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Abstract�—We present a scalable spatial decomposition coloring 
approach to implement molecular dynamics simulations with 
embedded atom method (EAM) on multi-core architectures. It 
effectively solves parallelization of reduction operations on 
irregular arrays in molecular dynamics simulations. In OpenMP 
program model, our methodology avoids that the same memory 
location is simultaneously modified by more than one thread 
when the short-range forces is calculated, meanwhile our method 
reduces memory requirements. The methodology comes from the 
idea of Red-Black Coloring, popular in linear algebra. We 
developed the spatial decomposition coloring algorithm, and our 
work applied this algorithm to implement the embedded atom 
method formalism for molecular dynamic. In this paper we also 
describe other optimizing methods applied in our serial and 
parallel implementations. Results show that our method is 
scalable and can achieve nearly linear speedup. Additionally we 
also compared it with other methods which can parallelize 
reduction operations on irregular array, and we discussed them 
in detail. 

Keywords-Parallel Computing; Irregular Reductions; Spatial 
Decomposition; Molecular Dynamics; Embedded Atom Method 

I.  INTRODUCTION 
In Molecular Dynamics (MD) simulations, the 

Embedded-Atom Method (EAM) [1] is usually used to 
calculate inter-atomic forces in particle systems for metals 
and alloys. However compare with pair-wise potential 
method which is commonly used for MD simulations, it has 
more intensive computation and more memory requirements. 

We know that the intensive computation of MD appears 
in force calculations procedure, but the force calculations of 
EAM potential have more computations. It involves three 
computational phases, however pair-wise potential only 

involves one computational phase (compute forces directly). 
The three computational phases of EAM potential are 
evaluating electron densities, evaluating embedding energies 
and computing forces last. 

The equation for the electron density i  on embed atom i 
is calculated by 
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The equation for the force iF  on atom i is given by 
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From (1) and (2) we can see that the computation 
workload required by the embedded atom method is nearly 
more than twice the workload of the pair-wise potential for 
the same number of particles, and that EAM method requires 
extra memory space to store electron densities and its 
derivative of all atoms. 

As we know that EAM is often used on metals or alloys 
simulation, and that majority metals have very high density, 
therefore metal atoms usually have more neighboring atoms 
than other type atoms. In most cases the neighboring atoms 
that lie within the cut-off range rc from each atom are stored 
in neighbor list [2]. So MD simulations with EAM need 
more memory space to store the neighboring atoms. With the 
increasing of number of atoms, not only does computation 
increase, but memory requirement also becomes an 
increasingly heavy burden even to modern computers. 
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The computing-intensive characteristic and high memory 
requirements together present a greater challenge to deal 
with parallelization of forces calculations of MD simulations 
on shared memory multi-core machines.  

We extracted sketch code from sequential program of 
electron density and force calculations (shown in Fig. 1 and 
Fig. 2 respectively). Both piece of code have two nested 
loops, in which the outer loop deals with all atoms that 
constitute the system, and the inner loop deals with 
neighbors of atom i. In both of inner loops there are 
reduction operations on irregular arrays rho and force. How 
to efficiently parallelize reduction operation on irregular 
array has important impact on the overall parallel 
performance of MD simulations. 

There are several popular molecular simulations 
frameworks in use today, including NAMD, GROMACS 
and LAMMPS etc. NAMD [3] is a parallel molecular 
dynamics code based on the Charm++ runtime system. 
Charm++ supports MPI and uses it as communication library. 
GROMACS [4] is another versatile package to perform 
molecular dynamics, using standard MPI communication. 
LAMMPS [5] is a classical molecular dynamics code, which 
can runs in parallel using message-passing techniques. 

 
Figure 1.  A piece of code of electron densities. 

 

Figure 2.  A piece of code of forces calculations. 

Most frameworks are based on distributed memory 
models, and not designed for multi-core platforms. So a lot 

of research work [6-8] has been done on whether these 
frameworks using MPI can get utilize multi-core resources 
effectively. Their experiments show there are some factors 
limit these frameworks efficiency on multi-core platforms: 
memory resource contention, and MPI intra-node 
communication. 

And some work has been done to implement MD 
simulations using shared memory model on multi-core 
platform [9-13]. To the best of my knowledge, little work 
had been done to design efficient parallel implementation of 
short-range force calculations based on shared memory 
model in general multi-core processors. There are a number 
of parallel programming models based on shared memory 
models which have been proposed in the last years, OpenMP 
[14] standard usually appears to be more appropriate to 
parallelize computationally intensive applications on shared 
memory architectures. It gives programmers a convenient 
way to obtain parallelism. However OpenMP doesn�’t 
support the array reduction in C/C++. 

