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INTRODUCTION: Solving quantum many-body
problems, such as finding ground states of
quantum systems, has far-reaching conse-
quences for physics, materials science, and
chemistry. Classical computers have facilitated
many profound advances in science and tech-
nology, but they often struggle to solve such
problems. Scalable, fault-tolerant quantum com-
puters will be able to solve a broad array of quan-
tum problems but are unlikely to be available
for years to come. Meanwhile, how can we best
exploit our powerful classical computers to ad-
vance our understanding of complex quantum
systems? Recently, classical machine learning
(ML) techniques have been adapted to investi-
gate problems in quantummany-body physics.
So far, these approaches are mostly heuristic,
reflecting the general paucity of rigorous theory
in ML. Although they have been shown to be
effective in some intermediate-size experiments,
these methods are generally not backed by con-
vincing theoretical arguments to ensure good
performance.

RATIONALE: A central question is whether clas-
sical ML algorithms can provably outperform
non-ML algorithms in challenging quantum
many-body problems. We provide a concrete
answer by devising and analyzing classical ML
algorithms for predicting the properties of
ground states of quantum systems. We prove

that these ML algorithms can efficiently and
accurately predict ground-state properties of
gapped local Hamiltonians, after learning from
data obtained bymeasuring other ground states
in the same quantum phase of matter. Fur-
thermore, under a widely accepted complexity-
theoretic conjecture, we prove that no efficient
classical algorithm that does not learn from
data can achieve the same prediction guaran-
tee. By generalizing from experimental data,
ML algorithms can solve quantummany-body
problems that could not be solved efficiently
without access to experimental data.

RESULTS:We consider a family of gapped local
quantumHamiltonians, where theHamiltonian
H(x) depends smoothly on m parameters (de-
noted by x). TheML algorithm learns from a set
of training data consisting of sampled values of
x, each accompanied by a classical representa-
tion of the ground state ofH(x). These training
data could be obtained from either classical
simulations or quantum experiments. During
the prediction phase, theML algorithmpredicts
a classical representation of ground states for
Hamiltonians different from those in the train-
ing data; ground-state properties can then be
estimated using the predicted classical repre-
sentation. Specifically, our classical ML algo-
rithm predicts expectation values of products
of local observables in the ground state, with a

small error when averaged over the value of x.
The run time of the algorithm and the amount
of training data required both scale polyno-
mially inm and linearly in the size of the quan-
tum system. Our proof of this result builds on
recent developments in quantum information
theory, computational learning theory, and con-
densed matter theory. Furthermore, under the
widely accepted conjecture that nondetermin-
istic polynomial-time (NP)–complete problems
cannot be solved in randomized polynomial
time, we prove that no polynomial-time classi-
cal algorithm that does not learn from data can
match the prediction performance achieved by
the ML algorithm.
In a related contribution using similar proof

techniques, we show that classical ML algo-
rithms can efficiently learn how to classify quan-
tum phases of matter. In this scenario, the
training data consist of classical representations
of quantum states, where each state carries a
label indicating whether it belongs to phase A
or phase B. TheML algorithm then predicts the
phase label for quantum states that were not
encountered during training. The classical ML
algorithm not only classifies phases accurately,
but also constructs an explicit classifying func-
tion. Numerical experiments verify that our
proposedMLalgorithmsworkwell in a variety
of scenarios, including Rydberg atom systems,
two-dimensional random Heisenberg models,
symmetry-protected topological phases, and
topologically ordered phases.

CONCLUSION: We have rigorously established
that classicalML algorithms, informed by data
collected in physical experiments, can effective-
ly address some quantum many-body prob-
lems. These rigorous results boost our hopes
that classicalML trained on experimental data
can solve practical problems in chemistry and
materials science that would be too hard to
solve using classical processing alone. Our
arguments build on the concept of a succinct
classical representation of quantum states
derived from randomizedPaulimeasurements.
Although some quantumdevices lack the local
control needed to perform such measure-
ments, we expect that other classical repre-
sentations could be exploited by classical ML
with similarly powerful results. How can we
make use of accessible measurement data to
predict properties reliably? Answering such
questions will expand the reach of near-term
quantum platforms.▪

RESEARCH

Huang et al., Science 377, 1397 (2022) 23 September 2022 1 of 1

The list of author affiliations is available in the full article online.
*Corresponding author. Email: hsinyuan@caltech.edu
Cite this article as H.-Y. Huang et al., Science 377, eabk3333
(2022). DOI: 10.1126/science.abk3333

READ THE FULL ARTICLE AT
https://doi.org/10.1126/science.abk3333

First, learn 
from data

Input molecule

Predicted 
ground state

Input molecule

ML algorithm Non-ML algorithm

Error:
Time Limit
Exceeded

Classical algorithms for quantum many-body problems. Classical ML algorithms learn from training
data, obtained from either classical simulations or quantum experiments. Then, the ML algorithm produces a
classical representation for the ground state of a physical system that was not encountered during training.
Classical algorithms that do not learn from data may require substantially longer computation time to
achieve the same task.
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Classical machine learning (ML) provides a potentially powerful approach to solving challenging quantum
many-body problems in physics and chemistry. However, the advantages of ML over traditional
methods have not been firmly established. In this work, we prove that classical ML algorithms can
efficiently predict ground-state properties of gapped Hamiltonians after learning from other
Hamiltonians in the same quantum phase of matter. By contrast, under a widely accepted conjecture,
classical algorithms that do not learn from data cannot achieve the same guarantee. We also prove that
classical ML algorithms can efficiently classify a wide range of quantum phases. Extensive numerical
experiments corroborate our theoretical results in a variety of scenarios, including Rydberg atom
systems, two-dimensional random Heisenberg models, symmetry-protected topological phases, and
topologically ordered phases.

