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Abstract. The complex, ever-shifting landscape of social media can
obscure important changes in conversations involving smaller groups.
Discovering these subtle shifts in attention to topics can be challenging
for algorithms attuned to global topic popularity. We present a novel
unsupervised method to identify shifts in high-dimensional textual data.
By utilizing a random selection of date-time instances as inflection points
in discourse, the method automatically labels the data as before or after
a change point and trains a classifier to predict these labels. Next, it fits
a mathematical model of classification accuracy to all trial change points
to infer the true change points, as well as the fraction of data affected (a
proxy for detection confidence). Finally, it splits the data at the detected
change and repeats recursively until a stopping criterion is reached. The
method beats state-of-the-art change detection algorithms in accuracy,
and often has lower time and space complexity. The method identifies
meaningful changes in real-world settings, including Twitter conversa-
tions about the Covid-19 pandemic and stories posted on Reddit. The
method opens new avenues for data-driven discovery due to its flexibil-
ity, accuracy and robustness in identifying changes in high dimensional
data.

Keywords: Change point detection · Confusion · Reddit · Twitter ·
Attention shift detection

1 Introduction

The ever-growing volume of information in online social media creates a competi-
tion among content producers for the limited attention of content consumers [11].
When coupled with the news cycle of media reporting, the attention competition
creates a highly dynamic information environment, where some topics are widely
discussed and frequently re-shared, while others languish in obscurity. Changes
in these patterns suggest important events, which have been detected with gen-
erative models, such as dynamic topic models [6]. These approaches, however,
focus on the most popular topics and may miss the subtler changes and shifts in
attention that occur in the heterogeneous and dynamic information ecosystem of
social media. These shifting patterns of attention hold a clue to what disparate
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communities find important and can help better explain the complex dynamics
of the information ecosystem.

We propose a change detection method called Meta Change Detection
(MtChD), to detect change points, such as shifts of attention to topics in online
conversations. This method is in contrast to previous papers on emerging topics
(c.f., [2]) by finding subtle changes in the words and sentences discussed. While
a number of change detection methods have been developed (c.f., [21]), they do
not work well with high-dimensional data, such as text, due to large number of
fitting parameters or high memory usage, and few provide confidence about the
quality of segmentation of data before and after the change. Another challenge is
that social media data is both massive and sparse: many people participate, but
most contribute relatively little text. This sparsity introduces noise into change
point estimation because changes could be due to shifts in active users rather
than topics, and we know rather little about each person individually.

To address these challenges, MtChD uses “confusion” [22] and a novel model
to estimate both when the change occurs and the fraction of data affected by
change for any number of changes in the dataset. Confusion attempts to confuse
a model by labeling the same state (before or after the change) with respective
labels, even when these labels may be wrong [22]. Significant changes in the
accuracy of predicting these labels indicate a potential change. In contrast to
previous work, however, we detect changes as differences in accuracy compared
to a null model (predicting the majority class). The novel mathematical model
for accuracy also estimates the amount of data changed. This acts as a confidence
proxy, something not often used in previous methods: we are more confident in a
change point if a large fraction of subsequent data changes. Also, in contrast to
Nieuwenburg et al. [22], data is then split at this change point and the method
is repeated recursively until an arbitrary stopping point, allowing us to detect
any number of change points, as well as the degree of confidence we have in each
change.

We validate MtChD by applying it to high-dimensional data sets, both syn-
thetic and real-world, to demonstrate that it can detect changes with higher
accuracy than [22] and other state-of-the-art baselines, even on sparse and noisy
data with missing values. We apply the proposed method to large public datasets
of tweets about the Covid-19 pandemic [7] and scary stories posted in the nosleep
subreddit (www.reddit.com/r/nosleep). We show that MtChD accurately infers
meaningful shifts within Twitter conversations and Reddit stories.

The rest of the paper is organized as follows. We first review related work, and
then present details of the confusion-based change detection method including
a mathematical model that quantifies these changes. Finally, we present results
for changes in synthetic and real datasets and discuss implications.