Based on shared memory model, some types of solutions 
have been proposed in the literature to solve parallelization 
of reduction operations on irregular arrays. Most of these 
solutions can be classified into five categories. Different 
from the categories proposed by E. Gutiérrez etc. [15], we 
think transactional memory and redundant computations as 
solutions to deal with reduction irregular arrays. 

The first one includes the simplest solution that enclosed 
the reference to the reduction array in a critical section, 
which ensures that multiple threads do not attempt to update 
the same reduction array simultaneously. Its disadvantage is 
the high synchronization cost when using critical region, 
atomic or lock in loop. Even in the worst case, multiple 
threads must work in serial execution [16]. 

The second class privates the reduction array to 
minimizing synchronization [17], but with the disadvantages 
of high memory overhead. Not only does it limit the number 
of particles allowed in simulations, but it also competes for 
cache space and can reduce the program speed. And it is not 
scalable, as memory overhead grows linearly with the 
number of threads [18].  

The third class partitions computations and distributes it 
among threads in order to avoid write conflicts. In the 
literature different methods like LOCALWRITE [19, 20] and 
SYNCHWRITE [21] have been proposed. It has low 
synchronization cost and low memory requirements, but it 
needs an inspector at runtime, therefore it will bring the cost 
of reorder reduction array and computations. 

The fourth class uses transactional memory [22] method 
which has been proposed to avoid the need for blocking, but 
one question that affects portability is the number of 
operations that can be contained in a single transaction.  

If the background of application is observed, there is the 
last class which uses redundant computations strategy and 
can avoid reduction operations on irregular array appeared in 
MD simulations. Its advantage is the high parallelizability 
since data dependence has been removed between the loop 
iterations, but its disadvantage is there are double 
computations and that neighbor list requires more memory 
space. 
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In this paper, we proposed a scalable Spatial 
Decomposition Coloring (SDC) approach for solve the 
parallelization for irregular array reductions in MD 
simulations. On the base of knowledge about MD 
simulations, the loop iterations can be partitioned and be 
distributed among executing threads, and then multiple 
threads writing to the same address simultaneously can be 
avoided. Our method uses the implicit barrier at the 
completion point of the loop parallelized, and it has low 
synchronization cost.  

The rest of the paper is organized as follows. In Section 
II, we described our spatial decomposition coloring approach, 
its OpenMP implementations and other optimizing methods 
applied in our MD simulations with EAM. The results from 
our experiments were presented and analyzed in Sections III 
and IV. And we concluded our work in Section V. 

II. METHOD 

A. Spatial Decomposition Method 
For the MD simulations with short-range interactions, 

Spatial Decomposition (SD) [23] method is commonly used 
on distributed memory multi-processors involving several 
hundreds of processors. Spatial decomposition is a much 
more complex approach to implement [24] on distributed 
memory, since the programmer must change all array 
declarations and all loop bounds, and explicitly codes the 
periodic transfer of the boundary data between processors. 
This is a large and difficult step. 

However it is simple to carry out parallel domain 
decomposition in OpenMP programming model rather than 
in MPI. Message passing is replaced by shared data that can 
be read and written by any thread. Programmer divides the 
spatial domain of simulation system into several subdomains 
which will be assigned among executing threads to executing 
its computations. In other words, the iterations of outer loop 
in Fig. 1 (and in Fig. 2) are partitioned among threads 
according to the coordinates of atom i . 

But from Figs. 1 and 2 we can see that when the thread 
works on its subdomains to compute electron densities and 
forces of its atoms, it will also update electron densities and 
forces of its neighboring atoms which are located in neighbor 
regions (See Fig. 3, both neighbor atoms and neighbor 
regions of subdomain 4 were marked with strip), however 
the neighbor regions belong to other subdomains. Therefore 
when computations on subdomains are running in parallel, 
synchronization will be required to ensure that multiple 
threads do not attempt to update the same atom 
simultaneously. In this paper we proposed Spatial 
Decomposition Coloring (SDC) method to deal with this 
problem. We described SDC method in detail below. 

 
Figure 3.  Neighbor regions of the atoms in the subdomain 4. 

B. Spatial Decomposition Coloring (SDC) Approach 
Our SDC method consists of the following steps: 
1) SDC method firstly split the spatial domain of 

simulations into several subdomains. But in order to make 
computations as supposed, we require that the length of 
subdomains in each of the spatial decomposed dimensions 
should be longer than 2rc, and we require that the number of 
subdomains in each of the spatial decomposed dimensions 
should be even. 