S
olving quantum many-body problems,
such as finding ground states of quantum
systems, has far-reaching consequences
for physics, materials science, and chem-
istry. Although classical computers have

facilitated many profound advances in science
and technology, they often struggle to solve
such problems. Powerfulmethods, such as den-
sity functional theory (1, 2), quantum Monte
Carlo (3–5), and density-matrix renormaliza-
tion group (6, 7), have enabled solutions to
certain restricted instances ofmany-body prob-
lems, but many general classes of problems
remain outside the reach of even the most ad-
vanced classical algorithms.
Scalable, fault-tolerant quantum computers

will be able to solve a broad array of quantum
problems but are unlikely to be available for
years to come. Meanwhile, how can we best ex-
ploit our powerful classical computers to ad-
vance our understanding of complex quantum
systems? Recently, classical machine learning
(ML) techniques have been adapted to inves-
tigate problems in quantum many-body phys-
ics (8, 9) with promising results (10–27). So far,
these approaches are mostly heuristic, reflect-
ing the general paucity of rigorous theory in
ML. Although they were shown to be effective
in some intermediate-size experiments (28–30),
thesemethods are generally not backed by con-
vincing theoretical arguments to ensure good
performance, particularly for problem instan-
ces where traditional classical algorithms falter.

In general, simulating quantum many-body
physics is hard for classical computers because
accurately describing an n-qubit quantum sys-
tem may require an amount of classical data
that is exponential in n. In prior work, this
bottleneck has been addressed using classical
shadows—succinct classical descriptions of
quantummany-body states that can be used to
accurately predict a wide range of properties
with rigorous performance guarantees (31, 32).
Furthermore, this quantum-to-classical conver-
sion technique can be readily implemented in
various existing quantum experiments (33–35).
Classical shadows create opportunities for ad-
dressing quantum problems using classical
methods, such as ML. In this paper, we build
on the classical shadow formalism and devise
polynomial-time classical ML algorithms for
quantum many-body problems that are sup-
ported by rigorous theory.
We consider two applications of classical

ML, indicated in Fig. 1. The first application we
examine is learning to predict classical repre-
sentationsofquantummany-bodygroundstates.
We consider a family ofHamiltonians,where the
Hamiltonian H(x) depends smoothly on m real
parameters (denoted by x). TheML algorithm is
trained on a set of training data consisting of
sampled values of x, each accompanied by the
corresponding classical shadow for the ground
state r(x) of H(x). These training data could be
obtained from either classical simulations or
quantum experiments. During the prediction
phase, the ML algorithm predicts a classical
representation of r(x) for values of x different
from those in the training data. Ground-state
properties can then be estimated using the pre-
dicted classical representation.
This learning algorithm is efficient, provided

that the ground-state properties to be predicted
do not vary too rapidly as a function of x. Suf-

ficient upper bounds on the gradient can be
derived for any family of gapped, geometrically
local Hamiltonians in any finite spatial dimen-
sion, as long as the property of interest is the
expectation value of a sum of few-body observ-
ables. The conclusion is that any such property
can be predicted with a small average error,
where the amount of training data and the
classical computation time are polynomial inm
and linear in the system size. Furthermore, we
show that classical algorithms that do not learn
from data cannot make accurate predictions
in polynomial time without violating widely
accepted complexity-theoretic conjectures. To-
gether, we rigorously establish the advantage
ofML algorithmswith data over thosewithout
data (36) in a physically relevant task.
The classical ML algorithm could general-

ize from training data that are obtained either
through quantum experiments or classical sim-
ulations; the same rigorous performance guar-
antees apply in either case. If the training data
are obtained from quantum experiments, the
rigorous result shows that classical ML can
explore and predict properties of new physical
systems that are challenging to prepare and
measure in the laboratory. Even if the exper-
imentalists only have limited measurement
capability, such as being able to measure a spe-
cific property of r(x), the theorem established
in this work immediately implies that a classical
ML model can predict that specific property ac-
curately. If the training data are generated clas-
sically, it could be more efficient and more
accurate to use the MLmodel to predict prop-
erties for new values of the input x rather than
doing new simulations, which could be com-
putationally very demanding. Promising in-
sights into quantum many-body physics are
already beingobtainedusing classicalMLbased
on classical simulation data (10, 12, 14, 17, 19, 20,
23–25, 37, 38). Our rigorous analysis identifies
general conditions that guarantee the success of
classical ML models and elucidate the advan-
tages of classical ML models over non-ML al-
gorithms, which do not learn from data. These
results enhance the prospects for interpretable
ML techniques (38–40) to further shed light on
quantum many-body physics.
In the second application we examine, the

goal is to classify quantum states of matter into
phases (41) in a supervised learning scenario.
Suppose that during training we are provided
with sample quantum states that carry labels
indicating whether each state belongs to phase
A or phase B. Our goal is to classify the phase
for new quantum states that were not encoun-
tered during training. We assume that, during
both the training and classification stages, each
quantum state is represented by its classical
shadow, which could be obtained either from
a classical computation or from an experiment
on a quantum device. The classical ML mod-
el, then, trains on labeled classical shadows
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and learns to predict labels for new classical
shadows.
We assume that the A and B phases can be

distinguished by a nonlinear function of mar-
ginal density operators of subsystems of constant
size. This assumption is reasonable because we
expect the phase to be revealed in subsystems
that are larger than the correlation length but do
not depend on the total system size. We show
that if sucha function exists, a classicalMLmodel
can learn to distinguish the phases using an
amount of training data and classical processing
that are polynomial in the system size. We do
not need to know anything about this nonlinear
function in advance, apart from its existence.
Here, we review the classical shadow formal-

ism (31) and use this formalism to derive rigor-
ous guarantees for ML algorithms in predicting
ground-stateproperties andclassifyingquantum
phases of matter. We also describe numerical
experiments in a wide range of physical systems
to support our theoretical results.

