W) Check for updates

nternational Journal of

HIGH PERFORMANCE
COMPUTING APPLICATIONS

Special Issue: Post ECP

The International Journal of High
Performance Computing Applications
2025, Vol. 39(2) 251-268

© The Author(s) 2024

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10943420241303884
journals.sagepub.com/home/hpc

S Sage

Advancements of PAPI for the exascale
generation

Heike Jagode' ©®, Anthony Danalis' ©, Giuseppe Congiu' ©,
Daniel Barry', Anthony Castaldo” and Jack Dongarra'

Abstract

The Performance Application Programming Interface (PAPI) serves as a coherent, operating-system-independent interface
for accessing performance counter data across a wide range of hardware and software components. PAPI can operate
autonomously as a performance monitoring library and tool for application analysis. However, its true value emerges when
it functions as a middleware for numerous third-party profiling, tracing, and sampling toolkits, establishing itself as a
universal interface for hardware counter analysis. In this role, PAPI manages the intricacies of each hardware component,
presenting a streamlined API to higher-level toolkits. Within the Exascale Computing Project (ECP), PAPI has expanded its
capabilities in performance counter monitoring and incorporated support for power management across cutting-edge
hardware and software technologies. This includes performance and power monitoring for AMD GPUs through inte-
gration with AMD ROCm and ROCm-SM|, Intel Ponte Vecchio GPUs via Intel’s oneAPI Level Zero, and NVIDIA GPUs
through the CUPTI Profiling API. Additionally, PAPI is compatible with interconnects, the latest CPUs, and ARM chips.
These enhancements have been implemented while preserving the standard PAPI interface and methodology for utilizing
low-level performance counters in CPUs, GPUs, on/off-chip memory, interconnects, and the I/O system, encompassing
energy and power management. To strengthen PAPI’s sustainability, ECP has facilitated its integration into Spack and E4S,
ensuring software robustness through continuous integration and continuous deployment. In addition to hardware
counter-based data, PAPI now supports the registration and monitoring of Software-Defined Events. This feature exposes
the internal behavior of runtime systems and libraries like PaRSEC, SLATE, Magma, to applications utilizing those libraries,
broadening the scope of performance events to include software-based information. Additionally, PAPI has been expanded
with the Counter Analysis Toolkit, aiding in native performance counter disambiguation through micro-benchmarks. These
micro-benchmarks probe various essential aspects of modern chips, contributing to the classification of raw performance
events. In summary, ECP has enabled PAPI to include comprehensive counter analysis capabilities, advanced performance
and power monitoring support for exascale hardware components, and broadened the scope of performance events to
encompass not only hardware-related metrics but also software-based information.

Keywords
Performance monitoring, power monitoring, energy efficiency, hardware performance counters

software layers, or the development and integration of new
hardware technologies—is the crucial role played by per-
formance monitoring tools and solutions. The objective of
these tools is to continuously track metrics at the lowest

|. Introduction

Modern computer systems need to integrate with a variety
of computational applications, software and hardware
technologies, each presenting unique characteristics and
resource requirements. On the software side, it is imperative

that applications and software layers execute efficiently and
at high performance. On the hardware side, while many
modern compute environments are built using commodity
components, there is a need to develop and incorporate new
technologies to support forthcoming advancements in
software and hardware. Central to these efforts—whether it
is ensuring the efficient execution of applications and

'Innovative Computing Laboratory (ICL), University of Tennessee,
Knoxville, TN, USA
ZSynopsys Inc, Sunnyvale, CA, USA

Corresponding author:

Heike Jagode, Innovative Computing Laboratory (ICL), University of
Tennessee, | 122 Volunteer Blvd, Knoxville, TN 37996, USA.

Email: jagode@icl.utk.edu

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/10943420241303884
https://journals.sagepub.com/home/hpc
https://orcid.org/0000-0002-8173-9434
https://orcid.org/0009-0002-9846-0066
https://orcid.org/0009-0008-7165-7591
mailto:jagode@icl.utk.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F10943420241303884&domain=pdf&date_stamp=2024-12-04

252

The International Journal of High Performance Computing Applications 39(2)

hardware level, helping to identify potential inefficiencies or
bottlenecks, and facilitating the operation of high-
performance, and energy-efficient software and hardware.