2) Then subdomains are colored with a set of different 
colors in such a way that each subdomain is surrounded only 
by those subdomains with different colors. And the number 
of subdomains with each color is equal. 

3) After steps 1 and 2 have been done, computations can 
be done in the following way. For a given color, each 
OpenMP executing thread is assigned some subdomains with 
this color, and it can run parallelization calculations of forces 
on the subdomains with this color. But calculations on 
subdomains with different colors must run in a serial fashion. 
If the number of subdomains with one color is adequate for 
threads provided by multi-core platforms, then our method 
can not only effectively exploit the inherent parallelism of 
MD simulations, but also effectively exploit multi-core 
architectures. This requirement is easily achieved, for 
example in our experiments, there are 340 subdomains with 
each color in medium test case, and there are nearly 5000 
subdomains with each color in large test case. 

The steps 1 and 2 will be done when the neighbor list is 
created or updated. Since the neighbor list usually doesn�’t be 
updated in every time-step and the cost of spatial 
decomposition and coloring is very low, therefore the times 
of steps 1 and 2 can be omitted. SDC method has the same 
disadvantage of Spatial Decomposition method, which is 
overload imbalance. However, under condition of simulation 
system has uniformity of density, the overload balance can 
be achieved by the subdomains with same color have 
roughly equal volume. We do not require that subdomains 
with different colors should have same volume, which can 
have different volume from subdomains with other colors. 

Based on the number of dimensions divided, SDC 
method can be classified into three categories: one-
dimensional spatial decomposition coloring method, two-
dimensional spatial decomposition coloring method and 
three-dimensional spatial decomposition coloring method. 
We described them in detail below. 

!222333
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Figure 4.  The one-dimensional SDC method. 

 
Figure 5.  The two-dimensional SDC method. 

In the one-dimensional spatial decomposition, algorithm 
decomposes the spatial horizontal-level into a set of 
subdomains, and colors subdomains red or green. The length 
of horizontal-level edges of each subdomain is longer than 
2rc. Each subdomain has two neighbor regions on both the 
north and south which belongs to subdomains with another 
color. Fig. 4 is a chart of the one-dimensional spatial 
decomposition coloring method. In this chart spatial domains 
are divided into eight subdomains which were coloring with 
red or green alternately, and the neighbor regions of red 
subdomains were marked with strip. 

From Fig. 4 we can see that if only computations are run 
for those subdomains with red color in parallel, values of 
atoms in their neighboring regions then will be updated 
simultaneously. Because the data spaces updated by threads 
do not overlap, we don�’t need synchronization for updating 
the shared array. However before green subdomains are 
computed, a barrier should be needed for waiting all threads 
to complete computation on red subdomains. Compare to 
using critical region, atomic or lock, barriers at the end of 
parallel loop has low synchronization cost. 

Two-dimensional spatial decomposition coloring with 
four colors is shown in Fig. 5. Spatial domain is decomposed 
along both horizontal and vertical dimensions.  Both the 
length of horizontal-level edges and vertical-level edges 
must larger than 2rc. As same as one-dimensional 
decomposition, computations of the electron densities and 
forces on subdomains with a given color can be executed in 
parallel, and a barrier will be needed for waiting those 
threads to complete computation. 

A1 B1 A2 B2

C1 D1 C2 D2

A3 B3 A4 B4

C3 D3 C4 D4

E1 F1 E2 F2

G1 H1 G2 H2

E3 F3 E4 F4

G3 H3 G4 H4

C7 D7 C8

G7 H7

D8

G8 H8
 

Figure 6.  The three-dimensional SDC method. 

Three-dimensional spatial decomposition coloring with 
eight colors is shown in Fig. 6. It is very similar to one-
dimensional and two-dimensional spatial decomposition. It is 
obvious that the higher-dimensional decomposition method 
creates more subdomains. So it is impossible that some cores 
are idle while others are busy. SDC method is scalable and 
suitable on multi-core and many-core architectures. 

Although the implementation of spatial decomposition 
coloring approach is a bit more complex than the 
implementation of share array privation approach, it has 
higher speedup than the latter, and has low memory 
requirements. We gave their speedup and analysis of 
efficiency in Section III and IV. 