Constructing efficient classical
representations of quantum systems

We begin with an overview of the randomized
measurement toolbox (31, 32, 42–45), rele-
gating further details to section S1 (46). We
approximate an n-qubit quantum state r by per-

forming randomized single-qubit Paulimeasure-
ments onT copies of r. That is,wemeasure every
qubit of the unknown quantum state r in a
random Pauli basis X, Y, or Z to yield a mea-
surement outcome of ±1. Collapse of the wave
function implies that thismeasurement proce-
dure transforms r into a randompure product

state s tð Þ�� � ¼ �n
i¼1 s

tð Þ
i

��� E
, where s tð Þ

i

��� E
∈ 0j i; 1j i;f

þj i; �j i; iþj i; i�j ig are eigenstates of the se-
lected Pauli matrices. Performing one random-
ized measurement grants us classical access
to one such snapshot. Performing a total of
T randomized measurements grants us ac-
cess to an entire collection ST rð Þ ¼ s tð Þ

i

�
:i ∈

���n
1;…;nf g; ; t; ∈ 1;…;Tf gg . Each element is a

highly structured single-qubit pure state, and
there are nT of them in total. So, 3nT bits suf-
fice to store the entire collection in classical
memory. The randomized measurements can
be performed in actual physical experiments
or through classical simulations. Resulting
data can then be used to approximate the
underlying n-qubit state r

r ≈ sT rð Þ ¼ 1

T

XT
t¼1

s tð Þ
1 �…� s tð Þ

n

where s tð Þ
i ¼ 3 s tð Þ

i

��� E
s tð Þ
i

D ���� I ð1Þ

and I denotes the 2 × 2 identity matrix. This
classical shadow representation (31, 32) ex-
actly reproduces the global density matrix in
the limit T→∞, but T ¼ O constr log nð Þ=e2½ �
already provides an e-accurate approxima-
tion of all reduced–r-body density matrices
(in trace distance). This, in turn, implies that
we can use sT(r) to predict any function that
depends on only reduced-density matrices,
such as expectation values of (sums of) local
observables and (sums of) entanglement en-
tropies of small subsystems. Classical storage
and postprocessing costs also remain tracta-
ble in this regime. To summarize, the clas-
sical shadow formalism equips us with an
efficient quantum-to-classical converter that
allows classical machines to efficiently and
reliably estimate subsystem properties of any
quantum state r.

Predicting ground states of quantum
many-body systems

We consider the task of predicting ground-
state representations of quantum many-body
Hamiltonians in finite spatial dimensions.
Suppose that a family of geometrically local,
n-qubit Hamiltonians H xð Þ : x∈ �1; 1½ �mf g is
parameterized by a classical variable x. That is,
H(x) smoothly maps a boundedm-dimensional
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Fig. 1. Central concepts. (A) Efficient quantum-to-classical conversion. The
classical shadow of a quantum state, constructed by measuring very few
copies of the state, can be used to predict many properties of the state with a
rigorous performance guarantee. (B) Predicting ground-state properties. After
training on data obtained in quantum experiments, a classical ML model predicts
a classical representation of the ground state r(x) of the Hamiltonian H(x) for
parameters x spanning the entire phase. This representation yields estimates of
the properties of r(x), avoiding the need to run exhaustive classical computations

or quantum experiments. (C) Classifying quantum phases. After training, a
classical ML model receives a classical representation of a quantum state
and classifies the phase from which the state was drawn. (D) Training data.
For predicting ground states, the classical ML model receives a classical
representation of r(x) for each value of x sampled during training. For predicting
quantum phases of matter, the training data consist of classical representations
of quantum states accompanied by labels identifying the phase to which
each state belongs.
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vectorx (parametrization) to aHermitianmatrix
of size 2n× 2n (n-qubit Hamiltonian).We do not
impose any additional structure on this map-
ping; in particular, we donot assumeknowledge
about how the physical Hamiltonian depends
on the parameterization. The goal is to learn a
model ŝ xð Þ that can predict properties of the
ground state r(x) associated with the Hamil-
tonian. This problem arises in many practi-
cal scenarios. Suppose diligent experimental
effort has produced experimental data for
ground-state properties of various physical
systems. We would like to use these data to
train an ML model that predicts ground-state
representations of hitherto unexplored phys-
ical systems.

An ML algorithm with rigorous guarantee

We will prove that a classical ML algorithm
can predict classical representations of ground
states after training on data belonging to the
same quantum phase of matter. Formally, we
consider a smooth family of Hamiltonians H
(x) with a constant spectral gap. During the
training phase of the ML algorithm, many
values of x are randomly sampled, and for
each sampled x, the classical shadow of the
corresponding ground state r(x) of H(x) is
provided, either by classical simulations or
quantum experiments. The full training data
of sizeN are given by xl→sT r xlð Þ½ �f gNl¼1, where
T is the number of randomized measurements
in the construction of the classical shadows at
each value of xl.
We train classicalMLmodels using the size-N

training data, such that when given the input
xl, theMLmodel can produce a classical repre-
sentation ŝ xð Þ that approximates sT[r(xl)].
During prediction, the classical ML model
produces ŝ xð Þ for values of x different from
those in the training data. Although ŝ xð Þand
sT[r(xl)] classically represent exponentially
large density matrices, the training and pre-
diction can be done efficiently on a classical
computer using various existing classical ML
models, such as neural networks with large
hidden layers (47–50) and kernel methods
(51, 52). In particular, the predicted output of
the trained classical ML models can be writ-
ten as the extrapolation of the training data
using a learned metric k(x, xl) ∈ R

ŝ xð Þ ¼ 1

N

XN
l¼1

k x; xlð ÞsT r xlð Þ½ � ð2Þ

For example, prediction using a trained neu-
ral network with large hidden layers (46) is
equivalent to using the metric k x; xlð Þ ¼XN
l′¼1

f NTKð Þ x; xl′ð Þ F�1
� �

l′l
, where f (NTK)(x, x′) is

the neural tangent kernel (47) corresponding
to the neural network and Fl′l = f (NTK)(xl′, xl)
[see section S3 (46) for more discussion]. The

ground-state properties are then estimated
using these predicted classical representa-
tions ŝ xð Þ. Specifically, fO(x) = tr[Or(x)] can
be predicted efficiently whenever O is a sum
of few-body operators.
To derive a provable guarantee, we consider

the simple metric k x; xlð Þ ¼
X

k∈Zm; kk k2≤L
cos pk�½

x � xlð Þ�with cutoff L, which we refer to as the
l2-Dirichlet kernel. We prove that the predic
tion will be accurate and efficient if the func-
tion fO(x) does not vary too rapidly when x
changes in any direction. Sufficient upper
bounds on the gradient magnitude of fO(x)
can be derived using quasi-adiabatic contin-
uation (53, 54).
Under the l2-Dirichlet kernel, the classical

ML model is equivalent to learning a truncated
Fourier series to approximate the function fO(x).
The parameter L is a cutoff for the wave num-
ber k that depends on (upper bounds on) the
gradient of fO(x). Using statistical analysis, one
can guarantee thatEx tr Oŝ xð Þ½ � � fO xð Þj j2 ≤ e
as long as the amount of training data obeys
N ¼ mO 1=eð Þ in them→∞ limit. The conclusion
is that any such fO(x) can be predicted with a
small constant average error, where the amount
of training data and the classical computation
time are polynomial inm and atmost linear in
the system size n. Moreover, the training data
need only contain a single classical shadow
snapshot at each point xl in the parameter
space (i.e., T = 1). An informal statement of the
theorem is given below; we explain the proof
strategy in section S5 and providemore details
in section S6 (46). We also discuss how one
could generalize the proof to long-range inter-
acting systems, electronic Hamiltonians, and
other settings, including when one cannot per-
form classical shadow tomography (31), in sec-
tion S6.2 (46).