2 Related Works

Change detection, especially when the number of change points is unknown,
usually involves three steps: choosing a cost function on how homogenous data is

www.reddit.com/r/nosleep
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between change points, determining the change search method, and constraining
the number of change points [21]. There is a wide variety of costs functions,
from parametric (e.g., maximum likelihood of parametric distributions) to non-
parametric (e.g., non-parametric maximum likelihood or kernel-based methods).
Parametric methods started with CUMSUM [16], which is used to detect changes
in the mean of data with a normal distribution, and have been advanced on with
methods such as generalized likelihood ratio (GLR) test [20] and extensions of
this technique (c.f., [4,21]). The GLR test seeks to reject a null assumption
which states that observations before and after a proposed change point t0 follow
the same distribution, therefore when the null assumption is rejected, a change
probably occurs. Parametric cost functions, however, often suffer from the curse
of dimensionality and require data to follow a particular distribution, which does
not necessarily hold in general. While semi-parametric [5] and non-parametric
methods, such as non-parametric maximum likelihood estimation, have been
developed, they can be computationally expensive on large or high-dimensional
data [21]. Kernel methods have instead been introduced to describe distributions
that are difficult to parameterize [3]. Finally, there are some methods that do
not easily fit into these categories, such as hidden Markov models (HMM) [18]
and Bayesian change detection methods [1,23].

A method that is similar to our change detection method is by Nieuwenburg
et al. [22], in which a confusion scheme is used to distinguish phases in a physical
system. More specifically, the classifier identifies the critical point c ∈ (a, b) by
testing candidate critical points c′ ∈ C ′. When c′ is between (a, c), the classi-
fier correctly labels data between (a, c′) and but incorrectly labels data between
(c′, c) with a different label. We take advantage of this unexpected similarity
between changes and phases to create MtChD, which also uses confusion, but
is more robust to change points occurring near the edges of data streams. Fur-
thermore, Nieuwenburg et al., [22] do not attempt to discover multiple phase
changes (i.e., change points), while the present method can. Another method
similar to ours is called Unsupervised Change Analysis [10] which also creates
change labels. The paper, however, focuses on explaining changes and not on
finding changes.

We improve on these previous methods in several critical ways. First, we offer
an agnostic framework to detect change points through the accuracy variation
of an arbitrary classifier. This can significantly reduce the time and space com-
plexity of the method compared to using cost functions like kernels or search
methods like dynamic programming [21], and the method is flexible to the type
of data that it analyzes. By fitting classifier accuracy to a model, we also avoid
significant costs of analyzing high-dimensional data. Due to memory complexity,
MtChD can easily handle data with several thousand dimensions, while GLR or
Kernel based methods can struggle with a few dozen. Moreover, the model can
estimate how much of the data was modified after a change, which acts as a
change confidence proxy. Finally, our method can outperform baseline methods
with near-linear time complexity and near-constant memory complexity, which
is a significant improvement over the competing methods.
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3 Methods and Materials

Problem Statement. Assume we have data of the form (Xi, ti), i = 1, . . . , n,
where X is an arbitrarily high dimensional vector and t is an external control
parameter such as time. We refer to t as the indicator and look for a change point
in indicator t. Assume there is a change at t0 such that some data before the
change and some after the change have different distributions. In many datasets,
however, only a fraction of data, 0 ≤ α ≤ 1, may show observable changes. Our
goal is to infer the change point, t0, and the fraction of data that undergoes a
change, α, given the observations (Xi, ti). For clarity, just as t0 varies with each
change point, so does α.

Step 1: Confusion-Based Training. Similar to [22], we assume a trial change
point t = ta and label the observed data before ta as belonging to class ỹi = 0
(no change), and the data after ta as class ỹi = 1 (change). We then train a
classifier to predict the labels ỹi from the features Xi, of an arbitrary number of
dimensions. We plot the accuracy of the classifier as a function of trial change
point ta. In case a true change point exists in the observed range of t, the
accuracy vs. ta curve will significantly increase over the baseline accuracy, which
is the majority class ratio of labels ỹi. The shape of the curve will be affected
both by the actual change point, t0, and the fraction of data points affected
by change, α. The classifier one can use could be anything – we use random
forest and multi-layer perceptrons as examples in this paper. For each candidate
change point, ta, classifiers are trained on a random subsample of 50% of data,
validated on 30%, and tested on 20%. The test set is used to judge the accuracy
of the learned models for each ta. This step is known as confusion-based training.

