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ABSTRACT: Markov state models (MSMs) are a power-
ful framework for analyzing dynamical systems, such as
molecular dynamics (MD) simulations, that have gained wide-
spread use over the past several decades. This perspective
offers an overview of the MSM field to date, presented for
a general audience as a timeline of key developments in the
field. We sequentially address early studies that motivated
the method, canonical papers that established the use of
MSMs for MD analysis, and subsequent advances in soft-
ware and analysis protocols. The derivation of a variational
principle for MSMs in 2013 signified a turning point from
expertise-driving MSM building to a systematic, objective
protocol. The variational approach, combined with best prac-
tices for model selection and open-source software, enabled
a wide range of MSM analysis for applications such as
protein folding and allostery, ligand binding, and protein−
protein association. To conclude, the current frontiers of
methods development are highlighted, as well as exciting
applications in experimental design and drug discovery.

1. INTRODUCTION

In his 1983 report on short memory approximations, Zwanzig
considers the random walk of a dynamical system through a set
of states. Zwanzig notes that if these states are chosen “sensibly”
and the dynamics they describe are “sufficiently complex”, the
system will not remember how it got to its current state.1 In this
case, Zwanzig writes, “one then has a remarkably simple way to
estimate the transition rates between cells.”1 This simple method
to estimate transition rates has blossomed into the subfield of
kinetic analysis with memoryless transition networks often refer-
red to as Markov state models (MSMs). Paired with advances in
molecular dynamics (MD) simulations, the MSM framework
has grown into an advanced, statistically robust set of methods
to analyze a system evolving in time. Crucially, the states no lon-
ger need to be chosen based on experience and intuition due to
methods advances in the field. As a result of these advances, the
full potential of MSM methods are accessible to the wider
scientific community as a set of established methods imple-
mented in several open source software packages.
In this perspective, we track the growth of the MSM field

from its beginning as a specialized art driven by expertise and
intuition, to a community-driven science that can be applied using
objective protocols. We first summarize the MSM method,
focusing on the type of information that can be obtained from
transition probabilities. Ultimately, our goal is to communicate
to a general scientific audience how and why the MSM frame-
work evolved to where it is today, such that researchers across
many fields can utilize this framework when analyzing dynam-
ical systems.

In Section 2, we introduce the MSM framework and the over-
view information provided by the model. Sections 3 and 4
highlight critical precursors to MSM methods, and Sections 5
through 7 provide a timeline of the research that facilitated the
development through the current state of the art. Finally, we
highlight exciting developments at the frontiers of both methods
and applications: Section 8 highlights the most recent methods
advances under current development, and Section 9 describes
studies that leverage the union of MSMs with experimental
observables. Finally, Section 10 presents our outlook for future
directions.

2. SUMMARY OF THE METHOD

Our goal is to provide a concise, contextualized review of the
crucial developments in the field for a general scientific audi-
ence so that MSM methods can be used beyond the computa-
tional communities in which they were developed. We will pres-
ent the concepts sometimes using algebraic terms for simplicity,
but will largely omit the details of the mathematics. For excel-
lent overviews of the theory underlying MSMs, we refer the reader
to any of several books on the topic2−4 or a recent review by
Wang et al.5 Before discussing the evolution of the field, we first
cover the basics of what kind of information a MSM pro-
vides about a dynamical system.
A MSM represents a master equation framework: this means

that, using just the MSM, the entire dynamics of the system can
be described. The master equation formalism has been used in
many scientific fields, and we refer the reader to ref 6 for com-
mentary on its range of applications. In our case, a MSM is used
to model a dynamical system, usually assumed to be in thermo-
dynamic equilibrium. The MSM itself is an n × n square matrix,
often a “transition probability matrix”, where the entire config-
uration space spanned by the system has been divided into
n states. By determining the states, we can track the dynamical
progress of a system (e.g., a molecular dynamics simulation) by
writing down which state it occupies at time points separated
by τ, often referred to as the lag time. For the lag time τ to be
Markovian, the system must be “memoryless”, which means the
probability that, after the next increment of τ, the system tran-
sitions to state y given it is in state x does not depend on where
the system was before it entered state x.
The transition probability matrix described above is thus

characterized by the n states and also by the lag time τ at which
the state of the system was recorded. Each row of this matrix is
a distribution that represents the probability of transitioning
from the row-indexed state to the column-indexed state, where
the diagonal entry represents the probability of staying in the
same state. State populations and conditional pairwise transition
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probabilities can be obtained from this matrix. The state popu-
lations can be easily converted to free energies using statistical
mechanics, and the transition probabilities yield kinetic infor-
mation as well as enumerations of possible pathways between
any pair of states.
If we require that the system is in thermodynamic equilib-

rium (every transition happens an equal number of times for-
ward and backward), symmetric with respect to an equilibrium
distribution, ergodic (starting from any state, every other state
can be reached given enough time), and aperiodic (every starting
arrangement of the system will lead to the same equilibrium
distribution), then the transition matrix gives us yet more infor-
mation about the system through its eigendecomposition. This
decomposition outputs a set of eigenvectors (column vectors)
and corresponding eigenvalues (real numbers). The eigenvec-
tors are approximations to the eigenfunctions of the transfer oper-
ator, which is the continuous integral operator that the transition
probability matrix approximates.7 Because of the properties we
assumed about the transition matrix, we automatically know some
things about the eigenvalues and eigenvectors:

1. The eigenvectors corresponding to each eigenvalue have
n elements corresponding to each of the n states. The mag-
nitudes and signs of these elements explain which states
are contributing to the process identified by the eigenvalue.

