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a b s t r a c t

FFT, FMM, and multigrid methods are widely used fast and highly scalable solvers for elliptic PDEs.
However, emerging large-scale computing systems are introducing challenges in comparison to current
petascale computers. Recent efforts (Dongarra et al. 2011) have identified several constraints in the
design of exascale software that include massive concurrency, resilience management, exploiting the
high performance of heterogeneous systems, energy efficiency, and utilizing the deeper and more
complex memory hierarchy expected at exascale. In this paper, we perform a model-based comparison
of the FFT, FMM, and multigrid methods in the context of these projected constraints. In addition we
use performance models to offer predictions about the expected performance on upcoming exascale
system configurations based on current technology trends.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Elliptic PDEs arise in many applications in computational sci-
ence and engineering. Classic examples are found in computa-
tional astrophysics, fluid dynamics, molecular dynamics, plasma
physics, and many other areas. The rapid solution of elliptic
PDEs remains of wide interest and often represents a significant
portion of simulation time.

The fast Fourier transform (FFT), the fast multipole method
(FMM), and multigrid methods (MG) are widely used fast and
highly scalable solvers for elliptic PDEs. The FFT, FMM, and MG
methods have been used in a wide variety of scientific computing
applications such as particle-in-cell methods, the calculation of
long-range (electrostatic) interactions in many-particle systems,
such as molecular dynamics and Monte Carlo sampling [3], and
in signal analysis. The performance expectations of these methods
helps guide algorithmic changes and optimizations to enable
migration to exascale systems, as well as to help identify poten-
tial bottlenecks in exascale architectures. In addition, modeling
helps assess the trade-offs at extreme scales, which can assist in
choosing optimal methods and parameters for a given application
and specific machine architecture.

Each method has advantages and disadvantages, and all have
their place as PDE solvers. Generally, the FFT is used for uniform
discretizations, FMM and geometric MG are efficient solvers on
irregular grids with local features or discontinuities, and algebraic
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MG can handle arbitrary geometries, variable coefficients, and
general boundary conditions. The focus of this study is on FFT,
FMM, and geometric MG, although several observations extend to
an algebraic setting as well [7].

One aim of the International Exascale Software Project (IESP)
is to enable the development of applications that exploit the
full performance of exascale computing platforms [14]. Although
these exascale platforms are not yet fully specified, it is widely
believed that they will require significant changes in computing
hardware architecture relative to the current petascale systems.
The IESP roadmap reports that technology trends impose severe
constraints on the design of an exascale software. Issues that are
expected to affect system software and applications at exascale
are summarized as

Concurrency: Future supercomputing performance will depend
mainly on increases in system scale. Processor counts of
one million or more for current systems [26] whereas exas-
cale systems are likely to incorporate one billion processing
cores, assuming GHz technology. As a result, this 1000×
increase in concurrency necessitates new paradigms for
computing for large-scale scientific applications to ensure
extrapolated scalability.

Resiliency: The exponential increase in core counts expected at
exascale will lead to increases in the number of routers,
switches, interconnects, and memory systems.
Consequently, resilience will be a challenge for HPC appli-
cations on future exascale systems.

Heterogeneity: As accelerators advance in both performance
and energy efficiency, heterogeneity has become a critical
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Fig. 1. Illustration of the 3-D FFT calculation flow using pencil decomposition.

ingredient in the pursuit of exascale computing. Exploit-
ing the performance of these heterogeneous systems is a
challenge for many methods.

Energy: Power is a major challenge. Current petascale systems
would reach the level of 100 MW if extended to exascale.1
This imposes design constraints on both the hardware and
software to improve the overall efficiency. Likewise, exas-
cale algorithms need to focus on maximizing the achieved
ratio of performance to power/energy consumption
(power/energy efficiency), rather than focusing on raw
performance alone.

Memory: The memory hierarchy is expected to change at ex-
ascale based on both new packaging capabilities and new
technologies to provide the memory bandwidth and capac-
ity required at exascale. Changes in the memory hierarchy
will affect programming models and optimizations, and
ultimately performance.

In this manuscript, we perform model-based comparison of
the FFT, FMM, and MG methods vis-à-vis these challenges. We
also use performance models to estimate the performance on
hypothetical future systems based on current technology trends.
The rest of the manuscript is organized as follows. A short de-
scription of the FFT, FMM, and MG methods is provided in
Section 2. In the following sections, we present, compare, and
discuss the performance of these methods relative to the exas-
cale constraints imposed by technology trends. These constraints
are: concurrency (Section 4), resiliency (Section 5), heterogene-
ity (Section 6), energy (Section 7), and memory (Section 8).
Observations and conclusions are drawn in Sections 9 and 10,
respectively.

2. Methods

In this section we provide a brief description of FFT, FMM,
and MG, in order to establish notation and as preamble to the
performance analysis.

2.1. Fast Fourier transform

The FFT is an algorithm for computing the N-point Discrete
Fourier Transform (DFT) with O(N logN) computational complex-
ity. Let x = (x1, x2, . . . , xN ) be a vector of N complex numbers, the
1-D DFT of x is defined as

x̂k =

N∑
j=1

xje−i 2πk
N j. (1)

The 3-D FFT is performed as three successive sets of independent
1-D FFTs.

1 For example, the Piz Daint supercomputer, which is ranked third and tenth
on the TOP500 and Green500 lists, respectively, has power efficiency of 10.398
GFLOPs/W. An exascale machine with the same power efficiency will require 96
MW per exaFLOP.

