
Efficient Parallel Implementation of Molecular Dynamics with Embedded Atom
Method on Multi-core Platforms

Changjun Hu
School of Information Engineering

University of Science and Technology Beijing
Beijing, P.R.China

huchangjun@ies.ustb.edu.cn

Yali Liu
1 School of Information Engineering

1 University of Science and Technology Beijing
2 School of Science and Technology

2 Beijing City University
Beijing, P.R.China
liuyali@bcu.edu.cn

Jianjiang Li
School of Information Engineering

University of Science and Technology Beijing
Beijing, P.R.China

jianjiangli@gmail.com

Abstract�—We present a scalable spatial decomposition coloring
approach to implement molecular dynamics simulations with
embedded atom method (EAM) on multi-core architectures. It
effectively solves parallelization of reduction operations on
irregular arrays in molecular dynamics simulations. In OpenMP
program model, our methodology avoids that the same memory
location is simultaneously modified by more than one thread
when the short-range forces is calculated, meanwhile our method
reduces memory requirements. The methodology comes from the
idea of Red-Black Coloring, popular in linear algebra. We
developed the spatial decomposition coloring algorithm, and our
work applied this algorithm to implement the embedded atom
method formalism for molecular dynamic. In this paper we also
describe other optimizing methods applied in our serial and
parallel implementations. Results show that our method is
scalable and can achieve nearly linear speedup. Additionally we
also compared it with other methods which can parallelize
reduction operations on irregular array, and we discussed them
in detail.

Keywords-Parallel Computing; Irregular Reductions; Spatial
Decomposition; Molecular Dynamics; Embedded Atom Method

I. INTRODUCTION
In Molecular Dynamics (MD) simulations, the

Embedded-Atom Method (EAM) [1] is usually used to
calculate inter-atomic forces in particle systems for metals
and alloys. However compare with pair-wise potential
method which is commonly used for MD simulations, it has
more intensive computation and more memory requirements.

We know that the intensive computation of MD appears
in force calculations procedure, but the force calculations of
EAM potential have more computations. It involves three
computational phases, however pair-wise potential only

involves one computational phase (compute forces directly).
The three computational phases of EAM potential are
evaluating electron densities, evaluating embedding energies
and computing forces last.

The equation for the electron density i on embed atom i
is calculated by

=
N

j
iji)r((1)

The equation for the force iF on atom i is given by

++−=
≠

N

ij
jijijiiji FF ijr)')('')(')r(V'(F (2)

From (1) and (2) we can see that the computation
workload required by the embedded atom method is nearly
more than twice the workload of the pair-wise potential for
the same number of particles, and that EAM method requires
extra memory space to store electron densities and its
derivative of all atoms.

As we know that EAM is often used on metals or alloys
simulation, and that majority metals have very high density,
therefore metal atoms usually have more neighboring atoms
than other type atoms. In most cases the neighboring atoms
that lie within the cut-off range rc from each atom are stored
in neighbor list [2]. So MD simulations with EAM need
more memory space to store the neighboring atoms. With the
increasing of number of atoms, not only does computation
increase, but memory requirement also becomes an
increasingly heavy burden even to modern computers.

!000000999 IIInnnttteeerrrnnnaaatttiiiooonnnaaalll CCCooonnnfffeeerrreeennnccceee ooonnn PPPaaarrraaalllllleeelll PPPrrroooccceeessssssiiinnnggg WWWooorrrkkkssshhhooopppsss

!555333000---222000!666///000999 $$$222666...000000 ©©© 222000000999 IIIEEEEEEEEE

DDDOOOIII !000...!!000999///IIICCCPPPPPPWWW...222000000999...222444

!222!

Authorized licensed use limited to: University of Southern California. Downloaded on July 22,2010 at 19:53:40 UTC from IEEE Xplore. Restrictions apply.

The computing-intensive characteristic and high memory
requirements together present a greater challenge to deal
with parallelization of forces calculations of MD simulations
on shared memory multi-core machines.

We extracted sketch code from sequential program of
electron density and force calculations (shown in Fig. 1 and
Fig. 2 respectively). Both piece of code have two nested
loops, in which the outer loop deals with all atoms that
constitute the system, and the inner loop deals with
neighbors of atom i. In both of inner loops there are
reduction operations on irregular arrays rho and force. How
to efficiently parallelize reduction operation on irregular
array has important impact on the overall parallel
performance of MD simulations.

There are several popular molecular simulations
frameworks in use today, including NAMD, GROMACS
and LAMMPS etc. NAMD [3] is a parallel molecular
dynamics code based on the Charm++ runtime system.
Charm++ supports MPI and uses it as communication library.
GROMACS [4] is another versatile package to perform
molecular dynamics, using standard MPI communication.
LAMMPS [5] is a classical molecular dynamics code, which
can runs in parallel using message-passing techniques.

