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AUTOMATED MODEL REDUCTION FOR COMPLEX SYSTEMS
EXHIBITING METASTABILITY∗

ILLIA HORENKO† , EVELYN DITTMER† , ALEXANDER FISCHER‡ , AND CHRISTOF

SCHÜTTE†

Abstract. We present a novel method for the identification of the most important metastable
states of a system with complicated dynamical behavior from time series information. The novel
approach represents the effective dynamics of the full system by a Markov jump process between
metastable states and the dynamics within each of these metastable states by rather simple stochastic
differential equations (SDEs). Its algorithmic realization exploits the concept of hidden Markov
models with output behavior given by SDEs. The numerical effort of the method is linear in the
length of the given time series and quadratic in terms of the number of metastable states. The
performance of the resulting method is illustrated by numerical tests and by application to molecular
dynamics time series of a trialanine molecule.
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1. Introduction. The macroscopic dynamics of typical biomolecular systems is
mainly characterized by the existence of biomolecular conformations which can be un-
derstood as metastable geometrical large scale structures, i.e., geometries which are
persistent for long periods of time. On the longest time scales biomolecular dynamics
is a kind of flipping process between these conformations [15, 18], while upon closer
inspection it exhibits a rich temporal multiscale structure [37]. Biophysical research
seems to indicate that typical biomolecular systems possess only few dominant con-
formations that can be understood as metastable or almost invariant sets in state or
configuration space [45, 46]. In other words, the effective or macroscopic dynamics
is given by a Markov jump process that hops between the metastable sets, while the
dynamics within these sets might be mixing on time scales that are shorter than the
typical waiting time between the hops. In many applications this Markovian picture
is an appropriate description of the dynamics since typical correlation times in the
system are sufficiently shorter than the waiting times between hops (and thus much
shorter than the time scale the effective description is intended to cover).

The same description of the effective dynamics is true for other complex system
including, e.g., climate systems or systems from materials science.

Recently there have been several set-oriented approaches to the algorithmic iden-
tification of metastable sets of a complex system and to the computation of the tran-
sition probabilities between them [45, 12, 10, 11]. These approaches are based on the
construction of a transition matrix that describes transition probabilities between sets
in the state space of the system. The identification of metastable sets is then based

∗Received by the editors January 26, 2005; accepted for publication (in revised form) April 21,
2006; published electronically September 26, 2006. This work was supported by the DFG research
center “Mathematics for Key Technologies” (FZT 86) in Berlin.

http://www.siam.org/journals/mms/5-3/62331.html
†Institute of Mathematics II, Free University Berlin, Arnimallee 2–6, 14195 Berlin, Germany

(horenko@math.fu-berlin.de, dittmer@math.fu-berlin.de, schuette@math.fu-berlin.de).
‡Courant Institute, New York University, 251 Mercer Street, New York, NY 10012 (fischer@cims.

nyu.edu). This author’s research was supported by NSF grant DMS02-39625.

802



AUTOMATED MODEL REDUCTION FOR COMPLEX SYSTEMS 803

on analysis of this transition matrix [46, 13, 11]. For higher-dimensional systems this
always requires coarse graining of state space into sets (a partition of state space in
disjoint sets that avoids the curse of dimensionality) that has to be designed carefully
since the resulting metastable sets are unions of the sets from the partition.

In this article we will discuss a novel approach to the problem that is no longer
purely set-oriented and is not based on (traditional) coarse graining concepts. Instead,
we propose approximating the effective dynamics by stochastic differential equations
(SDEs) of the following type for the state x ∈ Rn of the system:

dx(t) = −DxV
(q(t))(x(t)) + σ(q(t)) dW (t),(1)

q(t) = Markov jump process with states 1, . . . ,M,

where W (t) denotes standard Brownian motion, Dx denotes differentiation w.r.t. x,
Σ = (σ(1), . . . , σ(M)) contains noise intensities, and V = (V (1), . . . , V (M)) contains
interaction potentials. The jump process q(t) is intended to mimic the hopping of the
effective dynamics from one metastable set to another metastable set such that its
hopping rates have to be related to the transition rates between the sets. It thus can
be represented by an M ×M rate matrix R. The SDEs (1) then have to approximate
the (more rapidly mixing) dynamics within the metastable states, and thus must have
correlation times that are significantly shorter than the typical waiting times between
hops of the jump process. Altogether, the model is completely characterized by the
tuple (R,V,Σ). In the following we will assume that V contains only potentials
V (q) from a certain family of potentials that is given by a (not too large) tuple of
parameters θ(q) (e.g., polynomial potentials) such that V is completely determined by
the parameters Θ = (θ(1), . . . , θ(M)).

Consequently, we have to find a procedure that can determine the optimal model
λ = λ(R,Θ,Σ) for the complex system under consideration. The goal of the algo-
rithmic approach to be presented herein is to identify the optimal model λ(R,Θ,Σ)
from time series resulting from long-term simulation of the complex system under
consideration. Thereby, the information about which and how many metastable sets
are present in the time series is understood as being hidden within the data. Then
metastability is identified in the following way: we try to assign to any state from the
given time series the hidden metastable state to which it belongs. The metastable sets
are then represented by aggregates containing those states that are assigned to the
same hidden state. We will present a procedure that solves the assignment problem
and the estimation problem for the parameters (R,Θ,Σ) simultaneously and itera-
tively. This procedure will result from some dynamical Bayesian network approach
that is somewhat similar to standard approaches in the parameter estimation of par-
tially observed stochastic processes (see section 1.2).

Dynamical Bayesian networks generally provide a powerful framework for deriving
efficient algorithms to analyze time series (or other observation sequences) that are
thought to be governed by some hidden process [21, 35] (in our case the “hidden”
sequence of metastable states). The hidden Markov model (HMM) [21, 43] is one of
the most popular representatives of a Bayesian network. In HMMs, an observation
sequence is assumed to be a realization of random variables Y1, . . . , YN that depend
on a sequence of hidden states X = X1, X2, . . . , XN forming a discrete time Markov
chain. Associated with HMMs are algorithms for learning and inference, especially
the expectation-maximization (EM) algorithm for learning parameters of the model
and the Viterbi algorithm for inferring the most probable hidden state space sequence.

The approach proposed herein (called HmmSde in the following) can be thought
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of as an extension of the HMM approach in the sense that the “output” is assumed to
result from SDEs. Equation (1) describes the process in continuous time; the Bayesian
network model, however, already reflects the situation that the observation sequence
is given in discrete time.

We want to emphasize that the literature on dynamical Bayesian networks and
related topics already contains several independent algorithmic approaches which—
under specific assumptions and if properly combined—would allow an efficient param-
etrization of metastable time series: One would have to combine specific variants of
the EM and Viterbi algorithms that are standard techniques in the field [34, 47] with
other standard time series models such as ARIMA processes [6, 36] (e.g., under certain
assumptions on linearity and discretization with constant time steps); see section 1.2
for details. We will propose a very direct approach which permits a rather explicit
derivation. We claim that the concept of combining model reduction of metastable
systems with dynamical Bayesian models and our idea for determining the number
of necessary metastable states are new and straightforward. Moreover, its realiza-
tion (almost) requires only assumptions that are natural for the application context
considered herein. There is only one step, the application of the Euler scheme for dis-
cretizing the SDEs in (1), that is not natural; however, the derivation will show that
this discretization step can be avoided completely which leads to a more complicated
algorithmic scheme with the extra cost of additional Newton iterations (see [23] for
the details of a discretization-free algorithm). In addition, there are very recent re-
sults on exact and efficient estimators for discretely observed diffusion processes that
exploit the recent advances in simulation methodology for diffusions (exact simulation
of diffusion paths) [2]. Furthermore, by additionally applying standard generalizations
of the EM scheme we could even handle cases with nonconstant time stepping; one
would simply have a slightly more complicated discrete-time model.