2.1.1. Parallel domain decomposition
To compute the parallel 3-D FFT, the computational domain

is decomposed across processors. There are two popular decom-
position strategies for parallel computation: the slab decompo-
sition (1-D decomposition) and the pencil decomposition (2-D
decomposition).

In the case of a slab decomposition a 3-D array is partitioned
into slabs along one axis so that each processor consists of

3√N
P ×

3√N ×
3√N points. This decomposition scheme is unsuitable for

massively parallel supercomputer as the number of processors
that can be used is limited by the number of slabs. In contrast, in
pencil decomposition (a 2-D decomposition) a 3-D array is parti-
tioned in two dimensions, which allows the number of processors
to increase. Two of the three dimensions of the cube are divided
by

√
P . Hence, each processor has

3√N
√
P

×
3√N
√
P

×
3√N points. A pencil

decomposition is used in the current analysis.

2.1.2. FFT calculation flow
The pencil decomposition of a 3-D FFT consists of three com-

putation phases separated by two all-to-all communication
phases. Each computation phase computes 3√N ×

3√N 1-D FFTs
of size 3√N in parallel. Each all-to-all communication requires
O(

√
P) exchanges for the transpose between pencil-shaped sub-

domains on P processes. This calculation flow is illustrated in
Fig. 1.

The solution of the Poisson equation −∆u = f based on FFT
is

x = x̂−1(f̂ /|k|2), (2)

where f̂ is the Fourier transform of f and x̂−1 is the inverse Fourier
transform of x. Thus, solving the Poisson equation using Fourier
transform can be broken down into three steps: (1) compute the
FFT of f ; (2) scale f̂ by |k|2 in Fourier space; and (3) compute the
inverse Fourier transform of the result.

2.2. Fast multipole method

N-body problems are used to simulate physical systems of par-
ticle interactions under a physical or electromagnetic field [20].
The N-body problem can be represented by the sum

f (yj) =

N∑
i=1

wiK (yj, xi), (3)

where f (yj) represents a field value evaluated at a point yj that is
generated by the influence of sources located at the set of centers
{xi}. {xi} is the set of source points with weights given by wi, {yj} is
the set of evaluation points, and K (y, x) is the kernel that governs
the interactions between evaluation and source points.

The direct approach to simulate the N-body problem evalu-
ates all pair-wise interactions among the points which results
in a computational complexity of O(N2). This complexity is pro-
hibitively expensive even for modestly large data sets. For sim-
ulations with large data sets, many faster algorithms have been
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Fig. 2. Decomposition of a 2-D computational domain into a quad-tree.

Fig. 3. Illustration of the FMM kernels: P2M (Point-to-Multipole), M2M
(Multipole-to-Multipole), M2L (Multipole-to-Local), L2L (Local-to-Local), L2P
(Local-to-Point), and P2P (Point-to-Point).

invented, e.g., tree code [5] and fast multipole methods [20].
The fast algorithms cluster points at successive levels of spatial
refinement. The tree code clusters the far points and achieves
O(N logN) complexity. The further apart the points, the larger
the interaction groups into which they are clustered. On the other
hand, FMM divides the computational domain into near-domain
and far-domain and computes interactions between clusters by
means of local and multipole expansions, providing O(N) com-
plexity. Other N-body approaches follow a similar strategy [6,9].
FMM is more than an N-body solver, however. Recent efforts
to view the FMM as an elliptic PDE solver have opened the
possibility to use it as a preconditioner for even a broader range
of applications [22].

2.2.1. Hierarchical domain decomposition
The first step of the FMM algorithm is the decomposition of

the computational domain. This spatial decomposition is accom-
plished by a hierarchical subdivision of the space associated with
a tree structure. The 3-D spatial domain of FMM is represented
by oct-trees, where the space is recursively subdivided into eight
boxes until the finest level of refinement or ‘‘leaf level’’. Fig. 2
illustrates an example of a hierarchical space decomposition for
a 2-D domain that is associated with a quad-tree structure.

2.2.2. The FMM calculation flow
The FMM calculation begins by transforming the mass/charge

of the source points into multipole expansions by means of a
Point-to-Multipole kernel (P2M). Then, the multipole expansions
are translated to the center of larger boxes using a Multipole-
to-Multipole kernel (M2M). FMM calculates the influence of the
multipoles on the target points in three steps: (1) translation
of the multipole expansions to local expansions between well-
separated boxes using a Multipole-to-Local kernel (M2L);
(2) translation of local expansions to smaller boxes using a Local-
to-Local kernel (L2L); and (3) translation of the effect of local

Table 1
Amount of communication in FMM.

Boxes to send/level

Global M2L 26 × 8
Local M2L (2i

+ 4)3 − 8i

Local P2P (2i
+ 2)3 − 8i

expansions in the far field onto target points using a Local-
to-Point kernel (L2P). All-pairs interaction is used to calculate
the near field influence on the target points by means of a
Point-to-Point kernel (P2P). Fig. 3 illustrates the FMM main ker-
nels: Point-to-Multipole (P2M), Multipole-to-Multipole (M2M),
Multipole-to-Local (M2L), Local-to-Local (L2L), Local-to-Point
(L2P), and Point-to-Point (P2P). The dominant kernels of the FMM
calculation are P2P and M2L.