Figure 1. A piece of code of electron densities.

Figure 2. A piece of code of forces calculations.

Most frameworks are based on distributed memory
models, and not designed for multi-core platforms. So a lot

of research work [6-8] has been done on whether these
frameworks using MPI can get utilize multi-core resources
effectively. Their experiments show there are some factors
limit these frameworks efficiency on multi-core platforms:
memory resource contention, and MPI intra-node
communication.

And some work has been done to implement MD
simulations using shared memory model on multi-core
platform [9-13]. To the best of my knowledge, little work
had been done to design efficient parallel implementation of
short-range force calculations based on shared memory
model in general multi-core processors. There are a number
of parallel programming models based on shared memory
models which have been proposed in the last years, OpenMP
[14] standard usually appears to be more appropriate to
parallelize computationally intensive applications on shared
memory architectures. It gives programmers a convenient
way to obtain parallelism. However OpenMP doesn�’t
support the array reduction in C/C++.

Based on shared memory model, some types of solutions
have been proposed in the literature to solve parallelization
of reduction operations on irregular arrays. Most of these
solutions can be classified into five categories. Different
from the categories proposed by E. Gutiérrez etc. [15], we
think transactional memory and redundant computations as
solutions to deal with reduction irregular arrays.

The first one includes the simplest solution that enclosed
the reference to the reduction array in a critical section,
which ensures that multiple threads do not attempt to update
the same reduction array simultaneously. Its disadvantage is
the high synchronization cost when using critical region,
atomic or lock in loop. Even in the worst case, multiple
threads must work in serial execution [16].

The second class privates the reduction array to
minimizing synchronization [17], but with the disadvantages
of high memory overhead. Not only does it limit the number
of particles allowed in simulations, but it also competes for
cache space and can reduce the program speed. And it is not
scalable, as memory overhead grows linearly with the
number of threads [18].

The third class partitions computations and distributes it
among threads in order to avoid write conflicts. In the
literature different methods like LOCALWRITE [19, 20] and
SYNCHWRITE [21] have been proposed. It has low
synchronization cost and low memory requirements, but it
needs an inspector at runtime, therefore it will bring the cost
of reorder reduction array and computations.

The fourth class uses transactional memory [22] method
which has been proposed to avoid the need for blocking, but
one question that affects portability is the number of
operations that can be contained in a single transaction.

If the background of application is observed, there is the
last class which uses redundant computations strategy and
can avoid reduction operations on irregular array appeared in
MD simulations. Its advantage is the high parallelizability
since data dependence has been removed between the loop
iterations, but its disadvantage is there are double
computations and that neighbor list requires more memory
space.

!222222

Authorized licensed use limited to: University of Southern California. Downloaded on July 22,2010 at 19:53:40 UTC from IEEE Xplore. Restrictions apply.

In this paper, we proposed a scalable Spatial
Decomposition Coloring (SDC) approach for solve the
parallelization for irregular array reductions in MD
simulations. On the base of knowledge about MD
simulations, the loop iterations can be partitioned and be
distributed among executing threads, and then multiple
threads writing to the same address simultaneously can be
avoided. Our method uses the implicit barrier at the
completion point of the loop parallelized, and it has low
synchronization cost.

The rest of the paper is organized as follows. In Section
II, we described our spatial decomposition coloring approach,
its OpenMP implementations and other optimizing methods
applied in our MD simulations with EAM. The results from
our experiments were presented and analyzed in Sections III
and IV. And we concluded our work in Section V.

II. METHOD

A. Spatial Decomposition Method
For the MD simulations with short-range interactions,

Spatial Decomposition (SD) [23] method is commonly used
on distributed memory multi-processors involving several
hundreds of processors. Spatial decomposition is a much
more complex approach to implement [24] on distributed
memory, since the programmer must change all array
declarations and all loop bounds, and explicitly codes the
periodic transfer of the boundary data between processors.
This is a large and difficult step.

However it is simple to carry out parallel domain
decomposition in OpenMP programming model rather than
in MPI. Message passing is replaced by shared data that can
be read and written by any thread. Programmer divides the
spatial domain of simulation system into several subdomains
which will be assigned among executing threads to executing
its computations. In other words, the iterations of outer loop
in Fig. 1 (and in Fig. 2) are partitioned among threads
according to the coordinates of atom i .