2. The highest eigenvalue is 1, and its corresponding eigenfunc-
tion represents the equilibrium distribution.

3. All the other eigenvalues have absolute values less than 1,
and represent processes that either decay to equilibrium
(positive eigenvalues) or oscillate (negative eigenvalues).
In practice, the latter are not physically meaningful and
are not used for analysis.

4. The positive eigenvalues can be converted to physically
meaningful timescales using the lag time τ at which the
transition matrix was defined.

Ultimately, we want to choose the n states such that they best
capture the dynamics of the system, and a lag time τ that is long
enough to be Markovian but also short enough to resolve the

system dynamics. If we can successfully do that, the MSM pro-
vides valuable information about the system, all from just its
transition matrix. This information is summarized in Figure 1.
Now that we have covered the essential theory, we are ready to
see how the MSM field developed from Zwanzig’s description
to the present time.

3. BEFORE THE MSM: ADVANCES THAT SET
THE STAGE

Although the idea of memoryless transition networks was pre-
sented by Zwanzig1 and extensively discussed in Van Kampen,2

the framework was not presented in full until several key papers
around the year 2000.7−9 However, the previous decade con-
tained many important advances that led to MSMs, including
some prescient studies containing ideas that would not resurface
until the 2010s. Many early studies using a transition matrix or
network with discrete states established foundational work
upon which the MSM field was built.10−32 We highlight three
key ideas in the development of MSMs: the difficulty of choosing
states, the search for appropriate collective variables, and the abil-
ity to integrate separate simulations using the MSM framework.
In their discussion of memory effects on measuring the first

passage time of a system, Hünggi and Talkner33 discussed a crite-
rion to assess the validity of the Markovian approximation,
highlighting the difficulty in determining the proper functions
to approximate the dynamics as Markovian. This commentary,
echoed by others,34 foreshadows a difficulty that would char-
acterize more than a decade of MSM methods development:
namely, that the state decomposition step (choosing the n states
on which to build the model) is both crucial and practically dif-
ficult, since it requires expert knowledge of the system.
Progress was also made in determining the proper collective

variables along which to identify model states. In 1993, Karpen
et al.10 sought to create states (clusters) that provided useful infor-
mation about the system, and found that using the similarity in
dihedral angles separated groups of structures “in an energeti-
cally significant way.”10 In 2001, de Groot et al.20 analyzed a
β-heptapeptide simulation by performing PCA on the atomic

Figure 1. (a) Eight short molecular dynamics trajectories, where each frame is separated by a simulation time step. (b) A discrete state
decomposition of the trajectories, in which four states (green, blue, purple, and pink) have been identified. (c) Observed transition counts matrix,
which records how many times the system transitions to the column-indexed state given that it is in the row-indexed state. (d) Reversible transition
probability matrix, in this case calculated by averaging the observed transition counts matrix with its transpose in order to ensure that every forward
transition happens an equal number of times backward. Usually, the MLE is used instead.46 The probabilities in each row sum to 1. (e) Pie chart of
adjusted populations, which is the first eigenvector of the transition probability matrix. States with greater populations are more thermodynamically
stable. (f) Schematic representing the dominant eigenprocess of the trajectory data set. The eigenflux of the green state is negative, while the
eigenfluxes of all other states are positive, so this process represents movement from the green state to the other states. Whereas the populations sum to
1, the eigenfluxes for each process sum to 0. The timescale of this process is five trajectory timesteps.
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coordinates before determining states using the k-medoids clus-
tering algorithm on the first three principal components (PCs).
They assessed that the degrees of freedom not captured by the
first three PCs “must be negligible in terms of both structure
and dynamics.”20

Ultimately, one of the strengths of MSM analysis in the
2000s would prove to be its ability to integrate many separate
simulations, such as those produced on the distributed com-
puting platform Folding@home.35 However, well before the crea-
tion of Folding@home, Luty and McCammon11 created a 4-state
Markovian model for a bimolecular reaction by aggregating the
results of separate simulations performed in different domains,
demonstrating that Markov state models can integrate separate
simulations into the same model. Since the system is memo-
ryless, valid paths among the states do not need to be fully sam-
pled by any single trajectory: instead, separate trajectories can
be threaded together when they occupy common states. In a
following paper, Luty et al.12 suggested that this method could
be used to analyze ligand binding.

4. HARDWARE PIONEERS THAT CATALYZED MSM
DEVELOPMENT

In 2000, Shirts and Pande35 introduced Folding@home, a dis-
tributed platform for performing many MD simulations in
parallel motivated by the ensemble dynamics method.36 This
method leveraged the stochasticity of a swarm of trajectories by
moving every trajectory across a barrier once the first trajectory
crossed that barrier.37 In other words, the time trajectories spend
waiting to surmount a barrier is distributed, enabling more
efficient simulations.38 While the ensemble dynamics method
would soon be supplanted by MSM methods for sets of dis-
tributed trajectories,8 the innovation of Folding@home not
only catalyzed methods development for distributed simulations,
but also fostered community interest in MD as a way to gain
insight into how protein dynamics relate to various diseases.
Contemporaneously, IBM introduced their BlueGene

project,39−41 a massively parallel computer architecture designed
to run biomolecular dynamics simulations. The BlueGene proj-
ect represented a shift from analyzing MD based on one-off
observations to an extensive sampling approach, wherein many
observations are analyzed in aggregate in order to draw statis-
tically meaningful conclusions. This shift set the stage for
researchers at IBM to adapt the theory of Markov processes for
analyzing simulations generated using BlueGene.9 A decade
later, Buch et al.42 introduced GPUGRID, a volunteer-based
distributed computing platform leveraging GPUs for distributed
molecular dynamics simulations.43,44