Theorem 1 (learning to predict ground-
state representations; informal)

For any smooth family of Hamiltonians H xð Þ :f
x∈ �1; 1½ �mg in a finite spatial dimension with a
constant spectral gap, the classical ML algo-
rithm can learn to predict a classical repre-
sentation of the ground state r(x) of H(x) that
approximates few-body reduced-densitymatrices
up to a constant error e when averaged over
x. The required training data size N and
computation time are polynomial in m and
linear in the system size n.
Though formally efficient in the sense thatN

scales polynomially with m for any fixed ap-
proximation error e, the required amount of
training data scales badly with e. This unfor-
tunate scaling is not a shortcoming of the con-
sideredML algorithm, but a necessary feature.
In section S7 (46), we show that the data size
and time complexity cannot be improved fur-
ther without making stronger assumptions
about the class of gapped local Hamiltonians.

However, in cases of practical interest, theHam-
iltonian may obey restrictions such as trans-
lational invariance or graph structure that can
be exploited to obtain better results. Incorpor-
ating these restrictions can be achieved by
using a suitable k(x, xl), such as one that cor-
responds to a large-width convolutional neural
network (CNN) (48) or a graph neural network
(49). Rigorously establishing thatneural network–
based ML algorithms can achieve improved
prediction performance and efficiency for par-
ticular classes of Hamiltonians requires fur-
ther investigation.

Computational hardness for non-ML algorithms

In the following proposition, we show that a
classical polynomial-time algorithm that does
not learn from data cannot achieve the same
guarantee in estimating ground-state properties
without violating the widely believed conjec-
ture that nondeterministic polynomial-time
(NP)–complete problems cannot be solved in
randomized polynomial time. This proposition
is a corollary of standard complexity-theoretic
results (55, 56). See section S8 (46) for the de-
tailed statement and proof.

Proposition 1 (informal)

Consider a randomized polynomial-time classical
algorithm A that does not learn from data. Sup-
pose for any smooth family of two-dimensional
(2D) Hamiltonians H xð Þ : x∈ �1; 1½ �mf g with
a constant spectral gap, A can efficiently
compute expectation values of one-body ob-
servables in the ground state r(x) of H(x) up
to a constant errorwhen averaged over x. Then,
there is a randomized classical algorithm that
can solve NP-complete problems in polyno-
mial time.
It is instructive to observe that a classical

ML algorithmwith access to data can perform
tasks that cannot be achieved by classical al-
gorithms that do not have access to data. This
phenomenon is studied in (36), where it is
shown that the complexity class defined by
classical algorithms that can learn from data is
strictly larger than the class of classical algo-
rithms that do not learn from data. (The data
can be regarded as a restricted form of ran-
domized advice string.) We caution that ob-
taining the data to train the classical MLmodel
could be challenging. However, if we focus only
on data that could be efficiently generated by
quantum-mechanical processes, it is still pos-
sible that a classical ML algorithm that learns
from data could be more powerful than clas-
sical computers. In section S8 (46), we present
a contrived family of Hamiltonians that estab-
lishes this claim based on the (classical) com-
putational hardness of factoring.

Classifying quantum phases of matter

Classifying quantum phases of matter is ano-
ther important application of ML to physics.
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Wewill consider this classification problem in
the case where quantum states are succinctly
represented by their classical shadows. For
simplicity, we consider the classification of
two phases (denotedA and B), but the analysis
naturally generalizes to classifying any num-
ber of phases.

ML algorithms

We envision training a classical ML algorithm
with classical shadows, where each classical
shadow carries a label y indicating whether
it represents a quantum state r from phase
A [y(r) = 1] or phase B [y(r) = −1]. We want
to show that a suitably chosen classical ML
algorithm can learn to efficiently classify the
phase for new classical shadows beyond those
encountered during training. Following a strat-
egy standard in learning theory, we consider a
classical ML algorithm that maps each classical
shadow to a corresponding feature vector in a
high-dimensional feature space and then at-
tempts to find a hyperplane that separates fea-
ture vectors in the A phase from feature vectors
in the B phase. The learning is efficient if the
geometry of the feature space is efficiently com-
putable and if the feature map is sufficiently
expressive. Thus, our task is to construct a fea-
ture map with the desired properties.
In the simpler task of classifying symmetry-

breaking phases, there is typically a local order
parameterO ¼

X
i

Oi given as a sum of r-body
observables for some r > 0 that satisfies

tr Orð Þ ≥ 1;∀r ∈ phase A; tr Orð Þ ≤
� 1;∀r ∈ phase B ð3Þ

Under this criterion, the classification function
may be chosen to be y rð Þ ¼ sign tr Orð Þ½ �. Hence,
classifying symmetry-breaking phases can be
achieved by finding a hyperplane that separates
the two phases in the high-dimensional feature
space that subsumes all r-body reduced-density
matrices of the quantum state r. The feature
vector consisting of all r-body reduced-density
matrices of the quantum state r can be accu-
rately reconstructed from the classical shadow
representation ST(r) when T is sufficiently
large.
Finding a suitable choice of hyperplane in the

feature space can be cast as a convex optimiza-
tion problem known as the soft-margin support
vector machine (SVM), discussed in more detail
in section S10.1 (46). With a sufficient amount
of training data, the hyperplane found by the
classical ML model will generalize so that the
phase y(r) can be predicted accurately for a
previously unseen quantum state r. The clas-
sical MLmodel is not merely a black box; it also
discovers the order parameter (encoded by the
hyperplane), guiding physicists toward a deeper
understanding of the phase structure.
For more exotic quantum phases of mat-

ter, such as topologically ordered phases, the

above classical ML model no longer suffices.
The topological phase of a state is invariant
under a constant-depth quantum circuit, and
a phase containing the product state 0j i�n is
called the trivial phase. Using these notions,
we can prove that no observable—not even one
that acts on the entire system—can be used
to distinguish between two topological phases.
The proof, given in section S9 (46), uses the ob-
servation that random single-qubit unitaries can
confuse any global or local order parameter.