But from Figs. 1 and 2 we can see that when the thread
works on its subdomains to compute electron densities and
forces of its atoms, it will also update electron densities and
forces of its neighboring atoms which are located in neighbor
regions (See Fig. 3, both neighbor atoms and neighbor
regions of subdomain 4 were marked with strip), however
the neighbor regions belong to other subdomains. Therefore
when computations on subdomains are running in parallel,
synchronization will be required to ensure that multiple
threads do not attempt to update the same atom
simultaneously. In this paper we proposed Spatial
Decomposition Coloring (SDC) method to deal with this
problem. We described SDC method in detail below.

Figure 3. Neighbor regions of the atoms in the subdomain 4.

B. Spatial Decomposition Coloring (SDC) Approach
Our SDC method consists of the following steps:
1) SDC method firstly split the spatial domain of

simulations into several subdomains. But in order to make
computations as supposed, we require that the length of
subdomains in each of the spatial decomposed dimensions
should be longer than 2rc, and we require that the number of
subdomains in each of the spatial decomposed dimensions
should be even.

2) Then subdomains are colored with a set of different
colors in such a way that each subdomain is surrounded only
by those subdomains with different colors. And the number
of subdomains with each color is equal.

3) After steps 1 and 2 have been done, computations can
be done in the following way. For a given color, each
OpenMP executing thread is assigned some subdomains with
this color, and it can run parallelization calculations of forces
on the subdomains with this color. But calculations on
subdomains with different colors must run in a serial fashion.
If the number of subdomains with one color is adequate for
threads provided by multi-core platforms, then our method
can not only effectively exploit the inherent parallelism of
MD simulations, but also effectively exploit multi-core
architectures. This requirement is easily achieved, for
example in our experiments, there are 340 subdomains with
each color in medium test case, and there are nearly 5000
subdomains with each color in large test case.

The steps 1 and 2 will be done when the neighbor list is
created or updated. Since the neighbor list usually doesn�’t be
updated in every time-step and the cost of spatial
decomposition and coloring is very low, therefore the times
of steps 1 and 2 can be omitted. SDC method has the same
disadvantage of Spatial Decomposition method, which is
overload imbalance. However, under condition of simulation
system has uniformity of density, the overload balance can
be achieved by the subdomains with same color have
roughly equal volume. We do not require that subdomains
with different colors should have same volume, which can
have different volume from subdomains with other colors.

Based on the number of dimensions divided, SDC
method can be classified into three categories: one-
dimensional spatial decomposition coloring method, two-
dimensional spatial decomposition coloring method and
three-dimensional spatial decomposition coloring method.
We described them in detail below.

!222333

Authorized licensed use limited to: University of Southern California. Downloaded on July 22,2010 at 19:53:40 UTC from IEEE Xplore. Restrictions apply.

Figure 4. The one-dimensional SDC method.

Figure 5. The two-dimensional SDC method.

In the one-dimensional spatial decomposition, algorithm
decomposes the spatial horizontal-level into a set of
subdomains, and colors subdomains red or green. The length
of horizontal-level edges of each subdomain is longer than
2rc. Each subdomain has two neighbor regions on both the
north and south which belongs to subdomains with another
color. Fig. 4 is a chart of the one-dimensional spatial
decomposition coloring method. In this chart spatial domains
are divided into eight subdomains which were coloring with
red or green alternately, and the neighbor regions of red
subdomains were marked with strip.

From Fig. 4 we can see that if only computations are run
for those subdomains with red color in parallel, values of
atoms in their neighboring regions then will be updated
simultaneously. Because the data spaces updated by threads
do not overlap, we don�’t need synchronization for updating
the shared array. However before green subdomains are
computed, a barrier should be needed for waiting all threads
to complete computation on red subdomains. Compare to
using critical region, atomic or lock, barriers at the end of
parallel loop has low synchronization cost.

Two-dimensional spatial decomposition coloring with
four colors is shown in Fig. 5. Spatial domain is decomposed
along both horizontal and vertical dimensions. Both the
length of horizontal-level edges and vertical-level edges
must larger than 2rc. As same as one-dimensional
decomposition, computations of the electron densities and
forces on subdomains with a given color can be executed in
parallel, and a barrier will be needed for waiting those
threads to complete computation.

A1 B1 A2 B2

C1 D1 C2 D2

A3 B3 A4 B4

C3 D3 C4 D4

E1 F1 E2 F2

G1 H1 G2 H2

E3 F3 E4 F4

G3 H3 G4 H4

C7 D7 C8

G7 H7

D8

G8 H8

Figure 6. The three-dimensional SDC method.

Three-dimensional spatial decomposition coloring with
eight colors is shown in Fig. 6. It is very similar to one-
dimensional and two-dimensional spatial decomposition. It is
obvious that the higher-dimensional decomposition method
creates more subdomains. So it is impossible that some cores
are idle while others are busy. SDC method is scalable and
suitable on multi-core and many-core architectures.