After these remarks concerning the background of the statistical techniques used
we want to add a few sentences on the dimensionality issue since it always is crucial
for complex systems from, e.g., molecular dynamics, climate theory, or materials
science: The reader may think that the dimension n of (each state in) the observation
sequence has to be identical to the (eventually high) dimension of the state space X
of the complex system under investigation. Yet this is not necessary in most cases;
in fact we will be able to have n � dim(X). The main requirement is that the
observation sequence contains time series of appropriate observables of the system.
Here “appropriate” means that the combined information contained in the observation
somehow “encodes” the metastability in the system (even if this may be a very cryptic
code). For example, it is often possible to identify the main metastable states of a
biomolecular system from the observation of some of its torsion or backbone angles.
We will illustrate such a procedure in section 3.

We will proceed as follows: First, we will give an outline of the approach together
with remarks comparing it to other approaches to related problems. Then we will
present the construction of the identification algorithm and show how to determine
the optimal number of metastable sets. In the last section, we will first illustrate the
application of this novel technique to metastable time series from suitable numerical
experiments and, finally, discuss the applicability of the resulting concept to realistic
molecular dynamics problems.

Concept and commentary.

1.1. Concept. Our goal is to identify optimal parameters for our model (1) for
given observation data (Ot)t=t0,...,tN . That is, the states q(tj) the system occupies at
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times tj are known already, and we have to define the functional w.r.t. which we will
then have to determine the optimal parameters λ. This will be done by means of the
maximum likelihood principle; i.e., the functional will be given by a likelihood function
L that will be constructed in the following way: For given parameters λ, the likelihood
L(λ;Ot; qt) has to be the probability of output x(tj) = Otj , j = 1, . . . , N , and the
associated sequence of metastable states (qt) (the state sequence of the Markov jump
process at times tj , j = 1, . . . , N). Thus, in order to construct L appropriately, we
have to know the probability of output of state x(tj) under the condition of being
in metastable state qtj for given parameters λ. We will see that we can determine
this probability by considering the propagation of probability densities by the SDE
associated with metastable state qtj .

For the rest of this article let us assume that the potentials V (q) are of harmonic
form:

V (q)(x) =
1

2
D(q)(x− μ(q))2 + V

(q)
0 .(2)

This assumption simplifies the derivation of the parametrization algorithms signifi-
cantly. Furthermore, and also for the sake of simplicity, we will present the derivation
for a one-dimensional state space. As we will point out later, both assumptions are
not necessary.

Propagation of probability density. Let us first assume that the jump process in
the HmmSde model (1) is fixed to one state, say q(t) = q, for the times t considered.
Considering a statistical density function ρ(x, t) of an ensemble of SDE solutions (1)
for different realizations of the stochastic process W , we get an equivalent represen-
tation of the dynamics in terms of the Fokker–Planck operator:

∂tρ = �xV
(q)(x)ρ + ∇xV

(q)(x) · ∇xρ +
1

2
B(q)�xρ,(3)

where B(q) = (σ(q))2 ∈ R1 denotes the variance of the white noise (for Rd it is a
positive definite self-adjoint matrix). In the case of harmonic potentials this partial
differential equation can be solved analytically whenever the initial density function
can be represented as a superposition of Gaussian distributions: the solution of the
Fokker–Planck equation (3) remains to be a sum of Gaussians whenever the initial
probability function ρ(·, t = 0) is. Therefore, let us apply the variational principle
(Dirac–Frenkel–MacLachlan principle [16]) to (3) restricted to functions ρ of the form

ρ(x, t) = A(t) exp
(
−(x− x(t))TΣ(t)(x− x(t))T

)
.

This leads to the solution of the system of ordinary differential equations. In the
one-dimensional case we get

ẋ = −D(q)(x− μ(q)),

Σ̇ = −2B(q) Σ2 + 2D(q)Σ,

Ȧ =
(
D(q) −B(q)Σl

)
A(4)

for the time-dependent parameters {x,Σ, A}. The explicit solution of this system of
equations on the time interval (t, t + τ) where the hidden jump process q(t) is fixed
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in the state q is

x(t + τ) = μ(q) + exp
(
−D(q)τ

)
(x(t) − μ(q)),

Σ(t + τ) =
(
D(q)−1

B(q) − exp
(
−2D(q)τ

)(
D(q)−1

B(q) − Σ(t)−1
))−1

,

A(t + τ) =
1√
π

Σ(t + τ)1/2.(5)

In the case of initial states that are sums of Gaussians, each Gaussian would move
independently according to (5), and we would get the solution of (3) by superposition.

However, in the case considered herein, we are interested in the probability of
output O(tj+1) in metastable state qtj+1

under the condition that the system has
been in state Otj at time tj . For this, we can now use (5) with x(tj) = Otj and
Σ(tj)

−1 = 0. Therefore, the output probability distribution results in

ρ(Otj+1 |qtj , Otj ) = A(tj+1) exp
(
−(Otj+1

− x(tj+1))Σ(tj+1)(Otj+1
− x(tj+1))

T
)

with

x(tj+1) = μ(q) + exp
(
−D(q)τ

)
(O(tj) − μ(q)),

Σ(tj+1) =
(
D(q)−1

B(q) − exp
(
−2D(q)τ

)
D(q)−1

B(q)
)−1

=
(
1 − exp

(
−2D(q)τ

))−1

D(q)B(q)−1

,

A(tj+1) =
1√
π

Σ(tj+1)
1/2(6)

for metastable state q = qtj+1 and with τ = tj+1 − tj .
Likelihood function. Whenever we assume the potential is harmonic, the model is

characterized by the parameter tuple λ = (v,R, x,Σ, A), where v denotes the initial
distribution of the Markov chain, R its transition matrix, and x, Σ, and A the param-
eters of the output distributions due to (6). Suppose that the observed data (Ot) is
given with constant time stepping τ , i.e., tk = tk−1 + τ for all k = 1, . . . , N . Setting
t0 = 0 we have tk = kτ and especially T = tN = Nτ . For the sake of simplicity of no-
tation we thus may simply write t = 0, . . . , T . In addition to the observation sequence
O = (Ot) we also have the sequence of hidden metastable states q = (qt)t=0,...,T which
herein are given by the M possible states of the Markov jump process; i.e., we have
qt ∈ {1, . . . ,M}.

Let R be the rate matrix of jumps between the hidden states. Then the transition
probability between hidden states within two consecutive steps of the observations,
i.e., the transition probability from hidden state i to hidden state j after time τ under
the condition to be in i at time t = 0, is given by the ijth entry of the transition
matrix

T = exp(τR).