Accuracy as a function of ta varies significantly. Near the beginning and end
of the dataset, accuracy is nearly 1 because we can almost certainly say that
data is before (if ta � t0) or after (if ta � t0) a change point. More specifically,
if we have a candidate critical point near the beginning or end of the data,
almost all of the data would be after or before the critical point respectively.
Accuracy predictably decreases away from the extremes, but, peaks around the
true change point, thus forming a W shape [22].

Step 2: Modeling Acc. vs. ta Curve. The novelty of our work is to model
this accuracy curve in order to infer t0 and α. This natural extension of the
previous work provides substantial improvements in change point estimation.
We first define the cumulative distribution of t, F (t) = 1/T

∑
i ti < t. Data can

fall into three categories (or three distinguishable distributions), a distribution
that does not change, Su, which comprises 1−α of all data, a distribution before
a change (t ≤ t0), S0, and a distribution after this change (t > t0), S1. We do
not know these distributions a priori but we assume the trained classifier will
be able to distinguish these distributions using data X.

Assume that the distribution of t is independent of the discrete distribu-
tion that a data point belongs to a distribution that does not change after
the change point, Su, or changes from a distribution S0 to a distribution S1.
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For clarity, we never have to know what distribution each data point lies in, nor
even what the distribution looks like. For confusion, recall we label data as 0 if
t′ ≤ t and 1 otherwise. Given candidate change point ta, PSu,0 = (1 − α)F (ta)
of data in Su is labeled 0 and PSu,1 = (1 − α) − PSu,0 is labeled 1. On top
of this, for a data point in Su, the expected predicting accuracy should be
1

1−α max(PSu,0 , PSu,1). Similarly, we can calculate the ratio of data labeled as
0 or 1 in S0 and S1. With real change point locate at t0, given any t, we assume
that among α fraction of data affected by change, θ(t − t0) fraction of data
belongs to S1 and 1 − θ(t − t0) fraction of data belongs to S0. Here θ(·) is the
Heaviside step function. We can calculate for S1, which has fraction α(1−F (t0)),
PS1,1 = max (α(F (ta) − F (t0)), 0) and PS1,0 = α(1−F (t0))−PS0,1 . The expected
predicting accuracy for S1 is thus 1

α(1−F (t0))
max(PS1,0 , PS1,1). Finally, S0 has a

fraction of αF (t0). The total fraction of data labeled “0” in S0 and S1 is αF (ta),
PS0,0 = αF (ta) − PS1,0 , therefore the proportion of S0 incorrectly labeled “1” is
PS0,1 = αF (t0) − PS0,0 . The expected predicting accuracy for data point in S0

is then 1
αF (t0)

max (PS0,0 , PS0,1).
We then leverage the results above to estimate the accuracy curve as

Ãcc(ta) = max (PSu,0 , PSu,1)+max (PS0,0 , PS0,1)+max (PS1,0 , PS1,1). These vari-
ables only depend on F (t), which can be directly estimated from data, and the
free parameters t0 and α. We therefore do not need explicit knowledge of dis-
tributions S0, S1 and Su. To estimate t0 and α, we can do a fast grid search
such that the squared difference between the estimated and actual accuracy is
minimized, and find data closely aligns with this model.

Multiple Changes. To identify multiple changes, we use recursive binary split-
ting. We first use the change detection method to find a change point, and split at
this point. This, in turn, creates two subsets of data from which we can find addi-
tional changes, and split this data, in recursion. We stop splitting a node when we
hit the minimum length of range tc or maximum depth of the binary tree D. The
time complexity is O(TD) for binary segmentation depth, D, and number of data
points, T . Because D is fixed to a small value, such as 3, the splitting process is
almost linear in time. The space complexity only depends on the classifier used, so
it can be efficient even in high-dimensional datasets. Relevant code pertaining to
our analysis has been made publicly available through GitHub1.