Although the implementation of spatial decomposition
coloring approach is a bit more complex than the
implementation of share array privation approach, it has
higher speedup than the latter, and has low memory
requirements. We gave their speedup and analysis of
efficiency in Section III and IV.

In Section II.C, we discussed the parallel implementation
of forces calculations of EAM using SDC method

C. Parallel Implementation of Forces Calculations of
EAM using SDC method
Force calculations procedure is the most time consuming

part in MD simulations, especially in EAM potential. We
know that forces calculations of EAM involve three
computational phases: the evaluating electron densities
(according (1)), the evaluating embedding energies and the
computing forces (according (2)) last. The most time
consuming parts are the calculations of the electron densities
and forces. Their main code has been list in Fig. 1 and Fig. 2.
Both of the codes (in Fig. 1 and Fig. 2) show the loops have
cross-iteration dependences. If we use a simple directive (the
#pragma omp parallel for directive) to specify that the
iterations of the outer loops could be distributed among the
executing threads, the programs can�’t get results as supposed.

Here we used spatial decomposition coloring approach to
parallel those two parts. Then the parallel procedure of forces
calculations of EAM involve the following phases:

1) For a given color, run electron density computations
on subdomains with the color in parallel. But the
computations on subdomains with different color must
proceed serially. The mainly parallel code of electron
densities calculations procedure is indicated in Fig. 7.

!222444

Authorized licensed use limited to: University of Southern California. Downloaded on July 22,2010 at 19:53:40 UTC from IEEE Xplore. Restrictions apply.

2) For all atoms in simulation system, calculate their
embedding function value and their derivative, and
accumulate embedding energies in parallel. Since this loop
does not contain data dependences, so we can use a single
directive (the #pragma omp parallel for directive) to
parallelize this part. The parallel code is not shown in this
paper.

3) For a given color, run force calculations on
subdomains with the color in parallel. Like the electron
density computations, the computations on subdomains with
different color must proceed serially. Fig. 8 shows the
mainly parallel code of forces calculations procedure.

#pragma omp parallel private(cpart)
for (cpart = 0; cpart < colors; cpart++)
{
...
#pragma omp for private(spart,i,j,k,�…)
 for (spart = cpart; spart < subdomains; spart += colors)
 for (ipart = pstart[spart]; ipart < pstart[spart+1]; ipart++)
 {

i = partindex[ipart];
neighstart = neighindex[i];
neighend = neighstart + neighlen[i];
for (k = neighstart ; k < neighend; k++)
{

j = neighlist[k];
...
rho[i] += dfn_t1 ;
rho[j] += dfn_t2 ;

}
 }
}

Figure 7. A piece of parallel code of electron density calculations.

#pragma omp parallel private(cpart)
for (cpart = 0; cpart < colors; cpart++)
{
 ...
#pragma omp for private(spart,i,j,k,�…)
 for (spart = cpart; spart < subdomains; spart += colors)
 for (ipart = pstart[spart]; ipart < pstart[spart+1]; ipart++)
 {

i = partindex[ipart];
neighstart = neighindex[i];
neighend = neighstart + neighlen[i];
for (k = neighstart ; k < neighend; k++)
{

j = neighlist[k];
�…
forc = �…
force[i][X] += forc*xd ;
force[i][Y] += forc*yd ;
force[i][Z] += forc*zd ;
force[j][X] -= forc*xd ;
force[j][Y] -= forc*yd ;
force[j][Z] -= forc*zd ;

}
 }
}

Figure 8. A piece of parallel code of force calculations.

The mainly parallel code of electron densities
calculations procedure is indicated in Fig. 7. And Fig. 8
shows the mainly parallel code of forces calculations
procedure.

Both of them use the #pragma omp parallel directive to
specify that the outer loops should be executed in parallel on
the executing threads, and both to use the #pragma omp for
directive to specify that the iterations of the inner loops (its
iteration variable is spart) should be distributed among the
executing threads. We didn�’t use a single directive (the
#pragma omp parallel for) to specify that the iterations of the
inner loops should be distributed among the executing
threads, since it will increase the overheads introduced by
forking and joining threads.

D. Other optimizing methods
Based on knowledge of MD simulations with EAM, we

used two methods to accelerate sequential and parallel
simulations in this paper. Both of them can reduce redundant
computations in MD simulations.

1) The first method is that when we calculate the electron
density i of atom i, we not only add the density
contribution ji from neighboring atom j to atom i to i , but
also calculate and add the density contribution ij from
atoms i to neighboring atom j to j .

