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ABSTRACT: We report a method to convert discrete
representations of molecules to and from a multidimensional
continuous representation. This model allows us to generate new
molecules for efficient exploration and optimization through
open-ended spaces of chemical compounds. A deep neural
network was trained on hundreds of thousands of existing
chemical structures to construct three coupled functions: an
encoder, a decoder, and a predictor. The encoder converts the
discrete representation of a molecule into a real-valued
continuous vector, and the decoder converts these continuous
vectors back to discrete molecular representations. The predictor
estimates chemical properties from the latent continuous vector
representation of the molecule. Continuous representations of molecules allow us to automatically generate novel chemical
structures by performing simple operations in the latent space, such as decoding random vectors, perturbing known chemical
structures, or interpolating between molecules. Continuous representations also allow the use of powerful gradient-based
optimization to efficiently guide the search for optimized functional compounds. We demonstrate our method in the domain of
drug-like molecules and also in a set of molecules with fewer that nine heavy atoms.

■ INTRODUCTION

The goal of drug and material design is to identify novel
molecules that have certain desirable properties. We view this
as an optimization problem, in which we are searching for the
molecules that maximize our quantitative desiderata. However,
optimization in molecular space is extremely challenging,
because the search space is large, discrete, and unstructured.
Making and testing new compounds are costly and time-
consuming, and the number of potential candidates is
overwhelming. Only about 108 substances have ever been
synthesized,1 whereas the range of potential drug-like molecules
is estimated to be between 1023 and 1060.2

Virtual screening can be used to speed up this search.3−6

Virtual libraries containing thousands to hundreds of millions
of candidates can be assayed with first-principles simulations or
statistical predictions based on learned proxy models, and only

the most promising leads are selected and tested experimen-
tally.
However, even when accurate simulations are available,7

computational molecular design is limited by the search
strategy used to explore chemical space. Current methods
either exhaustively search through a fixed library,8,9 or use
discrete local search methods such as genetic algorithms10−15 or
similar discrete interpolation techniques.16−18 Although these
techniques have led to useful new molecules, these approaches
still face large challenges. Fixed libraries are monolithic, costly
to fully explore, and require hand-crafted rules to avoid
impractical chemistries. The genetic generation of compounds
requires manual specification of heuristics for mutation and
crossover rules. Discrete optimization methods have difficulty
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effectively searching large areas of chemical space because it is
not possible to guide the search with gradients.
A molecular representation method that is continuous, data-

driven, and can easily be converted into a machine-readable
molecule has several advantages. First, hand-specified mutation
rules are unnecessary, as new compounds can be generated
automatically by modifying the vector representation and then
decoding. Second, if we develop a differentiable model that
maps from molecular representations to desirable properties,
we can enable the use of gradient-based optimization to make
larger jumps in chemical space. Gradient-based optimization
can be combined with Bayesian inference methods to select
compounds that are likely to be informative about the global
optimum. Third, a data-driven representation can leverage large
sets of unlabeled chemical compounds to automatically build an
even larger implicit library, and then use the smaller set of
labeled examples to build a regression model from the
continuous representation to the desired properties. This lets
us take advantage of large chemical databases containing
millions of molecules, even when many properties are unknown
for most compounds.
Recent advances in machine learning have resulted in

powerful probabilistic generative models that, after being
trained on real examples, are able to produce realistic synthetic
samples. Such models usually also produce low-dimensional
continuous representations of the data being modeled, allowing
interpolation or analogical reasoning for natural images,19

text,20 speech, and music.21,22 We apply such generative models
to chemical design, using a pair of deep networks trained as an
autoencoder to convert molecules represented as SMILES
strings into a continuous vector representation. In principle,
this method of converting from a molecular representation to a
continuous vector representation could be applied to any
molecular representation, including chemical fingerprints,23

convolutional neural networks on graphs,24 similar graph-
convolutions,25 and Coulomb matrices.26 We chose to use
SMILES representation because this representation can be
readily converted into a molecule.
Using this new continuous vector-valued representation, we

experiment with the use of continuous optimization to produce
novel compounds. We trained the autoencoder jointly on a
property prediction task: we added a multilayer perceptron that
predicts property values from the continuous representation
generated by the encoder, and included the regression error in
our loss function. We then examined the effects that joint
training had on the latent space, and tested optimization in this
latent space for new molecules that optimize our desired
properties.

