
Computer Physics Communications 244 (2019) 469–482

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

OpenFPCI: A parallel fluid–structure interaction framework✩

Sam Hewitt a, Lee Margetts a,∗, Alistair Revell a, Pankaj Pankaj b,
Francesc Levrero-Florencio b,c

a School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, M13 9PL, United Kingdom
b Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3DW, United Kingdom
c Department of Computer Science, University of Oxford, Oxford, OX1 3QD, United Kingdom

a r t i c l e i n f o

Article history:
Received 20 August 2018
Received in revised form 10 May 2019
Accepted 21 May 2019
Available online 6 June 2019

Keywords:
Fluid–structure interaction
Partitioned multiphysics
ParaFEM
OpenFOAM
High performance computing
Arbitrary Lagrangian–Eulerian
Strong coupling

a b s t r a c t

This paper presents OpenFPCI, a framework for coupling the C++ toolbox OpenFOAM-Extend, a
computational fluid dynamics package, with the general purpose finite element package ParaFEM,
written in Fortran and used to solve structural mechanics problems. The coupling of these two open
source and scalable toolboxes, facilitates the use of high performance computing resources for the
solution of fluid–structure interaction problems. The framework uses a master–slave approach, with
OpenFOAM-Extend acting as the master and calling OpenFPCI plugins. The plugins are composed
of a series of subroutines used to initialise and solve a specific engineering problem and make
use of ParaFEM’s highly parallel implementation. The plugins are wrapped by C constructs such
that OpenFOAM-Extend can call these Fortran subroutines consistently and when the solution from
ParaFEM is required. Each plugin solves a different solid mechanics problem, with the current features
including the deformation of a linear-elastic structure undergoing small strain and the deformation of
a St. Venant–Kirchhoff material. Throughout this paper the focus will lie on the large strain plugin,
considering the implementation and its validation for a benchmark problem, along with assessment of
parallel capabilities, which are shown to scale to three thousand cores. This paper will be of interest
to OpenFOAM and ParaFEM practitioners looking to utilise multiphysics simulations for their research,
along with researchers looking to integrate fluid–structure interaction into their studies.
Program summary
Program Title: OpenFPCI
Program Files doi: http://dx.doi.org/10.17632/ntprzxk477.1
Licensing provisions: BSD 2-Clause
Programming language: Fortran, C and C++
External libraries: OpenFOAM and ParaFEM
Supplementary material: Example test cases are available within the OpenFPCI repository.
Nature of problem: OpenFPCI was developed to solve computationally expensive fluid structure inter-
action problems by running on high performance computing systems. The framework was designed
to enable the coupling of advanced ParaFEM capabilities to OpenFOAM-Extend.
Solution method: OpenFOAM-Extend uses the classic Arbitrary Lagrangian–Eulerian formulation of the
Navier–Stokes equations to deal with moving boundaries. The moving boundary is defined by using
an OpenFPCI plugin, using ParaFEM’s libraries, to solve the deformation of the adjoining structure.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Fluid–structure interaction (FSI) simulates two physical sys-
tems, the fluid and structure and the effect they have on each
other. In many cases the interdependent effect each domain

✩ This paper and its associated computer program are available via the
Computer Physics Communication homepage on ScienceDirect (http://www.
sciencedirect.com/science/journal/00104655).

∗ Corresponding author.
E-mail address: lee.margetts@manchester.ac.uk (L. Margetts).

has on the other cannot be ignored, fluid forces exerted on a
structure can result in significant structural deformation, that
modifies the fluids motion. FSI methods are used in a variety
of research fields, including biomedicine [1–3] and aerodynam-
ics [4–6], with researches highlighting the improved predictions
achieved through multiphysics simulations. In biomedicine Scotti
and Finol [1] studied the impact of using FSI methods on the rup-
ture of abdominal aortic aneurysms. They compared the use of a
rigid wall against a deforming one, on patient specific geometries,
summarising that simulations with flexible walls offer a more

https://doi.org/10.1016/j.cpc.2019.05.016
0010-4655/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cpc.2019.05.016
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2019.05.016&domain=pdf
https://github.com/SPHewitt/OpenFPCI
https://openfoamwiki.net/index.php/Installation/Linux/foam-extend-4.0
https://github.com/leemargetts/parafem
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:lee.margetts@manchester.ac.uk
https://doi.org/10.1016/j.cpc.2019.05.016
http://creativecommons.org/licenses/by/4.0/

470 S. Hewitt, L. Margetts, A. Revell et al. / Computer Physics Communications 244 (2019) 469–482

accurate predictor of potential aneurysm rupture. Researchers
have considered the effects of using FSI methods in wind turbine
aerodynamics. Hsu and Bazilevs [4] and Korobenko et al. [5], both
highlighted that FSI was required to accurately predict the cyclic
loading on the turbine blades, ultimately providing improved
approximations of turbine blade fatigue life. The use of FSI in
modelling and simulation is imperative to improve the level of
detail and physical realism required in many fields today [7].

Two approaches exist to solving FSI problems, monolithic
methods [8] and partitioned methods [9]. Monolithic approaches
combine the governing equations for both physical systems and
formulate a single set of equations, that is solved each time
step. In comparison, partitioned methods solve the governing
equations for each sub-domain independently with the inter-
action between them acting as a boundary condition to the
other domain. Monolithic methods are widely accepted to offer
improved stability and accuracy [10], however the application of
these methods is problem dependent, the formulated single set
of equations that represents the combined impact of the fluid
and solid, needs to be modified for each problem. Furthermore,
a range of well established, single physics packages, that are
well tailored to the scope of their problem, already exist. These
single physics packages, that have over twenty years of devel-
opment, can be easily used within partitioned approaches, that
are inherently modular. Coupling two single physics packages
through an interface, makes use of the extensive research that has
gone into each of them and aggregates the robust and efficient
capabilities to solve single physics problems, into a robust and
efficient package to solve multiphysics problems.

Commercial vendors have begun to offer FSI simulation ca-
pabilities within their packages, ADINA [11], ANSYS [12] and
COMSOL Multiphysics [13] to name a few. However the black-
box nature of these applications has led researchers to develop
their own open source alternatives. The alternatives can be cat-
egorised into direct coupling approaches [14] and approaches
using general purpose coupling environments [15].

Direct approaches, using two independent packages, often
use a master–slave scheme. One of the packages is chosen as
the master and makes calls to the external libraries from the
other package. A number of authors have used OpenFOAM as a
CFD package with which to couple a structural package. Lorent-
zon [14] interfaced DEAL.II, a C++ finite element package with
OpenFOAM and Cesur et al. [16] coupled OOFEM, another C++
finite element package. OpenFOAM-Extend has its own staggered
FSI capabilities developed by Tukovic et al. [17], solving both the
fluid and solid domains using the finite volume method.

General purpose coupling environments for partitioned mul-
tiphysics problems are an alternative to these direct approaches.
The environments deal with the data mapping, coupling strategy
and communication between the solvers. CoMA [18] has been
used by Breuer et al. [19] to couple their in house CFD code
FASTEST-3D with their in house finite element solver, Carat++,
designed to model shell and membrane behaviour. Gallinger [18]
used CoMA, to interface Carat++ with OpenFOAM. PreCICE [20]
is another open source alternative that uses a peer-to-peer ap-
proach in comparison to the server based approach used by
CoMA and MpCCI [21], a commercial application focusing on the
interfacing of commercial packages with pre-existing adapters.
Server based approaches use a centralised server to manage the
work flow between the packages, and can be a bottleneck as the
size of the interface work grows. Peer-to-peer approaches, split
the work typically preformed by the centralised server across the
peers, so that the interface work is completed predominantly in
parallel.

In this paper we present a new package, OpenFPCI, Open
source Foam to ParaFEM Coupling Interface, which couples the

open source, highly parallel finite element toolbox ParaFEM [22]
with a recently developed FSI library [17] available as part of
OpenFOAM-Extend, an extension to the original OpenFOAM de-
veloped by Weller et al. [23].

ParaFEM, written in Fortran, is a collection of libraries and
highly parallel mini-apps [24]. Each mini-app solves a specific
engineering problem, with a range of capabilities including non-
linear material behaviour (plasticity) [25], geometric nonlinear-
ity [26], multiscale fracture [27], thermomechanical analysis [28]
and stochastic Monte Carlo Simulation [29]. A lean procedural
programming style is used within each mini-app which results in
each program achieving good scalability using up to many tens of
thousands of cores [22].

In comparison to OpenFOAM, OpenFOAM-Extend has placed
more focus on integrating user-developed tools and applications.
The toolbox developed in C++ is highly modular and flexible with
capabilities to solve a range of complex flow phenomenon, along
with its extensive pre-processing and post-processing utilities.

OpenFPCI provides a differing set of capabilities over the com-
mercial packages and the open source applications described
above. One of the key objectives when developing this interface
was to solve FSI problems utilising High Performance Computing
(HPC) facilities. Commercial packages may offer a larger range
of capabilities, however they typically do not scale well on HPC
platforms. Furthermore, the licencing costs place a limitation
on the use of HPC facilities, as hardware and software grow
towards exascale computing the cost and feasibility of purchas-
ing huge numbers of licences for use across millions of cores
is a major constraint. In this work, a direct coupling strategy
was preferred to the use of one of the general purpose cou-
pling environments, as it provides the developer with greater
control of the data passing between the two packages. A fur-
ther goal developing OpenFPCI was to isolate researchers focused
on structural mechanics from the complexities associated with
code coupling and create a quick and easy development platform
to develop/integrate advanced structural models within an FSI
framework.