The Performance Application Programming Interface
(PAPI) plays a central role in this, as it serves as a universal
interface for accessing performance counter data across a
wide range of hardware and software components (Jagode
et al., 2016; Jagode-McCraw et al., 2014; Terpstra et al.,
2010). Specifically, PAPI provides performance counter
monitoring and power management (reading and capping)
support (Haidar et al., 2017, 2018) for the latest CPUs from
various hardware vendors, as well as for AMD and NVIDIA
GPUs. It also offers monitoring support for low-level
performance metrics on Intel GPUs. Additionally, PAPI
provides insights into network congestion for various in-
terconnects, such as Infiniband, Aris, Gemini, and Sling-
shot, as well as monitoring I/O activities, including Lustre
filesystem operations (Jagode and Hein, 2008; Jagode-
McCraw et al., 2013). Last but not least, the PAPI
software-defined-events (SDE) component helps uncover
essential software-critical events from different libraries and
runtimes (Danalis et al., 2019; Jagode et al., 2019).

Accessing all this information uniformly through the
PAPI library is crucial for maintaining productivity. Without
it, application developers and researchers would be forced
to use multiple APIs to access all available performance
events, which could significantly decrease efficiency. Fur-
ther, monitoring and analyzing the performance and energy
efficiency of applications running on increasingly complex,
heterogeneous, multi-vendor systems would become ex-
ceedingly difficult.

This paper highlights the development and advance-
ments delivered for PAPI within the Exascale Computing
Project (ECP), including novel performance counter
monitoring capabilities and support for power management
across cutting-edge hardware from various vendors. In
addition to providing support for the latest hardware and
software layers, ECP also improved PAPI’s sustainability by
enabling integration into the Spack package manager
(Gamblin et al., 2015) and the Extreme-scale Scientific
Software Stack (E4S) (Willenbring et al., 2023), and en-
suring software robustness through continuous integration
and deployment. With the ongoing integration of new
monitoring capabilities for advanced hardware and software
technologies, PAPI is well-positioned to meet the emerging
needs of the high-performance computing community,
continuing to make an impact well beyond the ECP era.

2. Performance and power monitoring
capabilities for GPUs

Within ECP, the PAPI library has been significantly ad-
vanced with functionalities by integrating comprehensive

performance counter monitoring capabilities and em-
bracing support for power management across the latest
hardware and software technologies. This broadened
scope of support encompasses detailed performance
metrics and power usage insights for diverse hardware
platforms, facilitating a deeper understanding of appli-
cation behavior and energy efficiency. The subsections
below detail the monitoring capabilities and mechanisms
used to provide comprehensive access to performance
and power metrics for GPUs from various vendors, in-
cluding AMD, Intel, and NVIDIA.

Overall, these PAPI integrations provide a unified and
cross-platform approach to performance and power
monitoring, crucial for optimizing high-performance
computing applications on exascale systems. This
cross-vendor support ensures consistency and ease of use
across different architectures, providing users with the
necessary tools to optimize their applications for AMD’s,
Intel’s, and NVIDIA’s latest GPU architectures by of-
fering insights into computational efficiency and energy
usage.

2.1. AMD

For AMD GPUs, PAPI has been integrated with AMD’s
vendor-specific Radeon Open Compute Platform
(ROCm) (AMD, 2024a) and the ROCm System Man-
agement Interface (ROCm-SMI) (AMD, 2024b), en-
abling the capture of detailed performance metrics such
as execution cycles, floating-point operations, memory
accesses, and power consumption. The new PAPI com-
ponents, “rocm” and “rocm_smi”, provide users with a
portable solution to access performance counters and
configure hardware parameters, including power caps, on
AMD GPU devices.

2.1.1. Performance monitoring capabilities. The following list,
presented without any particular order, highlights key
monitoring features frequently requested and available on
the latest AMD GPU devices:

LDS/GDS: Local/Global Data Store events
TCP/TA: L1 Cache-related counts

TCC: L2 Cache-related counts

SQ: Sequencer events for fetch, decode, schedule
instructions

FLAT: Instructions using flat address space for Video,
Sys, LDS, and Scratch, which are slower

VMEM: Vector Memory storage events

VMem: Video Memory events

SMEM: Scalar Memory storage events

SFetch: Scalar fetch events

VFetch: Vector fetch events (excluding FLAT
instructions)

Jagode et al.