Therefore for given model λ = (v, T , x,Σ, A) we have the following joint proba-
bility distribution for the observation and hidden state sequences:

p(O, q|λ) = v(q0)ρ(O0|q0)
T∏

t=1

T (qt−1, qt)ρ(Ot|qt, Ot−1),(7)
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wherein the probability distributions ρ have the form

ρ(Ot|qt, Ot−1) = A(qt)(t) exp
(
−(Ot − x(qt)(t))Σ(qt)(t)(Ot − x(qt)(t))T

)
,

where the superindex refers to the hidden state qt of the system at time t, and x, Σ,
and A have to be computed from (6).

Therefore, the joint likelihood function for the model given the complete data
reads

L(λ) = L(λ;O; q) = p(O, q|λ),

where the notation L(·;O; q) and similar notations in the following are used to indicate
the parametric dependence of the likelihood on the sequences O and q.

Algorithmic realization. Our next task will be to construct algorithms that

(1) determine optimal parameters (T , μq, Dq, Bq)q=1,...,M by maximizing the like-
lihood L(λ;O; q), which is a nonlinear global optimization problem,

(2) determine an optimal sequence of hidden metastable states (qt) for given
optimal parameters, and

(3) determine the number of important metastable states; up to now we assumed
that the number M of hidden states is a priori given—how can we determine
an appropriate number?

In section 2 we will see how to construct appropriate algorithms for problems (1) and
(2) based on specifications of the EM and Viterbi algorithms.

Determining the number of metastable states. Problem (3) of identifying the num-
ber of dominant metastable states can be formulated as the problem of aggregating
states Ot from the time series into metastable states (i.e., clustering states that belong
to the same metastable state). The identification of an optimal aggregation from ob-
servation of the dynamical behavior is an important algorithmic problem. There are
no general solutions to this problem, and the best way to handle this problem is often
a mixture of insight and preliminary analysis. However, this task could in general
be handled by using algorithmic concepts from finite mixture models or comparable
approaches; cf. [35]. For the problems considered herein, we will see that opti-
mal aggregates can be identified via the dominant eigenmodes of a so-called transfer
or transition matrix, which describes the overall transition probabilities between all
states of the system under consideration. The identification is possible by consider-
ing the largest eigenvalues of the transition matrix and by exploiting an intriguing
property of dominant eigenmodes: they exhibit significant jumps between different
metastable aggregates, while varying only slowly within them [10, 45]. This has led
to the construction of an aggregation technique called Perron cluster cluster analysis
(PCCA) [12, 13].

We will use PCCA within the HmmSde framework as follows: In the setup of
HmmSde , for a given observation sequence one is confronted with the task of se-
lecting in advance the number M of hidden states. Since our goal is to identify
metastable states we can proceed as suggested in [17]: Start the EM algorithm with
some sufficient number of hidden states, say M , that should be greater than the ex-
pected number of metastable states. After termination of the EM algorithm, take the
resulting transition matrix A and aggregate the M hidden states into Mmeta ≤ M
metastable states by means of PCCA. The resulting conformation states will then
allow an interpretation of the results in terms of metastable states.
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Complexity and convergence. How does the numerical effort of the algorithmic
realization scale with the size of the problem, i.e., with the length of the observation
sequence T , its dimension n, and the number M of hidden states? The literature
on the application of EM and Viterbi algorithms to the parametrization of HMMs
demonstrates that one step of EM and the entire Viterbi algorithm scale linearly in T
and quadratically in M ; as we will see below this is still true for the specific HmmSde

procedure. The PCCA procedure required to determine the number of dominant
metastable states scales like O(M3). The scaling w.r.t. n is not so obvious; it depends
mainly on the number of parameters entering the potential. Whenever the potential
is harmonic, the scaling will be O(n2). Carefully putting all terms together one finds
an asymptotic estimate of the form (for harmonic potentials) [14]

O
(
(n2M + M2)T + n3

)
· number of EM iterations + O(M3).

Here the necessary number of iteration of the EM procedure should be determined by
a certain accuracy requirement on the error of the underlying optimization problem,
i.e., the maximum likelihood problem. There is a variety of results on the convergence
of the EM algorithm [52, 53]. One of the basic pitfalls of EM algorithms is the
following: Given the initial values, they often get trapped by a local maximum; this
phenomenon is quite typical for HMMs or, more generally, mixture models. There
is a copious literature on the subject and how to address it; see, for instance, [34].
In this article convergence is controlled by the following termination criterion: When
the increase in likelihood in the last EM iteration does not exceed a certain preset
threshold level, the iteration is stopped.

The accuracy of the results will also critically depend on the length of the obser-
vation sequence. More precisely, it is known quite generally that for SDEs such as the
ones considered herein the precise estimation of drift parameters (or the parameters
in the potential) requires rather long observation sequences (cf. section 1.1 of [42]).
In the context of the problems considered herein this means that we will have to have
“enough” time steps in each of the metastable states. In the following we will call
time series with this property “statistically rich enough.” Whether this is the case or
not will depend not only on the time series but also on the details of the algorithmic
scheme under consideration. We will herein not address this problem theoretically
(see [23] for details) but will give some examples in section 3.

Dimensionality and nonharmonic potentials. In this article we introduce the
HmmSde approach for one-dimensional observations and therefore one-dimensional
SDEs. Both preconditions are not necessary: On the one hand, the proposed algo-
rithm can easily be generalized to higher-dimensional observation sequences (this is
mainly due to the fact that the above derivation of the solution of the Fokker–Planck
equation can be generalized to higher dimensions, at least for harmonic potentials);
see our forthcoming article [24]. On the other hand, we can allow for a larger class
of potentials. For example, the entire derivation presented herein analogously goes
through if the potential is a linear functional of its parameters. This, for example, is
true for polynomial potentials; for this case one can even find parameter estimation
procedures in the literature [49].

Why use harmonic potentials? In addition to the above paragraph, it is impor-
tant to emphasize that the algorithmic concept advocated herein tries to realize the
so-called simplest reduced dynamical model for metastable complex systems: Markov
jump processes and stochastic diffusion governed by harmonic potentials within each
metastable state. As we will illustrate below (see Case 3 in section 3.1), the potential
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dynamical substructure within each metastable state can hierarchically be represented
in this setting such that the use of nonharmonic potentials may be obsolete. Further-
more, the use of nonharmonic (especially polynomial) potentials may lead to a drastic
increase in the number of required parameters; this would lead to a very undesirable
explosion in the dimension of the nonlinear parameter optimization problem. How-
ever, there are very recent results on exact and efficient estimators for discretely
observed diffusion processes [2] that would allow us to even consider nonharmonic
potentials within our present algorithmic context; how these would computationally
behave in high dimensions will be a question of further investigation.

1.2. Commentary. In this section we will comment on the similarities and
differences between the approach advocated herein and alternative approaches.

HMMs and time series models. The algorithmic concept has some similarities
with other approaches based on the concept of HMMs or hidden Markov processes,
in particular the approaches presented in [17, 19, 36]. However, the fundamental
difference is that the HmmSde approach suggested herein combines some discrete
hidden process with, in general, continuous SDE output. That is, the concept behind
HmmSde can be expressed shortly in the following way:

HmmSde = SDE parametrization + HMM metastability analysis.(8)

Concerning HMM-based metastability analysis several other approaches exist, all of
them with different focus: For example, [17] considers stationary output behavior
only, and [19] considers global SDE models with hidden data but without discrete
metastable states.

