
Accelerating Molecular-Dynamics Simulation
on a Many-core Computing Platform

Liu Peng

Collaboratory for Advanced Computing & Simulations

Department of Computer Science

University of Southern California

• “Scalability study of molecular dynamics simulation on Godson-T many-core
architecture,” L. Peng, G. Tan, R. K. Kalia, A. Nakano, P. Vashishta, D Fan, H. Zhang,
and F. Song, J. Par. Distrib. Comput. 73, 1469 (’13)

• “Performance analysis and optimization of molecular dynamics simulation on Godson-
T many-core processor,” L. Peng, G. Tan, D. Fan, R. K. Kalia, A. Nakano, and P.
Vashishta, in Proc. Int’l Conf. Computing Frontiers, CF’11 (ACM, Ischia, Italy, ’11)

• “Preliminary investigation of optimizing molecular dynamics simulation on Godson-T
many-core processor,” L. Peng, G. Tan, R. K. Kalia, A. Nakano, P. Vashishta, D. Fan, &
N. Sun, in Proc. Workshop on Unconventional High Performance Comput., UCHPC
2010 (Naples, Italy, ’10)

Molecular-Dynamics Simulation

Molecular Dynamics (MD)

Atom

Linked-list cell method for MD

Irregular memory access
Frequent communication

GodsonT Many-core Computing Platform

64-core GodsonT many-core architecture
 •
64 homogenous,
dual-issue core
1GHz, 128Gflops in
total

•
Lightweight
hardware thread

• Explicit memory
hierarchy

• 16 shared L2 cache
banks, 256KB each

• High bandwidth
on-chip network:
2TB/s

Optimization Strategy I:�
Adaptive Divide-and-Conquer (ADC)

•  Purpose: Estimate the upper bound of decomposition cell size
where all data can fit into each core’s local storage (SPM)

•  Solution: Recursively do cellular decomposition until the
following equation (adaptive to the size of each core’s SPM) is
satisfied

Estimation
of the size of
all data in a
cell with cell
size of Rc

ADC + software controlled memory (decide when and where the

data reside in SPM) to enhance the data usage

Optimization Strategy II:�
Data Layout Optimization

•  Purpose: Ensure contiguous touching of data in each cell

•  Solution: Data grouping/reordering + local-ID centered addressing

Group neighbor
data in L2 cache/
off-chip memory

Optimization Strategy III:�
On-chip Locality Optimization

•  Purpose: Maximize data reuse for each cell

•  Solution: Pre-processing to achieve locality-awareness, and

further use locality-awareness to maximize data reuse

parallel processing to achieve
locality-awareness

If cell_k in core_i,
Then
use PC to get all
interactive cells
exhaust all the inter-
computation

Maximize
Data reuse

Architecture mechanism
support for high-bandwidth
core-core communication

Optimization Strategy IV:�
Pipelining Algorithm

Maximize data reuse

If the interactive cell j is
not in the same core,
Issue memory transfer

If the interactive cell j is
already in the same core,
Do computation

pipeline

•  Purpose: Hide latency to access off-chip memory

•  Solution: Pipelining implemented via double buffered,

asynchronous DTA operations

1. tag1 = tag2 = 0
2. for each cell ccore_i [k] listed in PC[cj]
3. if (tag1 ≠ tag2)
4. DTA_ASYNC(spm_buf[1- tag2],

 l2_dta_unit[ccore_i [k]])
5. tag2 = 1- tag2
6. endif
7. calculate atomic interactions between

 ccore_i [k] and cj
8. spm_buf[tag1] ← cell ccore_i [k] ’s

 neighbor atomic data
9. tag1= 1- tag1
10. endfor
11. if (tag1 ≠ tag2)
12. DTA_ASYNC(spm_buf[1- tag2],

 l2_dta_unit[ccore_i [k]])
13. tag2 = 1- tag2
14. endif

Performance Tests

FPGA emulator for
64 core GodsonT

On-chip
strong scalability

optimization-1:only ADC
optimization-4: all 4 optimizations

Excellent strong-scaling multithreading parallel efficiency of
0.99 on 64 cores with 24,000 atoms (0.65 on 8-core multi-core)

Performance Analysis

Running time
 L2 cache performance

Running time is reduced to half L2 cache events are greatly
reduced

1796

Performance Analysis

Remote memory access performance

Number of remote memory accesses is reduced to 7%

Optimization-2
 Optimization-3