253

e VALU: Vector Arithmetic Logic Unit events, in-
cluding FMA floating-point operations for various
data types

e SALU: Scalar Arithmetic Logic Unit events

The PAPI “rocm” component provides two modes for
monitoring hardware performance metrics on AMD GPU
devices. While previous AMD GPU monitoring was
limited to “sampling mode” only, the latest PAPI
7.1.0 release introduces support for both “sampling” and
“intercept mode” for the “rocm” component. To switch
between the two monitoring modes for AMD GPUs, users
must set the environment variable ROCP HSA IN-
TERCEPT (1 or 2 for selecting intercept mode, 0 for
sampling mode, which is the default). Regardless of the
collection mode selected, the usage of the PAPI interface
remains identical.

This approach mirrors the PAPI support for Intel
GPUs, which is covered in 2.2. As is common, each
vendor uses its own unique terminology. To provide a
brief overview, “sampling mode” on AMD GPUs cor-
responds to “time-based mode” on Intel GPUs; both
refer to performance counter values that can be read at
any time, independent of the kernels running on the
GPUs. In contrast, “intercept mode” on AMD GPUs is
equivalent to “kernel-based mode” on Intel GPUs. This
mode refers to performance counter monitoring on a per-
kernel basis, where counter values can only be read after
a kernel has finished executing. It is important to note
that in this mode, the respective GPU runtime serializes
kernels that overlap in execution. Essentially, even if
two or more kernels could be executed concurrently on
the GPU, AMD’s ROCm and Intel’s oneAPI serialize
their execution when “intercept” (AMD) or “kernel-
based” (Intel) collection mode is used. This ensures
that event counts are accurately associated with indi-
vidual kernels.

2.1.2. GPU-to-GPU connectivity. The high-performance con-
figurations of AMD’s XGMI architecture enable high-
speed, direct GPU-to-GPU connectivity, and optimizing
its use is crucial for application performance. PAPI now
integrates new monitoring capabilities for AMD’s XGMI-
Link GPU-to-GPU interconnect-related metrics, including
the volume of transmitted and received data, as well as the
throughput for both transmitted and received data, among
other network-monitoring capabilities. PAPI leverages
vendor-specific low-level APIs to access GPU-to-GPU
monitoring capabilities and XGMI-related performance
metrics on AMD GPUs from user space. Moreover, capa-
bilities for monitoring XGMI interconnect activities, crucial
for performance monitoring of multi-threaded and multi-
GPU applications, are integrated into the “rocm smi”
component of PAPIL. The example below demonstrates that

the PAPI event rocm smi:::min xgmi interno-
de bw:device=6:target=0 indicates a minimum
bandwidth utilization of 50,000 bytes per second between
devices 6 and 0, while event rocm smi:::max xg-
mi internode bw:device=0:target=1 reveals a
maximum bandwidth utilization of 200,000 bytes per
second between devices 0 and 1. Additionally, and the zero
result for event rocm smi:::max xgmi interno-
de bw:device=0:target=3 indicates that devices
0 and 3 are not connected directly.

Example: $./papi command line

rocm_smi:::min_xgmi_internode_bw:device=6:target=0

rocm_smi:::max_xgmi_internode_bw:device=0:target=1

rocm_smi:::max_xgmi_internode_bw:device=0:target=3

Output:

rocm_smi::
50,000

rocm_smi::
200,000

rocm_smiz::

0

:min_xgmi_internode_bw:device=6:target=0:
:max_xgmi_internode_bw:device=0:target=1:

:max_xgmi_internode_bw:device=0:target=3:

il

2.1.3. Power usage. The PAPI “rocm smi” component
provides support for power management on AMD GPUs,
including monitoring power consumption, fan speed,
temperature, and enabling power capping, which allows
users to modify run profiles to potentially reduce energy
consumption. Below are some of the monitoring features
available for AMD GPUs:

Power: Monitoring and power capping capabilities.
Temperature: Monitoring current temperature, maxi-
mum critical value, and temporary emergency
temperature.

e Fan: Measuring fan speed in rotations per minute,
maximum speed, and read/write speed.