5. CRITICAL ADVANCES IN THEORY, VALIDATION,
AND ERROR ANALYSIS

The oft-cited papers credited with the advent of MSM analyses
are the 1999 report by Schütte et al.,7 a pair of 2004 companion
papers by Swope and colleagues,9,45 and the work of Singhal et al.8

In their 1999 report, Schütte et al.7 presented a formal foun-
dation of MSM theory using the transfer operator. Notably,
they suggest that conformations of a dynamical system should
be defined not geometrically, but instead according to meta-
stability, by approximating almost invariant sets using the eigen-
decomposition of the transition matrix.
Swope et al.9 present a validation method for assessing the

Markovian assumption: if the dynamics are indeed Markovian
at the chosen lag time τ, then the timescales of the dynamical

processes identified by the decomposition of the transition matrix
will be constant for all longer lag times short enough to resolve
the process. This technique, often referred to as an implied
timescale analysis, is frequently used for MSM validation, and
is a special case of the Chapman-Kolmogorov test used for
MSM validation.46 In the companion paper, Swope et al.45 find
that different mechanisms for β-hairpin dynamics were iden-
tified when different state definitions were used. This high-
lighted the difficult process of choosing MSM states, suggesting
that the proper variables to describe a system are nonobvious,
and that an improper choice can produce to misleading results.
In the first to explicitly identify the MSM method, Singhal

et al.8 presented MSMs as a “probabilistic roadmap”, advocating
for the method’s efficiency because it incorporates all simula-
tion data, in contrast to a traditional transition path sampling
analysis. A follow up study in 2005 focused on error in MSM
analyses, identifying two main sources.47 First, errors can result
from poor state decomposition, such as grouping two confor-
mations that transition more slowly to each other than to confor-
mations in other states. However, even if the state decom-
position is perfect, there is still a second kind of error that arises
from finite sampling of transitions between states. To address
the latter problem, Singhal and Pande47 proposed an adaptive
sampling method based on resampling transitions that con-
tribute the most uncertainty. In 2007, Hinrichs (neé Singhal)
and Pande48 extended this analysis to uncertainties in the eigen-
values and eigenvectors of the transition matrix.
Several other notable papers included the work of Noe ́ et al.,49

which provided an extensive discussion of how to approach
MSM state decomposition for proteins, noting that internal
degrees of freedom, such as dihedral angles, produce better results
than “global descriptors” such as native hydrogen bonding pat-
terns. In 2008, Noe ́50 introduced a method to approximate the
complete distributions of observables from MD simulations by
sampling all MSM transition matrices statistically consistent with
the observed data, which was extended by Chodera and Noe ́51 to
include the sampling of experimental observables. A 2008 study
by Buchete and Hummer52 also reported insight into MSM
construction and state decomposition: first, that states should
be chosen according to transition paths instead of structure;
and second, that models with longer lag times are more
accurate. The authors also suggested not using a full partition of
configuration space but instead avoiding the states in the
transition region, which ultimately developed into the core set
MSM framework.53

6. BIGGER SYSTEMS AND BETTER SOFTWARE

The theoretical advances of the 2000s showcased the advan-
tages of using MSMs to analyze MD simulations. In 2009, these
methods were made available to the scientific community through
a set of Python scripts that were published as the first version of
the MSMBuilder software.54 In a subsequent publication,
Bowman et al.55 recommended determining MSM microstates
using the pairwise root-mean-square deviation (RMSD) to assess
the similarity of all pairs of structures, and using the compu-
tationally fast k-centers clustering algorithm to group structures
into microstates. Since the k-centers algorithm will choose out-
lier conformations as cluster centers, the authors recommended
subsampling the data in order to reduce the number of outlier
data points.55 The authors anticipated models would have tens
of thousands of states, and thus would be impossible to interpret in
spite of their quantitative accuracy, so a coarse-grained model could
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be built with kinetic clustering methods56,57 to aid with model
interpretability.58

The protocol enumerated by Bowman et al.55 (and later
extended to include the hybrid k-medoids method59) has been
used to guide MSM building in many studies, including recent
work.60,61 This procedure facilitated several key investigations
of protein folding using MSMs. In 2010, Voelz et al.62 presented
the first model of ab initio protein folding on a millisecond
timescale using Folding@home35 simulations of the 39-residue
protein NTL9. In 2011, Bowman et al.63 analyzed an 80-residue
fragment of λ-repressor, capturing folding on a 10 ms timescale,
following up previous research showing that native states have
hub-like behavior.64,65 This idea was later expanded by Dickson
and Brooks66

With the availability of MSMBuilder and other software pack-
ages,67−69 MSMs were increasingly used to study biomolecular
dynamics. Additional notable advances included the incorporation
of Bayesian statistics into various aspects of MSM construction,
such as approximating the transition matrix,48,50,51,70−73 creating
the MSM from parallel tempering simulations,74−78 comparing
models,79−81 core set MSM sampling52,53 and parameter estima-
tion,82 as well as incorporating transition path theory (TPT) into
MSM methods,83−87 such as to determine ensembles of protein
folding pathways88 or in combination with clustering to identify
folding “tubes” containing groups of similar paths.89−91

The early 2010s also represented significant progress toward
the theory of MSMs. In 2010, Sarich et al.92 rigorously showed
that the approximation error due to state space discretization
decreases as the state partitioning becomes finer and as the lag
time of the model increases.73,92 In 2012, Djurdjevac et al.93 derived
upper bounds for the error in timescales between the MSM and
the raw trajectory data and showed that this error also decreases
as lag time increases. In the same year, Sarich and Schütte94

demonstrated that a true eigenvalue of the continuous transfer
operator approximated by the MSM transition matrix can be
obtained with an appropriate choice of subspace.