This paper provides a comprehensive description of the frame-
work and current solid mechanics capabilities developed within
OpenFPCI. Fig. 1 provides a summary of the framework that will
be described in the paper, with each OpenFPCI plugin solving a
particular solid mechanics problem. The motivation for opening-
up and disseminating this research is not only to encourage the
use of its current capabilities but enable researchers to further
extend the capability by implementing state of the art tech-
niques for computational mechanics using ParaFEM. The detailed
description of the OpenFPCI framework is provided from the
point of view of an OpenFPCI plugin, used to solve the deforma-
tion of a geometrically nonlinear St. Venant–Kirchhoff material
undergoing large strain.

The paper is organised as follows, Section 2 details the under-
lying governing equations of FSI problems, followed by a descrip-
tion of the implementation of OpenFPCI, in Section 3. Sections 4
and 5 detail the validation and performance of the OpenFPCI plu-
gin respectively, before an example of extending the framework
is provided in Appendix A. Finally the installation instructions and
an example test case are provided in Appendices B and C.

2. Methodology

Modern software design approaches often focus on the reuse
of existing software that is already highly optimised for its pur-
pose. Partitioned approaches conform to these ideologies, allow-
ing the reuse of existing packages. In the context of the modelling
and simulation of FSI problems, the fluid and solid domains are
formulated and discretised using techniques common in their

S. Hewitt, L. Margetts, A. Revell et al. / Computer Physics Communications 244 (2019) 469–482 471

Fig. 1. Summary of an OpenFPCI plugin, highlighting the decomposition of a ParaFEM mini-app into two subroutines, initialise and run. In the development of a
new OpenFPCI plugin only the run routine needs to be swapped and an example of ParaFEM’s capabilities is shown for possible mini-app developments.

respective fields. The numerical methodology is therefore split
into three areas; the solid mechanics problem, the fluid mechan-
ics problem and the interface between them.

2.1. Notation

Tensor notation is used throughout this manuscript, with in-
dicial notation within brackets being used in this subsection to
clarify certain tensorial operations, or in specific sections where
further clarification might be required.

As a general rule, scalars are denoted with Greek or Latin
italic characters (e.g. α or a, respectively); vectors, or first-order
tensors, are denoted by Latin bold lower-case characters (e.g. a);
second-order tensors are denoted with Greek or Latin bold upper-
case characters (e.g. Ω or A, respectively).

Tensorial operations are denoted as follows. The gradient of a
scalar field is the vector field ∇a

(
(∇a)i =

∂a
∂Xi

)
, where Xi are the

material (undeformed) coordinates of the system. The divergence
of a vector field is the scalar field ∇·a

(
∇ · a =

∂ai
∂Xi

)
. The gradient

of a vector field is a second-order tensor field ∇a
(
(∇a)ij =

∂ai
∂Xj

)
.

The divergence of a second-order tensor field is the vector field ∇·

A
(
(∇ · A)i =

∂Aij
∂Xj

)
. The trace of a second-order tensor is denoted

as tr(A) a = (A11 + A22 + A33). The transpose of a second-order
tensor is denoted as AT

(
AT
ij = Aji

)
. The single contraction of two

vectors is denoted as a · b c =
(
aibj

)
. Single contraction of two

second-order tensors is denoted as AB Cij =
(
AikBkj

)
.

2.2. Solid mechanics

Within continuum mechanics the dynamic equilibrium of a
structure is described by the conservation of momentum, which
is provided in Eq. (1), in the Lagrangian reference frame.

ρs
∂2us

∂t2
= ∇ · (FS) + ρsb0, (1)

where subscript s indicates the property of the solid domain, us
the displacement vector, F = I+∇us the deformation gradient, ρs
the density, S the second Piola–Kirchhoff stress tensor and b0 the
body forces given in the reference configuration. The constitutive
law for a St. Venant–Kirchhoff material is used with the Second
Piola–Kirchhoff stress given by Eq. (2).

Ss = λ tr(Es) + 2µEs, (2)

where λ and µ are Lamé coefficients, Es =
1
2 (F

TF − I) is the
Green–Lagrange strain tensor and I is the second-order identity
tensor.

2.2.1. Discretisation
The decoupled nature of partitioned approaches means in-

dependent time integration and solution methodologies can be
utilised for each domain. ParaFEM’s mini-apps incorporate a
number of time marching schemes, however within the large
strain plugin, the Newmark [30] method is implemented. The
standard Newmark-Beta formulas, with constants β and γ , are
shown in Eqs. (3) and (4).

u̇n+1 = u̇n + ∆t [(1 − γ)ün + γ ün+1] , (3)

un+1 = un + ∆tu̇n + ∆t2
[
1 − 2β

2
ün + βün+1

]
, (4)

where n and n + 1 represent the current and subsequent time
step respectively, and u the displacement vector. Although direct
procedures to solve linear equations are common within the
finite element method, iterative procedures provide more effi-
cient memory storage for larger problems [31] and element-by-
element iterative strategies are easy to parallelise with good load
balancing [32]. Here, the element-by-element preconditioned
conjugate gradient (PCG) method is used.

2.3. Fluid mechanics

The physics within the fluid domain is often represented in
its Eulerian form. However, with the deforming boundary at the
solid, an Arbitrary Lagrangian–Eulerian (ALE) formulation is used
for the conservation of mass and momentum, as shown in Eqs. (5)
and (6) respectively.

∇ · vf = 0, (5)

ρf

[
∂vf
∂t

+ (vf − vb) · ∇vTf

]
= −∇P + ν∇

2vf , (6)

where vf represents the velocity vector of the fluid, t the time,
vb the interface boundary velocity, ρf the fluid density, P the
pressure and ν the fluid viscosity.

2.3.1. Mesh motion
With ALE methods boundary of the fluid mesh deforms with

the structural deformation. In order to preserve the quality and
validity of the entire mesh within the fluid domain, the internal
cells are moved [33]. This is performed by solving the Laplacian
of the cell velocity [34],

∇ · (γ∇vb) = 0, (7)

where γ represents a diffusivity constant and vb the mesh defor-
mation velocity. A number of mesh motion options are present
and have been explored by Jasak and Tukovic [35].

472 S. Hewitt, L. Margetts, A. Revell et al. / Computer Physics Communications 244 (2019) 469–482

2.3.2. Discretisation
OpenFOAM-Extend’s implementation of discretisation meth-

ods allows the interchange of time stepping schemes and solution
procedures through case files. Time schemes include 1st order
implicit Euler, 2nd order implicit backward and 2nd order implicit
and bounded Crank–Nicolson.

Unsteady problems within OpenFOAM are solved using the
Pressure Implicit with Splitting Operator (PISO) procedure [36],
which solves the standard pressure–velocity coupling problem
through, (i) a momentum predictor, (ii) a pressure solution and
(iii) a momentum corrector.

2.4. Interface

The coupling between the two applications requires satisfying
two interface conditions. First kinematic equilibrium, Eq. (8),
which ensures the geometrical domains continually match
throughout the solution process.

vf =
∂us

∂t
. (8)

Second, the transfer of forces between the domains must satisfy
equilibrium. This is achieved through the expression for dynamic
equilibrium shown in Eq. (9).

σσσ f · nf = −
(
J−1FSFT

)
· ns, (9)

where σσσ f represents the stress tensor of the fluid at the wall, and
nf and ns are the unit normals at the fluid and solid sides of the
interface respectively.

3. Software implementation

This section is summarised by three main subsections. Firstly
Section 3.1 provides a summary of the external FSI library with
which an OpenFPCI plugin can be used. Secondly Section 3.2
introduces OpenFPCI with a high level look at the interoperability
of the Fortran and C source code, along with a general summary of
the OpenFPCI files and file structure. Finally Section 3.3 describes
in more detail the major subroutines and methods used within
the interface.

3.1. FSI library

An FSI library, developed by Tukovic et al. [17] at the Uni-
versity of Zagreb, has been released. The library allows the in-
tegration of externally written solvers for fluid dynamics and
structural mechanics problems. This is achieved through two
abstract classes describing the required implementation of a solid
solver, solidSolver.C and fluid solver, fluidSolver.C. A further class
is implemented to couple the two solvers and deal with the inter-
face between the two, fluidSolidInterface.C. When comparing such
a library to FSI applications that use general coupling environ-
ments, such as those described in the introduction, the solidsolver
and fluidsolver classes act as the fluid and solid solvers respec-
tively with fluidSolidInterface class replacing the functionality and
purpose of the general coupling environment. This includes the
data mapping, interpolation and coupling schemes.

The general software implementation of the strongly coupled
Gauss–Seidel FSI iteration scheme [37] is shown in Fig. 2. The
figure shows the pseudo steps (blue) of the executable program
and specifically highlights method calls that wrap OpenFPCI sub-
routines (green). Each of these method calls is described in the
following section with how they integrate OpenFPCI subroutines
within them.