With SDE parametrization we mean the process of identifying the parameters in
the jth SDEs in (1) from a piece of the time series that belongs to the jth metastable
state. Whenever the time series given is discrete in time with constant sampling time
and can be brought into the form of a stationary process (perhaps after a finite repeti-
tion of differencing), we enter in the well-known and general framework of autoregres-
sion integrable moving average models (ARIMA) [6]. However, one cannot generalize
such models to nonharmonic potentials. Moreover, the successful parametrization
of an ARIMA model is not the same as “SDE parametrization” since the physical
interpretation may be substantially different.

Concerning the combination of parametrization and metastability analysis, the
literature on switching Markov chains [22, 36] conceptually goes in the direction of the
approach intended herein: coupling sudden switches between “trends” or “regimes”
with estimation of the parametric models within each “regime” or “trend.” However,
in the related literature other application contexts are discussed, and the approaches
closest to our intentions again use ARIMA parametrization and thus face the same
difficulties as commented upon above.

Regarding closeness to our approach, the article that has to be named first is [29].
Obviously this approach has been developed simultaneously to the present approach
and also tackles conformational dynamics of single molecules. However, it considers
single-molecule fluorescence lifetime experiments instead of molecular dynamics time
series, and the coupling between the discrete switch process and the continuous dif-
fusion process is exactly the other way around: The diffusion changes the transition
rates in the switch process as a model for fluctuating energy barriers in the molecule
instead of as in our case, in which the discrete switches between conformations change
the parameters of the internal SDE dynamics within each conformation.
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Another link to literature combining diffusions with discrete components is given
by [5], which in addition even goes into the direction of avoiding discretization in time.
However, in that article, the observations are made on both components (diffusion and
discrete process) so that neither component is completely hidden.

Instead of exploiting the algorithmic approaches mentioned above, we will derive
specific variants of the EM and Viterbi algorithms directly for our reduced model (1).
Our reasons for this are the following: (A) our HmmSde algorithm allows us to di-
rectly implement metastability issues; (B) its derivation is direct and explicit; and (C)
this derivation clearly exhibits possible generalizations within the same interpretation
context. The last reason may be rather abstract at this point of the manuscript. We
therefore add a remark where this is discussed in more detail for the most important
generalization; see the end of section 2.

Related approaches based on filtering, smoothing, or SDE parametrizations. There
is a huge variety of methods to approach partially observed stochastic processes, for
example, in filtering or smoothing (e.g., in [30, 4, 8, 33, 54], mentioning recent works
only), robust discretization of filters [26], or control of stochastic processes [9, 54] with
a wide spectrum of application backgrounds. Within this variety there also is a rich
literature on using HMM techniques including the EM algorithm; c.f., e.g., [33, 26, 19]
for recent work. However, we are not aware of other articles on parametrization of
stochastic processes with an explicit focus on metastable dynamics in the sense of
“formula” (8). There indeed are approaches to parameter estimation for systems of
SDEs where not every dimension is observable [20, 27], but then there is no finite
state space Markov chain.

In addition to the manifold of techniques mentioned above, another class of typical
alternative methods of SDE modeling tries to parametrize a single (hence “global”)
equation to the entire time series (cf. [49, 48]) which could be used for the problem
of interest herein by fitting multiwell potentials to the observation time series. The
application of such “global” SDE parametrization techniques to the problem of iden-
tifying metastable states will in general be troublesome. To understand the reasons
for this we have to distinguish two cases: Either (1) the observation sequence is as
highly dimensional as the system under consideration, or (2) the observation sequence
is low-dimensional compared to the system’s state space. In case (1), the metastable
states will be clearly separated from each other (in this case they in fact are given by
disjoint metastable sets; see [46]), but the complexity of the parametrization process
and the statistical requirements on the time series (i.e., on its length) will be enor-
mous. Furthermore, state-dependent noise intensities may be required (since the noise
process may differ between the metastable sets). In case (2), due to the nature of low-
dimensional projections, different metastable states in general will not be separated
clearly but will “overlap”; see Figure 1. This means that their identification within
the framework of fitting a single global SDE will be problematic. In this direction
a combination of statistical model reduction techniques (like those in [25, 44]) with
local SDE approximations seems to be desirable.

Set-oriented techniques. Available set-oriented techniques for the identification of
metastable states are based on the assumption that the metastable states are identified
as disjoint metastable sets in state space [45, 13, 10, 11, 39]. Therefore, if applied to
low-dimensional observations of a high-dimensional system, these techniques face the
very same problem that was explained in the last paragraph (overlapping metastable
states).
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Fig. 1. Time series of an intramolecular distance between the end-groups of a trialanine
molecule (cf. Figure 8) resulting from a molecular dynamics simulation (see section 3 for fur-
ther details). Note that the time series clearly indicates the presence of two overlapping metastable
states (indicated by dark and light coloring of the time series graph).

Other algorithmic approaches to molecular dynamics using Gaussian metastates.
In the physics and chemistry literature one can find several approaches to molecular
dynamics also using Gaussian metastates for efficient optimization [40, 41], smoothed
dynamics [50], or renormalization of the dynamics [28, 38]. While the former two
approaches bear almost no similarity to the approach presented herein (they work in
full-dimensional state space and try to simplify optimization/simulation by smoothing
the force fields/potentials by means of spatial averages with Gaussian metastates), the
latter approach by Shalloway is somewhat similar. Like the set-oriented techniques
mentioned above, Shalloway’s approach also exploits the hierarchical spectral proper-
ties of the transfer operator to design Gaussian metastates that allow us to describe
the effective dynamics of the molecular system under investigation. However, it does
not allow us to deal with reduced dimensions, and it definitely has nothing to do with
time series analysis, thus being distinctly different from HmmSde .

2. Parameter estimation. We now construct algorithms that compute (ap-
proximate) solutions to the problems (1) and (2) in section 1.1.

Optimal parameters. To solve problem (1) we will use the EM algorithm. The EM
algorithm is a learning algorithm: It alternately iterates two steps, the expectation
step and the maximization step. Starting with some initial parameter set λ0 the steps
iteratively refine the parameter set; i.e., in step k the present parameter set λk is
refined to λk+1. We will work out the details of the EM algorithm for the problem
under investigation by following the general framework given in [3, 21].

The key object of the EM algorithm is the expectation

Q(λ;λk) = E
(

log p(O, q|λ) |O, λk

)
(9)

of the complete-data likelihood L(λ;O; q) = p(O, q|λ) (in our case given by (7)) w.r.t.
the hidden sequence q given the observation sequence and the current parameter
estimate λk. One step of the EM algorithm then realizes the following two steps:

• Expectation step: This step evaluates the expectation value Q based on the
given parameter estimate λk.
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• Maximization step: This step determines the refined parameter set λk+1 by
maximizing the expectation:

λk+1 = argmax
λ

Q(λ;λk).(10)

The maximization guarantees that L(λk+1) ≥ L(λk).

While the realization of the expectation step for the problem under consideration
requires the application of standard techniques only, the maximization step requires
a detailed analysis which will be performed subsequently.