2.2.3. FMM communication scheme
In this study, we adopt a tree structure that is similar to the

one described in [1,21] where FMM uses a separate tree structure
for the local and global trees. Each leaf of the global tree is a root
of a local tree for a particular MPI process. Therefore, the depth
of the global tree depends only on the number of processes P
and grows with log8(P) in 3-D. Each MPI process stores only the
local tree, which depth grows with log8(N/P), and communicates
the halo region at each level of the local and global tree. Table 1
shows the number of boxes that are sent at the ‘‘Global M2L’’,
‘‘Local M2L’’, and ‘‘Local P2P’’ phases where i refers to the level in
the local tree and 26 is the number of nearest neighbors.

2.3. Multigrid

Multigrid methods are among the most effective solvers for
a wide range of problems. They target the solution of a sparse
linear system Ax = b with N unknowns in a computational
complexity of O(N). The basic idea behind MG is to use a se-
quence of coarse grids to accelerate convergence of the fine
grid solution. The building blocks of the multigrid method are
the smoothing, restriction, and interpolation operators. These are
usually 3-D stencil operations on a structured grid in the case of
geometric multigrid (GMG) and sparse matrix–vector multiplica-
tions (SpMV) in algebraic multigrid (AMG). In the current study,
multigrid refers to the geometric multigrid.

The V-cycle, shown in Fig. 4, is the standard process of a multi-
grid solver. Starting at the finest structured grid, a smoothing
operation is applied to reduce high-frequency errors followed by
a transfer of the residual to the next coarser grid. This process is
repeated until the coarsest level is reached, at which point the lin-
ear system is solved with a direct solver. The error is then inter-
polated back to the finest grid. The V-cycle is mainly dominated
by the smoothing and residual operations on each level.

A multigrid solver is constructed by repeated application of a
V-cycle. The number of V-cycles required to reduce the norm of
the error by a given tolerance ϵ is estimated by

itrMG =
log ϵ

log ρ
, (4)
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Fig. 4. Illustration of the multigrid V-cycle.

where ρ is the convergence rate. Generally, the convergence rate
is bounded by ((κ − 1)/κ)µ where µ is the number of smoothing
steps and κ is the condition number of the matrix A [4].

3. Exascale projection

In this paper we consider exascale systems built from hy-
pothetical processors based on extrapolating current technology
trends. This section describes how we project these hypothetical
CPU-based and GPU-based exascale systems. Similar concept was
applied in 2010 by [13].

We collect CPUs and GPUs peak performance, memory band-
width, and number of cores per processor for the period 2007–
2017. Linear regression is then used to find the doubling-time
estimate for each parameter, as shown in Fig. 5. For the network
link bandwidth, we begin with the data collected in [13], which
covers the period 1986–2012. We then collect the same data for
systems that made the TOP500 list since 2012.

Table 2 shows processor architecture projections, from start-
ing values on the Argonne National Laboratory’s Cooley (GPU-
based) and KAUST’s Shaheen II system (CPU-based), both
delivered in 2015. We assume that in 2025, we will be able to
build a 7 exaFLOP/s (double-precision) system, as projected in

Fig. 6. The value ‘‘Processors’’ count in Table 2 is scaled to reflect
this performance.

4. Concurrency

To gain some insight into the solvers’ performance on the
massively concurrent systems expected at exascale, we derive an-
alytical performance models that include computation and both
intra- and inter-node communication costs. The intra-node com-
munication along with the computation cost account for the
single node performance which is a critical building-block in
scalable parallel programs, whereas the inter-node term reflects
the impact of network communication on the scalability.

In this section we develop performance models for FFT, FMM,
and MG on P nodes for a total problem size of N =

3√N ×
3√N ×

3√N . Throughout, the computation time is defined as the
total number of floating-point operations, multiplied by the time
per floating-point operation, tc , in seconds. Memory movement
is modeled as the total data fetched into fast memory, multiplied
by the memory bandwidth inverse (βmem) in units of seconds per
element. Assuming arithmetic and memory operations are not
overlapped, the total execution time Texe is given by

Texe = Tcomp + Tmem, (5)

and with overlap, Texe is given by

Texe ≈ max(Tcomp, Tmem), (6)

where Tcomp is the computation time and Tmem is the time spent
transferring data in a two-level memory hierarchy between the
main memory and cache. Texe in (6) can be rewritten as

Texe = nFLOP · tc · max(1,
Bτ

AI
), (7)

where nFLOP is the number of FLOPs, nmem is the number of main
memory operations, Bτ ≡ βmem/tc is the processor time balance,
and AI ≡ nFLOP/nmem is the arithmetic intensity. In order to
minimize the execution time, AI must be larger than Bτ . This
condition is referred to as the balance principle.

Fig. 5. Hardware trends.
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Table 2
Processor architecture projections.
Parameter 2015 values Doubling time 10-yeara Value

(in years) increase factor

Processor 1/tcpu 588.8 GF/s 2.0 32× 18.8 TF/s
peak 1/tgpu 1.45 TF/s 1.47 111.6× 161.8 TF/s

Memory 1/βcpu 68 GB/s 5.2 3.8× 258 GB/s
bandwidth 1/βgpu 240 GB/s 2.98 10.2× 2.4 TB/s

Cores ρcpu 16 3.29 8.2× 132
ρgpu 2496 1.87 40.7× 101.6k

Fast Zcpu 40 MB 2.0 32.0× 1.3 GB
memory Zgpu 1.5 MB 48 MB

Line size Lcpu 64 B 10.2 2.0× 128 B
Lgpu 128 B 256 B

Link 1/βlink 10 GB/s 3.0 10× 100 GB/sbandwidth

Machine Rpeak 7 PF/s 1.0 1000.0× 7 EF/speak

Processors Pcpu 11,889 2.01 31.3× 372k
(Rpeak × t) Pgpu 4828 3.15 9× 43.3k

aThe 10-year increase factor is calculated using 210/Doubling Time .