Each of the Update Fluid Mesh, Solve Fluid Gov. Eqns and Solve
Solid Gov. Eqn processes solves a set of governing equations. The
Update Fluid Mesh is associated with Eq. (7), Solve Fluid Gov. Eqns

Fig. 2. General software implementation of the FSI algorithm, with the method
calls to OpenFPCI routines highlighted in green. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Eqs. (5) and (6) and Solve Solid Gov. Eqn Eq. (1). Subsequently a
description of the Interpolate and FSI convergence blocks is pro-
vided below.

3.1.1. Interpolation
OpenFOAM-Extends capabilities include interpolation tech-

niques between two mesh surfaces. The interpolation between
two non-conformal meshes takes place in two phases. The forces
at the face centres on the surface of the fluid mesh are first
interpolated to the surface face centres of the solid mesh. This
is performed using the generalised grid interface developed by
Beaudoin and Jasak [38], it uses a weighted interpolation between
the two interface patches. The second step is to interpolate the
face centre values to the nodes of each face. This is completed us-
ing a weighted method, making the interpolation process entirely
conservative.

3.1.2. FSI convergence
The convergence of the strongly coupled iterative scheme

ensures that the dynamic equilibrium between the fluid and solid
solver is numerically accurate. Convergence is achieved once the
L2 norm of the residual, rk, falls below its tolerance, εfsi. The
residual is based on the difference between the displacements,
at the interface, of the structure at two subsequent iterations.
The L2 norm of the displacement increment is normalised by the
square root of the reference length and the number of nodes, at
the interface, in the structure, Eq. (10) shows the calculation of
the residual for a single time step.

∥rk+1∥2 =

x̃k+1 − xk+1

2√

n × Lref
≤ εfsi, (10)

where xk+1 represents the displacement vector of the interface
at the start of iteration k + 1, and x̃k+1 is the displacement of
the interface predicted by the structural solver at iteration k+ 1.
Lref and n are the problem reference length and the number
of nodes in the interface vector respectively. The tolerance and
reference length are user-tunable parameters that are altered on
a case-by-case basis.

The convergence of this fixed point iteration scheme has been
shown to improve through the use of relaxation [39]. A relaxation
scheme is utilised such that at each iteration the mesh is not
displaced the same distance as that calculated by the structural
solver. Eq. (11) shows the relaxation relationship.

xk+1 = ωkx̃k + (1 − ωk)xk. (11)

S. Hewitt, L. Margetts, A. Revell et al. / Computer Physics Communications 244 (2019) 469–482 473

Table 1
A summary and description of the OpenFPCI source files and their purposes.
Summary Subroutine Description

Derived class femLargeStrain.* Derived class for the large strain plugin, it wraps parafemnl.f90
femSmallStrain.* Derived class for small strain plugin, it wraps parafeml.f90

Include file updateForce.H. Included within the derived classes and contains the source code to interpolate
forces from cell centres to nodal values using a weighted conservative method

Solvers parafemnl.f90 The file contains two subroutines, runnl and initnl. An array of external forces
is input to the runnl subroutine, that uses the Newmark method and Newton–
Raphson iterations to step in time and solve the deformation of an elastic,
geometrically non-linear structure. Displacement, velocity and acceleration
arrays are output

parafeml.f90 The file contains two subroutines, initl, runl. The runl subroutine accepts an
array of external forces, and uses a linear interpolation in time to solve the
deformation of a linear elastic structure, using the small strain assumption.
Displacement, velocity and acceleration arrays are output

Utilities parafemutils.f90 Utilities for interfacing between C++ and extensions to capabilities such as
gravitational loading. It also contains debugging routines to print timings and
variables to files and track the memory of a program

Fig. 3. OpenFPCI source file structure. The directories are highlighted in blue
and files in yellow. The Fortran files are grouped in a single directory for
convenience. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

The relaxation factor ω can be a fixed value or dynamically
changed based on Aitken [40] or IQN-ILS [41] relaxation methods.

3.2. OpenFPCI: Summary

OpenFPCI is summarised as a series of plugins, with each
plugin solving a different engineering problem. The plugins, along
with the FSI library link the OpenFOAM-Extend functionality with
that of ParaFEM. A general diagrammatic summary of the imple-
mentation of an OpenFPCI plugin is provided in Fig. 1, with the
following subsection providing further details. Before describing
the development and structure behind these plugins, a summary
of the major files within the source directory of OpenFPCI is
presented.

The OpenFPCI source directory contains a number of
directories (blue) and files (yellow), that are shown in Fig. 3.
fem_routines holds all the Fortran files that are named with
the prefix parafem and suffixed with their purpose. The Fortran
files are separated into solvers and utilities. The utilities file is
available to provide extra functionality, whilst the solver files
contain the primary subroutines that are used to solve the en-
gineering problems. For example, the file to solve the non-linear
deformation of a structure is named parafemnl.f90.

The two folders (largeStrain and smallStrain) contain the class
descriptions that are derived from the solidsolver base class,
described briefly in Section 3.1. These classes act as wrappers
around appropriate Fortran files, so that the ParaFEM subroutines
can be called in a consistent manner from within the FSI library.
For example, the largeStrain folder contains the class implemen-
tation solving the non-linear deformation of a structure and is a

Fig. 4. Example of the compilation and linking process for an OpenFPCI plugin
solving a large strain problem.

wrapper around the subroutines found in parafemnl.f90. The files
contained within these directories use a similar naming structure
to the Fortran routines, prefixed with fem and suffixed with their
purpose.

An OpenFPCI plugin is defined as the C++ wrapper/derived
class along with its relevant Fortran solver. An example of the
large strain plugin and the general process by which it is compiled
and linked is shown in Fig. 4, with a comprehensive summary and
description of each file within OpenFPCI provided in Table 1.

The C++ derived classes contain a number of methods, how-
ever two methods are utilised to call OpenFPCI subroutines. These
methods have been highlighted in Fig. 2, the constructor of the
class, solid::solid() and the call to solve the engineering prob-
lem solid::evolve(). These methods act as wrappers for the two
subroutines that exist within the Fortran solver files, initialise
and run. These subroutines are named init and run with their
solver name suffixed i.e. within the non-linear solver they are
named initnl and runnl. The two methods and subroutines are
described extensively in Section 3.3, however a reduced example
of the femLargeStrain.C file is provided in Listing 1, highlighting
the declaration of external Fortran subroutines and the method
calls that wrap these subroutines.

Listing 1: Reduced pseudocode of femLargeStrain.C, highlight-
ing the approach taken for Fortran calls to initnl and runnl
subroutines
/ / − Non−Linear Solver Subroutines
extern "C" {

void i n i t n l _ ()
void runnl_ ()

}
/ / − Constructor
so l id : : so l id () {

i n i t n l _ ()
}
/ / − Solve Structure
so l id : : evolve () {

474 S. Hewitt, L. Margetts, A. Revell et al. / Computer Physics Communications 244 (2019) 469–482

Table 2
Inputs, and their purpose, to the OpenFPCI init subroutine.
Input Purpose

g_coord Global array of nodal coordinates
rest Global restraints array
g_num_pp Distributed element steering array
nn Total number of nodes
nr Total number of restrained nodes

Output Purpose

g_g_pp Distributed equation steering array
g_coord_pp Distributed nodal coordinates

include "updateForce .H"
runnl_ ()

}

Using this wrapper isolates users from each side of the physical
problem. Researchers can develop extensive run routines within
ParaFEM without ever considering the OpenFOAM-Extend side of
the problem.

3.3. OpenFPCI: init and run subroutines

3.3.1. Initialisation
The initialise and run subroutines are consistent across the

plugins, and so will be referred to as init and run throughout the
rest of this paper. The init subroutine has two major purposes:
to read in the mesh information, the boundary conditions and
generate the communication and steering arrays that are required
by ParaFEM during the run phase. This section will highlight
the processes that occur within the constructor of the class and
the init subroutine. Table 2, provides a summary of the major
inputs and outputs and their purposes. The remains of this section
will provide a description of these variables and how they are
generated within the class constructor.

Mesh information. ParaFEM mini-apps use a file based I/O, this
means at the start of a mini-app all the mesh information is
read in through files and any output data is written out to file.
In essence a OpenFPCI plugin removes the input and output
phases and replaces it with a direct memory transfer to and from
OpenFOAM-Extend.

The constructor and init subroutine involves the conversion
of an OpenFOAM-Extend mesh into a format that can be read
and used by ParaFEM. The key arrays required by ParaFEM are a
nodal steering array for each element and the coordinates of these
nodes. The OpenFOAM-Extend mesh object can return these val-
ues however in order to pass them into a Fortran subroutine, they
are copied into an array of primitive types. Listing 2 highlights the
copying process, within solid::solid(), of the mesh coordinates and
steering array, that are passed into init.