Optimal sequence of hidden states. Problem (2) in section 1.1 can be solved by
applying the parameter set obtained from the EM algorithm to the standard Viterbi
algorithm [51]. For given λ and O this algorithm computes the most probable hidden
path q∗ = (q∗1 , . . . , q

∗
T ). This path is called the Viterbi path. For an efficient computa-

tion we define the highest probability along a single path, for the first t observations,
ending in the hidden state i at time t,

δt(i) = max
q0,q1,...,qt−1

P (q0, q1, . . . , qt = i, O0, O1, . . . , Ot|λ).

This quantity is given by induction as

δt(j) = max
1≤i≤M

[δt−1(i)T (i, j)]ρ(Ot|qt, Ot−1).(11)

In addition, the argument i that maximizes (11) is stored in ψ in order to actually
retrieve the hidden state sequence. These quantities are calculated for each t and
j, and then the Viterbi path will be given by the sequence of the arguments in ψ
obtained from backtracking. For more details see [43].

Further simplification. The formula (6) for the parameters of the output distri-
bution can be further simplified by the assumption that we want to know only about
the evolution of the system within a short time interval [t, t+ τ). We can then apply
an Euler discretization resulting in

x(t + τ) = Ot −D(q)(Ot − μ(q))τ,(12)

Σ(t + τ) =
1

2τ
B(q)−1

,(13)

A(t + τ) =
1√
π

Σ1/2(t + τ),(14)

which is not necessary but simplifies the following steps significantly.

Therefore, for given model parameters λ we have the following joint probability
distribution for the observation and hidden state sequences:

p(O, q|λ) = v(q0)ρ(O0|q0)
T∏

t=1

T (qt−1, qt)ρ(Ot|qt, Ot−1)

= v(q0)A
(q0)(t) exp

(
−(O0 − x(q0)(0))Σ(q0)(0)(O0 − x(q0)(0))T

)
×

T∏
t=1

T (qt−1, qt)A
(qt)(t) exp

(
−(Ot − x(qt)(t))Σ(qt)(t)(Ot − x(qt)(t))T

)
.
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Due to (12) and (13) the Gaussian observation likelihood reduces to

ρ(Ot|qt, Ot−1, . . . , O1) = ρ(Ot|qt, Ot−1)

=
1

(4πτ2)1/4
B(qt)

−1/2

exp

(
−(Ot − x(qt))

1

2τ
B(qt)

−1

(Ot − x(qt))T )

)
,(15)

with

x(qt) = (Ot−1 −D(qt)(Ot−1 − μ(qt))τ),

and the parameter tuple is λ = (v, T , μ,D,B).
Optimal parameters via the maximum likelihood principle. We aim to estimate

the parameters that maximize the expectation Q of the log-likelihood logL(O, q|λ)
of the complete data w.r.t. the hidden sequence q. According to [3] (Chap. 4.2) the
expectation value Q as defined in (9) can be rewritten as

Q(λ;λk) =
∑

q=(qt)∈ST+1

p(O, q|λk) log (p(O, q|λ)) ,(16)

where S denotes the state space of the hidden states. As we will see below this form
will allow us to find very efficient maximizers. Due to Baum [1], among others, the
function Q(·;λk) exhibits a unique maximum such that the new parameter iterate
λk+1 is uniquely determined by (10). To simplify notation we will use the notation

λ = (v, T , μ,D,B) = λk and λ̂ = λk+1 for the old and new parameter iterate,
respectively.

In order to identify λ̂ = (v̂, T̂ , μ̂, D̂, B̂) we have to find the zeros of the partial
derivatives of Q w.r.t. v̂, T̂ , μ̂, D̂, and B̂. Calculations and representation of these
derivatives are made much easier by introducing the so-called forward-backward vari-
ables αt, βt [1, 43]:

αt(i) = P (O0, . . . , Ot, qt = i|λ̄),

βt(i) = P (Ot+1, . . . , OT |qt = i, Ot, λ̄).

These variables are recursively computable with numerical effort growing linearly in
T and allow us to compute the derivatives in compact form (see the appendix). Given

these, we find λ̂ = argmaxQ(·;λ) to be uniquely given by

v̂i =
α1(i)β1(i)∑M
i=1 α1(i)β1(i)

,(17)

T̂ij =

∑T−1
t=0 αt(i)T̄ (i, j)ρ(Ot|qt, Ot−1, λ̄)βt+1(j)∑T−1

t=0 αt(i)βt(i)
(18)

and

μ̂(i) =
X1X2 −X3X4

X1X4 −X3X5
,(19)

D̂(i) =

∑T
t=1 αt(i)βt(i)(Ot −Ot−1)(Ot−1 − μ̂(i))

−τ
∑T

t=1 αt(i)βt(i)(Ot−1 − μ̂(i))2
,(20)

B̂(i) =

∑T
t=1 αt(i)βt(i)(−Ot + Ot−1 −Di(Ot−1 − μ̂(i))τ)2

τ
∑T

t=0 αt(i)βt(i)
(21)
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with

X1 =

T∑
t=1

αt(i)βt(i)(Ot −Ot−1), X2 =

T∑
t=1

αt(i)βt(i)O
2
t−1,

X3 =

T∑
t=1

αt(i)βt(i)(Ot −Ot−1)Ot−1, X4 =

T∑
t=1

αt(i)βt(i)Ot−1,

X5 =

T∑
t=1

αt(i)βt(i).

These formulas are applicable iteratively to approximate a maximum (not neces-
sarily global) of L(λ;O; q). A detailed derivation of the formulas for v̂i and T̂ij are to
be found in [32]. The remainder is given in the appendix.

Remark. The further simplification (12)–(14) by means of Euler discretization
with constant time step is not necessary. It leads to the previous explicit formula
for the maximizing parameters. When omitting it, we would have to solve some
low-dimensional algebraic equations. This is possible without significant numerical
effort but includes an additional Newton iteration. Details of this discretization-free
approach to HmmSde and its derivation are published elsewhere [23]. When using the
Euler discretization with constant time step as above, we could also apply ARIMA
time series models in combination with an appropriate EM approach.

3. Results and discussion. In this section we first want to illustrate the fun-
damental features and performance of the algorithm, its nice properties, and its prob-
lematic scenarios. Then we will demonstrate how it can be applied to time series
derived from molecular dynamics simulations of trialanine.

3.1. Illustrative examples. In order to generate data sets for illustrative means,
we generated time series from direct realizations of given models. For the first two
test cases we used direct realizations of models of type (1) (parameters (v, T , μ,D,B)
known). Based on the output sequence of such realizations we will try to reidentify
the parameters by application of the HmmSde identification algorithm based on the
results of the last section. For the third test case we used a realization of a diffusive
motion in a multiwell potential. Again, we will try to identify optimal parameters for
systems of type (1).

In all numerical experiments the initial parameter guesses were based on the same
procedure: The initial M ×M transition matrix was chosen to be a stochastic matrix
with off-diagonal entries 0.001 and identical diagonal entries. The model parameters
were obtained by the reestimation formulas (17)–(21), where αt(i) and βt(i) were
computed via the forward-backward algorithm based on randomized determination of
the probabilities P (Ot|qt, Ot−1) (they were chosen uniformly distributed on [0, 1]).

Case 1: Two coupled metastable sets. For the first test case we compute a real-
ization of (1) for M = 2 states of the jump process with transition matrix

R =

(
0.997 0.003
0.003 0.997

)
.

