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Abstract. Neural-network quantummolecular dynamics (NNQMD) simulations
based on machine learning are revolutionizing atomistic simulations of materi-
als by providing quantum-mechanical accuracy but orders-of-magnitude faster,
illustrated by ACM Gordon Bell prize (2020) and finalist (2021). State-of-the-art
(SOTA) NNQMD model founded on group theory featuring rotational equivari-
ance and local descriptors has provided much higher accuracy and speed than
those models, thus named Allegro (meaning fast). On massively parallel super-
computers, however, it suffers a fidelity-scaling problem, where growing number
of unphysical predictions of interatomic forces prohibits simulations involving
larger numbers of atoms for longer times. Here, we solve this problem by com-
bining the Allegro model with sharpness aware minimization (SAM) for enhanc-
ing the robustness of model through improved smoothness of the loss landscape.
The resulting Allegro-Legato (meaning fast and “smooth”) model was shown to
elongate the time-to-failure tfailure, without sacrificing computational speed or
accuracy. Specifically, Allegro-Legato exhibits much weaker dependence of time-
to-failure on the problem size, tfailure ∝ N−0.14 (N is the number of atoms)
compared to the SOTA Allegro model (tfailure ∝ N−0.29), i.e., systematically
delayed time-to-failure, thus allowing much larger and longer NNQMD simula-
tions without failure. The model also exhibits excellent computational scalabil-
ity and GPU acceleration on the Polaris supercomputer at Argonne Leadership
Computing Facility. Such scalable, accurate, fast and robust NNQMD models
will likely find broad applications in NNQMD simulations on emerging exaflop/s
computers, with a specific example of accounting for nuclear quantum effects in
the dynamics of ammonia to lay a foundation of the green ammonia technology
for sustainability.
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1 Introduction

Neural-network quantummolecular dynamics (NNQMD) simulations based onmachine
learning are revolutionizing atomisticmodeling ofmaterials by following the trajectories
of all atoms with quantum-mechanical accuracy at a drastically reduced computational
cost [1]. NNQMD not only predicts accurate interatomic forces but also captures quan-
tum properties such as electronic polarization [2] and electronic excitation [3], thus the
‘Q’ in NNQMD. NNQMD represents one of the most scalable scientific applications
on the current high-end supercomputers, evidenced by ACM Gordon Bell prize winner
in 2020 [4] and finalist in 2021 [5]. A more recent breakthrough in NNQMD is dras-
tically improved accuracy of force prediction [6] over those previous models, which
was achieved through rotationally equivariant neural networks based on a group theo-
retical formulation of tensor fields [7]. The state-of-the-art (SOTA) accuracy has now
been combined with a record speed based on spatially localized descriptors in the latest
NNQMD model named Allegro (meaning fast) [8].

Fig. 1. Number of outliers in atomic force inference during NNQMD simulation: As the
simulation progresses, the dynamic of atoms becomes unstable due to an increasing number of
unphysically large force values (over 5σ ) predicted by the original Allegro model. This resulted
in the eventual failure after 2.6 × 106 MD steps (red). On the other hand, the proposed model
(Allegro-Legato) maintains a nearly constant number of outliers and the simulation stable (blue).
(Color figure online)
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Despite its remarkable computational scalability, massively parallel NNQMD simu-
lation faces a major unsolved issue known as fidelity scaling [9]. In large-scale NNQMD
simulations, small prediction errors can propagate and lead to unphysical atomic forces
that degrade the accuracy of atomic trajectory over time. These force outliers can even
cause the simulation to terminate unexpectedly (Fig. 1). As simulations become spa-
tially larger and temporarily longer, the number of unphysical force predictions is
expected to scale proportionally, which could severely limit the fidelity of NNQMD
simulations on new exascale supercomputing platforms, especially for the most exciting
far-from-equilibrium applications [3, 10].