Fig. 6. Top machine on the TOP500 list by year [26].

Inter-node communication cost is modeled using the postal
model or α–βlink model for communication, where α represents
communication latency, βlink is the send time per element over
the network (inverse the link bandwidth). Using this basic model,
communication cost can be represented as

Tnet = mα + nβlink, (8)

where m and n are the maximum number of messages and total
number of elements sent by a process, respectively.

4.1. Fast Fourier transform

4.1.1. Computation costs
The 1-D Cooley–Tukey FFT of size 3√N consists of approxi-

mately (5 3√N log 3√N) floating-point operations. Hence, the total
computation time of the 3-D FFT is

Tcomp,FFT = 3 ·
5N log 3√N

P
· tc, (9)

This model accounts for the three computational phases where
each phase consists of 3√N ×

3√N 1-D FFTs performed in parallel.

4.1.2. Memory access costs
For a cache with size Z and cache-line length L in elements, a

cache-oblivious 3√N-point 1-D FFT incurs Θ(1+
3√N
L (1+logZ

3√N))
cache misses, for each transferring line of size L [13,16]. This
bound is optimal, matching the lower bound by Hong and Kung

[23] when 3√N is an exact power of two. Thus, the time spent
moving data between the main memory and a processor in the
3-D FFT is given by

Tmem,FFT = 3 ·
N logZ

3√N
P

· βmem. (10)

4.1.3. Network communication costs
In the pencil decomposed 3-D FFT, each processor performs

two all-to-all communications with
√
P other processors sending

a total of N
P data points at each communication phase. Hence, the

FFT inter-node communication time is approximated by

Tnet,FFT = 2 · (
√
P · α +

N
P

· βlink), (11)

where the factor of two accounts for the two communication
phases. Since a fully connected network is unlikely at exascale,
a more realistic estimation of the communication cost must in-
clude the topology of the interconnect [13]. For example, on a
3-D torus network without task-aware process placement, the
communication time is bounded by the bisection bandwidth P2/3

βlink
.

Thus

Tnet,FFT = 2 · (
√
P · α +

N
P2/3 · βlink). (12)

4.2. Fast multipole method

In this section, we present analytical models for the two
phases of FMM that consume most of the calculation time: P2P
and M2L. We assume a nearly uniform points distribution and
therefore a full oct-tree structure.

4.2.1. Computation costs
P2p. Assuming q points per leaf box, the computational com-
plexity of the P2P phase is 27q2 N

q where 27 is the number of

neighbors including the box itself. This leads to a computation
cost of

Tcomp,P2P = 27 ·
qN
P

· tc . (13)

M2l. The asymptotic complexity of the M2L phase depends on
the order of expansion k and the choice of series expansion.
Table 3 shows the asymptotic arithmetic complexity with respect
to k for different expansions used in fast N-body methods [28,29].
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Table 3
Asymptotic arithmetic complexity with respect to the order of expansion k for
the different series expansions (3-D).
Type of expansion Complexity

Cartesian Taylor O(k6)
Cartesian Chebychev O(k6)
Spherical harmonics O(k4)
Spherical harmonics+rotation O(k3)
Spherical harmonics+FFT O(k2 log2 k)
Planewave O(k3)
Equivalent charges O(k4)
Equivalent charges+FFT O(k3 log k)

The kernel-independent FMM (KIFMM) [27], which uses
equivalent charges and FFT, has a more precise operations count
of k3 log k + 189k3 [10]. Hence, the M2L phase of the KIFMM has
a total computation cost of

Tcomp,M2L =
Nk3 log k

q · P
· tc + 189 ·

Nk3

q · P
· tc, (14)

where 189 is the number of well-separated neighbors per box
(63

− 33
= 189).

Another state-of-the-art FMM implementation is exaFMM [28]
which uses Cartesian series expansion. ExaFMM has operations
count of 189k6. Hence

Tcomp,M2L = 189 ·
Nk6

q · P
· tc . (15)

4.2.2. Memory access costs
As shown in [10], the outer loops of the P2P and M2L com-

putations can be modeled as sparse matrix–vector multiplies. A
cache-oblivious algorithm [8] for multiplying a sparse H × H
matrix with h non-zeros by a vector establishes an upper bound
on cache misses in the SpMV as

O
(
h
L

+
H

Z1/3

)
, (16)

for each transferring line of size L.

P2p. Applying (16) gives an upper bound on the number of cache
misses for the P2P phase as follows

QP2P ≤ 4 ·
N

L · P
+ bP2P ·

N/q
L · P

+ 4 ·
N

L · P
+

N/q

( Z
4q )

1/3
· P

, (17)

where bP2P is the average number of source boxes in the neighbor
list of a target leaf box (bP2P = 26 for an interior box in a uniform
distribution). The first two terms on the right-hand side of (17)
refer to read access for the source boxes and the neighbor lists
for each target box, while the third term refers to the update
access for the target leaf box potentials. In P2P communication,
coordinates and values of every point belonging to the box must
be sent, resulting in a multiplication factor of four. We model the
dominant access time as

Tmem,P2P =
N
P

· βmem +
NL

(Z (1/3)q(2/3)) · P
· βmem. (18)

M2l. Applying (16) for the M2L phase gives an upper bound on
the number of cache misses as follows

QM2L ≤
(bt + bs)f (k)

L
+

bM2Lbt
L

+
bt( Z̄

f (p)