Listing 2: Pseudocode of the copying process of the steering array
and coordinates of the mesh from OpenFOAM’s mesh object to a
one dimensional array, to pass into the init fortran routine
/ / − Coordinates
/ / − Create coordinates f i e l d from IOobject .
point IOFie ld coord
(

IOobject (. . .)
)

/ / − For each point in mesh
for (in t i =0; i < to ta lPo in t s ; i ++) {

g_coord [index++] = coord [i] . x () ;
g_coord [index++] = coord [i] . y () ;
g_coord [index++] = coord [i] . z () ;

}

/ / − Steering Matrix
/ /− For each c e l l in mesh
for (in t c e l l =0; c e l l < t o t a l C e l l s ; c e l l ++) {

/ / Current c e l l s steer ing array
l abe l L i s t& curCel l = mesh . ce l l Po in t s () [c e l l] ;

/ / − For each node in current c e l l
for (in t node=0; node < nodesPerCell ; i ++) {

/ / − Copy into vector and +1 for Fortran
g_num_pp[index++] = curCel l () [node]+1;

}
}

A pointIOField containing the nodal coordinates of the mesh
is stored in OpenFOAM-Extends objectRegistry, and can be read
in using an IOobject. This field, coord, is subsequently copied into
g_coord, the global coordinate array, for ParaFEM. The nodal steer-
ing array can be accessed through the mesh.cellPoints() method,
and is copied into g_num_pp. Variables using the _pp suffix imply
that they are stored on a per MPI process basis, so in parallel each
MPI process will only hold the steering array for its local elements
(associated with the local subdomain).

The order of node numbers stored for each element (element
steering) in OpenFOAM is different from the node ordering con-
vention used in ParaFEM, so conversion from one convention
to the other is required. Within the init subroutine, a subrou-
tine, of2sg is used to convert the mesh formats. This subroutine
exists within the parafemutils.f90. The process loops over each
element, taking in the element type and its current element
steering array and returning the updated one. The subroutine
uses a Fortran SWITCH statement and so implementing differing
element types can easily be done by adding the element name
and its conversion.

Initial and boundary conditions. As with the mesh generation, the
initial and boundary conditions are transferred to an OpenFPCI
solid mechanics plugin through a similar process. The 0 folder
within OpenFOAM-Extend case files contains the initial condi-
tions. A pointVectorField dictionary named pointD is initialised
within the folder, this file contains the nodal displacements in
relation to the starting coordinate system. Within this file patches
can be defined as set types, the task is to transfer these types
into a format that can be passed to ParaFEM. The rest array is
populated with the first column containing the node and the
preceding columns the x, y and z restraints, 1 — fixed and 0 —
free. Listing 3 shows the loop and the condition required for a
completely fixed restraint.

Listing 3: Example loop within femLargeStrain to allocate the
restrained nodes for a fixed boundary condition
/ / − Loop through each patch
for (in t patch=0; patch < tota lPatches ; patch++)
{

/ / − I f the patch has a fixedValue type
i f
(

isA < fixedValuePointPatchVectorField >
(

pointD_ . boundaryField () [patch]
)

)
{

/ / Create l i s t of nodes
/ / Set x=y=z=0 for each node

}
}

Within the listing, the code creating the list of nodes and
restraints is removed. The mesh domain decomposition methods
available within OpenFOAM-Extend can be used when decom-
posing the mesh. In parallel each MPI process creates a list of

S. Hewitt, L. Margetts, A. Revell et al. / Computer Physics Communications 244 (2019) 469–482 475

Table 3
Inputs and outputs to the run subroutine for the large strain OpenFPCI plugin.
Input Purpose

nodes List of nodes with external forces
val Array of forces associated with the node list
num_var Numerical variables, i.e. time step
mat_prop Material properties, i.e. Young’s Modulus
nr Total number of restrained nodes
nf Total number of loaded nodes
gravlo_pp Distributed body/gravity loads
g_g_pp Distributed equation steering array
g_coord_pp Distributed nodal coordinates
g_num_pp Distributed element steering array

In/Output Purpose

Dfield Distributed displacement field
Ufield Distributed velocity field
Afield Distributed acceleration field

restrained nodes that exist in its sub domain, all the lists are
subsequently gathered into a global list and cleaned. This cleaning
process involves removing any duplicated nodes. A node may
exist on multiple patches and multiple processors. If it exists on
multiple processors then the duplicates are removed. If the node
exists on multiple patches it may have a different restraint. In
this situation the nodes that are most fixed are kept and the rest
removed from the list. This list is then scattered to the rest of the
processors and copied into the rest array, as shown in Listing 4.

Listing 4: The loop copying the restrained list into the rest array
that is passed to ParaFEM
for (in t l i s t I =0; l i s t I < masterRest . s ize () ; l i s t I ++) {

/ / Copy L i s t
res t_ [nr ∗ 0 + index] = Restra inedL is t [l i s t I] [0] ;
res t_ [nr ∗ 1 + index] = Restra inedL is t [l i s t I] [1] ;
res t_ [nr ∗ 2 + index] = Restra inedL is t [l i s t I] [2] ;
res t_ [nr ∗ 3 + index] = Restra inedL is t [l i s t I] [3] ;
index++;

}

Finally a list of nodes that is externally loaded is generated.
Within the 0 case folder the volVectorField D, represents the
elemental displacements. Within this file the type can be defined
as tractionDisplacement, which specifies that the nodes on this
patch are externally loaded. The same methodology that is used
to generate the rest array, is used to create a list of nodes,
forcedNodes.

3.4. Run

Once all the data exchange house keeping tasks have been
completed during the initialisation process, the run subroutine
is used to solve the engineering problem. This takes the accel-
erations, velocities and displacements as inputs, updates them
based on the new solution and passes them back out as outputs
to OpenFOAM-Extend. The subroutine solves Eq. (1). Fig. 5 shows
the reduced pseudocode of the run subroutine for the non-linear
OpenFPCI plugin with a list of inputs and outputs shown in
Table 3.

The run routine begins by loading the structure with the
external forces. The external forces are provided in two arrays,
a list of nodes, node and their vector values, val. These are con-
verted to an external force array in its equation format using the
ParaFEM subroutine Load. This subroutine uses node, val and the
equation steering matrix g_g_pp as inputs and outputs f_ext_pp.
The displacements, velocities and accelerations are input in an
array arranged by nodes and elements. These are converted into
an array of values in an equation format using the scatter subrou-
tine in ParaFEM. The system of equations to be solved is given

Fig. 5. Pseudocode for the run subroutine of the large strain OpenFPCI plugin.

by Eq. (12), following the solution procedure for geometrically
non-linear materials given in Bathe [42].

{r_pp} = {f_ext_pp} − {f_int_pp} + [K̂_pp]{x̂_pp}, (12)

where {r_pp} is the residual vector, {f_ext_pp} the external force
vector, {f_int_pp} the internal force vector, [K̂_pp] the effective
stiffness matrix and {x̂_pp} the effective displacement vector.
This system of equations is solved during each Newton–Raphson
iteration using the parallelised element-by-element PCG method.
Once the difference between two successive N-R iterations is
small enough the displacement, velocity and accelerations are
updated and scattered from their equation array to an array
arranged by elements and nodes, ready to be passed back to
OpenFOAM-Extend.

4. Validation

The validation of the application is based on a well-known
benchmark developed by Turek and Hron [43]. This is a well-
defined suite of tests to validate both the structural solver and
fluid solver independently, as well as fully coupled FSI tests.
Within the reference paper, the suites of tests are referred to as
CSM 1–3, CFD 1–3 and FSI 1–3. The reference paper utilises a
fully implicit monolithic finite element approach with ALE and
shows strong convergence of results for the suite of tests. The
authors carried out the independent solver validation tests, CSM
3 and CFD 3, using ParaFEM and OpenFOAM-Extend respectively.
The results compare well with the benchmark, which is to be
expected as both software packages are well established and
professionally maintained. The structural solver and fluid solver
benchmark results are not provided here. The FSI benchmark, FSI
3, that is presented for the validation of the coupled problem,
involves the two-dimensional laminar flow of an incompress-
ible Newtonian fluid around a rigid cylinder with an elastic flag
attached behind. A schematic of the computational domain is
provided in Fig. 6 with the properties of both the solid and fluid
provided in Table 4.

The subscripts, f and s represent the fluid and solid properties
respectively, with νs representing the Poisson ratio and E the
material stiffness. Three dimensionless numbers are presented.
The Mass number, M , the Reynolds number, Re and the inverse
of the Cauchy number, Ae, that relates the inertial and the elastic
forces within the problem. The outlet has a fixed pressure, set to
zero, with the rest of the walls having a zero gradient pressure

476 S. Hewitt, L. Margetts, A. Revell et al. / Computer Physics Communications 244 (2019) 469–482

Table 4
Dimensionless numbers and the material properties of the fluid and solid
domains.
Property Value

ρf [kg m−3] 1000
νf [m2 s−1] 0.001
ū [m s−1] 2

ρs [kg m−3] 1000
νs 0.4
E [kg m−1 s−2] 5.4e6

M =
ρs
ρf

1

Re =
ūD
νf

200

Ae =
E

ρf ū2
5.4e3

Fig. 6. Computational domain for the FSI benchmark test case.

condition. The walls above and below the structure are consid-
ered no-slip, with the inlet having a parabolic velocity profile
described by Eq. (13). The walls normal to the z-direction are con-
sidered empty, ignoring the z-component within the governing
equations.

u(y) = 1.5 × ū ×
y(H − y)
(H2)

2
(13)

Three meshes were used to check for convergence of the results.
The solid domain mesh is fixed at 3000 elements whilst four
fluid meshes labelled: Grid-1 (∼5000), Grid-2 (∼21,000), Grid-
3 (∼85,000) and Grid-4 (∼340,000), are used. Fig. 7 provides an
example of the grid used for the grid convergence study. The fluid
mesh is from Grid-2 and the solid mesh is that used for all the
grids.