In this paper, we solve the fidelity-scaling issue taking a cue from a recent devel-
opment in machine learning. Solving the fidelity-scaling issue requires robustness of
the NNQMD model, i.e., reduced number of unphysical force-prediction outliers when
simulation trajectories encounter atomic configurations outside the training dataset. It
has been observed that the robustness of a neural-network model can be enhanced by
sharpness-aware minimization (SAM) [11]—a training algorithm that regularizes the
sharpness of the model (i.e., the curvature of the loss surface) along with its training
loss. We thus apply SAM to train the fast Allegro model to smoothen its loss land-
scape, thereby enhancing its robustness. The resulting Allegro-Legato (meaning fast and
“smooth”)model is shown to increase the time-to-failure tfailure, i.e., howmanyMD steps
a NNQMD simulation can run under microcanonical ensemble, while maintaining the
same inference speed and nearly equal accuracy. Specifically, Allegro-Legato exhibits
much weaker dependence of time-to-failure on the problem size, tfailure ∝ N−0.14 (N
is the number of atoms) compared to the SOTA Allegro model (tfailure ∝ N−0.29), thus
allowing much larger and longer NNQMD simulations without failure. Along with this
main contribution, we find that the fidelity-scalability of the NNQMD model correlates
with sharpness of the model more than the number of parameters in the model.1

The fast and robust Allegro-Legato model has been implemented in our scalable
parallel NNQMD code named RXMD-NN. We have achieved a weak-scaling parallel
efficiency of 0.91 on 480 computing nodes, each with an AMDEPYC central processing
unit (CPU) and four NVIDIA A100 graphics processing units (GPUs), of the Polaris
supercomputer at Argonne Leadership Computing Facility (ALCF). The code has also
achieved a 7.6-fold single-node performance acceleration using four GPUs over single
32-core CPU of Polaris.

Allegro-Legato allows much larger spatio-temporal scale NNQMD simulations than
are otherwise possible. Unlike MD simulation with heat bath often used in “effective”
long-time sampling ofmolecular configurations (e.g., for protein folding),which disrupts
dynamic trajectories, Allegro-Legato enables “true” long-time Hamiltonian dynamics
that can be directly compared with fine vibrational modes observed in high-resolution
spectroscopic experiments. Specifically, we can now satisfy the prohibitive computa-
tional demand of accounting for subtle nuclear quantum effects in the dynamics of
ammonia based on path-integral molecular dynamics, which is essential for resolving a
mystery in a recent high-resolution neutron-scattering experimental observation at Oak
RidgeNational Laboratory. Synergy between themost advanced neutron experiment and

1 Code is available at github.com/ibayashi-hikaru/allegro-legato.

https://github.com/ibayashi-hikaru/allegro-legato
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leadership-scale NNQMD simulation lays a foundation of the green ammonia-based fuel
technology for achieving a sustainable society.

2 Method Innovation

This section first summarizes (1) NNQMD simulation method, along with the SOTA
Allegro model, and (2) SAM for robust neural-network model training. We then present
the key method innovation of SAM-enhanced Allegro model, Allegro-Legato, followed
by its scalable parallel implementation.

2.1 Summary of Neural-Network Quantum Molecular Dynamics

Molecular dynamics (MD) simulation follows time evolution of the positions
{ri|i = 1, . . . ,N } (i.e., trajectories) of N atoms,

mi
d2

dt2
ri = fi = − ∂

∂ri
E({ri}), (1)

wheremi and fi are the mass of the i-th atoms and the force acting on it, whereas E is the
interatomic potential energy that is dictated by quantum mechanics (QM). In NNQMD,
neural networks are trained to reproduce ground-truth QM values, E({ri}t), for a set
of atomic configurations

{{ri}t |t = 1, . . . ,Ntraining
}
(Ntraining is the number of training

configurations) [1–5]. In the SOTA Allegro model, the energy E is composed of pair-
wise embedding energies, Eij, between atomic pairs (i, j) within a finite cutoff distance
to preserve data locality [8]. Key to the high accuracy of Allegro is that all energy terms
are group-theoretically equivariant with respect to rotation, inversion and translation,
i.e., to the Euclidean group E(3) [6, 7]. This is achieved by representing the energy
in terms of tensors up to rank � and tensor products using their irreducible represen-
tations. In short, Allegro attains accuracy through group-theoretical equivariance and
computational speed through data locality.