Representation and Autoencoder Framework. The
autoencoder in comprised of two deep networks: an encoder
network to convert each string into a fixed-dimensional vector,
and a decoder network to convert vectors back into strings
(Figure 1a). The autoencoder is trained to minimize error in
reproducing the original string; i.e., it attempts to learn the
identity function. Key to the design of the autoencoder is the
mapping of strings through an information bottleneck. This
bottleneckhere the fixed-length continuous vectorinduces
the network to learn a compressed representation that captures
the most statistically salient information in the data. We call the
vector-encoded molecule the latent representation of the
molecule.
For unconstrained optimization in the latent space to work,

points in the latent space must decode into valid SMILES
strings that capture the chemical nature of the training data.
Without this constraint, the latent space learned by the
autoencoder may be sparse and may contain large “dead areas”,
which decode to invalid SMILES strings. To help ensure that
points in the latent space correspond to valid realistic

Figure 1. (a) A diagram of the autoencoder used for molecular design, including the joint property prediction model. Starting from a discrete
molecular representation, such as a SMILES string, the encoder network converts each molecule into a vector in the latent space, which is effectively
a continuous molecular representation. Given a point in the latent space, the decoder network produces a corresponding SMILES string. A mutilayer
perceptron network estimates the value of target properties associated with each molecule. (b) Gradient-based optimization in continuous latent
space. After training a surrogate model f(z) to predict the properties of molecules based on their latent representation z, we can optimize f(z) with
respect to z to find new latent representations expected to have high values of desired properties. These new latent representations can then be
decoded into SMILES strings, at which point their properties can be tested empirically.
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molecules, we chose to use a variational autoencoder (VAE)27

framework. VAEs were developed as a principled approximate-
inference method for latent-variable models, in which each
datum has a corresponding, but unknown, latent representa-
tion. VAEs generalize autoencoders, adding stochasticity to the
encoder which combined with a penalty term encourages all
areas of the latent space to correspond to a valid decoding. The
intuition is that adding noise to the encoded molecules forces
the decoder to learn how to decode a wider variety of latent
points and find more robust representations. Variational
autoencoders with recurrent neural network encoding/decod-
ing were proposed by Bowman et al. in the context of written
English sentences, and we followed their approach closely.20 To
leverage the power of recent advances in sequence-to-sequence
autoencoders for modeling text, we used the SMILES28

representation, a commonly used text encoding for organic
molecules. We also tested InChI29 as an alternative string
representation, but found it to perform substantially worse than
SMILES, presumably due to a more complex syntax that
includes counting and arithmetic.
The character-by-character nature of the SMILES represen-

tation and the fragility of its internal syntax (opening and
closing cycles and branches, allowed valences, etc.) can still
result in the output of invalid molecules from the decoder, even
with the variational constraint. When converting a molecule
from a latent representation to a molecule, the decoder model

samples a string from the probability distribution over
characters in each position generated by its final layer. As
such, multiple SMILES strings are possible from a single latent
space representation. We employed the open source chem-
informatics suite RDKit30 to validate the chemical structures of
output molecules and discard invalid ones. While it would be
more efficient to limit the autoencoder to generate only valid
strings, this postprocessing step is lightweight and allows for
greater flexibility in the autoencoder to learn the architecture of
the SMILES.
To enable molecular design, the chemical structures encoded

in the continuous representation of the autoencoder need to be
correlated with the target properties that we are seeking to
optimize. Therefore, we added a model to the autoencoder that
predicts the properties from the latent space representation.
This autoencoder was then trained jointly on the reconstruc-
tion task and a property prediction task; an additional
multilayer perceptron (MLP) was used to predict the property
from the latent vector of the encoded molecule. To propose
promising new candidate molecules, we can start from the
latent vector of an encoded molecule and then move in the
direction most likely to improve the desired attribute. The
resulting new candidate vectors can then be decoded into
corresponding molecules (Figure 1b).
Two autoencoder systems were trained: one with 108 000

molecules from the QM9 data set of molecules with fewer than

Figure 2. Representations of the sampling results from the variational autoencoder. (a) Kernel Density Estimation (KDE) of each latent dimension
of the autoencoder, i.e., the distribution of encoded molecules along each dimension of our latent space representation; (b) histogram of sampled
molecules for a single point in the latent space; the distances of the molecules from the original query are shown by the lines corresponding to the
right axis; (c) molecules sampled near the location of ibuprofen in latent space. The values below the molecules are the distance in latent space from
the decoded molecule to ibuprofen; (d) slerp interpolation between two molecules in latent space using six steps of equal distance.
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9 heavy atoms31 and another with 250 000 drug-like
commercially available molecules extracted at random from
the ZINC database.32 We performed random optimization over
hyperparameters specifying the deep autoencoder architecture
and training, such as the choice between a recurrent or
convolutional encoder, the number of hidden layers, layer sizes,
regularization, and learning rates. The latent space representa-
tions for the QM9 and ZINC data sets had 156 dimensions and
196 dimensions, respectively.