4 Data

Online Discussions About Covid-19. We apply our method to a large
dataset of Covid-19 tweets [7]. This dataset consists of 115M tweets from users
across the globe, collected since January 21, 2020. These tweets contain at least
one of a predetermined set of Covid-19-related keywords (e.g., coronavirus, pan-
demic, Wuhan, etc.). Since this dataset provides geolocation data for only 1% of
the users, we leverage a fuzzy matching approach [12] to geolocate users within

1 https://github.com/yuziheusc/confusion multi change.

https://github.com/yuziheusc/confusion_multi_change
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the US. We want to understand the significant shifts in attention during the ear-
liest era of Covid-19, from January 21 until March 31, 2020, of which 7.6 million
tweets are geo-located to within the US using methods by Chen et al., [7]. We
then subsample 200K tweets at random each month, for a total of 600K tweets,
to simplify our analysis. Text is pre-processed through removal of stopwords,
links, account names, and special characters (e.g., !?%#). Only English lan-
guage tweets are considered. We then use the tf-idf vectorizer (with 2.2K terms)
from Python’s scikit-learn library [17] in order to generate the tf-idf vectors.

Reddit Stories. We extract Reddit posts from a popular horror story writing
subreddit called nosleep using the Python Reddit API Wrapper (PRAW). We
focus on posts created between January 1, 2019 and June, 2020 to understand
both seasonal changes in stories (e.g., Halloween and Christmas), as well as
changes in stories since the Covid-19 pandemic, creating 35.4K stories. Data
pre-processing includes removing posts labeled “[removed]” and “[deleted]”. Text
cleaning and tf-idf vectorization (with 25K terms) follow the same methodology
as in the Twitter dataset.

5 Experiments and Results

Synthetic Data. To test the change detection method, we generate two-
dimensional data located in a unit box in a chessboard pattern with nc × nc

squares, where nc is a tunable parameter, as shown in the left panel of Fig. 1.
These data are uniformly distributed in red squares when t ≤ t0, and green
squares for t > t0, with 0 ≤ t ≤ 1. Our motivation for this synthetic example is
that as nc increases, it becomes harder to distinguish the change in data. There-
fore, the data is not meant to be realistic but simple to construct with a change
detection task difficulty controlled by nc. For first part of this experiment, we
set t0 = 0.5, the size of the data N = 8K, and nc equal to either 2, 6, or 10.
For second part of this experiment, we fix nc = 6 and we vary t0 between 0.2
and 0.8. If t0 differs from 0.5, the population before and after the change will be
unbalanced, which makes the task of inferring t0 more challenging [14].

Data shifts to neighboring squares

X2

X1 Before change
After change

nc
 x

 n
c g
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, n
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 6
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Fig. 1. The figure on the left illustrations of synthetic data, where observations have
two features x1 and x2. Data lies in red squares before changes at t0 and moves to
green squares after t0. In the illustration the data is an nc × nc grid, with nc = 6; The
3 figures on the right shows word cloud for Covid-19 tweets in period 01/21–01/30,
01/30–02/04 and 02/04–02/11. (Color figure online)
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We ran six trials for our method and competing algorithms. For MtChD and
vanilla confusion [22], 50% of the data is used as training, 30% for validation, and
20% for testing, where training and validation data is randomly sampled during
each trial. Validation data is used to tune hyperparameters of the classifiers used.
In competing methods, we randomly sample 70% of data in each trial, except
for Bayesian change detection, where 18.8% of data (around 1.5K) is sampled
due to computational limitations (this method takes much longer than other
competing methods).

The methods tested are as follows: the vanilla confusion method of
Nieuwenburg et al. [22], GLR, dynamic programming segmentation (DP) with
different loss kernels [19], and Bayesian detection with different priors and likeli-
hood functions [1]. While alternative segmentation methods can be used besides
DP, such as binary segmentation [8], bottom up methods [13] and window based
methods [21], DP is found to outperform these alternatives (not shown). For
Bayesian change point detection, a conditional prior on change point and a
likelihood function needs to be defined. We used uniform and geometric distri-
butions as priors, and applied the Gaussian, individual feature model [23], and
full covariance model [23] as likelihood functions.