2.2 Summary of Sharpness-Aware Minimization

Neural networks are trained byminimizing the loss functionL(w)wherew represents the
weight parameters of the neural network. Design choice of optimization methods plays a
crucial role in machine learning, as it impacts various factors such as convergence speed
and generalization performance [12]. In particular, vulnerability to adversarial attacks
is a problem unique to neural networks [13], which has actively been studied in various
fields such as computer vision [14] and natural language processing [4]. Recent studies
suggest that the fidelity-scalability inNNQMDcan also be viewed as a robustness against
“adversarial attacks” during large-scale simulations [15, 16], where atomic trajectories
are “attacked” by the accumulated unphysical predictions, i.e., “adversarial perturba-
tions” throughout the long and large-scale simulation. Therefore, it is natural to expect
that optimization methods for adversarial attack would enhance the fidelity-scalability
in NNQMD.
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Sharpness-aware minimization (SAM) is one of such robustness-enhancing meth-
ods proposed in the computer vision area [11]. The key component of SAM is that it
minimizes “sharpness” of the model defined as

max‖ε‖2≤ρ
{L(w + ε) − L(w)}, (2)

where ρ (the size of neighborhood) is a hyperparameter to define sharpness. While
computing the sharpness directly is infeasible, it has been shown that minimizing L(w)+
max‖ε‖2≤ρ{L(w + ε) − L(w)} (training loss + sharpness) can be achieved through the
following update rule:

w = w − η∇w′L
(
w′)∣∣

w′=w+ρ
∇wL(w)

‖∇wL(w)‖
(η : learning rate), (3)

which utilizes first-order derivatives, i.e., ∇wL(w). This allows for the optimization of
sharpness without the need for computationally expensive second-order derivatives.

2.3 Key Innovation: Allegro-Legato: SAM-Enhanced Allegro

As explained above, our hypothesis is that smoothened loss landscape through SAM
enhances fidelity scaling of NNQMD. To quantitatively test this hypothesis, we incor-
porate SAM into the training of the Allegro NNQMD model [8], which entails SOTA
accuracy and computational speed. We call the resulting SAM-enhanced Allegro model
as Allegro-Legato (In music, Legato means “smooth without sudden breaking between
notes”).

To find an appropriate strength of sharpness regularization, SAM’s hyper parameter
ρ is tuned so as to provide the most robust model, i.e., the longest time-to-failure,
tfailure, in a small-scale simulation (N = 432). Table 1 shows the result of our grid
search over ρ ∈ {0.001, 0.0025, 0.005, 0.01, 0.025, 0.05}, from which we found that
ρ = 0.005 gives the longest tfailure in our setup. For the small-scale simulation test, we
used LAMMPS, which is a widely used open-source MD simulation software (https://
www.lammps.org). See Sect. 4.5 for the detailed training settings.

Table 1. SAM strength ρ vs. time-to-failure tfailure:We tune ρ by conducting a grid search in
the range of 0.001 to 0.05. A model with ρ = 0.005 gives the largest tfailure with a small-scale
simulation (N = 432).

ρ 0.001 0.0025 0.005 0.01 0.025 0.05

tfailure 4030 6420 8480 4760 4210 3780

2.4 RXMD-NN: Scalable Parallel Implementation of Allegro-Legato NNQMD

For large-scale testing of computational and fidelity scaling, we implement the proposed
Allegro-Legato NNQMD model in our RXMD-NN software [3, 9], which is an exten-
sion of our scalable parallel reactive MD software, RXMD [17]. RXMD-NN employs

https://www.lammps.org
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a hierarchical divide-and-conquer scheme to realize “globally-scalable and local-fast”
(or “globally-sparse and locally-dense”) parallelization [18]: (1) globally scalable spa-
tial decomposition that is best suited for massively parallel computing platforms; and
(2) locally efficient linked-list decomposition and subsequent neighbor-list construction
to achieve the O(N) computational complexity. Interprocess communication is imple-
mented using non-blocking application programming interfaces (APIs) ofMessage Pass-
ing Interface (MPI) library, and the communication pattern is designed to be lock-free
with minimal internode-data exchange.While it is one of the most widely adapted strate-
gies in large-scale MD applications, this is particularly suitable for NNQMD algorithm
to take advantage of the modern high-performance computing (HPC) architecture, in
which a few very powerful GPU cards do the heavy lifting by accelerating computation-
ally demanding kernels while random memory access and out-of-order data processing
are concurrently executed by many-core CPUs. In RXMD-NN, CPU is responsible for
the adjacency-list construction in parallel. The constructed adjacency list, together with
atom position and type information, is converted to PyTorch tensor object for force infer-
ence on GPUs. RXMD-NN allows to control the computational granularity, such as the
number of atoms per domain and domains per node, to find an ideal balance between
horizontal and vertical scalability to utilize available hardware resources.