2) The second method is that we take advantage of
Newton�’s third law in the force routine. When we calculate
the force iF on atom i, we add the interactions ijf to iF and

we also add ijf− to jF .
In our experiments, we updated serial code and parallel

code to improve their data locality in our sequential and
parallel implementations. We can see that irregular
computations frequently appear in the loop codes of Figs. 1,
2, 7 and 8. It has poor temporal and spatial locality because
they do not repeatedly access data in memory with small
constant strides, which will be more evident with increasing
number of atoms [25]. In our experiments, data reordering
technique is used to increase locality of reference.

1) Achieve sequence accessing on irregular array by the
data reordering.

Both in serial code and parallel code, the irregular arrays
neighlist[] and rho[] were accessed in each iteration of inner
loops, and their cache hits have important impact upon
performance of simulations. We took advantage of the
information of spatial positions of atoms to create neighbor
list of atoms, and reordered index of neighboring atoms in
neighlist[]. This adjustment also has impact on the cache hits
of irregular array rho[].

2) Use data reordering technique to transform irregular
arrays into regular arrays.

From Figs. 7 and 8, we can see there are other two
irregular arrays neighindex[] and neighlen[]. We use data
reordering to transform both two irregular arrays
(neighindex[] and neighlen[]) into regular arrays. Then the
accesses to the two arrays have good data locality.

!222555

Authorized licensed use limited to: University of Southern California. Downloaded on July 22,2010 at 19:53:40 UTC from IEEE Xplore. Restrictions apply.

After using data reordering technique, the simulation
efficiency increased was 12% in serial simulations and was
39% in parallel simulations in our experiments on our large
test case. Efficiency increased is measured as:

dunoptimizedunoptimize /100*)(TimeTimeTime optimzied− (3)

Since Section II.D is not the subject of study in this paper,
so we didn�’t discuss them in detail. But in all of our
experiments listed in Section III, we used these optimizing
techniques.

III. EXPERIMENTS AND RESULTS

A. Experimental environment
We make experiments on a machine with four Intel

Xeon(R) Quad-core E7320 (L2 Cache 4MB) processors, 16
GB memory. The Operating-System is Fedora release 9 with
kernel 2.6.25. The compiler is gcc 4.3.0.

Our experimental programs of MD application with
EAM are written in C. The serial programs came from XMD
code (which is a free MD program written by Jon Rifkin at
the University of Connecticut [26]). We modified the serial
programs using the optimizing methods described in Section
2.4. Then we programmed its parallel programs with
OpenMP programming model using our Spatial
Decomposition Coloring (SDC) strategy. And we also
programmed XMD parallel programs using some parallel
strategy discussed in Section I. These methods are critical
construct strategy (which enclosed the reference to the
reduction array in critical region, and belongs to the first
class strategy), shared array privatization strategy (the
second class strategy), redundant computations strategy (the
last class strategy) respectively. We use sched_setaffinity()
to control binding of a thread to cores at startup, which is
supported in OpenMP.

All of execution times of our experiments are the running
times of the calculations of the electron densities and forces,
since these two parts are the most time-consuming
components. So we merely observed the running times of
these two parts and gave its speedups. We use system call

gettimeofday() for measuring execution time. All of our
experiments are run for 1000 simulation time-steps.

Then we gave our test cases on serial program and
parallel programs.

B. Experimental cases
Our four test cases were designed to observe micro-

deformation behaviors of the pure Fe metals material. The
system was simulated under periodic boundary conditions
and the time-step is 10-17 seconds. The initial state uses the
same body-centered cubic (bcc) lattice arrangement. We
considered the following test cases of our simulation systems
for experiments.

Small -scale case (1) : 54,000 atoms
Medium-scale case (2): 265,302 atoms
Large-scale case (3) : 1,062,882 atoms
Large-scale case (4) : 3,456,000 atoms
Those test cases for our experiments in initial state are

very similar. The differences are the number of atoms and
initial energy of the particular atoms, because the number of
atoms should increase with the increase of initial energy of
the particular atoms.

C. Experimental results
We first gave speedup results of four test cases with one-

dimensional, two-dimensional and three-dimensional spatial
decomposition coloring method in Table 1. The speedup
equals runtimes of serial programs on one core divided by
runtimes of parallel programs on multiple cores.

In Table 1, there are blanks for the speedup of one-
dimensional SDC method on small test case and medium test
case with 12 threads and 16 threads. Since one-dimensional
SDC algorithm decomposes the spatial horizontal-level into
a set of subdomains, and the length of horizontal-level edges
of each subdomain must be longer than 2rc. Therefore the
number of subdomains split by one-dimensional SDC
method is less than 24 in our small test case. So we didn�’t
use one-dimensional SDC method on our small test case with
12 threads and more threads and on medium test case with
16 threads.