The results are shown in Table 1. We see that for nc = 2, optimal segmen-
tation methods (DP+RBF ) perform as well as ours. Vanilla confusion performs
well when change point is in the center of data (t0 = 0.5). Otherwise our method
outperforms competing methods, especially when the change point is different
from 0.5. Of the two classifiers used by MtChD, random forest performs best.

Online Discussions About Covid-19. Now that we show our method works
well for single-change detection, we move on to more complicated multi-change
detection in empirical data, with results shown in Table 3. We start by identi-
fying shifts in tweets about Covid-19 (embedded into tf-idf vectors), where the
word cloud of hashtags for the first three periods are shown in the right panels
of Fig. 1. We ran binary segmentation using MtChD with a Random Forest clas-
sifier, maximum segmentation depth of three and minimum time length between
changes set to four days. The dates of the change points identified by the method
are listed in Table 3 . The time intervals between changes match with the period
of a typical news cycle [15], which is between 5 to 9 days. Results are robust in
the way that when the minimum length is increased to of 5 days, a subset of
changes (01/30, 02/11, 02/16, 02/21 and 02/28) are found. Next, we analyze the
discovered change points and interpret the findings by highlighting topics that
shift the collective attention. To validate the results, we compare the change
points found with the news events, as shown in Table 2.
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Table 1. Comparison of performance of MtChD and competing methods. The entries
show the mean change point μ(t0) in comparison to the actual change point t0. (RF)
and (MLP) correspond to using a random forest and multilayer perceptron classifiers
for confusion. Row 3 and row 4 show performance of naive confusion and GLR test.
Row 5 to row 7 shows performance of DP, a non-approximate segmentation method,
while other segmentation methods that perform worse are not shown (see main text).
The cost functions used are RBF (RBF kernel), L1 (L1 loss function), and L2 (L2 loss
function). The last four rows are for Bayesian change detection with a uniform prior or
Geo (geometric) prior. Gassusian stands for Gaussian likelihood function, IFM is the
individual feature model and FullCov is the full covariance model. Bold values indicate
change points that are closest to the correct value.

2 × 2

t0 = 0.5

10 × 10

t0 = 0.5

6 × 6

t0 = 0.2

6 × 6

t0 = 0.8

MtChD (RF) μ(t0)

μ(α)

0.500± 0.003

0.949± 0.008

0.496± 0.005

0.66± 0.02

0.195± 0.005

0.65± 0.03

0.802± 0.002

0.66± 0.03

MtChD (MLP) μ(t0)

μ(α)

0.503± 0.003

0.96± 0.01

0.58± 0.06

0.009± 0.008

0.56± 0.05

0.005± 0.004

0.5± 0.1

0.02± 0.02

Confusion (RF) μ(t0) 0.497± 0.002 0.4973± 1E−4 0.23± 0.04 0.54± 0.09

GLR μ(t0) 0.5003± 4E−4 0.6± 0.3 0.24± 0.04 0.81± 0.03

DP+RBF μ(t0) 0.5002± 4E−4 0.3± 0.2 0.4± 0.3 0.84± 0.07

DP+L2 μ(t0) 0.95± 0.01 0.5± 0.4 0.4± 0.3 0.3± 0.4

DP+L1 μ(t0) 0.957± 0.007 0.4± 0.3 0.6± 0.4 0.2± 0.3

Uniform+Gaussian μ(t0) 0.5± 0.2 0.5± 0.2 0.6± 0.3 0.5± 0.3

Uniform+IFM μ(t0) 0.997± 0.003 0.998± 0.003 0.999± 0.002 0.999± 0.001

Uniform+FullCov μ(t0) 0.4985± 2E−4 0.9989± 9E−4 0.99± 0.01 0.997± 0.004

Geo+Gaussian μ(t0) 0.028± 0.004 0.028± 0.004 0.033± 0.006 0.025± 0.004

Reddit Stories. We also applied our method to horror stories posted on
reddit.com, the subreddit r/nosleep, with stories embedded using tf-idf. We find
variations in the topics of stories, such as Jul 17 to September 25, 2019 (“camp-
ing” and “summer”) appear, reflecting recreation activities in the US. The next
change on September 25 to November 17 (“halloween”) signals the topic of Hal-
loween and November 17 to January 2nd (“santa” and “christmas”), corresponds
to the holidays. Potentially inspired by Covid-19 restrictions, there were stories
about “quarantine” from March 29 to May 4, 2020. Finally, quarantining became
old news again, and discussions shifted in the final months until June 2020 back
to stories on “rules”. As a baseline, we used GLR and DP with an RBF ker-
nel. Due to the limitations of memory, we first perform truncated SVD [9] to
transform the tf-idf vector into a 64-dimensional vector. Then we down-sampled
to 8K observations from the full dataset since dynamic programming runs in
O(T 2). We find that not only is our method able to process the full dataset, it
can find more physically meaningful change points.