The parameters (μ(q), D(q), σ(q) =
√
B(q)) of the two associated SDEs can be found in

Table 1 in the column entitled “model.” The time series resulted from discretization
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Table 1

Parameters of the SDEs for Case 1: original data (“model”) and reestimated data (last two
columns). Reestimation was based on observation sequences of length 1.000 (middle) and 10.000
(right). The computation of the error of the reestimation results are explained in the text below.

First SDE Model T = 103 T = 104

μ(1) 1 0.99 ± 0.18 1.0 ± 0.03

D(1) 0.01 0.03 ± 0.025 0.01 ± 0.003

σ(1) 0.02 0.025 ± 0.01 0.02 ± 2 · 10−4

Second SDE Model

μ(2) 1.1 1.11 ± 0.03 1.094 ± 0.008

D(2) 0.1 0.1 ± 0.07 0.1 ± 0.005

σ(2) 0.05 0.04 ± 0.01 0.05 ± 4 · 10−4

of the SDEs by the Euler–Maruyama scheme with stepsize dt = 0.1; each 10th step
entered the time series (τ = 1.0).

This table also displays the results of the reestimation procedure for output se-
quences of length N = 1.000 and N = 10.000. We also included error estimates for
the estimated parameters. These error estimates are computed by the following pro-
cedure: We simply repeat the reestimation procedure L = 1.000 times (every time
with new realizations of the observation sequence) and compute the means and stan-
dard deviation of the resulting ensemble of estimated parameters. The results nicely
demonstrate that the reestimation procedure converges to the correct values and that
the error decays with the length of the available observation sequence. The estimated
transition matrix comes out to be

RN=104 =

(
0.9968 0.003
0.003 0.9969

)
±
(

3 1
1 2

)
· 10−4.
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Fig. 2. Realization of HmmSde model for two metastable sets with two different D(1) =
0.01, D(2) = 0.1 (left) against time and the comparison of the exact path of the jump process (dashed)
with the result of the Viterbi algorithm (solid) (right).

Figure 2 shows the realization itself: We observe that from the given data one
cannot directly see metastability. It also displays the original (hidden) path of the
Markov jump process and the one computed via the Viterbi algorithm. Although
the jumps between metastable sets are not clear from the observation sequence the
algorithm almost perfectly identified the hidden path.
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Case 2: Three coupled states with two metastable subsets. Next we want to check
whether the approach is able to detect a hierarchy of metastable states with different
importance. Therefore we will analyze the case where the jump process has more
states than metastable aggregates. To this end we compute a realization of (1) for
M = 3 states of the jump process with transition matrix

R =

⎛
⎝ 0.995 0.005 0

0 0.8 0.2
0.01 0.19 0.8

⎞
⎠ .

This jump process obviously has two metastable aggregates: Ag1 = state 1 and Ag2 =

states 2 + 3. The parameters (μ(q), D(q), σ(q) =
√
B(q)) of the three associated SDEs

can be found in Table 2. The time series again resulted from discretization of the
SDEs by the Euler–Maruyama scheme with stepsize dt = 0.1; again each 10th step
entered the time series (τ = 1.0).

Table 2

Parameters of the SDEs for Case 2: original data (“model”) and reestimated data (last two
columns). Reestimation was based on observation sequences of length 10.000 (middle) and 50.000
(right). The error estimates are computed as described above.

First SDE Model T = 104 T = 5 · 104

μ(1) 1 0.99 ± 0.1 1.0 ± 0.001

D(1) 0.05 0.05 ± 0.01 0.05 ± 0.005

σ(1) 0.03 0.03 ± 0.008 0.03 ± 4 · 10−3

Second SDE Model

μ(2) 1.2 1.2 ± 0.002 1.2 ± 0.001

D(2) 0.08 0.08 ± 0.01 0.08 ± 1 · 10−3

σ(2) 0.005 0.005 ± 0.7 · 10−3 0.005 ± 3 · 10−5

Third SDE Model

μ(3) 1.4 1.4 ± 0.01 1.4 ± 0.008

D(3) 0.1 0.1 ± 0.002 0.1 ± 8 · 10−4

σ(3) 0.005 0.005 ± 0.7 · 10−3 0.005 ± 2 · 10−5

This table also displays the results of the reestimation procedure for output se-
quences of length T = 10.000 and T = 50.000. We again included error estimates for
the estimated parameters. The results again show that the reestimation procedure
converges to the correct values and that the error decays with increasing length of the
available observation sequence. The estimated transition matrix comes out to be

RN=104 =

⎛
⎝ 0.985 ± 0.02 0.004 ± 0.0001 0.01 ± 0.01

0.02 ± 0.02 0.8 ± 0.05 0.17 ± 0.02
0.01 ± 0.0004 0.15 ± 0.05 0.84 ± 0.05

⎞
⎠ .

Figure 3 shows the original realization itself and displays the original (hidden)
path of the Markov jump process aggregated w.r.t. Ag1 and Ag2 and the one computed
via the Viterbi algorithm. Again, the algorithm almost perfectly identified the hidden
path.

Case 3: Diffusive motion in multiwell potential. In this case we produce the
output sequence by a realization of the diffusive motion given by

dx = −DxV (x) dt + ηdW(22)
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Fig. 3. Realization of HmmSde model with three coupled SDEs with two metastable aggregates
Ag1 and Ag2 (left) versus time and the comparison of the exact path of the Markov jump process
between its metastable components (i.e., aggregates w.r.t. Ag1 and Ag2; dashed) with the result of
the Viterbi algorithm (also aggregated; solid) (right).

with potential

V (x) = p(x) + α sin(βx),

p(x) =
11∑
k=0

akx
k,

a = (0.300, 0.000, 5.187,−7.194,−25.507, 23.585,

59.049,−15.538,−63.822,−10.904, 24.794, 10.050),

(α, β) = (0.020, 50.000).

This system will exhibit metastability between its wells whenever the noise amplitude
η is small enough; see the illustration of the potential in Figure 4. We will use η = 0.85,
which clearly leads to metastable behavior, as we can see from the typical realization
of the dynamics illustrated in Figure 4. Throughout this example the observation
sequence comes from numerical simulation of (22) with the Euler–Maruyama scheme
with discretization time step dt = 0.005; every second step entered the observation
sequence, so the observation time step is τ = 0.01.

We used this time series to train our HmmSde model and considered three cases
with M = 2, 3, 4 hidden states for the jump process. In order to judge the quality
of the results we may visit Figures 5 and 6, which illustrate the harmonic potentials
resulting from the optimal parametrization. We observe that for M = 2 the algorithm
identifies the two most important metastable states (left and right of the main energy
barrier). For M = 3 the algorithm further resolves the internal structure of the right
metastable states; it identifies the deepest well on the right-hand side of the main
barrier and approximates the middle part appropriately. For M = 4 the algorithm
further decomposes the middle state into its slightly metastable parts. Figure 6,
moreover, illustrates how the quality of the identification results deteriorates with
decreasing length of the observation time series.