7. VARIATIONAL APPROACH TO CONFORMATIONAL
DYNAMICS

A 2011 report by Prinz et al.46 represented a paradigm shift in
the motivation of the MSM state decomposition by framing it
as an approximation to the eigenfunctions of the continuous trans-
fer operator (recall Section 2). Two years later, Noé and Nüske95

published a report that initiated a crucial change in the construc-
tion of MSMs. This paper derived a variational principle for the
eigenfunctions of a MSM, analogous to the variational principle
for choosing wave functions in quantum mechanics.95,96 Thus,
the highest eigenvalue produced by any of the state decom-
positions is closest to the true value, and its corresponding
eigenfunction (in practice, eigenvector) is closest to the true
eigenfunction for that process.
This procedure can be performed iteratively to approximate

every eigenvalue in order to produce the set of eigenfunctions,
assuming that every higher eigenvalue is known exactly.95,97

Importantly, nothing about this variational optimization requires
the use of states at all; this analysis can be performed with any
set of input functions, and a MSM is generated in the special
case that these are indicator functions that identify disjoint,
discrete states.95,97 This method, called the variational approach
to conformational dynamics or VAC, transformed MSM analy-
sis: expertise and experience were no longer needed to perform the
state decomposition; instead, this process could be automated

based on an objective criterion, i.e., the magnitude of the eigen-
value being approximated.
Subsequent work used Gaussian functions,97 force-field depen-

dent functions based on individual amino acids,98 and sparse
tensor products of one-dimensional functions99 instead of indi-
cator functions as initial functions to estimate the eigenfunctions.
Alternatively, features can be extracted from a MD data set,
such as dihedral angles or pairwise contact distances of a
protein. To make a MSM, these features can be used as collec-
tive variables along which to determine the states. However,
creating linear combinations of these features chosen such that
their decorrelation time is maximized are themselves a set of
initial functions to which the VAC can be applied: this process
is called time structure-based (or time-lagged) independent
component analysis, abbreviated as tICA or TICA.100−104

The tICA algorithm was reported in 1994 by Molgedey and
Schuster100 as a way to solve the blind source separation prob-
lem101 and was first used to identify slow modes in proteins by
Naritomi and Fuchigami.102 In 2013, Schwantes and Pande103

and Peŕez-Hernańdez et al.104 independently introduced the
tICA algorithm as an intermediate step in MSM construction;
in other words, the time structure-based independent compo-
nents (tICs) were used to determine the states of the system.
Instead of using structural similarity as a proxy for kinetic similar-
ity,55,59 Schwantes and Pande103 and Peŕez-Hernańdez et al.104

sought to encode kinetic similarity in the states explicitly by
choosing the states along the tICs, which serve as reaction
coordinates for the dynamical system.105 Previous studies had
also used lower dimensionality spaces to encode protein dynam-
ics106−108 or a kinetically motivated state decomposition step to
build MSMs.109−113

Using tICA to build MSMs resulted in models with hundreds
of states, instead of the tens of thousands of states often created
from clustering with structural metrics,55,62,63 which contained
more conformations and were thus more statistically robust. In
their 2014 perspective article, Schwantes et al.114 wrote that
such models should be interpretable from the outset, instead of
relying on kinetic clustering for interpretability.114 tICA was
widely adapted by the MSM community and was augmented
by incorporating kinetic and commute distances.115,116

Kernel,117−119 hierarchical,120 and sparse105 versions of the tICA
algorithm were also developed. Very recent applications have
used tICA as a collective variable for metadynamics.121−123

The derivation of tICA as a special case of the VAC by Peŕez-
Hernańdez et al.104 was the first to use the tICA model to approx-
imate the eigenfunctions directly, and showed that tICA is the
linearly optimal estimator. However, since using a linear combi-
nation of input features harshly constrains the input functions,
only the dominant eigenfunction and eigenvalue can be varia-
tionally approximated with this method, since the approximation
of subsequent eigenfunctions requires the previously determined
eigenfunctions to be the true ones.104

For this reason, kernel tICA117,126,127 was developed to alle-
viate the linear constraint on the tICA solutions, such that all
the MSM eigenfunctions could be directly approximated. In 2017,
Harrigan and Pande118 introduced landmark kernel tICA, a
kernel approximation of tICA using the RMSD to assess struc-
tural similarity and a set of conformations as landmarks. This
formulation is equivalent to building a MSM with soft states,
which had been suggested or accomplished by several other
groups over the past decade or so.53,93,128−133

Harrigan119 built upon landmark kernel tICA utilizing a differ-
entiable form of RMSD. These variationally optimized, learnable
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soft MSMs produced superior models to optimized nonlearnable
landmark kernel tICA models, as well as to variationally optimized
traditional “crisp” MSMs built using linear tICA, and required
much fewer states.119 A similar approach presented by Mardt
et al.125 uses a neural network to transform superposed Cartesian
coordinates directly into soft states. The authors also report that
just a few states are sufficient to encode system dynamics. How-
ever, for realistic systems, the Cartesian coordinates needed
to be featurized before input into the network.125 Additional
advances in using deep neural networks to create analogs to
tICA or MSMs include the use of nonlinear autoencoders.134−137