The fluid domain uses a block structured mesh with hex-
ahedral control volumes and the solid domain is made up of
linear eight noded hexahedral elements. The problem is two
dimensional and so the nodal freedoms in the z direction are
fixed for each element, and the elements in contact with the
cylinder are fixed in the x, y and z directions. ParaFEM only has a
limited number of two dimensional elements (as two dimensional
problems typically do not require solution on supercomputers)
and so three dimensional elements are used in this test case. The
Newmark-beta constants used to advance the solid solution in

Table 5
Displacements at the tip of the elastic flag for the FSI benchmark.
Grid dx[10−3m] dy[10−3m]

Mean Amplitude Mean Amplitude

1 −1.95 1.85 1.84 27.9
2 −2.62 2.48 1.54 33.1
3 −2.88 2.73 1.47 34.9
4 −2.98 2.81 1.45 35.5

[44] −2.88 2.72 1.47 35.0

Table 6
Lift and drag forces over the cylinder and elastic flag for the FSI benchmark.
Grid Drag(N) Lift(N)

Mean Amplitude Mean Amplitude

1 455.7 16.6 2.13 146.4
2 458.8 23.5 2.63 163.6
3 460.7 27.2 2.67 173.0
4 461.3 28.4 2.62 176.3

[44] 460.5 27.7 2.50 153.9

time are, β = 0.4 and δ = 0.6. The FSI tolerance was set at, tol
= 1e−9, and used the IQN-ILS relaxation scheme [41].

The elastic flag begins in its undeformed configuration and
is held in this position for two seconds, to allow the flow to
develop over the structure. Once two seconds has been reached,
the beam is released and is allowed to deflect under the pressure
and viscous loading of the structure. Within three to four seconds
the simulation has reached a periodic state. Fig. 8 provides an
example of the velocity and displacement field within the domain
at time = 8.5 s.

The quantities for comparison with the reference case are the
displacement in the X and Y directions at the tip of the beam,
undergoing an oscillatory motion, and the lift and drag forces over
the cylinder and elastic beam. The profiles for the displacement
can be seen in Figs. 9a and 9b, with Table 5 highlighting the
mean and amplitude of the displacement. The lift and drag forces
are subsequently shown in Figs. 10b and 10a and the mean and
amplitude values are shown in Table 6.

From the results for displacement, it can be seen the maximum
and minimum values of displacement in the X direction are
similar to those seen in the reference, however the amplitude
in the Y direction is marginally higher than the reference case
in both the positive and negative directions. The trends seen in
the displacement fields are also observed in the approximations
for lift and drag. The mean drag converges to the results in the
reference paper, with a 0.017% error and the amplitude has an
error of 2.6%. The frequency of lift compares well, with the value
calculated (5.50 Hz) having approximately a 0.7% error compared
with the reference paper (5.46 Hz). Within the literature a wide
spread of results are reported for this benchmark test case, and
are summarised in a table by Turek et al. [44]. With the clear
convergence of results and the small percentage error in the
frequency of lift in comparison to the reference, the authors are
satisfied that the application is performing in the correct manner
for FSI computations.

Fig. 7. Example of the fluid mesh (Grid 2) and solid mesh used for the grid convergence study.

S. Hewitt, L. Margetts, A. Revell et al. / Computer Physics Communications 244 (2019) 469–482 477

Fig. 8. Displacement and velocity field at time = 8.5 s.

Fig. 9. X and Y displacement at the tip of the elastic flag.

Fig. 10. Lift and drag forces for FSI benchmark.

478 S. Hewitt, L. Margetts, A. Revell et al. / Computer Physics Communications 244 (2019) 469–482

Fig. 11. (a) A comparison of the large strain OpenFPCI plugin and the total Lagrangian solver available within OpenFOAM-Extend (b) The speed up of the full
application running for 30 time steps across a series of mesh sizes.

5. Parallel performance

Both applications make use of the Message Passing Interface
(MPI) and can be run on both shared memory and distributed
architectures, with OpenFOAM-Extend using pre processing do-
main decomposition and ParaFEM using runtime element by el-
ement techniques. A range of domain decomposition techniques
are available within OpenFOAM-Extend, OpenFPCI makes use of
these domain decomposition methods to decompose the struc-
tural mesh, as a preprocessing step.

Large single physics libraries and packages usually wrap the
underlying MPI calls, in OpenFOAM this is through the Pstream
class and in ParaFEM an mp_interface module. With both of
these libraries the MPI calls are based on the world communi-
cator, MPI_COMM_WORLD, and so without significant alteration
of these libraries the use of differing communicators is diffi-
cult. Therefore the current version of OpenFPCI utilises the same
number of cores for the solid and fluid domains. The coupling
environments CoMa and MpCCI use a central server to communi-
cate all data, OpenFPCI uses a similar approach with the interface
mapping and data handling being done by the master processor.

Two scalability studies are shown to highlight both the overall
scalability of the application when using an OpenFPCI plugin and
a study comparing the scalability of an OpenFPCI plugin with
OpenFOAM-Extend’s standard non-linear structural solver. All the
test were preformed on the Tianhe2 machine at the Chinese
Supercomputing Centre in Guangzhou [45]. Each node compro-
mises two Intel Ivy Bridge Xeon E5-2692 CPU’s running at clock
speed of 2.2 GHz. OpenFOAM-Extend, ParaFEM and OpenFPCI
were all compiled with the latest Intel 17.0.6 compilers, with
MPICH version 3.2.1 used for parallel processing.

Fig. 11 highlights a number of benefits and current limita-
tions of the application. Firstly Fig. 11a highlights the benefits
of using OpenFPCI over the current implementation available
within OpenFOAM-Extend. The figure compares the execution
time for a single solution using the large strain OpenFPCI plugin
and the large strain structural solver available within OpenFOAM-
Extend, for two cases. These cases contain approximately 30,000
and 350,000 elements. The large strain OpenFPCI plugin scales
almost ideally to around 1000 MPI processes for a problem with
approximately 30,000 elements and 3000 MPI processes for the
case involving 350,000 elements. In comparison the OpenFOAM-
Extend solver scales to around 12 cores only and achieves very

Table 7
Comparison of the OpenFPCI and OpenFOAM-Extend FSI simulation results,
against the reference paper.

dx[10−3m] dy[10−3m] Drag(N) Lift(N)

Mean Amplitude

OpenFPCI −2.98 2.81 1.45 35.5 461.3 28.4 2.62 176.3
OpenFOAM-Extend −2.96 2.80 1.46 35.5 460.7 28.6 2.32 162.6
[44] −2.88 2.72 1.47 35.0 460.5 27.7 2.50 153.9

little improvement after this for either case. The OpenFOAM-
Extend solver did however preform better for smaller core counts,
below 12, with improved execution times over the OpenFPCI
plugin. Table 7 provides a comparison of the results achieved
by the OpenFOAM-Extend structural solver, OpenFPCI and the
reference, for clarification.

The results for both the OpenFOAM-Extend solvers were com-
pleted using grid 4, and have less than 1% difference between the
OpenFPCI case for the mean and amplitude of displacement in the
x-direction and y-direction and the drag force.

The strong scalability study for the full application is shown
in Fig. 11b. It considered the overall scalability of the application
for 30 time steps, and can be seen to scale well to around 3072
MPI processes before the performance decreases. The overall
scalability of the application is a combination of the scalability
of each of the processes shown in the FSI algorithm, Fig. 2.

Fig. 12 and Table 8 provide some further insight into the
effects of the interface and the overall breakdown of time spent
in each region.

The interface of the application uses a single processor to deal
with the data mapping and interface updates. It can be seen from
Fig. 12 that the time taken in the interface for each mesh is
generally consistent across the MPI processes, and that as the
number of nodes at the interface grows so does the time taken
for all the work to be completed. The simulations taking the
shortest time are highlighted for each mesh, with the percentage
of time in the interface shown for a number of the results. The
percentage of time in the interface peaks at the highlighted value,
where the overall execution time of the other processes is at a
minimum. In all the meshes it was seen that OpenFOAM-Extend
no longer scales after this point, with the execution time staying
the same or increasing for both solving the governing equations
and moving the fluid mesh. Table 8 shows the time taken, per
time step, for each of the four major processes in Fig. 2, of the

S. Hewitt, L. Margetts, A. Revell et al. / Computer Physics Communications 244 (2019) 469–482 479

Table 8
Computational time for each process for the overall fastest simulation at that mesh size, highlighted
in Fig. 12.
Mesh Computational time to solve each process, per timestep [s]

Solid Fluid Fluid mesh Interface

0.09 0.41 0.4 0.02

0.2 1.0 1.4 0.1

0.45 2.63 2.5 0.4

1.6 7.1 8.5 1.2

Fig. 12. The computational time spent within the interface per timestep for four
meshes with different numbers of nodes at the interface. The percentage of time
spent within the interface is annotated for a number of the simulations, with
the quickest overall simulation highlighted in bold.

quickest results for each mesh, also highlighted by a bold marker
in Fig. 12. It can be seen from the table that the time spent solving
the solid is small in comparison to that of moving the mesh and
solving the fluid governing equations. This suggests the overall
scalability of the current problem with mesh ratios of around
25–40 fluid elements to one solid element is limited by the scal-
ability of fluid domain. The moving of the mesh and the solving
of the fluid governing equations, scale differently. Solving the
Laplacian of the boundary velocity to smooth the mesh, does not
scale well, to the same number of cores as solving the governing
equations. A balance between the two must be found.