Proposition 2

Consider two distinct topological phases A
and B (one of the phases could be the trivial
phase). No observable O exists such that

tr Orð Þ > 0;∀r ∈ phase A; tr Orð Þ ≤ 0;

∀r ∈ phase B ð4Þ
Although this proposition implies that no
linear function tr(Or) can be used to classify
topologically ordered phases, it does not ex-
clude nonlinear functions, such as quadratic
functions tr Or� rð Þ , degree-d polynomials
tr Or�d
� �

, and more general analytic functions.
For example, it is known that the topological
entanglement entropy (57, 58), a nonlinear
function of r, can be used to classify a wide
variety of topologically ordered phases. For
this purpose, it suffices to consider a subsys-
tem whose size is large compared with the cor-
relation length of the state but is independent
of the total size of the system. The correlation
length in the groundstate of a localHamiltonian
increases when the spectral gap between the
ground state and the first excited state be-
comes smaller (59). On the other hand, a linear
function on the full system will fail even with
constant correlation length.
To learn nonlinear functions, we need amore

expressive ML model. For this purpose, we de-
vise a powerful feature map that takes the
classical shadow ST(r) of the quantum state r
to a feature vector that includes arbitrarily-large
r-body reduced-density matrices, as well as an
arbitrarily-high–degree polynomial expansion

ϕ shadowð Þ ST rð Þ½ �

¼ lim
D;R→∞

⊕d¼0

ffiffiffiffiffi
td

d!

D

r
⊕r¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r!

g
n

� �rR

r
⊕i1¼1

n…

 

⊕ir¼1
nvec

1

T

XT
t¼1

�l¼1
rsil

tð Þ
" #!�d

ð5Þ

where t,g > 0 are hyperparameters. The direct
sum ⊕R

r¼0 is a concatenation of all r-body
reduced-density matrices, and the other direct
sum ⊕D

d¼0 subsumes all degree-d polynomial
expansions. The computational cost of finding
a hyperplane in feature space that separates
the training data into two classes is domi-
nated by the cost of computing inner products

between feature vectors. The inner product
ϕ shadowð Þ ST rð Þ½ �;ϕ shadowð Þ ST ~rð Þ½ �	 �

can be ana-
lytically computed by reorganizing the direct
sums,writing it as a double series, andwrapping
both series into an exponential, which gives

k shadowð Þ ST rð Þ; ST ~rð Þ½ �

¼ exp
t
T 2

XT
t;t′¼1

exp
g
n

Xn
i¼1

tr s tð Þ
i ~s tð Þ

i

� �" #( )

ð6Þ

where ST rð Þ and ST ~rð Þ are classical shadow
representations of r and ~r, respectively. The
computation time for the inner product is
O(nT2), linear in the system size n and quad-
ratic in T, the number of copies of each quan-
tum state that are measured to construct the
classical shadow.

Rigorous guarantee

By statistical analysis, we can establish a
rigorous guarantee for the classical ML model
a;ϕ shadowð Þ ST rð Þ½ �	 �

, where a is the trainable
vector defining the classifying hyperplane.
The result is the following theorem, proven
in section S10 (46).

Theorem 2 (classifying quantum phases
of matter; informal)

If there is a nonlinear function of few-body
reduced-density matrices that classifies phases,
then the classical algorithm can learn to classify
these phases accurately. The required amount
of training data and computation time scale
polynomially in system size.
If there is an efficient procedure based on

few-body reduced-density matrices for classi-
fying phases, the proposed ML algorithm is
guaranteed to find the procedure efficiently.
This includes local order parameters for clas-
sifying symmetry-breaking phases and topolog-
ical entanglement entropy in a sufficiently large
local region for partially classifying topological
phases (57, 58). We expect that, to classify topo-
logical phases accurately, the classicalMLmod-
el will need access to local regions that are
sufficiently large compared with the corre-
lation length, and as we approach the phase
boundary, the correlation length increases.
As a result, the classifying function for topo-
logical phases may depend on r-body subsys-
tems with a larger r, and the amount of training
data and computation time required would
increase accordingly. The classical ML model
not only classifies phases accurately but also
constructs a classifying function explicitly.
Our classical ML model may also be useful

for classifying and understanding symmetry-
protected topological (SPT) phases. SPT phases
are characterized much like topological phases
butwith the additional constraint that all struc-
tures involved (states, Hamiltonians, and quan-
tum circuits) respect a particular symmetry. It
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is reasonable to expect that an SPT phase can
be identified by examining reduced-density
matrices on constant-size regions (60–65),
where the size of the region is large compared
with the correlation length. The existence of
classifying functions based on reducedmatrices
has been rigorously established in some cases
(66–73). In section S12 (46), we prove that the
ML algorithm is guaranteed to efficiently clas-
sify a class of gapped spin-1 chains in one dimen-
sion. For more general SPT phases, the ML
algorithm should be able to corroborate known
classification schemes, determine new and po-
tentially more-compact classifiers, and shed
light on interacting SPT phases in two ormore
dimensions for which complete classification
schemes have not yet been firmly established.
The hypothesis of theorem 2, stating that

phases can be recognized by inspecting regions
of constant size independent of the total system
size, is particularly plausible for gapped phases,
but it might apply to some gapless phases as
well. Our classical ML model would be able to
efficiently classify such gapless phases. On the
other hand, the contrapositive of theorem 2
asserts that if the classicalMLmodel is not able
to distinguish between two distinct gapless
phases, then nonlocal data are required to char-
acterize at least one of those phases.

Numerical experiments

We have conducted numerical experiments as-
sessing the performance of classical ML algo-
rithms in some practical settings. The results
demonstrate that our theoretical claims carry
over to practice, with the results sometimes

turning out even better than our guarantees
suggest.