In their 2015 article, McGibbon and Pande124 highlighted the
problem of overfitting to finite data, showing that the approx-
imated eigenvalues can exceed the variational bound when the
model is overfit. To address this problem, the authors advo-
cated for cross-validated model in which the MSM is trained on
a subset of the data and then evaluated on the part of the data
that was originally left out. To develop a scoring function for
cross-validation, McGibbon and Pande124 leveraged the results
of Noe ́ and Nüske95 by presenting the VAC as the simultaneous
optimization of eigenfunctions corresponding to a set of the
highest eigenvalues.
This MSM score was termed the GMRQ, which stands for

generalized matrix Rayleigh quotient, the form of the approx-
imator (also referred to as the Rayleigh trace).124 The GMRQ
on the validation set will be poor if the model was overfit on the
training set but better if the model identifies the underlying
dynamics common to both sets. In 2016, Noe ́ and Clementi115

demonstrated that kinetic variance in a data set can be explained
by summing the squared tICA eigenvalues. Since the variational
principle derived in Noe ́ and Nüske95 holds for any strictly
nonincreasing weights applied to the scored eigenvalues,96 the
kinetic variance can also be used to score models, or to deter-
mine how many tICs are needed to explain a given amount of
kinetic variance in the data.
Combined with MD analysis software packages MDTraj138

and HTMD,44 the third version of MSMBuilder,139 PyEMMA,140

and the Osprey software for performing MSM hyperpara-

meter searches,141 model selection using the cross-validated
GMRQ across many hyperparameter options became a power-
ful method to construct MSMs capturing slow dynamical pro-
cesses in an automated fashion. This type of optimization assumes
that the model is created at an appropriate lag time, which cannot
be chosen by hyperparameter search and must be determined
based on the dynamics of interest. Alternatively, continuous-
time MSMs can be used, which do not have a lag time.142 A sum-
mary of major improvements to the MSM pipeline is presented
in Figure 2.

8. BEYOND MSMS: FRONTIERS IN METHODS
DEVELOPMENT

Now that we have established the current state of the field, We
now highlight a few themes that represent current areas of key
methods advances that represent guided MD sampling techniques,
methods to coarse-grain models to increase their interpret-
ability, multi-ensemble approaches for aggregating data sets at
different thermodynamic states, and the extension of MSM-
inspired methods to nonreversible processes. Figure 3 summa-
rizes the many extensions to MSMs and how they relate to a
standard MSM.

8.1. Adaptive Sampling Guides Molecular Dynamics.
Several methodological advances have been published in the
past few years. MSMs have been used to motivate adaptive
sampling strategies for more than a decade;47,153−156 however,
the past few years have seen substantial advances in this
area.121−123,157−160 In 2014, Voelz et al.158 introduced a sur-
prisal metric for quantifying transitions between metastable states
for two similar MSMs, and that the information−theoretic
similarity between the two models converges upon sampling the
transitions with the greatest surprisal. In 2015, Zimmerman and
Bowman159 presented the fluctuation amplification of specific
traits (FAST) adaptive sampling scheme, which chooses states
to sample by balancing structural metrics of interest and explo-
ration of undersampled states. A key advantage of this algo-
rithm is that the results maintain proper thermodynamics and

Figure 2. Chronological summary of major improvements to the MSM pipeline from 1983 to 2015. In 1983,1 proposed a theoretical outline of the
method, suggesting the transformation of atomic positions to a kinetic model via features based on physical intuition and past experience. In 2009,
the first version of the MSMBuilder software54 and a subsequent article by Bowman et al.55 advocated for the transformation of atomic positions into
states by using pairwise RMSD similarity as a proxy for kinetic similarity. Several groups independently developed dimensionality reduction
techniques, including dPCA in 2005107 and tICA in 2011102 and 2013,103,104 which were used to transform larger sets of atomic features into
meaningful coordinates. Such dimensionality reductions weight features according to importance, so many features can be input into the model.
In 2013, the derivation of the VAC95 enabled an objective protocol for evaluating different state choices. Finally, in 2015, the incorporation of cross-
validation into the variational evaluation of MSM states as proposed by McGibbon and Pande124 signified a practical application of the VAC to
account for the finite length of data sets. In this scheme, the set of atomic positions is divided into training and validation sets. The MSM is created
from the training set and evaluated using the GMRQ on the validation set. Several folds of cross validation can be performed by using multiple
training and validation splits from the same data. Finally, very recent reports have utilized neural network architectures to obtain MSMs directly from
atomic positions without an explicit state decomposition.125 For realistic systems, this method currently still requires selecting features.125
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kinetics.159 Recent publications have used tICA121−123 and evolu-
tionary coupling information160 to guide sampling.
8.2. Coarse-Graining Provides Model Interpretability.