PyTorch has become a standard Python library in machine learning community due
to its APIs for complex model architectures that enables highly efficient training and
inference onGPU.However, production platforms such asHPC clusters, mobile devices,
and edge nodes often demand a set of requirements that Python is not designed for, e.g.,
multithreading, low latency computing, and massively parallel distributed architectures.
GPU Offloading of Allegro model is realized by TorchScript, which is statically typed
intermediate representation to create serialized and optimizable ML models. The serial-
ized model can be loaded from other programming language such as C++ allowing to be
deployed in environments that are difficult for python codes to run without sacrificing
multithreading and optimization opportunities.

3 Results

We test both fidelity and computational scalability of the proposed Allegro-Legato
NNQMDmodel as implemented in theRXMD-NNcodeona leadership-scale computing
platform, Polaris, at Argonne Leadership Computing Facility (ALCF).

3.1 Experimental Platform

Weconduct numerical experiments on the Polaris supercomputer at ALCF. It is aHewlett
Packard Enterprise (HPE) Apollo 6500 Gen 10+ based system consisting of two com-
puting nodes per chassis, seven chassis per rack, and 40 racks, with a total of 560
nodes. Each Polaris node has one 2.8 GHz AMD EPYC Milan 7543P 32-core CPU
with 512 GB of DDR4 RAM, four NVIDIA A100 GPUs with 40GB HBM2 memory
per GPU, two 1.6 TB of SSDs in RAID0 and two Slingshot network endpoints. Polaris
uses the NVIDIA A100 HGX platform to connect all 4 GPUs via NVLink, with a GPU
interconnect bandwidth of 600 GB/s. Designed by Cray, the Slingshot interconnect is
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based on high radix 64-port switches arranged in dragonfly topology, offering adap-
tive routing, congestion control and bandwidth guarantees by assigning traffic classes
to applications. Polaris is rated at a production peak performance of 44 petaflops with
node-wise performance at 78 teraflops for double precision.

3.2 Fidelity-Scaling Results

For the fidelity-scaling test, we trained Allegro and Allegro-Legato with � = 1 and
examined their robustness in terms of tfailure, i.e. the greater tfailure, the more robust.
The parameters of MD simulation for the test are carefully chosen so that each MD
simulation is expected to fail within a reasonable time but not immediately. While the
constant-temperature ensemble method based on Nose-Hoover thermostat (i.e., NVT
ensemble) is used to study thermal-equilibrium properties, it could suppress and hidden
unphysical model predictions by connecting atoms with an external thermostat. Micro-
canonical ensemble (NVE) method is the most rigorous test on the model robustness
by simply integrating the equations of motion without an external control (also it has
broader applicability to nonequilibrium processes). In each simulation instance, the liq-
uid ammonia system is first thermalized at a temperature of 200 K using NVT ensemble
for 1,000 steps. We subsequently switch the ensemble to NVE and continue the simu-
lation until it fails to determine tfailure (see the arrow in Fig. 1). The time step �t of 2
femto-seconds (fs) is chosen throughout the robustness test. For each system size, over
ten independent simulation instances are averaged to measure tfailure.