TABLE I. THE SPEEDUPS OF SPATIAL DECOMPOSITION COLORING (SDC) METHODS (ONE-DIMENSIONAL SDC, TWO-DIMENSIONAL SDC AND THREE-
DIMENSIONAL SDC).

Speedup
Small case (1) on 2~16 cores Medium case (2) on 2~16 cores

2 3 4 8 12 16 2 3 4 8 12 16
SDC (one-dimensional) 1.71 2.46 3.07 4.17 1.84 2.64 3.37 6.24 6.33
SDC (two- dimensional) 1.70 2.46 3.07 4.74 5.90 6.43 1.84 2.65 3.39 6.20 8.89 10.90
SDC (three- dimensional) 1.66 2.40 2.99 4.61 5.74 6.30 1.82 2.65 3.36 6.16 8.76 10.78

Large case (3) on 2~16 cores Large case (4) on 2~16 cores

2 3 4 8 12 16 2 3 4 8 12 16
SDC (one- dimensional) 1.86 2.76 3.67 6.82 9.76 9.59 1.88 2.79 3.66 6.30 9.97 9.82
SDC (two- dimensional) 1.87� 2.78� 3.64� 6.74� 9.73� 12.31� 1.87 2.80 3.65 6.77 9.84 12.42
SDC (three- dimensional) 1.86 2.75 3.64 6.64 9.65 12.29 1.87 2.80 3.67 6.74 9.82 12.34

!222666

Authorized licensed use limited to: University of Southern California. Downloaded on July 22,2010 at 19:53:40 UTC from IEEE Xplore. Restrictions apply.

0

2

4

6

8

10

12

14

2 3 4 8 12 16

Number of cores

Sp
ee

du
p

SDC on small case(1) SDC on medium case(2) SDC on large case(3) SDC on large case(4)
CS on small case(1) CS on medium case(2) CS on large case(3) CS on large case(4)
SAP on small case(1) SAP on medium case(2) SAP on large case(3) SAP on large case(4)
RC on small case(1) RC on medium case(2) RC on large case(3) RC on large case(4)

Figure 9. The speedup curves of two-dimensional Spatial Decomposition Coloring (SDC) method, Critical Section (CS) method, Share Array Privatization

(SAP) method and Redundant Computations (RC) method on test case.

In order to compare the performance of SDC method
with other methods, we had used these methods on all test
cases. We gave the speedups of SDC method and other
methods in Fig. 9. Here we selected two-dimensional
decomposition SDC method to represent SDC method.

IV. DISCUSSION
Firstly we observe the scalability of our SDC method.

Table 1 show that the performance of multi-dimensional
(two-dimensional and three-dimensional) SDC method has
been improved with the increase in the number of cores and
the increase in the number of atoms. Therefore our multi-
dimensional SDC method is a scalable method for parallel
MD simulations (especially with EAM) on multi-core
machines. And it is expected that our method will continue
to be scalable on future many-core architectures.

One-dimensional SDC method has one restriction which
limits the scalability of one-dimensional SDC method. As we
know, parallelism is exploited by decomposing the spatial
domain into subdomains in SDC method. Therefore when
small-scale case is simulated using one-dimensional SDC
method, maybe the degree of parallelism is less than the
number of cores of machine. It�’s the disadvantage of one-
dimensional SDC method. But it is not the restriction of
multi-dimensional SDC method. Since multi-dimensional
SDC method can divide spatial domain into more
subdomains with same color, in other words, multi-
dimensional SDC method can fully exploit the processing
capability of the multi-core machine.

Secondly we compare the performance of one-
dimensional, two-dimensional and three-dimensional SDC

methods on test cases. Table 1 lists speedup results of SDC
methods on our four test cases. We can see that two-
dimensional SDC method achieves highest efficiency.
Compare with one-dimensional SDC method, two-
dimensional SDC method has more overhead of fork-join
threads and more scheduling overheads. In detail, the one-
dimensional SDC method only needs two different colors. It
does fork-join threads two times to calculate of electron
densities and forces in one time-step. And the two-
dimensional decomposition does fork-join threads four times
and three-dimensional decomposition does fork-join threads
eight times. However two-dimensional SDC method does
not degrade performance. Since our two-dimensional
decomposition algorithm strives to make subdomains with
small surface area and large volume, which results in better
cache locality compared to the one-dimensional
decomposition strategy. From Table 1, we also can see that
three-dimensional SDC method degrades the performance
but only slightly due to the more overhead of fork-join
threads and scheduling.

Lastly we compared the parallel efficiency of our
strategy with that of other parallel method on our test cases
in Fig. 9. It is obvious that our two-dimensional SDC method
not only achieves a linear speedup, but also has highest
speedup than other methods on all of test cases. The reason
of linear speedup is that the low synchronization cost of
implicit barriers in our method can be amortized over a large
amount of computation.