In Section II.C, we discussed the parallel implementation 
of forces calculations of EAM using SDC method 

C. Parallel Implementation of Forces Calculations of 
EAM using SDC method 
Force calculations procedure is the most time consuming 

part in MD simulations, especially in EAM potential. We 
know that forces calculations of EAM involve three 
computational phases: the evaluating electron densities 
(according (1)), the evaluating embedding energies and the 
computing forces (according (2)) last. The most time 
consuming parts are the calculations of the electron densities 
and forces. Their main code has been list in Fig. 1 and Fig. 2. 
Both of the codes (in Fig. 1 and Fig. 2) show the loops have 
cross-iteration dependences. If we use a simple directive (the 
#pragma omp parallel for directive) to specify that the 
iterations of the outer loops could be distributed among the 
executing threads, the programs can�’t get results as supposed. 

Here we used spatial decomposition coloring approach to 
parallel those two parts. Then the parallel procedure of forces 
calculations of EAM involve the following phases: 

1) For a given color, run electron density computations 
on subdomains with the color in parallel. But the 
computations on subdomains with different color must 
proceed serially. The mainly parallel code of electron 
densities calculations procedure is indicated in Fig. 7. 

!222444
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2) For all atoms in simulation system, calculate their 
embedding function value and their derivative, and 
accumulate embedding energies in parallel. Since this loop 
does not contain data dependences, so we can use a single 
directive (the #pragma omp parallel for directive) to 
parallelize this part. The parallel code is not shown in this 
paper. 

3) For a given color, run force calculations on 
subdomains with the color in parallel. Like the electron 
density computations, the computations on subdomains with 
different color must proceed serially. Fig. 8 shows the 
mainly parallel code of forces calculations procedure. 

#pragma omp parallel private(cpart) 
for (cpart = 0; cpart < colors; cpart++)
{
...
#pragma omp for private(spart,i,j,k,�…)
    for (spart = cpart; spart < subdomains; spart += colors)
    for ( ipart = pstart[spart];  ipart < pstart[spart+1];  ipart++)
   {

i = partindex[ipart];
neighstart = neighindex[i];
neighend = neighstart + neighlen[i];
for ( k = neighstart ;  k < neighend;  k++)
{

j = neighlist[k];
...
rho[i] += dfn_t1 ;
rho[j] += dfn_t2 ;

}
   }
}

 
Figure 7.  A piece of parallel code of electron density calculations. 

#pragma omp parallel private(cpart)  
for (cpart = 0; cpart < colors; cpart++)
{  
 ...
#pragma omp for private(spart,i,j,k,�…)
    for (spart = cpart; spart < subdomains; spart += colors)
    for ( ipart = pstart[spart];  ipart < pstart[spart+1];  ipart++)
   {

i = partindex[ipart];
neighstart = neighindex[i];
neighend = neighstart + neighlen[i];
for ( k = neighstart ;  k < neighend;  k++)
{

j = neighlist[k];
�…
forc = �…
force[i][X]  += forc*xd ;
force[i][Y] += forc*yd ;
force[i][Z]  += forc*zd ;
force[j][X]  -= forc*xd ;
force[j][Y]  -= forc*yd ;
force[j][Z]  -= forc*zd ;

}
   }
}

 
Figure 8.  A piece of parallel code of force calculations. 

The mainly parallel code of electron densities 
calculations procedure is indicated in Fig. 7. And Fig. 8 
shows the mainly parallel code of forces calculations 
procedure. 

Both of them use the #pragma omp parallel directive to 
specify that the outer loops should be executed in parallel on 
the executing threads, and both to use the #pragma omp for 
directive to specify that the iterations of the inner loops (its 
iteration variable is spart) should be distributed among the 
executing threads. We didn�’t use a single directive (the 
#pragma omp parallel for) to specify that the iterations of the 
inner loops should be distributed among the executing 
threads, since it will increase the overheads introduced by 
forking and joining threads. 

D. Other optimizing methods 
Based on knowledge of MD simulations with EAM, we 

used two methods to accelerate sequential and parallel 
simulations in this paper. Both of them can reduce redundant 
computations in MD simulations. 

1) The first method is that when we calculate the electron 
density i  of atom i, we not only add the density 
contribution ji  from neighboring atom j to atom i to i , but 
also calculate and add the density contribution ij  from 
atoms i to neighboring atom j to  j . 

2) The second method is that we take advantage of 
Newton�’s third law in the force routine. When we calculate 
the force iF  on atom i, we add the interactions ijf  to iF  and 

we also add ijf−   to jF . 
In our experiments, we updated serial code and parallel 

code to improve their data locality in our sequential and 
parallel implementations. We can see that irregular 
computations frequently appear in the loop codes of Figs. 1, 
2, 7 and 8. It has poor temporal and spatial locality because 
they do not repeatedly access data in memory with small 
constant strides, which will be more evident with increasing 
number of atoms [25]. In our experiments, data reordering 
technique is used to increase locality of reference. 