Figure 2 shows tfailure as a function of the system size (i.e., the total number of atoms,
N) ranging from N = 432 to 27,648. Firstly, regardless of the system size, we observe a
significant improvement in the averaged sustained MD simulation steps using Allegro-
Legato model. We observe the greatest improvement of the simulation robustness in the
largest systemwithN = 27,648, where 2.6-times longerMD simulation (14,600 steps) is
achieved with SAM in Allegro-Legato than that with the original Allegro model (5,500
steps). In theMD simulation framework, even a single misprediction of atomic force can
lead to catastrophe through chain reactions. An error in atomic force is integrated into
its velocity, then into atom coordinates. Too large atomic displacement in a single MD
step could result in unphysically strong collisions with other atoms, which propagate
throughout the system within a few MD steps, known as “the billiard effect.” MD simu-
lations with large number of atoms or longer simulation time will inevitably suffer from
higher probability of having such model mispredictions, thus fail faster than a smaller
system. Our test demonstrates that SAM successfully improves the robustness of model
prediction, realizing a stable MD simulation for greater time steps.

To quantify fidelity scaling, we define a fidelity-scaling exponent N−β through the
scaling relation,

tfailure = αN−β, (4)

where α is a prefactor. A smaller β value (i.e., weaker fidelity scaling) indicates
delayed time-to-failure, thus a capability to study larger spatiotemporal-scale processes
accurately on massively parallel computers. The Allegro-Legato model has drastically
improved fidelity scaling, βAllegro−Legato = 0.14 < βAllegro = 0.29 beyond statistical
uncertainty (see the error bars in Fig. 2), thus systematically delaying time-to-failure.
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Fig. 2. Fidelity scaling of NNQMD simulation:Here, tfailure is measured using NVE ensemble
with a timestep of 2 fs. Statistically improved tfailure is observed in even the smallest system size,
which is further pronounced as the system size increases. The exponent of power law fitting shows
nearly a factor of two reduction using Allegro-Legato model.

3.3 Computational-Scaling Results

We measure the wall-clock time per MD step with scaled workload—6,912P-atom
ammonia system on P MD domains. In this test, each MD domain consists of 6,912
atoms that are offloaded to single GPU. In addition to the force inference, the execu-
tion time includes the adjacency list construction, data transfer between host and GPU
memory, and internode communication via network fabric. Figure 3 shows wall-clock
time as a function of P. By scaling the problem size linearly with the number of GPUs,
the runtime increases only slightly, indicating an excellent scalability.

Here, we quantify the parallel efficiency by defining the speed of NNQMD algo-
rithm as the product of the total number of atoms multiplied by the number of MD steps
executed per second. The isogranular speedup is given by the speed on P MD domains
relative to the speed of single domain as baseline. The parallel efficiency of weak scala-
bility thus is obtained by the isogranular speedup divided by P. With the granularity of
6,912 atoms per domain, we have obtained an excellent weak-scaling efficiency, 0.91 for
up to 13,271,040 atoms on 1,920 A100 GPUs. Despite the relatively large granularity
of 6,912 atoms per domain, we obtained a fast time-to-solution of 3.46 s per MD step
enabling 25,000 MD steps per day for production runs.

Figure 4 shows GPU acceleration of NNQMD algorithm on single Polaris node. The
histogram presents the reduction in wall-clock time per MD step (averaged over 10 MD
steps) using the runtime obtained with CPU only (32 cores with 32 threads) as baseline.
Here, we examined: (1) three system sizes of N = 1,728, 6,912, and 13,824 ammonia
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Fig. 3. Wall-clock time of the RXMD-NN code per MD step, with scaled workloads—6,912P
atom ammonia liquid using P A100 GPUs (P = 1,…, 1,920).

atoms; and (2) three domain decompositions such as single, double and quadruple sub-
domains. Atoms in each domain are assigned to one GPU. With N = 1,728 system, we
observe a marginal GPU acceleration up to 1.24× speedup, which has been substantially
improved with greater system sizes. We have achieved a 7.6x speedup usingN = 13,824
atom system with four subdomains.

4 Discussions

While SAM-enhanced Allegro model, Allegro-Legato, has achieved improved robust-
ness over the SOTA Allegro model as shown in the previous section, we here discuss
the imprecation of SAM training to other aspects such as accuracy and computational
speed.