http://reddit.com/
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Table 2. Change points automatically identified in Covid-19 tweets and important
events occurring on those dates.

Change point Events

Date α

01–30 0.355 First confirmed case of person-to-person transmission of the
“Wuhan Virus” in the US

02–04 0.341 Diamond Princess cruise ship quarantined. Ten people on
cruise ship near Tokyo have virus

02–11 0.327 WHO announced official name for “COVID-19”

02–16 0.243 More than 300 passengers from the Diamond Princess are
traveling in the US chartered planes

02–21 0.441 1st Covid-19 death in Italy (02–22)

02–28 0.366 First Covid-19 death in US (02–29)

03–04 0.447 California declares state of emergency. South Korea confirms
3 new deaths and 438 additional cases of novel coronavirus

03–09 0.269 Italy lockdown; Grand Princess cruise ship docks in Oakland

03–15 0.303 First lockdown orders in parts of California; national
emergency declared (3/13)

03–24 0.146 US sees deadliest day with 160 deaths

Table 3. Comparison with baseline change detection. (Left) Tweets and (right)
r/nosleep.

Covid-19 tweets Reddit stories

Our result GLR DP+RBF Our result GLR DP+RBF

01-30-20 02-07-20 01-27-20 03-10-19 03-26-19 04-10-19

02-04-20 02-08-20 01-28-20 06-05-19 06-03-19 04-12-19

02-11-20 02-08-20 01-31-20 07-17-19 08-11-19 11-06-19

02-16-20 02-08-20 02-13-20 09-25-19 11-05-19 01-13-20

02-21-20 02-09-20 02-15-20 11-17-19 12-20-19 01-29-20

02-28-20 02-09-20 02-26-20 01-02-20 01-30-20 02-19-20

03-04-20 02-17-20 02-29-20 02-21-20 03-02-20 03-10-20

03-09-20 02-17-20 03-02-20 03-29-20 04-03-20 03-31-20

03-15-20 02-17-20 03-07-20 05-24-20 04-09-20 04-07-20

03-24-20 02-27-20 03-13-20

6 Conclusions

In this paper, we aim to identify and understand the shifts of conversation
on social media. In contrast to emergent topic detection, which detects new
topics of interest, our method identifies when the distribution of features in
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high-dimensional streams of text changes. We create a method to robustly detect
multiple changes within these conversations which appear to represent intu-
itive and realistic changes in conversations. Moreover, quantitative and qualita-
tive comparisons to baseline methods show improved detection of changes. Our
method has a unique feature – it allows us to quantify the fraction (parameter
α) of data which shows observable changes. This parameter can be interpret as
the significance of a certain change.

There are, however, important limitations of our approach. First, multiple
changes are found with a simple binary segmentation, which is only meant to
find approximate change points [21]. While this allows us to dramatically speed
up computation, it may compromise on accuracy. Next, the social media data we
explore has no ground truth about changes except for daily news. So we cannot
assess whether our method, or competing methods, correctly found all change
points. This may affect conclusions about what are the most important changes
within social media early in the Covid-19 pandemic. A more detailed analysis
involving tweets from different languages and from across the globe would be a
promising candidate for future research.

These limitations, however, point to promising future work. For example, it
will be important to explore advancing on the binary segmentation approach in
order to sacrifice some potential speed for greater accuracy or precision. Next,
we should compare against realistic data with a fixed number of known change
points to determine the overall accuracy of this method. Finally, these results
should be extended to other high-dimensional datasets, including video.
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and HR00111990114) and AFOSR (FA9550-20-1-0224).
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