1) Achieve sequence accessing on irregular array by the 
data reordering. 

Both in serial code and parallel code, the irregular arrays 
neighlist[] and rho[] were accessed in each iteration of inner 
loops, and their cache hits have important impact upon 
performance of simulations. We took advantage of the 
information of spatial positions of atoms to create neighbor 
list of atoms, and reordered index of neighboring atoms in 
neighlist[]. This adjustment also has impact on the cache hits 
of irregular array rho[]. 

2) Use data reordering technique to transform irregular 
arrays into regular arrays. 

From Figs. 7 and 8, we can see there are other two 
irregular arrays neighindex[] and neighlen[]. We use data 
reordering to transform both two irregular arrays 
(neighindex[] and  neighlen[]) into regular arrays. Then the 
accesses to the two arrays have good data locality. 

!222555
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After using data reordering technique, the simulation 
efficiency increased was 12% in serial simulations and was 
39% in parallel simulations in our experiments on our large 
test case. Efficiency increased is measured as: 

dunoptimizedunoptimize /100*)( TimeTimeTime optimzied−   (3) 

Since Section II.D is not the subject of study in this paper, 
so we didn�’t discuss them in detail. But in all of our 
experiments listed in Section III, we used these optimizing 
techniques. 

III. EXPERIMENTS AND RESULTS 

A. Experimental environment 
We make experiments on a machine with four Intel 

Xeon(R) Quad-core E7320 (L2 Cache 4MB) processors, 16 
GB memory. The Operating-System is Fedora release 9 with 
kernel 2.6.25. The compiler is gcc 4.3.0. 

Our experimental programs of MD application with 
EAM are written in C. The serial programs came from XMD 
code (which is a free MD program written by Jon Rifkin at 
the University of Connecticut [26]). We modified the serial 
programs using the optimizing methods described in Section 
2.4. Then we programmed its parallel programs with 
OpenMP programming model using our Spatial 
Decomposition Coloring (SDC) strategy. And we also 
programmed XMD parallel programs using some parallel 
strategy discussed in Section I. These methods are critical 
construct strategy (which enclosed the reference to the 
reduction array in critical region, and belongs to the first 
class strategy), shared array privatization strategy (the 
second class strategy), redundant computations strategy (the 
last class strategy) respectively. We use sched_setaffinity() 
to control binding of a thread to cores at startup, which is 
supported in OpenMP. 

All of execution times of our experiments are the running 
times of the calculations of the electron densities and forces, 
since these two parts are the most time-consuming 
components. So we merely observed the running times of 
these two parts and gave its speedups. We use system call 

gettimeofday() for measuring execution time. All of our 
experiments are run for 1000 simulation time-steps. 

Then we gave our test cases on serial program and 
parallel programs. 

B. Experimental cases 
Our four test cases were designed to observe micro-

deformation behaviors of the pure Fe metals material. The 
system was simulated under periodic boundary conditions 
and the time-step is 10-17 seconds. The initial state uses the 
same body-centered cubic (bcc) lattice arrangement. We 
considered the following test cases of our simulation systems 
for experiments. 

Small -scale case (1)   :       54,000 atoms 
Medium-scale case (2):     265,302 atoms 
Large-scale case (3)    :  1,062,882 atoms  
Large-scale case (4)    :  3,456,000 atoms 
Those test cases for our experiments in initial state are 

very similar. The differences are the number of atoms and 
initial energy of the particular atoms, because the number of 
atoms should increase with the increase of initial energy of 
the particular atoms. 

C. Experimental results 
We first gave speedup results of four test cases with one-

dimensional, two-dimensional and three-dimensional spatial 
decomposition coloring method in Table 1. The speedup 
equals runtimes of serial programs on one core divided by 
runtimes of parallel programs on multiple cores. 

In Table 1, there are blanks for the speedup of one-
dimensional SDC method on small test case and medium test 
case with 12 threads and 16 threads. Since one-dimensional 
SDC algorithm decomposes the spatial horizontal-level into 
a set of subdomains, and the length of horizontal-level edges 
of each subdomain must be longer than 2rc. Therefore the 
number of subdomains split by one-dimensional SDC 
method is less than 24 in our small test case. So we didn�’t 
use one-dimensional SDC method on our small test case with 
12 threads and more threads and on medium test case with 
16 threads. 

TABLE I.  THE SPEEDUPS OF SPATIAL DECOMPOSITION COLORING (SDC)   METHODS  ( ONE-DIMENSIONAL SDC, TWO-DIMENSIONAL SDC AND THREE-
DIMENSIONAL SDC). 