4.1 Simulation Time

First of all, MD simulation time is not affected by SAM since SAM only applies to
the training stage but not the inference stage in MD simulation. Table 2 compares the
simulation time per MD time step for the baseline Allegro model and the proposed
Allegro-Legato model. Hereafter, we use the default value, � = 1, for the maximum
tensor rank, thus the same number of parameters for the two models. The simulation
time is identical for bothmodelswithin themeasurement uncertainty due to nondedicated
access to the experimental platform.
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Fig. 4. GPU acceleration of NNQMD algorithm: Three system sizes of N = 1728, 6912 and
13,824 atoms are examined. The histogram presents the reduction in wall-clock time per MD step
over the runtime with 32 CPU cores without GPU as reference. Detail of the benchmark platform
as well as the GPU and CPU architectures are presented in the main text. We have achieved 7.6×
speedup using four GPUs with N = 13,824 atoms.

As a comparison, Table 2 also shows the baseline Allegro model with two other
tensor ranks, � = 0 and 2. Larger � generates more accurate but larger models (i.e.,
larger numbers of parameters) and hence incur longer simulation times. Based on
the accuracy/computational-cost trade-off, production NNQMD simulations with the
Allegro model typically use � = 1.

Table 2. Simulation-time comparison: As SAM only applies to the training stage and does not
modify the size of architecture, the computational cost for simulation is not affected.

Model # of parameters Time/step (ms)

Allegro 133,544 916

Allegro-Legato 133,544 898

Reference Models

Allegro (� = 0) 95,656 395

Allegro (� = 2) 183,720 2,580
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4.2 Training Time

Asmentioned in Sect. 2.2, SAM’s shortcoming is that it requires more computation time
than the base optimizer, because each epoch has to compute the first-order gradients
twice. However, in our setting, SAM converges faster than the default optimizer, and
thus the total training time is not significantly affected (Table 3). As references, we also
measured the training time of Allegro models with different maximum tensor ranks,
� = 0 and 2 and we observed that the training cost increases drastically for larger �. In
summary, Allegro-Legato improves the robustness of Allegro without incurring extra
training cost.

Table 3. Training-time comparison: Although SAM takes longer per-epoch training time, it
converges faster and thus does not significantly affect total training time. Compared to the refer-
ence training times of variations of Allegro models, the extra training cost of Allegro-Legato is
negligible.

Model Total time (hours) Per-epoch time (seconds) Epochs

Allegro 11.1 248 161

Allegro-Legato 13.6 433 113

Reference Models

Allegro (� = 0) 4.4 127 127

Allegro (� = 2) 19.6 636 111

4.3 Model Accuracy

While faithful reproduction of system energy is necessary to properly guide model
training, the most crucial to MD simulations is accurate force prediction. We obtained
the validation error in atomic force as 15.9 (root mean-square error, RMSE) and 11.6
(mean absolute error, MAE) with Allegro-Legato (� = 1) model, and 14.7 (RMSE) and
10.7 (MAE) with the original Allegro model (� = 1), respectively. All error values are
in a unit of meV/Å. Chmiela et al. recently provided a guideline that MAE required
for reliable MD simulations is 1 kcal/mol/Å, which corresponds to 43.4 meV/Å [19].
Although Allegro-Legato incurs a slight increase in the force prediction error (about 8%
in the liquid ammonia dataset) compared to the original Allegro model, the obtained
force error is about a factor four smaller than the guideline for reliably performing
MD simulations. Namely, Allegro-Legato improves the robustness without sacrificing
accuracy.

4.4 Implicit Sharpness Regularization in Allegro

Whilewe propose to explicitly control the sharpness ofmodels, we found that one control
parameter in the baseline Allegro model (i.e., maximum rank of tensors to represent
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features) implicitly regulate the sharpness of the model. In Table 4, besides our Allegro-
Legato model having smaller sharpness, Allegro � = 1, 2 models have significantly
smaller sharpness and higher tfailure compared to Allegro � = 0 model. Namely, Allegro
with higher � implicitly regularizes sharpness, resulting in higher robustness (i.e., larger
tfailure), but with increasing computational cost. Allegro-Legato (� = 1) model achieves
the same level of sharpness as Allegro (� = 2) model with much less computing time;
see Tables 2 and 3.

