
conductivity depends greatly on these scales of fluctuation, and
it seems that modeling thermal conductivity as a stochastic
process as opposed to a random variable can provide much
toward meaningful experiment design. Give the simple char-
acter of the problem used in this example, the specific conclu-
sions drawn here cannot, obviously, be generalized. The qual-
itative nature of these conclusions, however, are adequately
supported by this 1D example. Figs. 10 and 11 finally show
results associated with the distribution, along the domain, of
the values of coefficients Ti. Fig. 10 corresponds to the
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case of a random variable conductivity, while Fig. 11 corre-
sponds to the case of a stochastic conductivity process with
correlation length equal to 0.2. In both cases, the COV of the
conductivity is 0.4, and the heat capacity is assumed to be a
random variable with a COV also equal to 0.4. It is clear from
Figs. 10 and 11 that different spatial locations within the domain
feature different levels of sensitivity to fluctuations in the ther-
mal properties of the medium. This information is again very
valuable for devising an experimental program aimed at mea-
suring the mean and variability in these properties.

It is clear from the results presented in this section that the
temperature distribution throughout the domain is much more
sensitive to variations in the heat capacity than to variations
in the conductivity. Moreover, for larger values of COVs of
the heat capacity, second-order effects, as captured by the co-
efficients T14 and T34, have the same order of magnitude as the
first-order sensitivity coefficient T4. It should be noted, how-
ever, that the uncertainty in the value of the heat capacity is
likely to be much smaller than the uncertainty in the value of
thermal conductivity.
FIG. 8. Coefficients in Expansion of Temperature. Gaussian Conductivity Process; COV Conductivity = 0.1; Correlation Length = 0.2;
Two Terms in Karhunen-Loève Expansion



FIG. 9. Coefficients in Expansion of Temperature. Gaussian Conductivity Process; COV Conductivity = 0.4; Correlation Length = 0.2;
Two Terms in Karhunen-Loève Expansion
CONCLUSIONS

A method has been presented that is capable of addressing
in great generality heat conduction problems involving random
media. The method is based on treating the random aspect of
the problem as a new dimension along which a spectral ex-
pansion is carried out. The method has been exemplified by
its application to a simple problem. Material properties mod-
eled as stochastic processes are handled just as easily as those
modeled as random variables, and multiple heterogeneities can
be included simultaneously. Moreover, the method is not re-
stricted in its applicability to Gaussian material properties as
demonstrated by the application. This method, however, re-
sults in an extended system of equations that is larger than the
associated deterministic finite-element system. This increase in
size is commensurate with the addition of a new dimension to
the problem and should be viewed as the cost of added ac-
curacy. Techniques are being developed that capitalize on the
peculiar structure of the final large matrix (Ghanem and Kru-
ger 1996). This peculiarity stems from the fact that each of its
submatrices has an identical nonzero structure. It has been ob-
served from the results presented in this paper that great value
is to be gained from modeling the material properties as sto-
chastic processes as opposed to modeling them as random var-
iable.

An important value of the procedure presented in this paper
is that it provides the solution in the form of a convergent
expansion; thus a reliable characterization for the propagation
of uncertainty from the thermal properties values to the pre-
dicted values of the temperature can be obtained.

It should be noted that the uncertainty in the coefficients of
a differential equation, which have been represented by means
of their respective Karhunen-Loève expansions, derives from
the more basic uncertainty present at the microstructural level
of the material. The macroscale coefficients, referring to the
coefficients in the governing differential equation, typically are
obtained from the microstructure through an averaging process
over a representative volume. The outcome of this process
implicitly generates a spatially fluctuating averaged quantity
(by taking adjacent representative volumes), thus leading the
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FIG. 10. Coefficients in Expansion of Temperature. Gaussian Conductivity and Heat Capacity; COV Conductivity = 0.4; COV Heat Ca-
pacity = 0.4
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FIG. 11. Coefficients in Expansion of Temperature. Gaussian Conductivity Process; Gaussian Heat Capacity Variable; COV Conduc-
tivity = 0.4; COV Heat Capacity = 0.4; Correlation Length = 0.2; Two Terms in Karhunen-Loève Expansion
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way to the spatial fluctuations which are modeled as a sto-
chastic process. It should also be stressed that, by varying the
correlation length of the stochastic process both slowly and
rapidly, fluctuating processes can be modeled. An important
outcome of the present study is the identification of those
scales of fluctuation that are important for enhancing the pre-
dictive capability of the differential equation model. This
should assist researchers in microstructure modeling to tailor
their experiments toward detecting and quantifying those
scales.
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