Speedup 
Small case (1)  on 2~16 cores Medium case (2) on 2~16 cores 

2 3 4 8 12 16 2 3 4 8 12 16 
SDC (one-dimensional) 1.71 2.46 3.07 4.17   1.84 2.64 3.37 6.24 6.33  
SDC (two- dimensional) 1.70 2.46 3.07 4.74 5.90 6.43 1.84 2.65 3.39 6.20 8.89 10.90 
SDC (three- dimensional) 1.66 2.40 2.99 4.61 5.74 6.30 1.82 2.65 3.36 6.16 8.76 10.78 

 
Large case (3) on 2~16 cores Large case (4)  on 2~16 cores 

2 3 4 8 12 16 2 3 4 8 12 16 
SDC (one- dimensional) 1.86 2.76 3.67 6.82 9.76 9.59 1.88 2.79 3.66 6.30 9.97 9.82 
SDC (two- dimensional) 1.87� 2.78� 3.64� 6.74� 9.73� 12.31� 1.87 2.80 3.65 6.77 9.84 12.42 
SDC (three- dimensional) 1.86 2.75 3.64 6.64 9.65 12.29 1.87 2.80 3.67 6.74 9.82 12.34 
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Figure 9.  The speedup curves of two-dimensional Spatial Decomposition Coloring (SDC) method, Critical Section (CS) method, Share Array Privatization 

(SAP) method and Redundant Computations (RC) method on test case.

In order to compare the performance of SDC method 
with other methods, we had used these methods on all test 
cases. We gave the speedups of SDC method and other 
methods in Fig. 9. Here we selected two-dimensional 
decomposition SDC method to represent SDC method. 

IV. DISCUSSION 
Firstly we observe the scalability of our SDC method. 

Table 1 show that the performance of multi-dimensional 
(two-dimensional and three-dimensional) SDC method has 
been improved with the increase in the number of cores and 
the increase in the number of atoms. Therefore our multi-
dimensional SDC method is a scalable method for parallel 
MD simulations (especially with EAM) on multi-core 
machines. And it is expected that our method will continue 
to be scalable on future many-core architectures. 

One-dimensional SDC method has one restriction which 
limits the scalability of one-dimensional SDC method. As we 
know, parallelism is exploited by decomposing the spatial 
domain into subdomains in SDC method. Therefore when 
small-scale case is simulated using one-dimensional SDC 
method, maybe the degree of parallelism is less than the 
number of cores of machine. It�’s the disadvantage of one-
dimensional SDC method. But it is not the restriction of 
multi-dimensional SDC method. Since multi-dimensional 
SDC method can divide spatial domain into more 
subdomains with same color, in other words, multi-
dimensional SDC method can fully exploit the processing 
capability of the multi-core machine. 

Secondly we compare the performance of one-
dimensional, two-dimensional and three-dimensional SDC 

methods on test cases. Table 1 lists speedup results of SDC 
methods on our four test cases. We can see that two-
dimensional SDC method achieves highest efficiency. 
Compare with one-dimensional SDC method, two-
dimensional SDC method has more overhead of fork-join 
threads and more scheduling overheads. In detail, the one-
dimensional SDC method only needs two different colors. It 
does fork-join threads two times to calculate of electron 
densities and forces in one time-step. And the two-
dimensional decomposition does fork-join threads four times 
and three-dimensional decomposition does fork-join threads 
eight times. However two-dimensional SDC method does 
not degrade performance. Since our two-dimensional 
decomposition algorithm strives to make subdomains with 
small surface area and large volume, which results in better 
cache locality compared to the one-dimensional 
decomposition strategy. From Table 1, we also can see that 
three-dimensional SDC method degrades the performance 
but only slightly due to the more overhead of fork-join 
threads and scheduling. 

Lastly we compared the parallel efficiency of our 
strategy with that of other parallel method on our test cases 
in Fig. 9. It is obvious that our two-dimensional SDC method 
not only achieves a linear speedup, but also has highest 
speedup than other methods on all of test cases. The reason 
of linear speedup is that the low synchronization cost of 
implicit barriers in our method can be amortized over a large 
amount of computation. 

Critical Section (CS) method achieves lowest efficiency. 
CS method encloses reduction operations on irregular array 
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in critical section. Although it is simplest method, it is not 
feasible on multi-core architectures. 