Critical Section (CS) method achieves lowest efficiency.
CS method encloses reduction operations on irregular array

!222777

Authorized licensed use limited to: University of Southern California. Downloaded on July 22,2010 at 19:53:40 UTC from IEEE Xplore. Restrictions apply.

in critical section. Although it is simplest method, it is not
feasible on multi-core architectures.

When the number of executing cores is less than 8, Share
Array Privatization (SAP) method achieves better
performance than CS method and Redundant Computations
(RC) method. However its performance will degrade with
the increase of the number of executing cores. It is partly
because memory overhead grows linearly with the number of
threads [7], which competes with cache space during the
computations. But it is mainly due to synchronization
overhead, since SAP method also needs synchronization to
update share array according the value of private share array.
In detail, after the thread-private copies had been updated,
the shared array should be updated using the thread-private
copies. Updating shared array must be done in a critical
section, and which brings on high overhead when the
number of executing cores is more than 8. So it is not a
scalable method.

We also show speedup result of Redundant
Computations (RC) in Fig. 9. RC method achieves a nearly
linear speedup, because its double computation cost can be
amortized over many cores. And it gets better performance
when the number of executing cores is more than 8. But
Because there is two-fold computation work for the force
calculations in RC method than in SDC method, the
efficiency of RC method is low than that of SDC method.
Our experimental results demonstrated that SDC method can
gain about 1.7-fold increase in performance as compared to
RC method on medium and large test cases.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a scalable spatial

decomposition coloring (SDC) method to solve a class of
short-range force calculations problems on shared memory
multi-core platforms. Although in this paper SDC method
was applied in the MD implementation with EAM potential,
but it is obvious that our method can be applied in MD
simulations with other potentials. Our experiments show that
SDC method can effectively solve the parallelization of force
calculations which involve the reduction operations on
irregular array. And our experiments show that SDC method
is scalable not only to large simulation system but also to
many-core architectures.

There are two directions for future research. Firstly, a
detailed study of SDC method on NUMA memory
architecture is needed. How to achieve better performance
under multi-core and multi-socket shared memory system is
of particular interest. Lastly, it will be promising to
implement SDC method using mixed programming models
such as MPI+OpenMP in multi-core cluster.

ACKNOWLEDGMENT
This work reported in this paper is supported by National

High-tech R&D Program of China under Grant No.
2006AA1Z105, and by the Key Project of Chinese Ministry
of Education under Grant No.106019 and No.108008.

REFERENCES
[1] M.S. Daw and M.I. Baskes, �“Embedded-atom method: Derivation

and application to impurities, surfaces, and other defects in metals,�” J.
Phys. Review B, vol. 29, 1984, pp. 6443�–6453.

[2] L. Verlet, �“Computer experiments on classical fluids i.
thermodynamical properties of Lennard-Jones molecular�”, Phys.
Review, vo.159, 1967, pp. 98-103.

[3] NAMD Scalable Molecular Dynamics,
http://www.ks.uiuc.edu/Research/namd/.

[4] GROMACS: Fast, Free and Flexible MD, http://www.gromacs.org/.
[5] LAMMPS Molecular Dynamics Simulator,

http://lammps.sandia.gov/.
[6] S.R. Alam, and P.K. Agarwal, �“On the path to enable multi-scale

biomolecular simulations on 3etaFLOPS supercomputer with multi-
core processors�”, IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2007) , IEEE Press, Mar. 2007,
doi:10.1109/IPDPS.2007.370443.

[7] S.R. Alam, P.K. Agarwal, S.S. Hampton, Hong Ong, and J.S. Vetter,
�“Impact of multicores on large-scale molecular dynamics
simulations,�” IEEE International Symposium on Parallel and
Distributed Processing Symposium(IPDPS 2008), IEEE Press, Apr.
2008, doi:10.1109/IPDPS.2008.4536181.

[8] S.R. Alam, P.K. Agarwal, S.S. Hampton, and Hong Ong,
�“Experimental evaluation of molecular dynamics simulations on
multi-core systems,�” High Performance Computing(HiPC 2008),
Springer Verlag Press, Dec. 2008, pp. 131-141, doi:10.1007/978-3-
540-89894-8_15.

[9] C.I. Rodrigues, D.J. Hardy, J.E. Stone, K. Schulten, and W.W. Hwu,
�“GPU acceleration of cutoff pair potentials for molecular modeling
applications,�” 2008 Conference on Computing frontiers(CF�’08),
ACM Press, May 2008, pp. 273-282, doi:10.1145/1366230.1366277.