)1/3 , (19)

where bt is the number of target boxes, bs is the number of source
boxes, bM2L is the average number of source boxes in the well-
separated list of a target box (bM2L = 189 for an interior box in a
uniform distribution), f (k) is the asymptotic complexity given in

Table 3, and Z̄ is the effective cache size. For Z̄ , we assume that all
possible M2L translation operators (73

−33
= 316) are computed

and stored in the cache, leading to Z̄ = Z − 316 · f (k).
Considering the higher order terms, the memory access cost

of the M2L phase can be approximated by

Tmem,M2L =
Nf (k)
q · P

· βmem +
Nf (k)1/3L
qZ̄1/3 · P

· βmem. (20)

4.2.3. Network communication costs
P2p. The P2P communication is executing only at the lowest
level of the FMM tree where each node communicates with its
26 neighbors. In total, each node communicates one layer of
halo boxes which create a volume of (2l

+ 2)3 − 8l where l =

log8(N/P). Using the α–βlink model, the inter-node communica-
tion cost of the P2P phase can be represented by

Tnet,P2P = 26α + nP2Pβlink, (21)

where nP2P is the number of elements in (((NP )
1
3 + 2)3 −

N
P ) leaf

boxes.

M2l. Similar to the P2P phase, the number of communicating
nodes in the M2L phase is always the 26 neighbors. To use the
α–βlink model, we estimate the amount of data that is sent at
each level of the FMM hierarchy. Table 1 shows the number of
boxes that are sent at the ‘‘Global M2L’’, ‘‘Local M2L’’, and ‘‘Local
P2P’’ phases where i refers to the level in the local tree. Thus, the
communication cost of the M2L phase at level l is represented by

T l
net,M2L = 26α + nl

M2L
βlink, (22)

where nl
M2L

is the number of elements sent at level l.

4.3. Multigrid

The basic building blocks of the classic geometric multigrid
algorithm are all essentially stencil computations. In this section,
the multigrid solve time is modeled as the sum of the time spent
smoothing, restricting, and interpolating at each level as follows

TMG
solve = TS + TR + TI , (23)

where TS , TR, and TI are the smoothing, restriction, and interpo-
lation times, respectively.

In the classical multigrid there are more grid points than
processors at fine levels. Hence, all processors are active. On
coarse grids, however, there are fewer grid points than pro-
cessors. Therefore, some processors execute on one grid point
while others are idle. Some approaches to alleviate this problem
include redistributing the coarsest problem to a single process
and redundant data distributions. We assume a naïve multigrid
implementation where the number of points decreases by a con-
stant factor γ in each dimension after each restriction operation.
For simplicity of analysis, we assume restriction and interpolation
require only communication with neighbors [18].

4.3.1. Computation costs
The smoother is a repeated stencil application. Each smoothing

step is performed η1 times before restriction and η2 times after
interpolation. Thus, the computation cost on a seven-point stencil
can be approximated by

Tcomp,S = 7η ·

(⌊log
γ 3

N
P ⌋∑

i=0

N
γ 3iP

+

⌊log
γ 3 N⌋∑

i=⌊log
γ 3

N
P ⌋+1

1

)
· tc, (24)

where the number of smoothing phases η = η1 + η2. In our
analysis we assume one smoothing step before restricting and
one smoothing step after interpolation.
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Fig. 7. Roofline model and computation intensity of various phases of the FFT,
FMM, and MG methods with N = (32K)3 .

4.3.2. Memory access costs
A cache oblivious algorithm for 3-D stencil computations in-

curs at most O(N/Z1/3) cache misses for each transferring line
of size L [17]. This number of cache misses matches the lower
bound of Hong and Kung [23] within a constant factor. We ap-
ply this bound to the stencil computations within the multigrid
method. Therefore, the memory access cost of smoothing can be
represented by

Tmem,S = 7η ·

(⌊log
γ 3

N
P ⌋∑

i=0

N
γ 3iP

+

⌊log
γ 3 N⌋∑

i=⌊log
γ 3

N
P ⌋+1

1

)
L

Z1/3 · βmem. (25)

4.3.3. Network communication costs
Communication within the V-cycle takes the form of nearest-

neighbor halo exchanges. In the 3-D multigrid, each processor
communicates with its six neighbors where the amount of data
exchanged decreases by a factor of c2 on each subsequent level.
Thus, the communication time at level l is given by

T l
net,S = T l

net,R = T l
net,I = 6α +

6(N/P)2/3

γ 2l · βlink. (26)

4.4. Model interpretation

4.4.1. Roofline model
Arithmetic intensity (AI) is the ratio of total floating-point

operations (FLOPs) to total data movement (Bytes). Applications
with low arithmetic intensity are typically memory-bound. This
means their execution time is limited by the speed at which
data can be moved rather than the speed at which computa-
tions can be performed, as in compute-bound applications. Hence,
memory-bound applications achieve only a small percentage of
the theoretical peak performance of the underlying hardware.

The roofline model can be used to assess the quality of at-
tained floating-point performance (GFLOP/s) by combining ma-
chine peak performance, machine sustained bandwidth, and
arithmetic intensity as follows

Attainable (GFLOP/s) = min(Peak (GFLOP/s),Memory BW × AI).
(27)

Fig. 7 shows a roofline model along with the arithmetic in-
tensity of various phases of the FFT, FMM, and MG methods. The
ridge point on the roofline model is the processor balance point.
All intensities to the left of the balance point are memory bound,

Fig. 8. Execution time (normalized to nFLOP) for various computational
complexities.

whereas all to the right are compute bound. Comparing the
three methods shows that the FMM computations have higher
arithmetic intensity due to its matrix-free nature. On the other
hand, SpMV and stencil operations, which are the basic building
blocks of the classic algebraic and geometric multigrid methods,
have low arithmetic intensities. The 3-D FFT has an intermediate
arithmetic intensity that grows slowly with the problem size.