Predicting ground-state properties

For predicting ground states, we consider clas-
sical ML models encompassed by Eq. 2. We
examine various metrics k(x,xl) equivalent to
training neural networks with large hidden
layers (47, 50) or training kernel methods
(51, 74). We find the best ML model and the
hyperparameters using a validation set to min-
imize root mean square error (RMSE) and re-
port the predictions on a test set. The full
details of the models and hyperparameters, as
well as their comparisons, are given in sections
S4.2 and S4.3 (46).

Rydberg atom chain

Our first example is a systemof trappedRydberg
atoms (75, 76), a programmable and highly con-
trolled platform for Ising-type quantum simu-
lations (77–82). Following (77), we consider a 1D
array of n = 51 atoms, with each atom effectively
described as a two-level system composed of a
ground state gj i and a highly excited Rydberg
state rj i. The atomic chain is characterized by a
Hamiltonian H(x) (given in Fig. 2A) whose
parameters are the laser detuning x1 = D/W
and the interaction range x2 =Rb/a. The phase
diagram (Fig. 2B) features a disordered phase
and several broken-symmetry phases, stem-
ming from the competition between the de-
tuning and the Rydberg blockade (arising from
the repulsive van der Waals interactions).
We trained a classical ML model using 20

randomly chosen values of the parameter x =

(x1,x2); these values are indicated by gray cir-
cles in Fig. 2B. For each such x, an approx-
imation to the exact ground state was found
using density matrix renormalization group
(DMRG) (6) based on the formalism of matrix
product states (MPSs) (83). For each MPS, we
performed T = 500 randomized Pauli meas-
urements to construct a classical shadow. The
classical ML model then predicted classical
representations at the testing points in the
parameter space, and these predicted clas-
sical representations were used to estimate
expectation values of local observables at the
testing points.
Predictions for expectation values of Pauli

operators Zi and Xi at the testing points are
shown in Fig. 2C and were found to agree well
with exact values obtained from the DMRG
computation of the ground state at the testing
points. Additional predictions can be found in
section S4.1 (46). Also shown are results from a
more-naïve procedure, in which properties are
predicted using only the data at the point in
the training set that is closest to the testing
point. The naïve procedure predicts poorly,
illustrating that the considered classical ML
model effectively leverages the data frommul-
tiple points in the training set.
This example corroborates our expectation

that classical machines can learn to efficiently
predict ground-state representations. An im-
portant caveat is that the rigorous guarantee
in theorem 1 applies only when the training
points and the testing points are sampled
from the same phase, whereas in this exam-
ple, the training data include values of x from
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Fig. 2. Numerical experiment for predicting ground-state properties in a 1D
Rydberg atom system with 51 atoms. (A) Hamiltonian and the illustrations of the
Rydberg array geometry and the three resulting phases. (B) Phase diagram. The
system’s three distinct phases (77) are characterized by two order parameters (for
Z2 and Z3 orders). Training data are enclosed by gray circles, and three specific
testing points are indicated by the star, diamond, and cross symbols, respectively.

(C) Local expectation values. We use classical ML (the best model is selected from a
set of ML models) to predict the expectation values of Pauli operators Xi and Zi for
each atom at the three testing points. (Top) Results for the first 15 atoms. (Bottom)
Predictions obtained from the training data nearest to the testing points. The
markers denote predicted values, whereas the solid lines denote exact values
obtained from DMRG. Additional predictions are shown in section S4.1 (46).
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three different phases. Nevertheless, our nu-
merics show that classical machines can still
learn to predict well.

2D antiferromagnetic Heisenberg model

Our next example is the 2D antiferromagnetic
Heisenbergmodel. Spin-½particles (i.e., qubits)
occupy sites on a square lattice, and for each
pair (ij) of neighboring sites, the Hamiltonian
contains a term Jij XiXj þ YiYj þ ZiZjð Þ, where
the couplings {Jij} are uniformly sampled from
the interval [0, 2]. The parameter x is a list of all
Jij couplings; hence, in this case, the dimension
of the parameter space is m = O(n), where n is
the number of qubits. TheHamiltonianH(x) on
a 5 × 5 lattice is shown in Fig. 3A.
We trained a classical ML model using 90

randomly chosen values of the parameter x =
{Jij}. For each such x, the exact ground state
was found using DMRG, and we simulated
T = 500 randomized Pauli measurements to
construct a classical shadow. The classical
ML model predicted the classical represen-
tation at new values of x, and we used the
predicted classical representation to estimate
a two-body correlation function, the expecta-
tion value of Cij ¼ 1

3 XiXj þ YiYj þ ZiZjð Þ, for
each pair of qubits (ij). In Fig. 3B, the pre-
dicted and actual values of the correlation func-
tion are displayed for a particular value of x,
showing reasonable agreement.
Figure 3C shows the prediction performance

for all pairs of spins and for variable system
sizes. Each red point in the plot represents the
RMSE in the correlation function estimated
using our predicted classical representation
for a particular pair of spins and averaged over
sampled values of x. For comparison, each blue
point is the RMSE when the correlation func-
tion is predicted using the classical shadow

obtained by measuring the actual ground state
T = 500 times. For most correlation functions,
the prediction error achieved by the best clas-
sical ML model is comparable to the error
achieved by measuring the actual ground state.

Classifying quantum phases of matter

For classifying quantum phases of matter, we
consider an unsupervised classical ML model
that constructs an infinite-dimensional non-
linear feature vector for each quantum state r
by applying the map ϕ shadowð Þ in Eq. 5 with
t,g = 1 to the classical shadow ST(r) of the
quantum state r. We then perform a principal
components analysis (PCA) (84) in the infi-
nite-dimensional nonlinear feature space. The
low-dimensional subspace found by PCA in
the nonlinear feature space corresponds to a
nonlinear low-dimensional manifold in the
original quantum state space. This method is
efficient using the shadow kernel k(shadow)

given in Eq. 6 and the kernel PCA procedure
(85). Details are given in sections S4.4. and
S4.5 (46).