[10] D.J. Hardy, J.E. Stone, K.Schulten, �“Multilevel summation of
electrostatic potentials using graphics processing units,�” Parallel
Computing, vol. 35, Mar. 2009, pp.164-177, doi:
10.1016/j.parco.2008.12.005.

[11] G. Shi, and V. Kindratenko, �“Implementation of NAMD molecular
dynamics non-bonded force-field on the Cell Broadband Engine
processor,�” IEEE International Parallel and Distributed Processing
Symposium(IPDPS 2008), IEEE Press, Apr. 2008, doi:
10.1109/IPDPS.2008.4536470.

[12] S. Goedecker, �“Optimization and parallelization of a force field for
silicon using OpenMP,�” Computer Physics Communications, vol.
148, Oct. 2002, pp. 124-135, doi: 10.1016/S0010-4655(02)00466-6.

[13] R. Couturier, and C. Chipot, �“Parallel molecular dynamics using
OpenMP on a shared memory machine,�” Computer Physics
Communications, vol. 124, Jan. 2000, pp. 49-59, doi: 10.1016/S0010-
4655(99)00432-4.

[14] OpenMP website. http://www.openmp.org
[15] E. Gutiérrez , O. Plata, and E.L. Zapata, �“An analytical model of

locality-based parallel irregular reductions,�” Parallel Computing, vol.
34, Mar. 2008, pp. 133�–157, doi: 10.1016/j.parco.2008.01.003.

[16] B. Chapman, G. Jost, R. Van Der Pas, and D.J. Kuck, Using
OpenMP: portable shared memory parallel programming, The MIT
Press, 2007.

[17] M.W. Hall, J.M. Anderson, S.P. Amarasinghe, B.R. Murphy, and
S.W. Liao, et al. , �“Maximizing multiprocessor performance with the
SUIF compiler�”, Computer, vol. 29, Dec. 1996, pp. 84�–89, doi:
10.1109/2.546613.

[18] E. Dedu, S. Vialle, C. Timsit, �“Comparison of OpenMP and classical
multi-threading parallelization for regular and irregular algorithms,�”
International Conference on Software Engineering Applied to
Networking and Parallel/Distributed Computing(SNPD�’00), May.
2000, pp. 53-60.

[19] H. Han, C.W. Tseng, �“Efficient compiler and run-time support for
parallel irregular reductions�”, Parallel Computing, vol. 26, Dec. 2000,
pp. 1861�–1887, doi: 10.1016/S0167-8191(00)00062-4.

!222888

Authorized licensed use limited to: University of Southern California. Downloaded on July 22,2010 at 19:53:40 UTC from IEEE Xplore. Restrictions apply.

[20] H. Han, C.W. Tseng, �“A comparison of parallelization techniques for
irregular reductions,�” IEEE International Parallel and Distributed
Processing Symposium(IPDPS 2001), IEEE C.S. Press, Apr.
2001,doi: 10.1109/IPDPS.2001.924963.

[21] E. Gutiérrez, O. Plata, and E.L. Zapata, �“A compiler method for the
parallel execution of irregular reductions in scalable shared memory
multiprocessors,�” Conference Proceedings of the 2000 International
Conference on Supercomputing, ACM Press, May 2000, pp. 78-87,
doi: 10.1145/335231.335239.

[22] M. Herlihy, and J.E.B. Moss, �“Transactional Memory: architectural
support for lock-free data structures,�” Proceedings of the 20th Annual
International Symposium on Computer Architecture (ISCA�’93), IEEE
Press, May 1993, pp. 289�–300.

[23] A. Nakano, R. K. Kalia, and P. Vashishta, �“Multiresolution molecular
dynamics algorithm for realistic materials modeling on parallel

computers,�” Computer Physics Communications, vol. 83, Dec. 1994,
pp.197-214, doi: 10.1016/0010-4655(94)90048-5.

[24] R. A. Kendall, E. Aprã, D.E. Bernholdt, E.J. Bylaska, M. Dupuis, et
al. �“High performance computational chemistry: an overview of
NWChem a distributed parallel application,�” Computer Physics
Communications, vol. 128, Jun. 2000, pp. 260-283, doi:
10.1016/S0010-4655(00)00065-5.

[25] H. Han, C.W. Tseng, �“A comparison of locality transformations for
irregular codes,�” Proc. Fifth Workshop on Languages, Compilers and
Run-Time Systems for Scalable Computers, Springer-Verlag Press,
May 2000, pp. 70-84, doi: 10.1007/3-540-40889-4_6.

[26] J. Rifkin, XMD-molecular dymamics for metals and ceramics,
http://xmd. sourceforge.Net.

!222999

Authorized licensed use limited to: University of Southern California. Downloaded on July 22,2010 at 19:53:40 UTC from IEEE Xplore. Restrictions apply.