In order to understand the relation between computation time
and arithmetic intensity, the algorithmic efficiency must be taken
into account. Using (7), Fig. 8 shows that computation time is in-
dependent of the algorithmic computational complexity up until
the processor balance point. Beyond that point, it increases as a
function of the algorithmic complexity.

4.4.2. Projecting forward
Fig. 7 also shows the roofline model of a possible future

CPU processor. The characteristics of the processor are based on
extrapolating historical technology trends. These trends are sum-
marized in Table 2. From Fig. 7 we observe that although FMM
is compute-bound on contemporary systems, it could become
memory-bound at exascale.

5. Resiliency

The focus of this section is on the main memory and net-
work errors. Therefore, to assess the resilience of FFT, FMM, and
MG, we quantify the vulnerability of the data structures and
communication patterns used within these methods.

For data structures, we use the data vulnerability factor (DVF )
introduced in [30]. The DVF for a specific data structure (DVFd) is
defined as

DVFd = FIT × Texe × Sd × Nha, (28)

where FIT is the failure in time (failures per billion hours per
Mbit), Texe is the application execution time, Sd is the size of the
data structure, and Nha is the number of accesses to the hardware
(main memory in this study). To estimate Nha, we use the number
of cache misses approximated for FFT, FMM, and MG in Section 4.

The DVF of an application (DVFa) can be calculated by

DVFa =

D∑
i=1

DVFdi , (29)

where D is the number of major data structures in the application.
For communication, we introduce the communication vulner-

ability factor (CVF ) which reflects the communication pattern and
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Table 4
Data vulnerability factors of FFT, FMM, and MG.

2015 2025

FFT 0.003 0.431
FMM 0.376 41.20
MG 0.037 2.101

Table 5
Communication vulnerability factors of FFT, FMM, and MG.

2015 2025

FFT 0.020 2.934
FMM 3.4e−4 0.004
MG 1.2e−5 4.9e−5

network characteristics. The CVF for a specific kernel (CVFk) is
defined as

CVFk = m × Tnet × RFn, (30)

wherem is the maximum number of messages sent, Tnet is the ap-
plication communication time, and RFn is the network resilience
factor defined for uniform deterministic traffic [24] as follows

RFn = h̄pe + bp2b, (31)

where h̄ is the average route length and pe is the effective link
failure probability given by

pe = apa + 2bpb − bp2b, (32)

where a is the probability of the occurrence of an event A that
can only affect the status of a link, b is the probability of the
occurrence of an event B that can affect the status of all the links
incident at a node, and pa and pb are the probability that events
A and B, respectively, can lead to link failure. Here, we define h̄
as the diameter of the network formed by P nodes.

For multilevel methods, the CVF is calculated at each level
individually. Thus, the application CVFa is given by

CVFa =

K∑
k=1

CVFk, (33)

where K is the number of key kernels in the application and CVFk
is given by

CVFk =

L∑
l=1

CVF l
k, (34)

where L is the number of levels.

5.1. Model interpretation

5.1.1. Data structures vulnerability
Table 4 shows the DVF of the FFT, FMM, and MG methods.

FMM has random memory access pattern as memory accesses
to the tree are random. FFT and MG, on the other had, have
template-based memory access pattern where accesses to ele-
ments of the data structure mesh follow specific topology or
stencil information instead of arbitrarily constructed. Table 4
shows that algorithms with random memory access pattern, such
as FMM, have higher DVF than algorithms with template-based
memory access pattern, such as FFT and MG. Therefore, the FMM
data structures are more sensitive to memory errors compared
to FFT and MG. These observations are consistent with the ones
in [30].

5.1.2. Communication vulnerability
The communication vulnerability factors of FFT, FMM, and MG

are shown in Table 5. As expected, the all-to-all communica-
tion pattern of FFT makes it more sensitive to network failures
compared to the hierarchical methods, FMM and MG. The hierar-
chical nature of FMM and MG reduces the O(

√
P) communication

complexity of FFT to O(log P). This communication complexity is
likely to be optimal for elliptic problems, since an appropriately
coarsened representation of a local forcing must somehow arrive
at all other parts of the domain for the elliptic equation to
converge.

5.1.3. Projecting forward
For exascale projections, we scale the problem size by the

‘‘Cores’’ 10-year increase factor from Table 2. In Tables 4 and
5, the problem size per processor is N/P = 323 for 2015 and
N/P = 653 for 2025. We also scale the number of processes by
the ‘‘Processors’’ increase factor from P = 11,889 to P = 372k
and assume that the effective link failure probability pe remains
constant over time. The results show that both the DVF and CVF
are expected to increase on future exascale systems with more
drastic increase in the DVF.

6. Heterogeneity

In this section we adapt the FFT, FMM, and MG execution
models introduced in Section 4 to accelerators. In particular, we
consider NVIDIA GPUs. One of the main architectural differences
between GPUs and CPUs is the relatively small caches on GPUs
which makes reusing data in the fast memory more difficult.
Another bottleneck to consider on heterogeneous systems is the
PCIe bus. Due to the high compute capability of the GPU, the
PCIe bus can have a significant impact on performance. The PCle
transfer time for n elements is given by

TPCIe(n) = nβPCIe, (35)

where βPCIe is the I/O bus bandwidth inverse in seconds per
element. For FFT, FMM, and MG, the PCle transfer time is given
by

TPCIe = 2 ×
N
P

βPCIe, (36)

where the factor of two accounts for the two ways transfer. Here,
we assume that each processor has a direct network connection,
optimistically avoiding PCIe channels.