® Memory: Monitoring used and total memory for:
VRAM (Video RAM, or graphics memory),
visible VRAM (CPU-accessible video memory
on the device), and Graphics Translation Table
(GTT).

e PCI: Monitoring throughput sent, received, and
maximum packet size.

* Busy Percent: Assessing the percentage of time the
device is busy processing.

Figure 1 illustrates the monitoring of PAPI “rocm_smi”
events within the TAU profiler (Shende and Malony, 2006) to
observe power usage for a hipBLAS (AMD, 2024c) GEMM
(General Matrix Multiply) kernel on AMD GPUs. It dem-
onstrates that the PAPI “rocm smi” component is fully
integrated, allowing all its monitoring capabilities to be utilized
by third-party performance analysis tools, like TAU, that al-
ready leverage PAPI as middleware.

254

The International Journal of High Performance Computing Applications 39(2)

TAU: ParaProf Manager (on dopamine.iclutk.edu)

File Options Help

TAU: ParaProf: fhome /gcongiu/papi/src/components/rocm/tests/.tauftests/dopamine-ro...

File Options Windows Help

@ Appiications MetricField val

PAPI NATIVE rocm smi

tetric I

@ PAPI_NATVE rocm_smi::power_average:device=0:sensorm0
@ TME

Fila_Options Windows _Help

Metric: PAPI_NATIVE_rocm_smk::power_average:device=Cisensar=0

#talle #child Calle

3428
6.807
s.867
6.8e7
6807
s.067
6.8¢7
3.487
3,487

6867
5887
6.8e7
6,867
6807
6.8e7
3487
3487

[cowtexT

WS application =>

[coutexT)

[courex

3487
3467
3,467
3487
3467

3487
3,487
3,487
3487
3407
3.468
3.4e8

3487

3.487
3777867
3777867

lue

XT) .1BU application

Metric: TIME

E::power average: .. |ffValue: Exclusive

TAU: ParaProf: fhome/gcongiu/papi/src/companents/rocm tests/.tauftests/dopamine-ro...

s pGwWer_average: devicem0: sensorm0

T application
TAU spplicazion

U application

Figure 1. PAPI power monitoring of a hipBLAS GEMM kernel using TAU on AMD GPUs.

2.2. Intel

In the realm of Intel hardware, PAPI now supports Intel’s
Ponte Vecchio GPUs through integration with Intel’s
oneAPI Level Zero interface (Intel, 2024b). This allows
for the monitoring of a wide range of performance
counters specific to Intel’s latest GPU architecture, in-
cluding metrics on compute operations, memory band-
width utilization, and others. By leveraging these insights
via the PAPI “intel gpu” component, developers can
tailor their applications to better utilize Intel’s GPU re-
sources, enhancing both performance and throughput
efficiency.

The PAPI “intel gpu” component offers two
collection modes for monitoring Intel GPU hardware
events and memory performance metrics, such as bytes
read, written, or transferred from/to the L3. On one hand,
the “Time-based Collection Mode” aggregates counter
values in a buffer, allowing them to be read at any time,
making performance counter monitoring completely in-
dependent of the kernels running on the Intel GPUs. On
the other hand, the “Kernel-based Collection Mode”
monitors performance on a per-kernel basis, with counter
data available only after a kernel has finished executing.
In this mode, Intel oneAPI uses internal barriers. This
means that if two or more kernels overlap in execution,

(b) Kernel-based Collection Mode:

(a) Time-based Collection Mode:

Figure 2. Collection modes for monitoring Intel GPU metrics.

the GPU runtime serializes their execution to ensure that
counter values are correctly associated with individual
kernels. Figure 2(a) and (b) illustrate both modes,
respectively.

The examples (a) and (b) below confirm that PAPI
effectively supports both collection modes, which can be
alternated by setting the environment variable ZE E-
NABLE TRACING LAYER (1 for kernel-based, 0 for
time-based mode (default)). For illustration purposes, a
matrix-matrix multiplication (GEMM) was instrumented
using PAPI, and each GEMM computation was executed
four times. In example (a), performance counter data is
collected in “kernel-based mode,” and the results for the
three selected PAPI counters are reported only after the
kernel execution has finished on the Intel device. Notably,

Jagode et al.