■ RESULTS AND DISCUSSION
Representation of Molecules in Latent Space. First, we

analyze the fidelity of the autoencoder and the ability of the
latent space to capture structural molecular features.Figure 2a

shows a kernel density estimate of each dimension when
encoding a set of 5000 randomly selected ZINC molecules
from outside the training set. The kernel density estimate
shows the distribution of data points along each dimension of
the latent space. Whereas the distribution of data point in each
individual dimension shows a slightly different mean and
standard deviation, all the distributions are normal as enforced
by the variational regularizer.
The variational autoencoder is a doubly probabilistic model.

In addition to the Gaussian noise added to the encoder, which
can be turned off by simply sampling the mean of the encoding
distribution, the decoding process is also nondeterministic, as
the string output is sampled from the final layer of the decoder.
This implies that decoding a single point in the latent space

Figure 3. Two-dimensional PCA analysis of latent space for variational autoencoder. The two axis are the principle components selected from the
PCA analysis; the color bar shows the value of the selected property. The first column shows the representation of all molecules from the listed data
set using autoencoders trained without joint property prediction. The second column shows the representation of molecules using an autoencoder
trained with joint property prediction. The third column shows a representation of random points in the latent space of the autoencoder trained with
joint property prediction; the property values predicted for these points are predicted using the property predictor network. The first three rows
show the results of training on molecules from the ZINC data set for the logP, QED, and SAS properties; the last two rows show the results of
training on the QM9 data set for the LUMO energy and the electronic spatial extent (R2).
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back to a string representation is stochastic. Figure 2b shows
the probability of decoding the latent representation of a
sample FDA-approved drug molecule into several different
molecules. For most latent points, a prominent molecule is
decoded, and many other slight variations appear with lower
frequencies. When these resulting SMILES are re-encoded into
the latent space, the most frequent decoding also tends to be
the one with the lowest Euclidean distance to the original point,
indicating the latent space is indeed capturing features relevant
to molecules.
Figure 2c shows some molecules in the latent space that are

close to ibuprofen. These structures become less similar to
increasing distance in the latent space. When the distance
approaches the average distance of molecules in the training set,
the changes are more pronounced, eventually resembling
random molecules likely to be sampled from the training set.
SI Figure 1d shows the distribution of distances in latent space
between 50 000 random points from our ZINC training set. We
estimate that we can find 30 such molecules in the locality of a
molecule, i.e., 30 molecules closer to a given seed molecule
from our data set than any other molecule in our data set. As
such, we estimate that our autoencoder that was trained on
250 000 molecules from ZINC encodes approximately 7.5
million molecules. The probability of decoding from a point in
latent space is dependent on how close this point is to the
latent representations of other molecules; we observed a
decoding rate of 73−79% for points that are close to known
molecules, and 4% for randomly selected latent points.
A continuous latent space allows interpolation of molecules

by following the shortest Euclidean path between their latent
representations. When exploring high dimensional spaces, it is
important to note that Euclidean distance might not map
directly to notions of similarity of molecules.33 In high
dimensional spaces, most of the mass of independent normally
distributed random variables is not near the mean, but in an
annulus around the mean.34 Interpolating linearly between two
points might pass by an area of low probability, to keep the
sampling on the areas of high probability we utilize spherical
interpolation35 (slerp). With slerp, the path between two points
is a circular arc lying on the on the surface of a N-dimensional
sphere. Figure 2d shows the spherical interpolation between
two random drug molecules, showing smooth transitions in
between. SI Figure 3 shows the difference between linear and
spherical interpolation.
Table 1 compares the distribution of chemical properties in