6.1. Model interpretation

6.1.1. Roofline model
Fig. 9 shows roofline models of NVIDIA Tesla GPU and of a

possible future GPU processor that is based on extrapolating his-
torical technology trends. Similar to the CPU exascale projection
results, Fig. 9 shows that kernels that are compute-bound on
contemporary systems could become memory-bound at exascale.

6.1.2. Projecting forward
Using the analytical models, we predict the communication

time of FFT, FFM, and MG for large-scale problems on possible
future GPU-only and CPU-only exascale systems. The machine
characteristics of the exascale systems are based on the trends
summarized in Table 2. Fig. 10 shows the communication time of
FFT, FMM, and MG split into memory and network access costs.
We consider extrapolated GPU-only and CPU-only systems that
have the same peak performance of 7 exaFLOPS. The GPU-only
system has 43.3 k processors while the CPU-only system has
372 k processors. The results show that all methods spend less
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Fig. 9. Roofline model of NVIDIA Tesla GPU and computation intensity of various
phases of the FFT, FMM, and MG methods with N = (32 k)3 .

time in both forms of communication on the CPU-only system.
However, this system requires almost 8.7× as many processors
as the GPU-only system. This cost could be prohibitive.

Fig. 10 shows that the FFT communication time is dominated
by the network access cost which is expected given the all-to-all
communication pattern of FFT. On the other hand, memory access
cost dominates MG communication time. This implies that intra-
node communication could become the bottleneck that limits the
scalability of MG on exascale systems.

7. Energy

To characterize power and energy efficiency of the FFT, FMM,
and MG methods, we use the energy roofline model introduced
in [11]. This model bounds power consumption as a function
of the total floating-point operations and total amount of data
moved. The energy cost (Joules) is defined by

E ≡ EFLOP + Emem + E0(Texe), (37)

where EFLOP is the total energy consumption of the computation,
Emem is the total energy consumption of memory traffic, and E0 is
a measure of energy leakage as a function of execution time, Texe.

Suppose the energy cost is linear in Texe with a fixed constant
power π0, (37) can be written as

E = nFLOP · ϵFLOP + nmem · ϵmem + π0 · Texe, (38)

where nFLOP is the number of FLOPs, nmem is the number of
main memory operations, and ϵFLOP and ϵmem are fixed energy per
computation and per memory operation, respectively. Defining
the energy balance Bϵ ≡ ϵmem/ϵFLOP , the above equation becomes

E = nFLOP · ϵFLOP · (1 +
Bϵ

AI
+

π0 · Texe
ϵFLOP · nFLOP

), (39)

Table 6
Component scaling with node size. Ratios are given in reference to 45 nm
[15].
Tech node (nm) Frequency Voltage Capacitance Power

45 1.00 1.00 1.00 1.00
32 1.10 0.93 0.75 0.71
22 1.19 0.88 0.56 0.52
16 1.25 0.86 0.42 0.39
11 1.30 0.84 0.32 0.29
8 1.34 0.84 0.24 0.22

Using (39), Fig. 12 shows the energy roofline model along with
the arithmetic intensity of various phases of FFT, FMM, and MG.
The figure shows that algorithms with higher arithmetic intensity
have better energy efficiency. However, total energy consumption
depends heavily on the algorithmic efficiency. Similar to Fig. 8,
Fig. 13 shows that total energy consumption is independent of
the algorithmic computational complexity for all intensities to the
left of the processor balance point whereas energy consumption
increases as a function of the algorithmic complexity beyond that
point.

7.1. Projecting forward

The classic equation for dynamic power is given by

Powerdyn = αCV 2f , (40)

where C is the load capacitance, a physical property of the mate-
rial, V is the supply voltage, and f is the clock frequency. Hence,
ϵFLOP and ϵmem become

ϵFLOP = tc · Powerdyn, (41)

and

ϵmem = βmem · Powerdyn. (42)

To estimate the energy efficiency of future multicore chips, we
use the transistor scaling projection model presented in [15]. This
model provides the area, voltage, and frequency scaling factors for
technology nodes from 45 nm through 8 nm. These factors are
summarized in Table 6. Fig. 11 shows how the energy efficiency
is predicted to improve as the node size decreases. Nevertheless,
the per-transistor power efficiency improvements have slowed in
comparison to the historic rates. Microarchitecture innovations
are needed to improve the energy efficiency.

8. Memory

Memory hierarchy is expected to change at exascale based
on both new packaging capabilities and new technologies to
provide the required bandwidth and capacity. Local RAM and
non-volatile-memory (NVRAM) will be available either on or very
close to the nodes to reduce wire delay and power consumption.

Fig. 10. Exascale projections of the FFT, FMM, and MG methods on GPU- and CPU-only systems with N = (65 k)3 .
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Fig. 11. Energy roofline model of various technology nodes along with the
computation intensity of FFT, FMM, and MG.