Table 4. Implicit sharpness regularization by Allegro: While our Allegro-Legato model has
smaller sharpness thanAllegro, Allegromodelswith larger � have progressively smaller sharpness.
Here,wemeasure sharpness, max‖ε‖2≤ρ

{L(w + ε) − L(w)}, by takingmaximumof 1,000 independent

random samples around the 0.05-neighborhood of each minimum.

Model Allegro (� = 0) Allegro (� = 1) Allegro (� = 2) Allegro-Legato (� = 1)

Sharpness 5.0 × 10−4 3.2 × 10−4 9.8 × 10−5 1.2 × 10−4

Figure 5 visualizes the loss surface of Allegro (� = 0, 1, and 2) and Allegro-Legato (�
= 1) models. The figure confirms: (1) progressive smoothening (i.e., smaller sharpness)
for larger � within the Allegro model due to implicit regularization through accuracy
but with increasing computational cost; and (2) explicit smoothening of Allegro-Legato
through SAM over Allegro with the same � without extra computational cost.

Fig. 5: Loss surface visualization:One dimensional visualization of loss surface of each model.
Following the definition of sharpness (Eq. 2), we randomly sample a vector, d, that gives the
sharpness direction to compute L(w + pd) for p ∈ [−1, 1].
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4.5 Training Details

Lastly, we provide detailed training configuration for completeness (Table 5). For fair
comparison, we used the default hyperparameters that are released as the SOTA model
and SAM training uses the default optimizer as its base optimizer.

Table 5. Detailed training setting:All training setups in this paper adopt these parameters unless
otherwise noted.

Material type Liquid NH3

Number of atoms per a configuration 432

# of training examples (Ntraining) 4,500

# of validation examples 500

rmax for cutoff 6.0

Maximum tensor rank (�) 1

Batch size 4

Peak learning rate 2e−3

Learning rate decay ReduceLROnPlateau

Learning rate scheduler patience 50

Learning rate scheduler factor 0.5

(Base) Optimizer Adam

Adam’s
(
β1, β2

)
(0.9, 0.999)

Loss function Per atom MSE

Loss coefficient (force, total energy) (1.0, 1.0)

Stopping criterion �Lvalidation ≤ 3e − 3 for 100 epochs

5 Applications

The improved robustness of the proposed Allegro-Legato model, while preserving the
SOTA accuracy and computational speed of Allegro, enables large spatio-temporal scale
NNQMD simulations on leadership-scale computers. A compelling example is the study
of vibrational properties of ammonia. Development of dynamical models that accurately
reproduce the vibrational spectra of molecular crystals and liquids is vital for predic-
tions of their thermodynamic behavior, which is critical for their applications in energy,
biological, and pharmaceutical systems [20]. In particular, there has been growing devel-
opment of green ammonia-based fuel technologies for sustainable society over the past
few years. Ammonia (NH3) has a higher energy density than even liquid hydrogen, but
ammonia can be stored at a much less energy-intensive –33 °C versus –253 °C, and
thanks to a century of ammonia use in agriculture, a vast ammonia infrastructure already
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exists [21]. Over 180 million metric tons of ammonia is produced annually, and 120
ports are equipped with ammonia terminals [21]. Development of technologies based
on ammonia will be reliant on our ability to understand and model the complex physical
and chemical interactions that give rise to its unique properties.

There are multiple complicating factors that require careful considerations such as
nuclear quantum effects (NQEs) and its coupling with vibrational anharmonicity when
developing computational frameworks that accurately describe vibrational properties
[20]. Standard first-principles calculations for vibrational properties only treat electrons
quantum mechanically and vibrational properties can be determined by Fourier trans-
form and matrix diagonalization of the unit-cell Hessian, which is at most on the order
of a few 100 entries [22]. Evaluating the role of NQEs and its coupling with vibra-
tional anharmonicity is done in the so-called path integral MD (PIMD) approach, which
samples the quantum partition function for the entire quantum system [23, 24]. This
requires long-time simulations of a large number of replicas of large MD systems that
are harmonically coupled to each other as interacting ring-polymers, especially at low
temperatures [23, 24]. The background of Fig. 6a shows a typical first principles-based
simulation, where the atoms are treated classically and the electron charge density is
treated quantum-mechanically to compute atomic forces, which is illustrated as blue
iso-surfaces. In the foreground we have highlighted one NH3 molecule from a PIMD
simulation of the same atomic configuration, where each atom has 32 replicas that are
harmonically coupled together. The computation of the replica simulations is embar-
rassingly parallel, with only fixed nearest replica communication, and the major cost is
computing the energy and forces for the atoms within each replica simulation, which is
typically done from first principles. However, our Allegro-Legato model with enhanced
robustness allows for stable long-time MD simulations at near quantum accuracy, and
thus can replace expensive first-principles calculations in the PIMD simulations, which
would make accurate evaluation of ammonia’s low energy inter-molecular vibrational
modes intractable.