255

PAPI counter 1, which tracks the GPU-time event,
matches the total execution time (real time) reported from
the system.

Example (a): Kernel-based Collection Mode:

$./gemm_papi
Matrix-Matrix Multiplication
Intel (R) GPU

(repeats 4 times)

Target device:

3.25726 sec
3.25611 sec
3.25520 sec

Matrix multiplication time:
Matrix multiplication time:
Matrix multiplication time:

Matrix multiplication time: 3.25601 sec

PAPI Counter 1: GPU Time
PAPI Counter 2:
PAPI Counter 3:

(ns) : 13,419,165,548
10,208,287,486

7,020,866,902

Memory Reads:

L3 Cache Misses:

Total execution time (real time): 13.6682 sec

In Example (b), performance counter data is gathered in
“time-based mode,” where a separate thread executes
PAPI read () every 200 ms. This method allows users to
obtain more frequent counter updates during a kernel ex-
ecution on the device, rather than single counter values post-
execution.

The outputs from Counter 1 (GPU-time) confirms that
the interval between reported values is approx. 200 ms,
which aligns with the chosen PAPI read () sampling
frequency.

Example (b): Time-based Collection Mode:

S ./gemm_papi

Matrix-Matrix Multiplication (repeats 4 times)

PAPI_read() every 200ms

Target device: Intel (R) GPU
PAPI Counter 1: GPU Time (ns): 314,367,691
PAPI Counter 1: GPU Time (ns): 524,628,819
PAPI Counter 1: GPU Time (ns): 729,428,619
PAPI Counter 1: GPU Time (ns): 13,579,592,059

Total execution time (real time): 13.7564 sec

The provided examples serve primarily as validation cases
to demonstrate PAPI’s newly introduced monitoring ca-
pabilities for the latest Intel GPU technologies.

2.3. NVIDIA

For NVIDIA GPUs, PAPI has incorporated support via the
NVIDIA Nsight Perf SDK (NVIDIA, 2024d), enabling
detailed performance (via the PAPI “cuda” component)
and power (via the PAPI “nvm1” component) monitoring.
This includes tracking of CUDA kernel executions, memory
transfers, and GPU power usage, among others. The

(CYM PAPI on NVIDIA GTX 1060 GPUs (Pascal, Compute Capability 6.1)
[bin]$./papi_component avail

: 6.0.0.1

PAPI version

Active components:
Name: cuda CUDA events and metrics via NVIDIA CuPTI interfaces
Native: 792, Preset: 0, Counters: 792

NVML provides the API for monitoring NVIDIA hardware

(power usage, temperature, fan speed, etc.)
Native: 72, Preset: 0, Counters: 72 ",/

[C)M PAPI on NVIDIA A100 GPUs (Ampere, Compute Capability 8.0)
[bin]$./papi_component avail

: 6.0.0.1

Name: nvml

PAPI version

Active components:
Name: cuda CUDA events and metrics via NVIDIA CuPTI interfaces
Native: 680888, Preset: 0, Counters: 680888

NVML provides the API for monitoring NVIDIA hardware
(power usage, temperature, fan speed, etc.)
Native: 216, Preset: 0, Counters: 216 /‘

Name: nvml

Figure 3. PAPI on NVIDIA compute capabilities < and > 7.0.

integration with Nsight Perf SDK equips developers with
the tools to fine-tune their applications on NVIDIA GPUs
with compute capability 7.0 and higher, focusing on
maximizing computational throughput while minimizing
energy consumption.

2.3.1. Performance monitoring capabilities. The PAPI “cuda”
component, designed for hardware counter monitoring on
NVIDIA GPUs, has been a staple in performance analysis
for several years (Malony et al., 2011). However, with the
deprecation of NVIDIA’s CUPTI (NVIDIA, 2024c) “Event
API” for compute capabilities greater than 7.0—which
served as the primary mechanism for hardware counter
monitoring on earlier architectures—PAPI faced the chal-
lenge of maintaining support for newer NVIDIA
architectures.