the training sets against molecules generated with a baseline

genetic algorithm, and molecules generated from the variational
autoencoder. In the genetic algorithm, molecules were
generated with a list of hand-designed rules.10−15 This process
was seeded using 1000 random molecules from the ZINC data
set and generated over 10 iterations. For molecules generated
using the variational autoencoder, we collected the set of all
molecules generated from 400 decoding attempts from the
latent space points encoded from the same 1000 seed
molecules. We compare the water−octanol partition coefficient
(logP), the synthetic accessibility score (SAS),37 and
Quantitative Estimation of Drug-likeness (QED),38 which
ranges in value between 0 and 1, with higher values indicating
that the molecule is more drug-like. SI3 Figure 2 shows
histograms of the properties of the molecules generated by each
of these approaches and compares them to the distribution of
properties from the original data set. Despite the fact that the
VAE is trained purely on the SMILES strings independently of
chemical properties, it is able to generate realistic-looking
molecules whose features follow the intrinsic distribution of the
training data. The molecules generated using the VAE show
chemical properties that are more similar to the original data set
than the set of molecules generated by the genetic algorithm.
The two rightmost columns in Table 1 report the fraction of
molecules that belong to the 17 million drug-like compounds
from which the training set was selected and how often they
can be found in a library of existing organic compounds. In the
case of drug-like molecules, the VAE generates molecules that
follow the property distribution of the training data, but are
new as the combinatorial space is extremely large and the
training set is an arbitrary subsample. The hand-selected
mutations are less able to generate new compounds while at the
same time biasing the properties of the set to higher chemical
complexity and decreased drug-likeness. In the case of the QM9
data set, since the combinatorial space is smaller, the training
set has more coverage and the VAE generates essentially the
same population statistics as the training data.

Property Prediction of Molecules. The interest in
discovering new molecules and chemicals is most often in
relation to maximizing some desirable property. For this reason,
we extended the purely generative model to also predict
property values from the latent representation. We trained a
multilayer perceptron jointly with the autoencoder to predict
properties from the latent representation of each molecule.
With joint training for property prediction, the distribution of

molecules in the latent space is organized by property values.
Figure 3 shows the mapping of property values to the latent

Table 1. Comparison of Molecule Generation Results to Original Datasets

sourcea data setb samplesc logPd SASe QEDf % in ZINCg % in emolh

Data ZINC 249k 2.46 (1.43) 3.05 (0.83) 0.73 (0.14) 100 12.9
GA ZINC 5303 2.84 (1.86) 3.80 (1.01) 0.57 (0.20) 6.5 4.8
VAE ZINC 8728 2.67 (1.46) 3.18 (0.86) 0.70 (0.14) 5.8 7.0
Data QM9 134k 0.30 (1.00) 4.25 (0.94) 0.48 (0.07) 0.0 8.6
GA QM9 5470 0.96 (1.53) 4.47 (1.01) 0.53 (0.13) 0.018 3.8
VAE QM9 2839 0.30 (0.97) 4.34 (0.98) 0.47 (0.08) 0.0 8.9

aDescribes the source of the molecules: data refers to the original data set, GA refers to the genetic algorithm baseline, and VAE to our variational
autoencoder trained without property prediction. bShows the data set used, either ZINC or QM9. cShows the number of samples generated for
comparison, for data, this value simply reflects the size of the data set. Columns d−f show the mean and, in parentheses, the standard deviation of
selected properties of the generated molecules and compares that to the mean and standard deviation of properties in the original data set. dShows
the water−octanal partition coefficient (logP).36 eShows the synthetic accessibility score (SAS).37 fShows the Qualitative Estimate of Drug-likeness
(QED),38 ranging from 0 to 1. We also examine how many of the molecules generated by each method are found in two major molecule databases:
gZINC; hE-molecules39, and compare these values against the original data set.
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space representation of molecules, compressed into two
dimensions using PCA. The latent space generated by
autoencoders jointly trained with the property prediction task
shows in the distribution of molecules a gradient by property
values; molecules with high values are located in one region,
and molecules with low values are in another. Autoencoders
that were trained without the property prediction task do not
show a discernible pattern with respect to property values in
the resulting latent representation distribution.
While the primary purpose of adding property prediction was

to organize the latent space, it is interesting to observe how the
property predictor model compares with other standard models
for property prediction. For a more fair comparison against
other methods, we increased the size of our perceptron to two
layers of 1000 neurons. Table 2 compares the performance of
commonly used molecular embeddings and models to the VAE.
Our VAE model shows that property prediction performance
for electronic properties (i.e., orbital energies) are similar to
graph convolutions for some properties; prediction accuracy
could be improved with further hyperparameter optimization.
Optimization of Molecules via Properties. We next

optimized molecules in the latent space from the autoencoder
which was jointly trained for property prediction. In order to
create a smoother landscape to perform optimizations, we used