Fig. 12. Energy roofline model of NVIDIA GTX 580 GPU and Intel i7-950 (double-
precision) along with the computation intensity of various phases of FFT, FMM,
and MG (GPU: ϵFLOP ≈ 212 pJ per FLOP, ϵmem ≈ 513 pJ per Byte, π0 ≈ 122 W,
tc ≈ 5.1 ps per FLOP, and βmem ≈ 5.2 ps per Byte; CPU: ϵFLOP ≈ 670 pJ per FLOP,
ϵmem ≈ 795 pJ per Byte, π0 ≈ 122 W, tc ≈ 18 ps per FLOP, and βmem ≈ 39 ps
per Byte [12]).

One of the leading proposed mechanism to emerge in the mem-
ory hierarchy is the 3-D stacked memory which enables DRAM
devices with much higher bandwidths than traditional DIMMs
(dual in-line memory module).

Deeper memory hierarchy is expected at exascale with each
level composed of a different memory technology. One proposed
memory hierarchy for exascale systems consists of [2]: a high-
bandwidth 3-D stacked memory, such as high bandwidth mem-
ory (HBM) standard or hybrid memory cube (HMC) technology, a
standard DRAM, and NVRAM memory. Approximate bandwidths
and capacities of the proposed memory subsystem are shown in
Table 7.

Fig. 14 shows memory-aware roofline models of the different
memory technologies. The roofline models can be derived by sub-
stituting the bandwidth values from Table 7 into (27). Emerging
3-D stacked DRAM devices, such as HBM and HMC, will sig-
nificantly increase available memory bandwidth. However, with
the exponential increase in core counts, stacked DRAM will only
move the memory wall and is unlikely to break through it [25].
Fig. 14 also shows the large difference in attainable performance
between different levels of the memory hierarchy. Exascale ap-
plications need to exploit data locality and explicitly manage data
movement to minimize the cost of memory accesses and to make
the most effective use of available bandwidth.

Fig. 13. Energy consumption (normalized to nFLOP) for various computational
complexities.

Fig. 14. Memory-aware roofline model of a possible exascale machine along
with the computation intensity of various phases of FFT, FMM, and multigrid
methods with N = (32 k)3 .

9. Observations

• Algorithms that are known to be compute-bound on current
architectures, such as the FMM, could become memory-
bound on future CPU- and GPU-based exascale systems.

• Execution time and energy consumption are independent
of the algorithmic computational complexity up until the
processor balance point. They increase as a function of the
algorithmic complexity beyond that point.

• Heterogeneous systems are important for energy efficient
scientific computing.

• It is well known that GPUs deliver more peak performance
and bandwidth relative to high-end CPUs. This performance
gap is likely to increase towards exascale, as shown in
Fig. 15.

• Emerging 3-D stacked DRAM devices will significantly in-
crease available memory bandwidth. However, with the ex-
ponential increase in core counts, stacked DRAM will only
move the memory wall and is unlikely to break through it.

10. Conclusions

Recent efforts [14] have identified several constraints in the
design of exascale software that include massive concurrency,
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Table 7
Approximate bandwidths and capacities of memory subsystem.

Configuration Bandwidth Capacity

Single-Level HMC 240 GB/s per stack 16 GB per stack

Multi-Level DRAM HBM 200 GB/s per stack 16 GB per stack
DDR 20 GB/s per channel 64 GB per DIMM

High capacity memory NVRAM 10 GB/s 4 − 8 × DRAM

Fig. 15. CPU- and GPU-based roofline models.

resilience management, exploiting the high performance of het-
erogeneous systems, energy efficiency, and utilizing the deeper
and more complex memory hierarchy expected at exascale. In
this manuscript, we perform model-based comparison of the FFT,
FMM, and MG methods vis-à-vis these challenges. We believe
that the importance of each of these challenges is application de-
pendent. This paper provides metrics for researchers to quantify
these challenges and their importance relative to the applications
of interest.

Modeling FFT, FMM, and MG relative to these challenges has
contributed to our understanding of the main steps that must be
taken on both application and architecture sides to help overcom-
ing these challenges.

On the application side:

• Rethink algorithms to reduce memory requirements. Data
movement is the dominant factor that limits performance
and efficiency on contemporary architecture. Attainable
floating-point performance of memory-bound applications
is limited by the memory bandwidth. Furthermore, a sig-
nificant portion of the energy consumption of modern su-
percomputers is caused by memory operations. Reducing
data movements leads to higher arithmetic intensity, lower
memory bandwidth usage, lower energy consumption, and
better scalability with the number of cores.

• Rethink algorithms to improve arithmetic intensity. High arith-
metic intensity is essential for achieving good performance
and efficiency. Possible approaches to increase the arith-
metic intensity include improving data locality, combining
multiple kernels into a single high arithmetic intensity ker-
nel, and reducing the memory footprint by, for example,
using matrix-free approaches as in the FMM.

• Design for sustainability. Resilience is a major obstacle on
the road to exascale. Our projections show that resilience
is expected to be a much larger issue on exascale systems
than it is on current petascale computers. New resilience
paradigms are required.

• Enable energy-efficient software. In addition to reducing
memory operations and improving arithmetic intensity,
power consumption can be reduced at the software side
by efficiently exploiting thread level parallelism to ensure
balance between performance gains and increases in energy
consumption.

On the architectural side:

• Increasing memory bandwidth. Radical technology advances
are needed to improve local memory bandwidth.

• Enable energy-efficient computers. Ongoing research efforts to
improve energy efficiency include [19]: dynamic
frequency scaling, power-aware applications, energy man-
agement throughout the hardware/software stack, and op-
timization techniques for balancing performance and power.
Nevertheless, disruptive technology breakthroughs are still
needed to enable energy efficient computers.
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