When the number of executing cores is less than 8, Share 
Array Privatization (SAP) method achieves better 
performance than CS method and Redundant Computations 
(RC) method. However its performance will degrade with 
the increase of the number of executing cores. It is partly 
because memory overhead grows linearly with the number of 
threads [7], which competes with cache space during the 
computations. But it is mainly due to synchronization 
overhead, since SAP method also needs synchronization to 
update share array according the value of private share array. 
In detail, after the thread-private copies had been updated, 
the shared array should be updated using the thread-private 
copies. Updating shared array must be done in a critical 
section, and which brings on high overhead when the 
number of executing cores is more than 8. So it is not a 
scalable method. 

We also show speedup result of Redundant 
Computations (RC) in Fig. 9. RC method achieves a nearly 
linear speedup, because its double computation cost can be 
amortized over many cores. And it gets better performance 
when the number of executing cores is more than 8. But 
Because there is two-fold computation work for the force 
calculations in RC method than in SDC method, the 
efficiency of RC method is low than that of SDC method. 
Our experimental results demonstrated that SDC method can 
gain about 1.7-fold increase in performance as compared to 
RC method on medium and large test cases. 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, we presented a scalable spatial 

decomposition coloring (SDC) method to solve a class of 
short-range force calculations problems on shared memory 
multi-core platforms. Although in this paper SDC method 
was applied in the MD implementation with EAM potential, 
but it is obvious that our method can be applied in MD 
simulations with other potentials. Our experiments show that 
SDC method can effectively solve the parallelization of force 
calculations which involve the reduction operations on 
irregular array. And our experiments show that SDC method 
is scalable not only to large simulation system but also to 
many-core architectures. 

There are two directions for future research. Firstly, a 
detailed study of SDC method on NUMA memory 
architecture is needed. How to achieve better performance 
under multi-core and multi-socket shared memory system is 
of particular interest. Lastly, it will be promising to 
implement SDC method using mixed programming models 
such as MPI+OpenMP in multi-core cluster. 

 

ACKNOWLEDGMENT 
This work reported in this paper is supported by National 

High-tech R&D Program of China under Grant No. 
2006AA1Z105, and by the Key Project of Chinese Ministry 
of Education under Grant No.106019 and No.108008. 

 

REFERENCES 
[1] M.S. Daw and M.I. Baskes, �“Embedded-atom method: Derivation 

and application to impurities, surfaces, and other defects in metals,�” J. 
Phys. Review B, vol. 29, 1984, pp. 6443�–6453. 

[2] L. Verlet, �“Computer experiments on classical fluids i. 
thermodynamical properties of Lennard-Jones molecular�”, Phys. 
Review, vo.159, 1967, pp. 98-103. 

[3] NAMD Scalable Molecular Dynamics, 
http://www.ks.uiuc.edu/Research/namd/. 

[4] GROMACS: Fast, Free and Flexible MD, http://www.gromacs.org/. 
[5] LAMMPS Molecular Dynamics Simulator, 

http://lammps.sandia.gov/. 
[6] S.R. Alam, and P.K. Agarwal, �“On the path to enable multi-scale 

biomolecular simulations on 3etaFLOPS supercomputer with multi-
core processors�”, IEEE International Parallel and Distributed 
Processing Symposium (IPDPS 2007) , IEEE Press, Mar. 2007, 
doi:10.1109/IPDPS.2007.370443. 

[7] S.R. Alam, P.K. Agarwal, S.S. Hampton, Hong Ong, and J.S. Vetter, 
�“Impact of multicores on large-scale molecular dynamics 
simulations,�” IEEE International Symposium on Parallel and 
Distributed Processing Symposium(IPDPS 2008), IEEE Press, Apr. 
2008, doi:10.1109/IPDPS.2008.4536181. 

[8] S.R. Alam, P.K. Agarwal, S.S. Hampton, and Hong Ong, 
�“Experimental evaluation of molecular dynamics simulations on 
multi-core systems,�” High Performance Computing(HiPC 2008), 
Springer Verlag Press, Dec. 2008, pp. 131-141, doi:10.1007/978-3-
540-89894-8_15. 

[9] C.I. Rodrigues, D.J. Hardy, J.E. Stone, K. Schulten, and W.W. Hwu, 
�“GPU acceleration of cutoff pair potentials for molecular modeling 
applications,�” 2008 Conference on Computing frontiers(CF�’08), 
ACM Press,  May 2008, pp. 273-282, doi:10.1145/1366230.1366277. 

[10] D.J. Hardy, J.E. Stone, K.Schulten, �“Multilevel summation of 
electrostatic potentials using graphics processing units,�” Parallel 
Computing, vol. 35, Mar. 2009, pp.164-177, doi: 
10.1016/j.parco.2008.12.005. 