a Gaussian process model to model the property predictor
model. Gaussian processes can be used to predict any smooth
continuous function41 and are extremely lightweight, requiring
only a few minutes to train on a dataset of a few thousand
molecules. The Gaussian process was trained to predict target
properties for molecules given the latent space representation
of the molecules as an input.
The 2000 molecules used for training the Gaussian process

were selected to be maximally diverse. Using this model, we
optimized in the latent space to find a molecule that maximized
our objective. As a baseline, we compared our optimization
results against molecules found using a random Gaussian search
and molecules optimized via a genetic algorithm.
The objective we chose to optimize was 5 × QED − SAS,

where QED is the Quantitative Estimation of Drug-likeness,38

and SAS is the Synthetic Accessibility score.37 This objective
represents a rough estimate of finding the most drug-like
molecule that is also easy to synthesize. To provide the greatest
challenge for our optimizer, we started with molecules from the
ZINC data set that had an objective score in the bottom 10%,
i.e., were in the 10th percentile.
From Figure 4a we can see that the optimization with the

Gaussian process (GP) model on the latent space representa-
tion consistently results in molecules with a higher percentile

Table 2. MAE Prediction Error for Properties Using Various Methods on the ZINC and QM9 Datasets

database/property meana ECFPb CMb GCb 1-hot SMILESc Encoderd VAEe

ZINC250k/logP 1.14 0.38 0.05 0.16 0.13 0.15
ZINC250k/QED 0.112 0.045 0.017 0.041 0.037 0.054
QM9/HOMO, eV 0.44 0.20 0.16 0.12 0.12 0.13 0.16
QM9/LUMO, eV 1.05 0.20 0.16 0.15 0.11 0.14 0.16
QM9/Gap, eV 1.07 0.30 0.24 0.18 0.16 0.18 0.21

aBaseline, mean prediction. bAs implemented in Deepchem benchmark (MoleculeNet),40 ECFP-circular fingerprints, CM-coulomb matrix, GC-
graph convolutions. c1-hot-encoding of SMILES used as input to property predictor. dThe network trained without decoder loss. eFull variational
autoencoder network trained for individual properties.

Figure 4. Optimization results for the jointly trained autoencoder using 5 × QED − SAS as the objective function. (a) shows a violin plot which
compares the distribution of sampled molecules from normal random sampling, SMILES optimization via a common chemical transformation with a
genetic algorithm, and from optimization on the trained Gaussian process model with varying amounts of training points. To offset differences in
computational cost between the random search and the optimization on the Gaussian process model, the results of 400 iterations of random search
were compared against the results of 200 iterations of optimization. This graph shows the combined results of four sets of trials. (b) shows the
starting and ending points of several optimization runs on a PCA plot of latent space colored by the objective function. Highlighted in black is the
path illustrated in part (c). (c) shows a spherical interpolation between the actual start and finish molecules using a constant step size. The QED,
SAS, and percentile score are reported for each molecule.
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score than the two baseline search methods. Figure 4b shows
the path of one optimization from the starting molecule to the
final molecule in the two-dimensional PCA representation, the
final molecule ending up in the region of high objective value.
Figure 4c shows molecules decoded along this optimization
path using a Gaussian interpolation.
Performing this optimization on a GP model trained with

1000 molecules leads to a slightly wider range of molecules as
shown in Figure 4a. Since the training set is smaller, the
predictive power of the GP is lower which when optimizing in
latent space and as a result optimizes to several local minima
instead of a global optimization. In cases where it is difficult to
define an objective that completely describes all the traits
desired in a molecule, it may be better to use this localized
optimization approach to reach a larger diversity of potential
molecules.

■ CONCLUSION
We propose a new family of methods for exploring chemical
space based on continuous encodings of molecules. These
methods eliminate the need to hand-craft libraries of
compounds and allow a new type of directed gradient-based
search through chemical space. In our autoencoder model, we
observed high fidelity in reconstruction of SMILES strings and
the ability to capture characteristic features of a molecular
training set. The autoencoder exhibited good predictive power
when training jointly with a property prediction task, and the
ability to perform gradient-based optimization of molecules in
the resulting smoothed latent space.