In order to demonstrate the quality of the transition matrix approximation by
means of the HmmSde model w.r.t. metastable behavior we calculate the first five
eigenvalues λHMMSDE of the transition matrix for M = 7. We compare them with
the corresponding first five eigenvalues λbox of the HmmSde transition matrix re-
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Fig. 4. Right: multiwell potential V = V (x) as defined in the text. Left: typical realization of
the dynamics given by the SDE (22) with noise intensity η = 0.85. The time series is generated as
described in the text, has length 6.000, and is plotted against time.
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Fig. 5. Multiwell potential (dashed) and harmonic potentials (solid) resulting from HmmSde

parametrization with M = 2 (left) and M = 3 (right) hidden states based on the observation sequence
of length 30.000 (see text). Remark: The energy at the minimum of the harmonic potentials is a
free parameter (only the derivative of the potential enters the SDEs) and has been set to V = 0.
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Fig. 6. Multiwell potential (dashed) and harmonic potentials (solid) resulting from HmmSde

parametrization with M = 4 hidden states based on observation time series of length 3.000 (left)
and 30.000 (right). One observes that the identification based on the longer sequence results in very
good approximations, while the results of the identification based on the shorter sequence exhibit
significant deviation from the expected outcome.



AUTOMATED MODEL REDUCTION FOR COMPLEX SYSTEMS 819

0 10 20 30 40 50 60

1

2

time

m
e

ta
st

a
b

le
 s

ta
te

s

0 10 20 30 40 50 60

1

2

time

m
e

ta
st

a
b

le
 s

ta
te

s

Fig. 7. Jumps between the two dominant metastable states (indicated by 1 and 2) versus time
t ∈ [0, 60] w.r.t. the time series (length 60.000) shown in Figure 4. Left: as computed from the
original time series (state 1 = (x < x0), state 2 =(x ≥ x0), where x0 = −0.5 is the position of
the energy barrier separating the two states). Right: Viterbi path as computed based on HmmSde

parametrization for M = 2.

sulting from box discretization into 50 equidistant boxes of the transfer operator

Pt = exp(tA), A = η2

2 Δ − DV (x) · Dx associated with the SDE (22) (see [46] for
details):

λbox =

⎛
⎜⎜⎜⎜⎝

1.000
0.997
0.986
0.943
0.883

⎞
⎟⎟⎟⎟⎠ , λHMMSDE =

⎛
⎜⎜⎜⎜⎝

1.000
0.997
0.982
0.938
0.890

⎞
⎟⎟⎟⎟⎠±

⎛
⎜⎜⎜⎜⎝

0
0.001
0.004
0.006
0.007

⎞
⎟⎟⎟⎟⎠ ,(23)

where the standard variation of the eigenvalues results from 100 realizations of the
HmmSde procedure.

In order to be able to judge the quality of the assignment of states to the
metastable states we compare the “true” hopping behavior of the original dynam-
ics between the two main metastable states with the hopping behavior identified by
means of the Viterbi algorithm after HmmSde parametrization with M = 2; see Fig-
ure 7. We observe that the agreement is pretty good; small deviations between the
two paths result from very short recrossing events of the barrier (cf. the graph of the
time series in Figure 4 and cf., e.g., the behavior around time t = 28).

3.2. Application to molecular data. Time series from molecular dynamics
and Metropolis Monte Carlo simulations of biomolecules are often analyzed in terms
of some essential torsion angles. We illustrate that distances between the mass centers
of functional groups also contain the information about metastable sets and can be
used in conformational analysis of molecular dynamics data. In the following we will
present the application of the proposed HmmSde algorithm to trialanine, a small
peptide composed of three alanine amino acid residues. We will consider observation
sequences of the one-dimensional distance between mass centers of the two amino acid
end-groups.

For the simulation of trialanine we used the Gromacs implementation of the Gro-
macs force field [31], in which trialanine is represented by 21 extended atoms. The
structural and dynamical properties of this molecule normally are mainly determined
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ALA2ALA1 ALA3
0 0

Fig. 8. Illustration of the trialanine molecule and indication of the three alanine groups of
which the molecule is composed.

Fig. 9. Illustration of the trialanine molecule and indication of the six torsion angles used for
PCCA analysis as described in the text.

by two central peptide backbone angles Φ0 and Ψ0 (see Figure 8). In addition, at
very high temperatures the other (otherwise planar) peptide bond angles (especially
the Ω angles) may also undergo some conformational transition.

The time series of 544555 steps has been generated by means of hybrid Monte
Carlo (HMC) [7] at a temperature of 750 K. Each subtrajectory for a HMC proposal
step has a length of 0.1 ps and was computed with the Verlet integration scheme based
on 1 fs time steps. This yielded an acceptance rate of about 99 percent.

By analysis of the time series of the six main torsion/peptide angles (see Figure 9)
using PCCA [12, 13] and some fine grid discretization we found three metastable
states.

In order to get a useful illustration of the power of the HmmSde approach, we
further reduced the information that is given to the algorithm: We constructed a one-
dimensional observation sequence by simply computing the modulus of the distance
vector between the centers of mass of the ALA1 and ALA3 end-groups (see Figure 8).
This observation time series is shown in Figure 10. As illustrated in this figure the
HmmSde approach (for M = 4) also identifies three (partially overlapping) metastable
states. Figure 10 also contains information on the three SDEs within each single
metastable state resulting from the HmmSde procedure; the resulting parameters
are collected in Table 3. Comparison of the spread of the distance data within each
of the metastable states with the distributions generated by the SDEs shows good
agreement.
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Fig. 10. Left: time series of the intramolecular ALA1–ALA3 distance in trialanine as intro-
duced in the text. Different colorings (indicated by dark and light coloring of the time series graph)
of phases of the time series according to the three metastable states determined by HmmSde . Right:
invariant distributions of the three one-dimensional SDEs resulting from the HmmSde algorithm
versus the distance (y-axis).

Table 3

Parameters of the SDEs from the HmmSde fitting of the ALA1–ALA3 distance in trialanine;
the invariant distributions of the SDEs resulting from these values are illustrated in Figure 10.

State j μ(j) D(j) B(j) = σ(j)2

j = 1 0.384 0.93 0.0003
j = 2 0.409 0.96 0.0003
j = 3 0.419 0.98 0.0003

The resulting Viterbi path is illustrated in Figure 11(left) in comparison to the
jump process between metastable states identified from the PCCA analysis of the full
torsion angle time series Figure 11(right). The agreement in fact is very convincing.

Conclusion. We introduced a novel approach to the identification of metastable
states and the stochastic dynamics within each state for a complex (eventually highly
dimensional) system from low-dimensional time series. The approach combines HMMs
with optimally parametrized SDE output within each hidden state (to cope with
temporal correlations within the states); its novelty mainly lies in the fact that it can
serve as a tool for automated model reduction. We gave a detailed derivation for the
case of one-dimensional time series and demonstrated the successful application to
different test cases.

However, we considered the one-dimensional case only. While the multidimen-
sional generalization of the technique essentially poses no problem [24], we will have
to ask whether the time series is “statistically rich enough” (cf. the discussion in
section 1.1) to reliably identify all the parameters of the multidimensional potentials
(the more details the SDEs within each metastable state are supposed to represent
correctly, the more data will in general be necessary to reliably parametrize). This
problem will be investigated in a forthcoming paper [24]. However, we are interested
in an approach that allows us to identify metastability based on low -dimensional ob-
servations such that the problem of dimensionality might not be that problematic.
In addition, in the fields of application such as molecular dynamics or climate theory
time series are usually extremely rich.
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Fig. 11. Jumps between the three dominant metastable states (indicated by 1, 2, and 3) versus
time w.r.t. the time series (length 544555 steps) shown in Figure 10. Right: as computed from
PCCA decomposition of the full six-dimensional torsion angle state space. Left: Viterbi path as
computed based on HmmSde parametrization for the one-dimensional distance observation sequence
for M = 4.