In response, the PAPI “cuda” component was signifi-
cantly refactored to ensure uniform support across NVIDIA
compute capabilities, both below and above 7.0. This in-
tegration required leveraging the advanced features of
CUPTTI’s “Profiling API” and the Nsight Perf SDK to fa-
cilitate performance monitoring for NVIDIA compute ca-
pability 7.0 and beyond, including Turing, Ampere, and
Hopper. This effort not only ensured PAPI’s compatibility
with NVIDIA’s evolving architecture but also expanded its
applicability for performance analysis across a broader
spectrum of computing environments, all while maintaining
a consistent interface.

Figure 3(a) and (b) show the output of the PAPI utility
called “papi component avail” when run on NVI-
DIA GPUs with compute capabilities 6.1 (Pascal GPUs) and
8.0 (Ampere GPUs), respectively. This utility provides a list
of the supported and enabled PAPI components. In this
particular case, both the “cuda” and “nvml1” components
are active on both systems. Additionally, it displays the
number of events available for monitoring. This

256

The International Journal of High Performance Computing Applications 39(2)

demonstrates that the same version of PAPI operates uni-
formly, regardless of the underlying APIs used for different
NVIDIA compute capabilities.

2.3.2. Power usage. The PAPI “nvml1” component has been
updated to support power management for the latest
NVIDIA GPUs, including monitoring of power con-
sumption, fan speed, temperature, and power capping. This
enhancement means that power monitoring and capping are
now available for NVIDIA GPUs with compute capability
7.0 and higher, extending to Turing, Ampere, Hopper, and
beyond, in addition to previously supported GPUs with
compute capability less than 7.0.

Figures 4 and 5 illustrate power readings obtained
with PAPI for A100 GPUs during the execution of two
GEMM kernels using the numerical linear algebra
libraries MAGMA (Agullo et al., 2009) and cuBLAS

(NVIDIA, 2024a), respectively. These figures present
power usage data (without power caps) while various
GEMM operations are performed. Figure 4 provides
fine-grained power monitoring with a 10 ms sampling
rate for a single GEMM kernel, whereas Figure 5
reports the final power usage at the completion of
different GEMM computations with both MAGMA
and cuBLAS.

Figure 6(a) and (b) present graphs of power readings
and capping capabilities utilizing PAPI on A100 GPUs.
The emphasis here is on demonstrating the power
capping feature, which requires elevated privileges. The
same GEMM kernels, using both MAGMA and cu-
BLAS, were executed as in the previous examples. In
Figure 6(a), the power was capped at 250 W, while in
Figure 6(b), the power limit was set at 150 W. These
examples primarily serve to demonstrate PAPI’s power

300.0 10ms samples, MNK=15,000 Duration 521ms
4 250.0
-]
©
=2 2000
S
o
o) 150.0
©
]
S 100.0
|
o
2 500
=]
o

0.0

888NN NARIINBEARRIIBISS S
0 0 00 00 0 0O 00 0 00 0 0 00 0 0 00 o o«
Time (seconds)

Figure 4. Fine-grained power monitoring of a single GEMM.

300.0

250.0

200.0

150.0

100.0

50.0

Power usage (Watt)

0.0

Max Power = 250W

SGEMM M,N,

m cudaBlas Avg Watts
® Magma Avg Watts

g8

g2

11000
12000
13000
14000
15000

:

Figure 5. Power monitoring on NVIDIA GPUs.

Jagode et al.

257

Powercap at 250W
300 :
_ (1.68s)
250 ,
< ‘
o 200
o =]
@© a o
5 150
$ 100 <| |
o = 7
o e 71
50 < |5
32 33 34 35 36 37 38 39
Time (sec)
Powercap at 150W
300 —_—
0ORc
= 20| (1.985)
=
o 200
(=]
©
£ 150
@
% 100
n- T T
50 Magma .(..Lhus
C\QL‘INIH (gl‘lﬂlﬂ
19 20 21 22 23
Time (sec)

Figure 6. Power capping on NVIDIA GPUs.

monitoring and emphasize its capping capabilities on
the latest NVIDIA GPUs.

Figure 7 illustrates the monitoring of PAPI “cuda” and
“nvml” metrics using Vampir (Brunst and Kniipfer, 2011)
and Score-P (Schliitter et al., 2014) to observe the perfor-
mance as well as power usage for a Kokkos application on
NVIDIA GPUs. It shows that the PAPI “cuda” and
“nvml” components are fully integrated, enabling the use
of all their monitoring capabilities by third-party perfor-
mance analysis tools, such as Vampir, that already use PAPI
as middleware.