There are several directions for further improvement of this
approach to molecular design. In this work, we used a text-
based molecular encoding, but using a graph-based autoencoder
would have several advantages. Forcing the decoder to produce
valid SMILES strings makes the learning problem unnecessarily
hard since the decoder must also implicitly learn which strings
are valid SMILES. An autoencoder that directly outputs
molecular graphs is appealing since it could explicitly address
issues of graph isomorphism and the problem of strings that do
not correspond to valid molecular graphs. Building an encoder
which takes in molecular graphs is straightforward through the
use of off-the-shelf molecular fingerprinting methods, such as
ECFP23 or a continuously parametrized variant of ECFP such
as neural molecular fingerprints.24 However, building a neural
network which can output arbitrary graphs is an open problem.
Further extensions of this work to use a explicitly defined

grammar for SMILES instead of forcing the model to learn
one42 or to actively learn valid sequences43,44 are underway, as
is the application of adversarial networks for this task.45−47

Several proceeding works have further explored the use of Long
Short-Term Memory (LSTM) networks and recurrent net-
works applied to SMILES strings to generate new mole-
cules48,49 and predict the outcomes of organic chemistry
reactions.50

The autoencoder sometimes produced molecules that are
formally valid as graphs but contain moieties that are not
desirable because of stability or synthetic constraints. Examples
are acid chlorides, anhydrides, cyclopentadienes, aziridines,
enamines, hemiaminals, enol ethers, cyclobutadiene, and
cycloheptatriene. One option is to train the autoencoder to
predict properties related to steric constraints of other
structural constraints. In general, the objective function to be
optimized needs to capture as many desirable traits as possible

and balance them to ensure that the optimizer focuses on
genuinely desirable compounds. This approach has also been
tested in a few following works.43,44

The results reported in this work, and its application to
optimizing objective functions of molecular properties, have
already and will continue to influence new avenues for
molecular design.

■ METHODS
Autoencoder Architecture. Strings of characters can be

encoded into vectors using recurrent neural networks (RNNs).
An encoder RNN can be paired with a decoder RNN to
perform sequence-to-sequence learning.51 We also experi-
mented with convolutional networks for string encoding52

and observed improved performance. This is explained by the
presence of repetitive, translationally invariant substrings that
correspond to chemical substructures, e.g., cycles and functional
groups.
Our SMILES-based text encoding used a subset of 35

different characters for ZINC and 22 different characters for
QM9. For ease of computation, we encoded strings up to a
maximum length of 120 characters for ZINC and 34 characters
for QM9, although in principle there is no hard limit to string
length. Shorter strings were padded with spaces to this same
length. We used only canonicalized SMILES for training to
avoid dealing with equivalent SMILES representations. The
structure of the VAE deep network was as follows: For the
autoencoder used for the ZINC data set, the encoder used
three 1D convolutional layers of filter sizes 9, 9, 10 and 9, 9, 11
convolution kernels, respectively, followed by one fully
connected layer of width 196. The decoder fed into three
layers of gated recurrent unit (GRU) networks53 with hidden
dimension of 488. For the model used for the QM9 data set,
the encoder used three 1D convolutional layers of filter sizes 2,
2, 1 and 5, 5, 4 convolution kernels, respectively, followed by
one fully connected layer of width 156. The three recurrent
neural network layers each had a hidden dimension of 500
neurons.
The last layer of the RNN decoder defines a probability

distribution over all possible characters at each position in the
SMILES string. This means that the writeout operation is
stochastic, and the same point in latent space may decode into
different SMILES strings, depending on the random seed used
to sample characters. The output GRU layer had one additional
input, corresponding to the character sampled from the softmax
output of the previous time step and was trained using teacher
forcing.54 This increased the accuracy of generated SMILES
strings, which resulted in higher fractions of valid SMILES
strings for latent points outside the training data, but also made
training more difficult, since the decoder showed a tendency to
ignore the (variational) encoding and rely solely on the input
sequence. The variational loss was annealed according to
sigmoid schedule after 29 epochs, running for a total 120
epochs.
For property prediction, two fully connected layers of 1000

neurons were used to predict properties from the latent
representation, with a dropout rate of 0.20. To simply shape the
latent space, a smaller perceptron of 3 layers of 67 neurons was
used for the property predictor, trained with a dropout rate of
0.15. For the algorithm trained on the ZINC data set, the
objective properties include logP, QED, SAS. For the algorithm
trained on the QM9 data set, the objective properties include
HOMO energies, LUMO energies, and the electronic spatial
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extent (R2). The property prediction loss was annealed in at the
same time as the variational loss. We used the Keras55 and
TensorFlow56 packages to build and train this model and the
RDKit package for cheminformatics.30
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Rafael Goḿez-Bombarelli: 0000-0002-9495-8599
Jennifer N. Wei: 0000-0003-3567-9511
Dennis Sheberla: 0000-0002-5239-9151
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