Bond-alternating XXZ model

We begin by considering the bond-alternating
XXZ model with n = 300 spins. The Hamil-
tonian is given in Fig. 4A; it encompasses the
bond-alternating Heisenberg model (d = 1)
and the bosonic version of the Su-Schrieffer-
Heeger model (d = 0) (86). The phase diagram
in Fig. 4B is obtained by evaluating the partial
reflection many-body topological invariant
(62, 87). There are three distinct phases: trivial,
SPT, and symmetry broken.
For each value of J and d considered, we

construct the exact ground state using DMRG
and find its classical shadow by performing
randomized Pauli measurement T = 500 times.

We then consider a 2D principal subspace of the
infinite-dimensional nonlinear feature space
found by the unsupervised ML based on the
shadow kernel, which is visualized in Fig. 4, C
and D. We can clearly see that the different
phases are well separated in the principal
subspace. This shows that even without any
phase labels on the training data, theMLmodel
can classify the phases accurately. Hence, when
trained with only a small amount of labeled
data, the ML model will be able to correctly
classify the phases as guaranteed by theorem 2.

Distinguishing a topological phase from a
trivial phase

We consider the task of distinguishing the
toric code topological phase from the trivial
phase in a system of n = 200 qubits. Figure 5A
illustrates the sampled topological and trivial
states.We generate representatives of the non-
trival topological phase by applying low-depth
geometrically local random quantum circuits
to Kitaev’s toric code state (88) with code dis-
tance 10, and we generate representatives of
the trivial phase by applying random circuits
to a product state.
Randomized Pauli measurements are per-

formed T = 500 times to convert the states to
their classical shadows, and these classical
shadows are mapped to feature vectors in the
high-dimensional feature space using the fea-
ture map ϕ shadowð Þ . Figure 5B displays a 1D
projection of the feature space using the
unsupervised classical ML model for various
values of the circuit depth, indicating that
the phases become harder to distinguish as the
circuit depth increases. In Fig. 5C, we show the
classification accuracy of the unsupervised clas-
sical MLmodel. We also compare with train-
ing CNNs that use measurement outcomes

Huang et al., Science 377, eabk3333 (2022) 23 September 2022 6 of 10

A B C

Fig. 3. Numerical experiment for predicting ground-state properties in the
2D antiferromagnetic Heisenberg model with 25 atoms. (A) Hamiltonian and
the illustration of the Heisenberg model geometry. We consider random
couplings Jij, sampled uniformly from [0, 2]. A particular instance is shown with
coupling strength indicated by the thickness of the edges connecting lattice
points. (B) Two-point correlator. Exact values and ML predictions of the

expectation value of the correlation function Cij ¼ 1
3 XiXj þ YiYj þ ZiZj
� �

for all

spin pairs (ij) in the lattice, for the Hamiltonian instance shown in (A). The
absolute value of Cij is represented by the size of each circle, and the circle’s
color indicates the actual value. (C) Prediction error. Each blue point indicates
the RMSE (averaged over Heisenberg model instances) of the correlation
function for a particular pair (ij), where the estimate of Cij is obtained using a
classical shadow with T = 500 randomized Pauli measurements of the true
ground state. Red points indicate errors in ML predictions for Cij.
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from the Pauli-6 positive operator-valued mea-
sure (POVM) (89) as input to learn anobservable
for classifying the phases. Because proposition 2
establishes that no observable (even a global
one) can classify topological phases, this CNN
approach is doomed to fail. On the other hand, if
the CNN takes classical shadow representations
as input, then it can learn nonlinear functions
and successfully classify the phases.

Outlook

We have rigorously established that classical
ML algorithms, informed by data collected in

physical experiments or using classical calcu-
lations, can effectively address some quantum
many-body problems. These results boost our
hopes that classical ML trained on experi-
mental data can solve practical problems in
chemistry and materials science that would
be too hard to solve using classical process-
ing alone.
Our arguments build on the concept of a

classical shadow derived from randomized
Pauli measurements. We expect, though, that
other succinct classical representations of
quantum states could be exploited by classi-

cal ML with similarly powerful results. For
example, some currently available quantum
simulators are highly programmable but lack
the local control needed to perform arbitrary
single-qubit Pauli measurements. Instead, after
preparing a many-body quantum state of in-
terest, one might switch rapidly to a different
Hamiltonian and then allow the state to evolve
for a short time before performing a computa-
tional basis measurement. How can we make
use of that measurement data to predict prop-
erties reliably (90, 91)? For that matter, might
we be able to generalize from experimental
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Fig. 5. Numerical experiments for distinguishing between trivial and
topological phases. (A) State generation. Trivial or topological states
are generated by applying local random quantum circuits of some circuit
depth to a product state or exactly solved topological state, respectively.
(B) Unsupervised phase classification. Visualization of the quantum states
projected to one dimension using the unsupervised ML (nonlinear PCA with

shadow kernel), shown for varying circuit depth (divided by the code distance 10,
which quantifies the depth at which the topological properties are washed out).
The feature space is sufficiently expressive to resolve the phases for a small
enough depth without training, with classification becoming more difficult
as the depth increases. (C) Classification accuracy for three ML algorithms
described in the text.

A C D

B

Fig. 4. Numerical experiments for classifying quantum phases in the bond-
alternating XXZ model. (A) Illustration of the model—a 1D qubit chain, where
the coefficient of XiXiþ1 þ YiYiþ1 þ dZiZiþ1ð Þ alternates between J and J′.
(B) Phase diagram. The system’s three distinct phases are characterized by the
many-body topological invariant ~ZR, discussed in (62, 87). Blue denotes ~ZR ¼ 1,

red denotes ~ZR ¼ �1, and gray denotes ~ZR≈0. (C and D) Unsupervised phase

classification. (Bottom) ~ZR versus J/J′ at cross sections d = 0.5 (C) and
d = 3.0 (D) of the phase diagram. (Top) Visualization of the quantum states
projected to two dimensions using the unsupervised ML (nonlinear PCA with
shadow kernel). In all panels, the colors of the points indicate the value of J/J′;
the upper panels suggest that the phases naturally cluster in the expressive
feature space.
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data that are already routinely available to
predict properties of chemical compounds and
materials that have not yet been synthesized?
Answering such questions will be important
goals for future research.

Materials and methods summary

Here, we provide the key ideas for designing
ML algorithms to predict ground states and
to classify quantum phases of matter. We refer
the readers to the supplementary materials
(46) for algorithmic details and the proofs of
the main theorems.