We have performed massively parallel PIMD simulations with our Allegro-Legato
model, computing the energy and forces within each replica simulation to evaluate the
phonon spectra for inter-molecular modes of ammonia. The Allegro-Legato model is
found to produce the expected softening of high-energy modes at finite temperature with
inclusion of nuclear quantum effects in comparison to standard matrix diagonalization
within the harmonic approximation,which is illustrated inFig. 6b. In particular, reduction
of the energy of the vibrational modes in the 30–90 meV is consistent with high-end
neutron experiments for the vibrational spectrum performed by the authors at Oak Ridge
National Laboratory in the last summer (these results will be published elsewhere).
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Fig. 6. Computed vibrational spectra of ammonia: (a)While typical first-principles simulation
treats atoms classically and electrons quantum-mechanically, PIMD simulation uses multiple
replicas of each atom to mimic nuclear quantum effect (NQE). (b) Top curve shows vibrational
spectrum computed at zero temperature without NQE, while bottom at finite temperature with
Allegro-Legato PIMD simulation. With the inclusion of NQE, Allegro-Legato PIMD correctly
shows softening of high-energy inter-molecular modes expected at finite temperature and explains
high-end neutron-scattering observations.

6 Related Work

There has been an explosion in the development and application of NNQMD simulations
[1–3, 6, 8] and their scalable parallel implementation [4, 5]. On the other hand, it was
only recently that the robustness of NNQMD was quantified in terms of time-to-failure
tfailure [25] and its deteriorating reduction with the problem size (i.e., fidelity-scaling
problem) was pointed out [9]. This work is the first to: (1) formally quantify the fidelity
scaling by introducing the fidelity-scaling exponent β through tfailure ∝ N−β (N is the
number of atoms); and (2) propose the solution to the fidelity-scaling problem using
sharpness-aware minimization.

Robustness against adversarial attacks is a central and widely studied issue in
machine learning [4, 13, 14]. Compared to typical adversarial attacks, it is nontrivial
to generate adversarial perturbations for NNQMD. This is because the attack we con-
sider is not only focused on the accuracy of the model, but also on the time to failure
(tfailure) of the model, which can only be determined through long-time simulations
[15, 16]. Generative adversarial network (GAN) is one possible approach for sampling
molecular configurations in a learning-on-the-fly setting [26]. However, we remark that
the real strength of MD simulation is its ability to compute dynamic correlations that
can directly explain high-resolution spectroscopic experiments, which requires a long
uninterrupted Hamiltonian trajectory, to which adversarial networks are generally not
applicable. In this domain, Allegro-Legato thus provides a unique solution.
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7 Conclusion

We have introduced the proposed SAM-based solution to the fidelity-scaling problem
into the Allegro NNQMD model,[8] which represents the state-of-the-art accuracy and
speed. The resulting Allegro-Legato model has drastically improved fidelity scaling by
exhibiting a significantly lower exponent, βAllegro−Legato = 0.14 < βAllegro = 0.29,
thus systematically delaying time-to-failure. Such improved fidelity scaling is central to
ensure that meaningful scientific knowledge is extracted from large-scale simulations on
leadership-scale parallel computers. Our scalable parallel implementation of Allegro-
Legato with excellent computational scaling and GPU acceleration combines accuracy,
speed, robustness and scalability, thus allowing practical large spatiotemporal-scale
NNQMD simulations for challenging applications on exascale computing platforms.
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