3. Detection of hardware topology features

Through its various components, PAPI can monitor
counters across a wide range of hardware. To achieve this,
each component interfaces with the appropriate low-level
vendor API, such as CUPTI, ROCm, OneAPI, etc. A new
development, which took place during the ECP project, was
the creation of the “sysdetect” component. This com-
ponent goes beyond monitoring counters on a specific type

of hardware. Instead, it leverages the APIs from different
vendor-specific PAPI components to provide a universal
system detection infrastructure.

This new functionality has been implemented through a
new user API as well as a command line tool, both of which
are designed to support a broad range of hardware, both
current and forthcoming. Through the command line tool,
papi hardware avail, users can directly access in-
formation collected by the PAPI “sysdetect” component
to probe the hardware elements of their machine. Addi-
tionally, applications like NWChemEx (Kowalski et al.,
2021), which have a complex structure designed to adapt to
the specifics of heterogeneous systems, or third-party tools
such as sys-sage (Vanecek and Schulz, 2023) that aim to
capture information about the dynamic environments of
HPC systems, can access this information via the API.

3.1. “sysdetect” user API

The new user interface includes the following functions:

¢ PAPI enum dev_ type: This function enumer-
ates all devices in the system and returns a handle that
can be used to access device information through the
other two functions.

® PAPI get dev type attr: Returns device
type attributes, including the device vendor, the
number of devices of that type and vendor in the
system, and more.

® PAPI get dev_ attr: Returns device attributes,
such as the number of hardware threads for a CPU,
warps for NVIDIA GPUs, wavefronts for AMD
GPUs, among others.

For instance, for applications like NWChemEx, it is
crucial to obtain detailed information about the hardware
topology that is exposed to the various algorithms, in order
to achieve optimal performance on heterogeneous, multi-
vendor systems. The NWChemEx team expressed the desire
for the discovery of hardware topology features, occurring
at runtime, to be facilitated through a consistent interface.
The PAPI interface offered an ideal solution, and the latest
version ships with the new user API for accessing com-
prehensive platform details. Requested features of the
hardware topology include the number and type of GPUs on
anode, number and type of CPUs on a node, cache sizes and
attributes for computational devices, details on which nodes
can access shared memory or are located on the same rack,
among others.

In summary, NWChemEx now has the capability to
utilize PAPI for accessing performance counter data, ar-
chitectural information about the system, and resource
details, which can be leveraged to improve the parallel and
performance environment of NWChemEx.

258 The International Journal of High Performance Computing Applications 39(2)

3.2. “sysdetect” command Line tool

An example of the information obtainable from the pa-
pi hardware avail utility is shown below:

$./papi_hardware_avail
Device Summary ———————————————————————————————————

Vendor DevCount
AuthenticAMD (1)
NVIDIA (0)
AMD/ATI (2)

Device Information —-————

Vendor : AuthenticAMD (2,0x2)

Id : 0

Name : AMD EPYC 7413 24-Core Proc.
CPUID : Family/Model/Step. 25/1/1
Sockets H

Numa regions

Cores per socket
Cores per NUMA region:
SMT threads per core :

H
24

48
2

: Size/LineSize/Lines/Assoc

L1li Cache : 32KB/64B/512/8
Lld Cache : 32KB/64B/512/8

L2 Cache : 512KB/64B/8192/8
L3 Cache : 131072KB/64B/8192
Numa Node 0 Memory : 257833MB

Numa Node 0 Threads : 0 1 2 3 456 7 8 9 10 ..
Numa Node 1 Memory : 257982MB

Numa Node 1 Threads : 24 25 26 27 28 29 30 31 ...
Vendor : AMD/ATI

Id : 0

Name : gfx90a
Wavefront size : 64

SIMD per compute unit H!

Max threads per workgroup : 1024

Max waves per compute unit: 32

Max shared memory per wgp : 65536

Max workgroup dim x : 1024

Max workgroup dim y : 1024

Max workgroup dim z : 1024

Max grid dim x : 4294967295
Max grid dim y : 4294967295
Max grid dim z : 4294967295
Compute unit count : 104

Compute capability 1.1

4. Software defined events (SDEs)

Software Defined Events (SDEs) are a mechanism provided
by PAPI that allows developers of third-party software to
expose internal information about their software. PAPI does
not dictate what information should be exported; rather, it
offers a flexible mechanism for exporting and accessing
arbitrary data. This allows the developers, who have the
most in-depth knowledge of their software, to decide what
information should be exported as an SDE.