Predicting ground states

To understand why the ML algorithm works,
we begin by considering a simpler task: train-
ing an ML model to predict a single ground-
state property tr O rð Þ, whereO is an observable
and r is the ground state. In this simpler task,
the training data are xl→tr Or xlð Þ½ �f gNl¼1, where
xl ∈ �1; 1½ �m is a classical description of the
Hamiltonian H(xl) and r(xl) is the ground
state of H(xl). Intuitively, in a quantum phase
ofmatter, the ground-state property tr O r xð Þ½ �
changes smoothly as a function of the input
parameter x. The smoothness condition can
be rigorously established as an upper bound
on the average magnitude of the gradient
of tr O r xð Þ½ � using quasi-adiabatic evolution
(53, 54), assuming that the spectral gap of H
(x) is bounded below by a nonzero constant
throughout the parameter space. The upper
bound on the average gradient magnitude en-
ables us to design a simple classical MLmodel
based on an l2-Dirichlet kernel for general-
izing from the training set to a new input
x ∈ �1; 1½ �m

Ô xð Þ ¼ 1

N

XN
l¼1

k x; xlð Þtr Or xlð Þ½ � ð7Þ

where k x; xlð Þ ¼
X

k∈Zm; kk k2≤L
cos pk � x � xlð Þ½ �

is the l2-Dirichlet kernel with cutoff L. Using
statistical analysis, we can guarantee that
the prediction error is small given a number
of training dataN polynomial in the number
of parameters m.
The main idea of the statistical analysis is

to bound the model complexity. In particular,
the model complexity depends on the num-
ber of wave vectors k in the l2-Dirichlet kernel.
The more wave vectors k that we include, the
higher the model complexity and the more
data needed in theMLmodel to achieve good
prediction performance. We show that the
number of m-dimensional wave vectors with
a Euclidean norm bounded byL ismO(L), and
we only need to consider L to be of orderffiffiffiffiffiffiffi

1=e
p

to achieve prediction error at most e.
We then generalize this idea to the task of

predicting the ground-state representation. We
consider a training data xl→sT r xlð Þ½ �f gNl¼1 ,

where sT r xlð Þ½ � is the classical shadow repre-
sentation of the quantum state r xlð Þ obtained
from performing randomized Pauli measure-
ment on the stater xlð Þ. Following the expression
for predicting a fixed property, the predicted
ground-state representation is given by

ŝ xð Þ ¼ 1

N

XN
l¼1

k x; xlð ÞsT r xlð Þ½ � ð8Þ

Using the property of classical shadows, we
have tr OsT r xlð Þ½ �f g≈tr Or xlð Þ½ � for a wide
range of observables O. By moving the sum
outside of the trace, we can reduce the prob-
lem to predicting a fixed ground-state prop-
erty. Hence, if the classicalMLmodel based on
an l2-Dirichlet kernel can predict ground-state
properties accurately, then it can predict the
ground-state representation accurately.

Classifying quantum phases of matter

TheML algorithm is based on the SVMmodel.
The underlying idea of SVM is simple and in-
tuitive. Suppose that we have N data points
that form twowell-separated clusters. Wemay
try to separate these training clusters with a
linear hyperplane. When we get a new data
point, we simply check which half space it be-
longs to and assign the label accordingly. How-
ever, there could be many hyperplanes that
separate these two training clusters. SVM con-
siders the hyperplane that yields the largest
margin, which is equivalent tomaximizing the
distance from each cluster to the hyperplane.
Intuitively, maximizing the margin allows the
hyperplane to be most robust to the sampling
errors of the training data. Using statistical
analysis, one can rigorously show that the big-
ger the margin, the better the generalization
performance would be.
SVM can be enhanced using the kernel trick.

When the N data points cannot be separated
using a linear hyperplane, we need to separate
them using a more complex surface. This is
achieved by mapping each data point to a
high-dimensional vector space through a non-
linear mapping and looking for a linear hyper-
plane in the high-dimensional space. One can
perform the training and prediction in the
high-dimensional space by only computing
inner products between two points in the high-
dimensional space. The inner product is often
referred to as the kernel function, and this
technique of mapping to a much larger space
is knownas the kernel trick. Inmany situations,
one considers the high-dimensional space to
be infinite dimensional. The shadow kernel
that we defined in Eq. 6 also corresponds to an
infinite-dimensional vector space.
For the task of classifying quantum phases of

matter, we assume that there exists a classifying
function f(r) based on a nonlinear function of
the reduced-density matrices of the quantum
state. More precisely, we assume that states rA

in phase A satisfy f(rA) >1 and states in phase B
satisfy f(rA) < −1. This assumption is often
satisfied when we focus on states not too close
to the phase boundary. We show in the supple-
mentarymaterials (46) that various SPT phases
and topologically ordered phases do satisfy
this assumption. Because the shadow kernel
corresponds to an inner product in an infinite-
dimensional space containing all possible non-
linear combinations of the reduced-density
matrices, SVM based on the shadow kernel is
able to learn the classifying function. The
amount of data required to learn this classify-
ing function depends on the margin of the
hyperplane in the infinite-dimensional space,
which can be shown to scale polynomially in
system size.

Numerical experiments

For experiments on predicting ground-state
properties, we consider the supervised ML
algorithm described in Eq. 2. We examine
metrics k x; xlð Þ∈R based on Gaussian kernel,
Dirichlet kernel, and neural tangent kernel
(50). Depending on different training data
sizes and the number of measurements per
quantum state, we found that different ker-
nels perform better than others. For classify-
ing quantum phases of matter, we consider an
unsupervised ML algorithm, where no labeled
training data are provided. The kernel trick
described above can also be applied to un-
supervised ML algorithms. A standard exam-
ple is kernel PCA. PCA tries to find a direction,
known as the principal component, such that
the data points along this direction are most
separated. If the points are not well separated
in any direction, thenwe can considermapping
all points to an infinite-dimensional space. Sim-
ilar to the supervised setting, we only need
to consider inner products between pairs of
points in the infinite-dimensional space (kernel
function) to find the principal component.
Hence, we can also apply the shadow kernel
to classify quantum phases of matter in an
unsupervised fashion. This is what we con-
sidered in the numerical experiments shown
in Fig. 4 and Fig. 5.
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