We discussed in detail the manifold of somewhat comparable approaches. The
authors hope that research combining other approaches with the one presented herein
might allow us to construct error and convergence indicators.

Furthermore, we herein assumed that the observation stepsize τ is small compared
to the typical waiting time between hops of the jump process such that the sequence
of hidden states will contain long subsequences in which that state does not change.
In this case, the time series should in general be statistically rich enough to allow for a
reliable parameter fit for the SDE parameters. Whether the proposed method is also
able to successfully handle time series for which this assumption is not valid (e.g., the
hops between the hidden states are frequent but the length of the time within each
hidden state still is long enough) will also have to be discussed in later works; it will
definitely be necessary to avoid the Euler discretization used herein. This is worked
out in detail in [23] based on the results presented herein .

Last but not least, we should ask, When might the proposed algorithms fail
or produce misleading results? So far our experiences show that (assuming “long
enough” time series and a reliable upper bound on the possible number of important
metastable states) the most important source of problems is by far the convergence
of the EM algorithm: It is hard to judge whether it really has converged and, if
converged, whether the results might be only a local maximum or really the global
one. However, this really seems to be a general problem of the field whose solution
would be of general interest far beyond the framework of the present article.

Appendix.

Forward-backward variables. The forward-backward variables are defined via

αt(i) = P (O0, . . . , Ot, qt = i),

βt(i) = P (Ot+1, . . . , OT |qt = i, Ot).

Together with

T (i, j) = P (qt = j|qt−1 = i)
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we get the following recursion:

αt(i) =

M∑
j=1

αt−1(j)T (j, i)P (Ot|qt = i, Ot−1).

In order to derive this recursion, use the independencies on the far past (Ot depends
on Ot−1 only) to see that

P (Ot|O0, q0, . . . , Ot−1, qt−1, qt = i) = P (Ot|Ot−1, qt),(24)

P (qt = i|O0, q0, . . . Ot−1, qt−1) = P (qt = i|qt−1)(25)

and directly compute

αt(i) = P (O0, . . . , Ot, qt = i)

=
∑

q0,...,qt−1

P (q0, O0, . . . , qt−1, Ot−1, qt = i, Ot)

=
∑

q0,...,qt−1

P (q0, O0, . . . , qt−1, Ot−1, qt = i)P (Ot|O0, q0, . . . , Ot−1, qt−1, qt = i)

=(24)
∑

q0,...,qt−1

P (q0, O0, . . . , qt−1, Ot−1)

×P (qt = i|q0, O0, . . . , qt−1, Ot−1)P (Ot|Ot−1, qt)

=(25)
∑

q0,...,qt−1

P (q0, O0, . . . , qt−1, Ot−1)P (qt = i|qt−1)P (Ot|Ot−1, qt−1)

=
∑

q0,...,qt−2

M∑
j=1

P (q0, O0, . . . , qt−1 = j, Ot−1)

×P (qt = i|qt−1 = j)P (Ot|Ot−1, qt−1 = j)

=
M∑
j=1

P (O0, . . . , Ot−1, qt−1 = j)T (i, j)P (Ot|qt = j, Ot−1)

=

M∑
j=1

αt−1(j)T (i, j)P (Ot|qt = j, Ot−1).

For β we get similarly

βt(i) = P (Ot+1, . . . , OT |qt = i, Ot)

=
∑

qt+1,...,qT

P (qt+1, Ot+1, . . . , qT , OT |qt = i, Ot)

=
∑

qt+1,...,qT

P (Ot+1|qt+1, Ot)P (qt+1|qt = i)P (qt+2, Ot+2, . . . , qT , OT |qt+1, Ot+1)

=
∑

qt+2,...,qT

M∑
j=1

P (Ot+1|qt+1 = j, Ot)P (qt+1 = j|qt = i)

×P (qt+2, Ot+2, . . . , qT , OT |qt+1 = j, Ot+1)

=
M∑
j=1

T (i, j)P (Ot+1|qt = j, Ot)βt+1(j).
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Derivatives of likelihood Q. We derive partial derivatives of the likelihood Q
defined in (16), which are then used to compute the unique maximum of Q(·; λ̄).

Using the forward-backward variables defined above, direct calculations yield

∂Q

∂μ(i)
=

∑
q∈ST

L(λ̄;O; q)

⎛
⎝ T∑

t=1,qt=i

(Ot −Ot−1 + Di(Ot−1 − μi)τ)B(i)−1

Di/2

⎞
⎠

=
T∑

t=1

∑
q∈ST

L(λ̄;O; q0, . . . , qt = i, . . . , qT )

︸ ︷︷ ︸
=αt(i)βt(i)

× (Ot −Ot−1 + Di(Ot−1 − μi)τ)B(i)−1

Di/2

∂Q

∂D(i)
=

T∑
t=1

αt(i)βt(i)(−Ot + Ot−1 −Di(Ot−1 − μi)τ)B(i)−1

(Ot−1 − μ(i))/2

∂Q

∂B(i)
=

1

2

[
T∑

t=0

−αt(i)βt(i)B
(i)−1

+

T∑
t=1

αt(i)βt(i)(−Ot + Ot−1 −Di(Ot−1 − μi)τ)2/τ

]
.

The maximum is computed via the zeros of this derivatives as follows:

∂Q

∂μ(i)
= 0

⇔ μi =

∑T
t=1 αt(i)βt(i)(Ot −Ot−1 + DiOt−1τ)

Diτ
∑T

t=1 αt(i)βt(i)
,(26)

∂Q

∂D(i)
= 0

⇔ Di =

∑T
t=1 αt(i)βt(i)(Ot −Ot−1)(Ot−1 − μ(i))

−τ
∑T

t=1 αt(i)βt(i)(Ot−1 − μ(i))2
,(27)

∂Q

∂B(i)
= 0

⇔ B(i) =

∑T
t=1 αt(i)βt(i)

τ
∑T

t=0 αt(i)βt(i)
(−Ot + Ot−1 −D(i)(Ot−1 − μ(i))τ)2.

The parameters μ(i) and D(i) are independent of B(i). Hence we have to solve
(26) and (27):

⇒(26),(27)

∑T
t=1 αt(i)βt(i)(Ot −Ot−1)(Ot−1 − μ(i))

−τ
∑T

t=1 αt(i)βt(i)(Ot−1 − μ(i))2
=

∑T
t=1 αt(i)βt(i)(Ot −Ot−1)

τ
∑T

t=1 αt(i)βt(i)(Ot−1 − μ(i))

⇔ μi =
X1X2 −X3X4

X1X4 −X3X5
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with

X1 =

T∑
t=1

αt(i)βt(i)(Ot −Ot−1), X2 =

T∑
t=1

αt(i)βt(i)(O
2
t−1),

X3 =

T∑
t=1

αt(i)βt(i)(Ot −Ot−1)Ot−1, X4 =

T∑
t=1

αt(i)βt(i)Ot−1,

X5 =

T∑
t=1

αt(i)βt(i).
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