To summarise the results, if users only have access to desktop
systems with a maximum of 12 cores, they will see very little
benefit from using OpenFPCI as opposed to capabilities already
available in OpenFOAM-Extend. However for users looking to
increase the size of the problem within the solid domain and
that have access to larger systems, significant benefits can be
seen. For mesh sizes in tens of thousands a factor of 30 speed
up is seen and for meshes in the hundreds of thousands a factor
of approximately 125 can be achieved. Although the speed up
factor can be seen when comparing the solid solvers available, the
overall speedup will heavily depend on the overall time impact
of the solid itself. For problems with an approximately 25–40:1
fluid to solid mesh ratio good speed up can be achieved up to
around 3072 cores. The interface approach, which is similar to
a number of general coupling environments [18,21], stores all
the interface information on the master processor where data
mapping occurs. Once the data mapping between the fluid and
solid domains is complete the information is distributed to the
other cores. Developing this interface approach to work in parallel
and utilising different MPI communicators between OpenFOAM-
Extend and ParaFEM would provide further speed up, however

to the authors knowledge the level of scaling shown in the above
section is rare amongst current FSI applications.

6. Conclusions

This paper has presented OpenFPCI, an open source FOAM
to ParaFEM coupling interface. OpenFPCI has been developed to
couple the extensive fluid dynamics capabilities of OpenFOAM-
Extend with the highly parallel nature of ParaFEM for solving
structural engineering problems. ParaFEM is structured as a se-
ries of mini-apps with each mini-app solving a particular en-
gineering problem. OpenFPCI is a series of plugins, with each
plugin being developed from a particular ParaFEM mini-app and
solving a specific problem. The plugins decompose a ParaFEM
executable program into a series of subroutines to initialise and
solve the engineering problem. These subroutines are called by
OpenFOAM-Extend in a master–slave approach. The focus has
been on defining an OpenFPCI plugin that can be used to solve
FSI problems where the structure is modelled as a St. Venant–
Kirchhoff material.

After identifying good agreement with a benchmark validation
case the parallel scalability of the plugin was compared directly
against the structural solver available within OpenFOAM-Extend.
It was discovered that the OpenFPCI plugin provided significant
execution time improvements over the OpenFOAM-Extend solver.
Although the OpenFPCI plugin was slower up to around 12 cores,
it continued to scale onto core counts in the thousands that the
OpenFOAM-Extend solver did not. For solid meshes in the tens
of thousands, a speed up improvement of approximately 30 was
achieved, and for meshes in the hundreds of thousands, a speed
up factor of 125 was observed. For users with access to large
HPC systems with core counts ranging from 20 to 3000 the use
of OpenFPCI can provide significantly improved solution times in
comparison to OpenFOAM-Extend. The overall scalability of the
OpenFPCI plugin within a full FSI simulation was shown on a
series of test cases up to 130 million fluid cells and 5 million
solid elements, where almost ideal scaling was seen on up to 1536
cores.

Both applications involved with in the coupling are open
source; OpenFOAM-Extend is released under GPL and ParaFEM
via BSD licence. OpenFPCI is therefore released under a BSD
licence and is freely available at its public repository, OpenFPCI,
where all of the source code is released and a number of example
problems are provided including the validation case shown. The
current release is stable and major improvements will be released
as a separate entity so that issues with backward compatibility
can be mitigated. It is hoped that this paper will encourage the
use of current OpenFPCI plugins and the development of further
capabilities.

Acknowledgements

The authors acknowledge the support of EPSRC and General
Electric through grants EP/M507969/1 and EP/N026136/1, along

https://github.com/SPHewitt/OpenFPCI

480 S. Hewitt, L. Margetts, A. Revell et al. / Computer Physics Communications 244 (2019) 469–482

with an Archer instant access project e512 entitled ‘‘Open Source
Fluid-Structure Interaction’’ and project e515 named ‘‘GEMS : Ge-
ometric Modelling of Solids’’. SH would like to acknowledge the
support provided during the 2016 NUMAP-FOAM spring school
and support provided from the Advanced Institute of Engineering
Science for Intelligent Manufacturing, Guangzhou University, in
using the Tianhe-2 Supercomputer at the National Supercom-
puter Center in Guangzhou.

Appendix A. Framework extension

One of the goals of this paper is to encourage the development
of other plugins that can be used within the FSI library. A series
of template files are provided that enable developers to imple-
ment their own plugins. These template files can be copied and
renamed along with the naming standards described at the start
of this section. A ParaFEM mini-app should be selected that either
solves the structural problem at hand or is close enough that
implementation of the added functionality is simple. The program
should be decomposed into the initialisation phase and solution
phase, which within ParaFEM programs are clearly labelled. These
can then be exported into the init* and run* Fortran subroutines
within the parafem*.f90 file created. If additional parameters are
required to be read from OpenFOAM dictionaries they can be
added to the fem* C and H files in a similar manner to the
numerical parameters. There are a number of additional useful
subroutines within the parafemutils.f90 file, with the list of sub-
routines documented within the source code. A summarised step
by step guide to implementing a new plugin is provided below.

Step 1: Locate a ParaFEM mini-app that is most appropriate.

Step 2: Decompose into an Initialisation and Solution phase.

Step 3: Copy template files for the ParaFEM routines and derived
classes and rename them appropriately, parafem*.f90 and
fem*.C/H.

Step 4: Port the code into the init* and run* within the
parafem*.f90.

Step 5: Add any additional inputs and outputs to the Fortran sub-
routines, remembering to update the Extern C definitions
within the fem*.C file. Examples of reading in numerical
parameters and creating new fields from the large strain
OpenFPCI plugin are shown.

Numerical Parameters can be read in through
OpenFOAM dictionaries, for example reading in the
beta parameter for the Newmark scheme.
double beta (readScalar (so l idProper t ies () . lookup ("

beta "))) ;

Fields can be read in through OpenFOAM-Extend IOob-
jects, an example of creating a nodal displacement
field.
pointD_
(

IOobject
(

"pointD" ,
runTime () . timeName() ,
mesh ,
IOobject : : READ_IF_PRESENT ,
IOobject : :AUTO_WRITE

) ,
pMesh_

)

In general, for most plugins the init phase will be similar, it
will read in the mesh and create the necessary ParaFEM arrays. It
will be the run subroutine that differs most significantly.

Appendix B. Downloading and installing OpenFPCI

The installation of OpenFPCI requires that both OpenFOAM-
Extend and ParaFEM are compiled on the system, using the Open-
MPI available on the system. The instructions to download and
install can be found at their respective websites, OpenFOAM-
Extend and ParaFEM. The latest version of OpenFPCI v1.1 can
be downloaded from the git repository OpenFPCI. The repository
also contains more detailed installation instructions. Installation
is completed through the use of a bash script in the src directory
src/openfpci.sh. The paths to the ParaFEM home directory and
OpenFOAM-Extend home directory are required before the script
is run.

Listing 5: Installation instructions for OpenFPCI
echo ‘‘export PARAFEM_DIR=path / to / parafem code / parafem" >> ∼ / .

bashrc
echo ‘‘export FOAM_DIR=path / to / foam/ foam extend . x . x" >> ∼ / .

bashrc
source ∼ / . bashrc
cd OpenFPCI / src
. / openfpci . sh

The script downloads and compiles the FSI library required
before linking the files required for OpenFPCI. The software has
been tested using OpenFOAM-Extend 4.0 and ParaFEM.5.0.3 on
a Linux workstation running Ubuntu 16.04 and OpenMPI 1.6.5.
The application has been installed on the ARCHER [46] high per-
formance computing system, the UK’s national supercomputing
service and Tianhe2, at the Chinese National Supercomputing
Centre in Guangzhou [45].

Appendix C. Using OpenFPCI

The Foam-Extend FSI library [17] is accompanied by a series
of test problems. These test problems have been included within
the OpenFPCI repository with any additional files and input pa-
rameters included. A test case directory contains two folders, a
fluid and solid folder that contain information about each of the
domains properties and mesh. A diagrammatic view of the file
structure is provided in Fig. C.13:

The fluid case files and solid case files contain the information
required for fluid and solid domains respectively. A soft link is
created between the major files within the two directories to
couple the two domains. A case is subsequently run in the same
manner as a standard OpenFOAM case, by entering into the fluid
case folder and running the executable. Fig. C.13 highlights a
number of files. Those files highlighted in green are the nodal
quantities of displacement, velocity and acceleration, and those
in blue are the case files used to alter OpenFPCI’s material and
numerical properties. An example of the solidProperties file is
provided in Listing 6.