Methods for the kinetic lumping of a microstate model into a
coarse-grained macrostate model have been developed for at
least half a century,161 including for master equation models.162

The first coarse-graining developed specifically for MSMs was
presented in 2000 by Deu hard et al.,56 who introduced the
Perron cluster−cluster analysis (PCCA) method for automati-
cally assembling macrostates from the original microstates by
leveraging the idea that the eigenvalues of the transition matrix
are expected to be well-separated. PCCA was improved by a
series of investigators over several years, ultimately resulting in
robust PCCA, often referred to as PCCA+, which modifies the
treatment of states at boundaries between macrostates.57,163

In 2013, the hierarchical Nyström extension graph method
(HNEG)145 and BACE80 were shown to outperform PCCA
and PCCA+.164

In 2013, Noe ́ et al.147 and others148,165 advocated for the use
of hidden Markov models (HMMs) as approximations to pro-
jected Markov models (PMMs) to coarse-grain MSMs into a
few macrostates. This analysis has been used in recent studies
by Olsson and Noe ́166 and Plattner et al.,167 as well as on exper-
imental data sets.168 In 2015, Wu et al.149 presented observ-
able operator models (OOMs), a less restrictive method for
the approximation of PMMs. Although OOMs, like HMMs, are
not Markovian, when the system is metatable, OOMs approximate
the timescales exactly.149 In 2017, Nüske et al.169 showed that
OOM theory can be used to estimate a MSM transition matrix
such that it is not biased by its initial distribution, addressing a
long-standing issue in MSM analysis.46,54,88,153

New coarse-graining approaches have been recently pre-
sented, such as a renormalization group theory approach170,171

and a method using key reaction coordinates and hierarchical con-
struction of MSMs to identify both metastable and transition
regions.172 In 2017, Husic et al.146 developed a minimum vari-
ance clustering analysis (MVCA) that demonstrated advantages
over several earlier methods. Notably, MVCA can be used not
only to coarse-grain individual models, but to group an aggre-
gated set of MSMs based on their dynamical similarity. The
authors demonstrated this method for protein folding simula-
tions in multiple force fields, and it could also be used for a set
of systems with different mutations.146

8.3. Multi-ensemble MSMs Unify Simulations. There
have been many recent developments in multi-ensemble MSMs
spanning different temperatures or biases. A simple way to ana-
lyze such a set of MSMs is to choose states at the target temper-
ature and directly count the instances of these states at the other
temperatures.173 Reweighting these instances with respect to
the temperature of interest produces the weighted histogram
analysis method (WHAM)174,175 or, without binning states, the
multi-state Bennett acceptance ratio (MBAR);176 however,
these approaches are only valid if simulations at each state equil-
ibrate quickly, sacrificing the ability of MSMs to capture long
timescale dynamics. In 2014, Mey et al.173 presented a transition-
based reweighting analysis (TRAM). Partly inspired by MSM
methods, TRAM leverages conditional probabilities and thus
does not require the analyzed data to be in global equilib-
rium.173 Several related algorithms were developed around the
same time,173,177−183 including dTRAM,179 a generalization of
WHAM and reversible MSMs representing first statistically
optimal TRAM method.

Figure 3. Many extensions to MSMs are characterized by changes to the standard protocol, which uses discrete, disjoint states spanning all of phase
space (in practice, configuration space), and assumes a stationary process. When trajectories are described using features, such as side chain dihedral
angles or contact pairs, instead of state labels, the model becomes a tICA model.103,104 Using a nonlinear kernel for tICA yields kernel tICA.117 Using
landmarks to effectively regularize kernel tICA results in landmark kernel tICA,118 which is shown to be equivalent to MSMs with soft states, also
called set-free MSMs.133 When the soft state decomposition is learned using a neural network, the resulting model is a softmax MSM.119

Generalizing MSM methods to nonstationary processes involves the use of Koopman models.143,144 Learnable soft states for Koopman models have
been presented using VAMPnets125 or time-lagged autoencoders (TAEs).135 When a MSM is coarse-grained according to its transition matrix or
eigendecomposotion (i.e., kinetic coarse-graining via PCCA,56 PCCA+,57 BACE,80 HNEG,145 or MVCA146) the model becomes a macrostate MSM.
Projected Markov models (PMMs) are also macrostate MSMs, which can be approximated using hidden Markov models (HMMs)147,148 or
observable operator models (OOMs).149 Another formulation of MSMs, core set MSMs,52 involves partitioning a subset of full phase space by
avoiding the transition region. Multi-ensemble MSMs, or MEMMs, involve combining the data from multiple MSMs from different thermodynamic
states or biases using transition-based reweighting analysis (TRAM) or related methods.150 Finally, experimental constraints can be incorporated into
MSM estimation using caliber corrected Markov models (C2M2)

151 or augmented Markov models (AMMs).152
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In 2016, Wu et al.150 published a general TRAM estimator
that combines reweighting simulations at different temperatures,
conditional transition probabilities from MSMs, and a maximum
likelihood approach that maintains thermodynamic and kinetic
information. Wu et al.150 showed that TRAM is a formal general-
ization of MBAR and dTRAM. In 2017, Paul et al.184 extended
TRAM to enable the combination of unbiased, very short replica-
exchange simulations. This method, called TRAMMBAR, was the
first to estimate protein-peptide association kinetics at timescales
greater than one second with small uncertainties.184 These
methods are expected to augment the analysis of multi-body
systems, which is discussed in a perspective by Zhu et al.185

8.4. Modeling Nonstationary Processes Extends the
Domain of Relevant Systems. Several extensions to MSMs
for nonequilibrium processes have been recently pro-
posed,135,143,144,186−190 In 2017, Wu et al.143 introduced varia-
tional Koopman models, which formulate the VAC in a more
general way in order to describe nonreversible processes. In the
special case of a reversible process, the Koopman models are
equivalent to tICA or MSMs when linear transformations of
features or discrete state decompositions are used, respectively.
Wu and Noe ́144 also introduced variational approach for
Markov processes (VAMP), which applies to both reversible
and nonreversible processes, the latter of which is ubiquitous in
biophysics and fluid mechanics.144