[11] G. Shi, and V. Kindratenko, �“Implementation of NAMD molecular 
dynamics non-bonded force-field on the Cell Broadband Engine 
processor,�” IEEE International Parallel and Distributed Processing 
Symposium(IPDPS 2008), IEEE Press, Apr. 2008, doi: 
10.1109/IPDPS.2008.4536470. 

[12] S. Goedecker, �“Optimization and parallelization of a force field for 
silicon using OpenMP,�” Computer Physics Communications, vol. 
148, Oct. 2002, pp. 124-135, doi: 10.1016/S0010-4655(02)00466-6. 

[13] R. Couturier, and C. Chipot, �“Parallel molecular dynamics using 
OpenMP on a shared memory machine,�” Computer Physics 
Communications, vol. 124, Jan. 2000, pp. 49-59, doi: 10.1016/S0010-
4655(99)00432-4. 

[14] OpenMP website.  http://www.openmp.org 
[15] E. Gutiérrez , O. Plata, and E.L. Zapata, �“An analytical model of 

locality-based parallel irregular reductions,�” Parallel Computing, vol. 
34, Mar. 2008, pp. 133�–157, doi: 10.1016/j.parco.2008.01.003. 

[16] B. Chapman, G. Jost, R. Van Der Pas, and D.J. Kuck, Using 
OpenMP: portable shared memory parallel programming, The MIT 
Press, 2007. 

[17] M.W. Hall, J.M. Anderson, S.P. Amarasinghe, B.R. Murphy, and 
S.W. Liao, et al. , �“Maximizing multiprocessor performance with the 
SUIF compiler�”, Computer, vol. 29, Dec. 1996, pp. 84�–89, doi: 
10.1109/2.546613. 

[18] E. Dedu, S. Vialle, C. Timsit, �“Comparison of OpenMP and classical 
multi-threading parallelization for regular and irregular algorithms,�” 
International Conference on Software Engineering Applied to 
Networking and Parallel/Distributed Computing(SNPD�’00), May. 
2000, pp. 53-60. 

[19] H. Han, C.W. Tseng, �“Efficient compiler and run-time support for 
parallel irregular reductions�”, Parallel Computing, vol. 26, Dec. 2000, 
pp. 1861�–1887, doi: 10.1016/S0167-8191(00)00062-4. 

!222888

Authorized licensed use limited to: University of Southern California. Downloaded on July 22,2010 at 19:53:40 UTC from IEEE Xplore.  Restrictions apply. 



[20] H. Han, C.W. Tseng, �“A comparison of parallelization techniques for 
irregular reductions,�” IEEE International Parallel and Distributed 
Processing Symposium(IPDPS 2001), IEEE C.S. Press, Apr. 
2001,doi: 10.1109/IPDPS.2001.924963. 

[21] E. Gutiérrez, O. Plata, and E.L. Zapata, �“A compiler method for the 
parallel execution of irregular reductions in scalable shared memory 
multiprocessors,�” Conference Proceedings of the 2000 International 
Conference on Supercomputing, ACM Press, May 2000, pp. 78-87, 
doi: 10.1145/335231.335239. 

[22] M. Herlihy, and J.E.B. Moss, �“Transactional Memory: architectural 
support for lock-free data structures,�” Proceedings of the 20th Annual 
International Symposium on Computer Architecture (ISCA�’93), IEEE 
Press, May 1993, pp. 289�–300. 

[23] A. Nakano, R. K. Kalia, and P. Vashishta, �“Multiresolution molecular 
dynamics algorithm for realistic materials modeling on parallel 

computers,�” Computer Physics Communications, vol. 83, Dec. 1994, 
pp.197-214, doi: 10.1016/0010-4655(94)90048-5. 

[24] R. A. Kendall, E. Aprã, D.E. Bernholdt, E.J. Bylaska, M. Dupuis, et 
al. �“High performance computational chemistry: an overview of 
NWChem a distributed parallel application,�” Computer Physics 
Communications, vol. 128, Jun. 2000,  pp. 260-283, doi: 
10.1016/S0010-4655(00)00065-5. 

[25] H. Han, C.W. Tseng, �“A comparison of locality transformations for 
irregular codes,�” Proc. Fifth Workshop on Languages, Compilers and 
Run-Time Systems for Scalable Computers, Springer-Verlag Press, 
May 2000, pp. 70-84, doi: 10.1007/3-540-40889-4_6. 

[26] J. Rifkin, XMD-molecular dymamics for metals and ceramics, 
http://xmd. sourceforge.Net. 

 

!222999

Authorized licensed use limited to: University of Southern California. Downloaded on July 22,2010 at 19:53:40 UTC from IEEE Xplore.  Restrictions apply. 