Listing 6: Numerical parameters for the large strain OpenFPCI
plugin
/ / Solver type
so l idSo lver femLargeStrain ;

femLargeStrainCoeffs
{

/ / Gravity Loading
gravi ty 0 .0 ;
/ / Newmark Parameters
beta 0.25;
delta 0 .5 ;
/ / RBF Interpolat ion
rbf no;

}

https://openfoamwiki.net/index.php/Installation/Linux/foam-extend-4.0
https://openfoamwiki.net/index.php/Installation/Linux/foam-extend-4.0
https://openfoamwiki.net/index.php/Installation/Linux/foam-extend-4.0
https://github.com/leemargetts/parafem
https://github.com/SPHewitt/OpenFPCI

S. Hewitt, L. Margetts, A. Revell et al. / Computer Physics Communications 244 (2019) 469–482 481

Fig. C.13. Case setup for a problem, with additional fields required for OpenFPCI
highlighted in green and files from which parameters, required for OpenFPCI,
are read in blue. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

The OpenFPCI solver selected is that which follows solidSolver,
the coefficients for this solver must then be complete or the
case will fail to run. As in the example the large strain solver,
femLargeStrainCoeffs, uses the Newmark time stepping scheme
and so requires values for beta and delta.

Running cases in parallel works in a similar manner to a
standard OpenFOAM case. The decomposePar utility can be used
to decompose the mesh. It uses the solid/system/decomposeParDict
dictionary that defines the number of processes and decompo-
sition method used. This process creates a series of directories
named processor followed by the processor number, starting at 0.
A soft link is created between the processor directories within the
solid folder and the processor directories of the decomposed fluid
case. The current release requires the same number of processors
to be used for each domain. Running in parallel then uses the MPI
runtime command, executed from inside the fluid case folder. An
example of running the command on 48 cores is as follows:

mpirun -np 48 fsiFoam -parallel
ParaFEM can output results files in ensi gold format to be

viewed in the visualisation package ParaView, however when
writing the results files for parallel computations, the current
methodology gathers all the data to the master processor that
subsequently writes the data to file. This is effective for steady or
static problems where only the final result is required, however
to output data at multiple time steps this method can be time
consuming. The quantities of interest are passed between the
OpenFOAM and ParaFEM and can be written out using Open-
FOAM’s parallel I/O capabilities. Each processor writes a time
file containing the fields for that decomposed area of mesh.
These files can be reconstructed into a full domain using the
reconstructPar utility and ParaView can be used to visualise the
results. OpenFOAM provides a wrapper around ParaView, and so
the paraFoam command can be used from within the fluid case
folder to view both the fluid and solid domains.

References

[1] C.M. Scotti, E.A. Finol, Comput. Struct. 85 (11–14) (2007) 1097–1113,
http://dx.doi.org/10.1016/j.compstruc.2006.08.041.

[2] J. Hron, M. Mádlík, Nonlinear Anal. RWA 8 (5) (2007) 1431–1458, http:
//dx.doi.org/10.1016/j.nonrwa.2006.05.007.

[3] B. Owen, N. Bojdo, A. Jivkov, B. Keavney, A. Revell, Biomech. Model.
Mechanobiol. (2018) 1–26, http://dx.doi.org/10.1007/s10237-018-1024-9.

[4] M.-C. Hsu, Y. Bazilevs, Comput. Mech. 50 (6) (2012) 821–833, http://dx.
doi.org/10.1007/s00466-012-0772-0.

[5] A. Korobenko, J. Yan, S. Gohari, S. Sarkar, Y. Bazilevs, Comput. & Fluids 158
(2017) 167–175, http://dx.doi.org/10.1016/j.compfluid.2017.05.010.

[6] C. Gebhardt, B. Roccia, Renew. Energy 66 (2014) 495–514, http://dx.doi.
org/10.1016/j.renene.2013.12.040.

[7] S. Hewitt, L. Margetts, A. Revell, Archives of Computational Methods in
Engineering, Springer Netherlands, 2017, pp. 1–21, http://dx.doi.org/10.
1007/s11831-017-9222-7.

[8] C. Michler, S.J. Hulshoff, E.H. van Brummelen, R. de Borst, Comput. & Fluids
33 (5–6) (2004) 839–848, http://dx.doi.org/10.1016/j.compfluid.2003.06.
006.

[9] H.G. Matthies, J. Steindorf, Comput. Struct. 81 (8–11) (2003) 805–812,
http://dx.doi.org/10.1016/S0045-7949(02)00409-1.

[10] M. Heil, A.L. Hazel, J. Boyle, Comput. Mech. 43 (1) (2008) 91–101, http:
//dx.doi.org/10.1007/s00466-008-0270-6.

[11] ADINA: Fluid-Structure Interaction.
[12] ANSYS: Fluid-Structure Interaction.
[13] COMSOL Multiphysics: A Simulation Platform for Physics-Based Modeling.
[14] J. Lorentzon, Thesis, 2009, p. 86.
[15] F. Palacios, J. Alonso, K. Duraisamy, M. Colonno, J. Hicken, A. Aranake, A.

Campos, S. Copeland, T. Economon, A. Lonkar, T. Lukaczyk, T. Taylor, 51st
AIAA Aerospace Sciences Meeting Including the New Horizons Forum and
Aerospace Exposition, American Institute of Aeronautics and Astronautics,
Reston, Virigina, 2013, http://dx.doi.org/10.2514/6.2013-287.

[16] A. Cesur, C. Carlsson, A. Feymark, L. Fuchs, J. Revstedt, Comput. & Fluids
101 (2014) 27–41, http://dx.doi.org/10.1016/j.compfluid.2014.05.012.

[17] Z. Tukovic, P. Cardiff, A. Karac, H. Jasak, A. Ivankovic, 9th OpenFOAM
Workshop, Zagreb, 2014.

[18] T.G. Gallinger, Effiziente Algorithmen Zur Partitionierten LÖSung Stark
Gekoppelter Probleme Der Fluid-Struktur-Wechselwirkung, Ph.D. thesis,
The Technical University of Munich, 2010, p. 183.

[19] M. Breuer, G. De Nayer, M. Münsch, T. Gallinger, R. Wüchner, J. Fluids
Struct. 29 (2012) 107–130, http://dx.doi.org/10.1016/j.jfluidstructs.2011.09.
003.

[20] H.-J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele, A.
Shukaev, B. Uekermann, Comput. & Fluids 141 (2016) 250–258, http:
//dx.doi.org/10.1016/j.compfluid.2016.04.003.

[21] MpCCI: A Multiphysics Coupling Environment.
[22] I.M. Smith, D.V. Griffiths, L. Margetts, Programming the Finite Element

Method, fifth ed., John Wiley & Sons, Ltd, 2014.
[23] H.G. Weller, G. Tabor, H. Jasak, C. Fureby, Comput. Phys. 12 (6) (1998) 620,

http://dx.doi.org/10.1063/1.168744.
[24] M.A. Heroux, D.W. Doerfler, P.S. Crozier, J.M. Willenbring, H.C. Edwards, A.

Williams, M. Rajan, E.R. Keiter, H.K. Thornquist, R.W. Numrich, Improving
Performance Via Mini-Applications, Tech. Rep. SAND2009-5574, Sandia
National Laboratories (2009).

[25] I.M. Smith, L. Margetts, VII International Conference on Computational
Plasticity, Barcelona, 2003.

[26] F. Levrero-Florencio, P. Pankaj, Front. Physiol. 9 (2018) 545, http://dx.doi.
org/10.3389/fphys.2018.00545.

[27] A. Shterenlikht, L. Margetts, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
471 (2177) (2015) http://dx.doi.org/10.1098/rspa.2015.0039.

[28] L. Evans, L. Margetts, V. Casalegno, L. Lever, J. Bushell, T. Lowe, A. Wallwork,
P. Young, A. Lindemann, M. Schmidt, P. Mummery, Fusion Eng. Des. 100
(2015) 100–111, http://dx.doi.org/10.1016/j.fusengdes.2015.04.048.

[29] J.D. Arregui-Mena, L. Margetts, D.V. Griffiths, L. Lever, G. Hall, P.M.
Mummery, J. Nucl. Mater. 465 (2015) 793–804, http://dx.doi.org/10.1016/
j.jnucmat.2015.05.058.

[30] N.M. Newmark, J. Eng. Mech. Div. 85 (3) (1959) 67—-94.
[31] I.M. Smith, A. Wang, Int. J. Numer. Anal. Methods Geomech. 22 (10) (1998)

777–790, http://dx.doi.org/10.1002/(SICI)1096-9853(1998100)22:10<777::
AID-NAG940>3.0.CO;2-U.

[32] I.M. Smith, L. Margetts, Eng. Comput. 23 (2) (2006) 154–165, http://dx.doi.
org/10.1108/02644400610644522.

[33] H. Jasak, Z. Tukovic, European Conference on Computational Fluid
Dynamics, 2010, pp. 1–19.

[34] R. Löhner, C. Yang, Commun. Numer. Methods. Eng. 12 (10) (1996)
599–608, http://dx.doi.org/10.1002/(SICI)1099-0887(199610)12:10<599::
AID-CNM1>3.0.CO;2-Q.