The recent application of deep learning to learn overlapping
states of a system125 are based on the Koopman model framework
and can thus be applied to more complicated, nonstationary
systems such as protein folding landscapes with kinetic sinks,188

tightly bound complexes that do not unbind,187 or systems
subject to a periodic time-dependent potential.186,189,190 The
continued development of a more general set of methods that
can accommodate nonstationary processes in addition to station-
ary processes will greatly expand the domain of systems for
which MSM-inspired analysis can be applied. Such methods
developments will be capable of lending insight into systems in
which the reversibility assumption is not appropriate, such fluid
mechanics applications to atmospheric and oceanic currents.

9. EXPERIMENTAL INSIGHT: FRONTIERS
IN APPLICATIONS

The union of MSM methods with experimental methods and
outcomes represents an exciting area for new insight into
chemistry. Here, we discuss a few of the most recent advances
involving MSMs and experimental data: the incorporation of
experimental quantities into MSM construction in order to gen-
erate rich dynamical descriptions, the use of a unifying frame-
work to describe relaxation processes and design experiments,
and the ability of MSMs along with nontraditional docking to
identify druggable sites and hit compounds.
9.1. Incorporating Experimental Quantities Enables

Consistency between Models and Observables. The-
oretical models are designed to provide a richer picture of a sys-
tem than experiments can resolve. However, these models must
be consistent with coarser experimental results in order for their
finer details to be credible. For this reason, several groups have
developed methods to tune MSMs so their results reflect
experimental observables.51,151,152,191 In 2016, Rudzinski et al.191

introduced a method to incorporate experimental measure-
ments into MSM construction using a tunable bias parameter.
This bias parameter is designed to be flexible such that it does
not prescribe the type of experimental measurement that is
used to bias the model. In 2017, Dixit and Dill151 presented a

maximum caliber method to create a caliber corrected Markov
model (C2M2) by updating the thermodynamic and kinetic
information with constraints determined from experimental
results in the form of position-dependent diffusion coefficients.
Alternatively, MSMs can be designed with the intention of

aligning with coarse experimental data. In 2017, McKiernan
et al.192 codified the collective degrees of freedom of a fast-
folding β-hairpin to correspond to the same structural elements
probed in a temperature-jump experiment for the same system.
By performing the same MSM analysis for simulations in three
different force fields, force field-agnostic conclusions could be
drawn about the system that aligned with experimental findings
while also providing a richer description of the dynamics.192

In the same year, Olsson et al.152 introduced augmented Markov
models (AMMs), which are designed to systematically treat sim-
ulation and experimental errors. For example, Olsson et al.152

show that discrepancies in equilibrium stabilities between MSMs
for ubiqitin in two different force fields can be reconciled by
AMMs that have been augmented with NMR observables. This
powerful approach opens the door for the union of computa-
tional and experimental methods to accurately model dynamical
systems.

9.2. Assigning Simulated Processes to Experimental
Observables Facilitates Experimental Design. In 2011,
Noe ́ et al.193 introduced dynamical fingerprint theory, which
enables the assignment of structural relaxation processes observed
in simulation to experimentally observable processes.194 In this
report, the authors demonstrate its use for MD simulations fluo-
rescent peptides and corresponding fluorescence correlation
spectroscopy (FCS) experiments. Both Noe ́ et al.193 and, in a
subsequent report, Keller et al.194 highlight the ability to design
FCS, FRET, or temperature-jump experiments using dynamical
fingerprints by targeting specific relaxation processes from sim-
ulation. In 2013, dynamical fingerprint theory was used to
reconstruct inelastic neutron scattering spectra based on MSMs
from simulation data.195 In a more recent study, Olsson and
Noe ́166 connect MSM properties to chemical exchange induced
relaxation from NMR experiments, and show how separate pro-
cesses contribute observed chemical exchange signals.
Other techniques with similar motivation have also been

developed. In 2011, Zhuang et al.196 used MSMs to predict exper-
imental observables from two-dimensional and time-resolved
infrared (IR) spectroscopy, as well as from temperature jump
experiments. In 2017, a method reported by Mittal and Shukla197

demonstrates the use of MSMs to predict an ideal set of double
electron−electron resonance (DEER) spin-label positions to
maximize information gained from experimental investigations
of protein conformational change.

9.3. Dynamical Fluctuations Reveal Target Sites for
Drug Design. MD simulation data sets contain dynamical
information about a protein and thus generate many confor-
mations that may contain druggable sites not present in pub-
lished crystal structures. In 2015, Bowman et al.198 demon-
strated that analyzing simulations with MSMs can enable the
identification of such sites by identifying MSM states with pock-
ets that resemble known active sites. This method is powerful
because, since it first identifies empty pockets during simul-
ation, it does not require ligands to be simulated or proposed
outright. In this report, the authors discovered several hidden
allosteric sites in the TEM-1 β-lactamase protein.198