[35] H. Jasak, Z. Tukovic, Transactions of Famena, Vol. 30, 2006, pp. 1–20.
[36] R. Issa, J. Comput. Phys. 62 (1) (1986) 40–65, http://dx.doi.org/10.1016/

0021-9991(86)90099-9.
[37] J. Degroote, Arch. Comput. Methods Eng. 20 (3) (2013) 185–238, http:

//dx.doi.org/10.1007/s11831-013-9085-5.
[38] M. Beaudoin, H. Jasak, Development of a Generalized Grid Mesh Interface

for Turbomachinery Simulations with OpenFOAM, 2008.
[39] U. Küttler, W.A. Wall, Comput. Mech. 43 (1) (2008) 61–72, http://dx.doi.

org/10.1007/s00466-008-0255-5.

http://dx.doi.org/10.1016/j.compstruc.2006.08.041
http://dx.doi.org/10.1016/j.nonrwa.2006.05.007
http://dx.doi.org/10.1016/j.nonrwa.2006.05.007
http://dx.doi.org/10.1016/j.nonrwa.2006.05.007
http://dx.doi.org/10.1007/s10237-018-1024-9
http://dx.doi.org/10.1007/s00466-012-0772-0
http://dx.doi.org/10.1007/s00466-012-0772-0
http://dx.doi.org/10.1007/s00466-012-0772-0
http://dx.doi.org/10.1016/j.compfluid.2017.05.010
http://dx.doi.org/10.1016/j.renene.2013.12.040
http://dx.doi.org/10.1016/j.renene.2013.12.040
http://dx.doi.org/10.1016/j.renene.2013.12.040
http://dx.doi.org/10.1007/s11831-017-9222-7
http://dx.doi.org/10.1007/s11831-017-9222-7
http://dx.doi.org/10.1007/s11831-017-9222-7
http://dx.doi.org/10.1016/j.compfluid.2003.06.006
http://dx.doi.org/10.1016/j.compfluid.2003.06.006
http://dx.doi.org/10.1016/j.compfluid.2003.06.006
http://dx.doi.org/10.1016/S0045-7949(02)00409-1
http://dx.doi.org/10.1007/s00466-008-0270-6
http://dx.doi.org/10.1007/s00466-008-0270-6
http://dx.doi.org/10.1007/s00466-008-0270-6
http://refhub.elsevier.com/S0010-4655(19)30174-2/sb14
http://dx.doi.org/10.2514/6.2013-287
http://dx.doi.org/10.1016/j.compfluid.2014.05.012
http://refhub.elsevier.com/S0010-4655(19)30174-2/sb17
http://refhub.elsevier.com/S0010-4655(19)30174-2/sb17
http://refhub.elsevier.com/S0010-4655(19)30174-2/sb17
http://refhub.elsevier.com/S0010-4655(19)30174-2/sb18
http://refhub.elsevier.com/S0010-4655(19)30174-2/sb18
http://refhub.elsevier.com/S0010-4655(19)30174-2/sb18
http://refhub.elsevier.com/S0010-4655(19)30174-2/sb18
http://refhub.elsevier.com/S0010-4655(19)30174-2/sb18
http://dx.doi.org/10.1016/j.jfluidstructs.2011.09.003
http://dx.doi.org/10.1016/j.jfluidstructs.2011.09.003
http://dx.doi.org/10.1016/j.jfluidstructs.2011.09.003
http://dx.doi.org/10.1016/j.compfluid.2016.04.003
http://dx.doi.org/10.1016/j.compfluid.2016.04.003
http://dx.doi.org/10.1016/j.compfluid.2016.04.003
http://refhub.elsevier.com/S0010-4655(19)30174-2/sb22
http://refhub.elsevier.com/S0010-4655(19)30174-2/sb22
http://refhub.elsevier.com/S0010-4655(19)30174-2/sb22
http://dx.doi.org/10.1063/1.168744
http://refhub.elsevier.com/S0010-4655(19)30174-2/sb25
http://refhub.elsevier.com/S0010-4655(19)30174-2/sb25
http://refhub.elsevier.com/S0010-4655(19)30174-2/sb25
http://dx.doi.org/10.3389/fphys.2018.00545
http://dx.doi.org/10.3389/fphys.2018.00545
http://dx.doi.org/10.3389/fphys.2018.00545
http://dx.doi.org/10.1098/rspa.2015.0039
http://dx.doi.org/10.1016/j.fusengdes.2015.04.048
http://dx.doi.org/10.1016/j.jnucmat.2015.05.058
http://dx.doi.org/10.1016/j.jnucmat.2015.05.058
http://dx.doi.org/10.1016/j.jnucmat.2015.05.058
http://refhub.elsevier.com/S0010-4655(19)30174-2/sb30
http://dx.doi.org/10.1002/(SICI)1096-9853(1998100)22:10<777::AID-NAG940>3.0.CO;2-U
http://dx.doi.org/10.1002/(SICI)1096-9853(1998100)22:10<777::AID-NAG940>3.0.CO;2-U
http://dx.doi.org/10.1002/(SICI)1096-9853(1998100)22:10<777::AID-NAG940>3.0.CO;2-U
http://dx.doi.org/10.1108/02644400610644522
http://dx.doi.org/10.1108/02644400610644522
http://dx.doi.org/10.1108/02644400610644522
http://refhub.elsevier.com/S0010-4655(19)30174-2/sb33
http://refhub.elsevier.com/S0010-4655(19)30174-2/sb33
http://refhub.elsevier.com/S0010-4655(19)30174-2/sb33
http://dx.doi.org/10.1002/(SICI)1099-0887(199610)12:10<599::AID-CNM1>3.0.CO;2-Q
http://dx.doi.org/10.1002/(SICI)1099-0887(199610)12:10<599::AID-CNM1>3.0.CO;2-Q
http://dx.doi.org/10.1002/(SICI)1099-0887(199610)12:10<599::AID-CNM1>3.0.CO;2-Q
http://refhub.elsevier.com/S0010-4655(19)30174-2/sb35
http://dx.doi.org/10.1016/0021-9991(86)90099-9
http://dx.doi.org/10.1016/0021-9991(86)90099-9
http://dx.doi.org/10.1016/0021-9991(86)90099-9
http://dx.doi.org/10.1007/s11831-013-9085-5
http://dx.doi.org/10.1007/s11831-013-9085-5
http://dx.doi.org/10.1007/s11831-013-9085-5
http://dx.doi.org/10.1007/s00466-008-0255-5
http://dx.doi.org/10.1007/s00466-008-0255-5
http://dx.doi.org/10.1007/s00466-008-0255-5

482 S. Hewitt, L. Margetts, A. Revell et al. / Computer Physics Communications 244 (2019) 469–482

[40] B.M. Irons, R.C. Tuck, Internat. J. Numer. Methods Engrg. 1 (3) (1969)
275–277, http://dx.doi.org/10.1002/nme.1620010306.

[41] J. Degroote, K.-J. Bathe, J. Vierendeels, Comput. Struct. 87 (11–12) (2009)
793–801, http://dx.doi.org/10.1016/j.compstruc.2008.11.013.

[42] K.-J. Bathe, Finite Element Procedures, Prentice Hall, 1996, p. 1037.
[43] S. Turek, J. Hron, Fluid-Structure Interaction, Vol. 53, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2006, pp. 371–385, http://dx.doi.org/10.
1007/3-540-34596-5_15.

[44] S. Turek, J. Hron, M. Razzaq, H. Wobker, M. Schäfer, in: H.-J. Bungartz,
M. Mehl, M. Schäfer (Eds.), Lecture Notes in Computational Science and
Engineering, in: Lecture Notes in Computational Science and Engineering,
vol. 73, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 413–424,
http://dx.doi.org/10.1007/978-3-642-14206-2, arXiv:1011.1669v3.

[45] X. Liao, L. Xiao, C. Yang, Y. Lu, Front. Comput. Sci. 8 (3) (2014) 345–356,
http://dx.doi.org/10.1007/s11704-014-3501-3.

[46] ARCHER: The Latest Uk National Supercomputing Service.

http://dx.doi.org/10.1002/nme.1620010306
http://dx.doi.org/10.1016/j.compstruc.2008.11.013
http://refhub.elsevier.com/S0010-4655(19)30174-2/sb42
http://dx.doi.org/10.1007/3-540-34596-5_15
http://dx.doi.org/10.1007/3-540-34596-5_15
http://dx.doi.org/10.1007/3-540-34596-5_15
http://dx.doi.org/10.1007/978-3-642-14206-2
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1007/s11704-014-3501-3

	OpenFPCI: A parallel fluid–structure interaction framework
	Introduction
	Methodology
	Notation
	Solid mechanics
	Discretisation

	Fluid mechanics
	Mesh motion
	Discretisation

	Interface

	Software implementation
	FSI library
	Interpolation
	FSI convergence

	OpenFPCI: Summary
	OpenFPCI: init and run subroutines
	Initialisation

	Run

	Validation
	Parallel performance
	Conclusions
	Acknowledgements
	Appendix A. Framework Extension
	Appendix B. Downloading and Installing OpenFPCI
	Appendix C. Using OpenFPCI
	References