The following year, Hart et al.60 analyzed the same system to
investigate the specificity of these hidden conformations using
docking scores weighted by equilibrium populations according
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to the MSM, referred to as Boltzmann docking. The authors con-
trasted this method with traditional docking, which was unable to
predict site specificity. Using their results, the authors designed
variants for the purpose of controlling these sites’ populations
and experimentally demonstrated their success in stabilizing
certain sites. A subsequent report by Hart et al.199 identified
three small molecules that inhibit or activate the TEM system
using crystal structures, MSMs,198 and Boltzmann docking.60 These
compounds were experimentally verified to bind to the MSM-
predicted sites. This method represents a powerful approach to
the investigation of allosteric modulation, especially for targets
for which the available crystal structures do not contain drug-
gable sites.
Finally, for the same system, a recent report by Zimmerman

et al.61 uses MSMs to understand a known mutation in the TEM
system and subsequently predict new mutations, including a
new stabilizing mutation. Notably, the prediction effects were
experimentally tested using many complementary experimental
methods, such as crystallography, NMR, and measurements per-
formed in vivo. This work exemplifies the prospect of under-
standing atomistic dynamics using MSMs, using that under-
standing to predict experimental outcomes, and verifying the
predicted experimental outcomes in real systems.

10. OUTLOOK
Nearly 35 years after Zwanzig’s enumeration of a “remarkably
simple” method for estimating transition probabilities among
states of a dynamical system, the contributions of a great
number of scientists have led to the current state of MSM analysis
methods and availability of software and objective model selection
protocols. In addition to the improved accessibility of these
tools, the past several years have also yielded exciting advances
both in methods development such as improvements in adap-
tive sampling, coarse-graining, multi-ensemble analysis, and the
modeling of nonstationary processes. MSMs have also dem-
onstrated their utility in enriching or informing experimental
results through methods that incorporate measured observables,
unify the description of relaxation processes across simulation and
experiment, and facilitate drug discovery for hidden binding sites.
There are still important questions the MSM field must

address. Modeling is often guided by a variational approach that
maximizes the timescale of the slowest process within a data
set. The underlying assumption of this approach is that the
slowest dynamical processes are the most interesting or
important processes. There are at least two cases in which this
assumption is challenged: first, and perhaps more straightfor-
ward, protein simulations can feature dihedral flips or distance
contractions described by sparse collective variables that maybe
due to finite sampling or systematic force field error that occur
more rarely than the event of interest. Second, a dynamical
system may feature multiple interesting events, such as both
conformational change and ligand binding, and the event of
analytical interest may be the faster of the two.
In either case, the slowest event in the data set is not the

event of interest. How to quantify and thus optimize for what is
interesting, when it is not the same as what is slow, is an impor-
tant question for the field to address. We believe that the
answer is rooted in the determination of how to select and trans-
form collective variables that encode the dynamics. Extensions
of tICA and other applications of the VAC that can be tuned to
prioritize accurate modeling of the process of interest
especially in an objective fashionwould address a notable lim-
itation of current approaches.

An important direction for the MSM field is to develop meth-
ods that can perturb or combine systems without additional
simulations. For example, the ability to adjust a MSM for one
system such that it describes a mutated form of that system
would enable efficient comparison of thermodynamics and
kinetics without additional simulation.137,200 Another key chal-
lenge is the construction of a MSM for a large, computationally
intractable system by combining a set of MSMs from different
parts of that system. Ultimately, these advances would enable
MSMs to produce testable predictions for sets of related sys-
tems that may be unwieldy to simulate or experimentally probe,
so that additional simulations and experiments can be directed
by theoretical results.
MSM methods development has been characterized by

rigorous methods combined with optimized, objective tools for
analyzing dynamical systems and their interesting processes.
Key challenges remain in isolating events of interest and in
using MSMs to explore mutations and large systems that can be
subdivided. The continued development and application of
MSM-inspired methods will lead to the increased growth and
widespread use of MSMs in chemistry, biophysics, materials
science, fluid dynamics, and other related fields.
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Algebra Appl. 2000, 315, 39−59.
(57) Deuflhard, P.; Weber, M. Linear Algebra Appl. 2005, 398, 161−
184.
(58) Pande, V. S.; Beauchamp, K.; Bowman, G. R. Methods 2010, 52,
99−105.
(59) Beauchamp, K. A.; Bowman, G. R.; Lane, T. J.; Maibaum, L.;
Haque, I. S.; Pande, V. S. J. Chem. Theory Comput. 2011, 7, 3412−
3419.
(60) Hart, K. M.; Ho, C. M. W.; Dutta, S.; Gross, M. L.; Bowman, G.
R. Nat. Commun. 2016, 7, 12965.
(61) Zimmerman, M. I.; Hart, K. M.; Sibbald, C. A.; Frederick, T. E.;
Jimah, J. R.; Knoverek, C. R.; Tolia, N. H.; Bowman, G. R. ACS Cent.
Sci. 2017, 3, 1311−1321.
(62) Voelz, V. A.; Bowman, G. R.; Beauchamp, K.; Pande, V. S. J. Am.
Chem. Soc. 2010, 132, 1526−1528.
(63) Bowman, G. R.; Voelz, V. A.; Pande, V. S. J. Am. Chem. Soc.
2011, 133, 664−667.
(64) Bowman, G. R.; Pande, V. S. Proc. Natl. Acad. Sci. U. S. A. 2010,
107, 10890−10895.
(65) Pande, V. S. Phys. Rev. Lett. 2010, 105, 198101.
(66) (a) Dickson, A.; Brooks, C. L. J. Chem. Theory Comput. 2012, 8,
3044−3052. (b) Dickson, A.; Brooks, C. L. J. Am. Chem. Soc. 2013,
135, 4729−4734.
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174103.
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