To support this functionality, a two-sided approach is
necessary. On one side there is the software package that
exports the new events and on the other side, there is the
entity that reads the events. Both sides can be arbitrary
layers of the software stack, such as libraries, runtime
systems, complete applications, or external performance
monitoring tools. In the rest of this document we will refer

to the layer that exports SDEs as the “producer” and we will
refer to the layer that reads the SDEs as the “consumer”.

The API for exporting SDEs is implemented as a stand-
alone library (libsde), which is distributed as part of the
PAPI project and is installed alongside the PAPI library
(libpapi). On the other hand, reading SDEs from a consumer
does not require any new API. The reading functionality has
been implemented as a PAPI component and therefore SDEs
can be accessed by a consumer using the same PAPI -
start () /PAPI_read()/PAPI_stop() API used
for accessing hardware events.

The following subsections describe the different types of
events that can be exported using the SDE mechanism,
along with examples of their use in third-party libraries and
runtime environments. Further details about SDEs, which
are outside the scope of this document, can be found in
(Danalis et al., 2019; Jagode et al., 2019).

4.1. Registered counters

The simplest and lowest overhead type of SDE is a native
program variable registered as a counter. There is only one
step required for achieving this. The producer must use the
SDE API to declare that a variable will act as the counter for
an event and pass a pointer to that variable, along with meta-
data such as the name of the event, etc. After this step, the
producer does not need to call any other SDE API. Since
registered counters are native program variables whose
values are being modified as part of the producer’s normal
execution without requiring any SDE-specific API calls,
they incur zero overhead. Natural candidates for this type of
SDE would be anything that a library already counts but has
no standardized way to export to the outside world. For
example, the number of iterations executed by an iterative
solver until convergence is attained, as found in the nu-
merical linear algebra package MAGMA. Other examples
could be the number of elements in a queue, the number of
messages sent or received by a communication library, the
number of years simulated by a climate simulation appli-
cation, or the number of insertions, deletions, collisions,
etc., in a hash table data-structure.

4.2. Created counters

PAPI supports the notion of overflow. That is, a consumer
can register a callback function with PAPI and request that
this function be invoked when an event counter reaches a
specific value. For hardware counters, PAPI can implement
this by asking the hardware to call an interrupt handler when
the counter reaches the desired value, or, in the case of
hardware that does not support this functionality PAPI can
periodically poll the value. Similarly, PAPI can poll the
value of SDEs implemented as registered counters to allow
for overflowing. In addition, we offer a different type of

Jagode et al. 259
‘s e Comparison View
S B u B R © 9. B BN 2.5 3 % Y
[jusersit pic_traces/ _ipi_head_single_new_diag_for _Bird-GC Linux/vpic_traceftraces.otf2 §1 W I 524s
N B TN T

[o0k/Desktop/ vpic-runs-custom_ipl_head_single_new_disg_for_Bird-GCLinux-1616774108_paplaccumulator _bypass/vpic_tracefiraces.otf2

Master thread,Values of Met
210

180 ‘ -“l-'-‘

10 FT01 T O O
T

3.197%s | particle compress
2.061s | begin_sen...edge_loop
1.713s | compress clean up
1.708s | append moved particles
1.547% | copy movers to host
1.47s | Kokkos::S...pyPermute
1.33s | end_recv<Y...Edge loop
1.168s | end_recv<Y...Edge loop

2,000 ™ end_recv<Y..Edge loop

[ETT1 523 5808
nx

Timelne Function Summary Function Summary
0s 50s 100s 150s 200s 250s 300s 350s 400s 450s 500s All Processes, Accumulated Exclusive Tim.. All Processes, Accumulated Exclusive Tim...
Master thread 9 T Y Y Y 1YY P Y e [y
- 5.427s | Kokkos:ViewFill-1D 9.889s /| copy particles to device
Master thread m i dos s o bt 8- b s i {id 4 jh e iiie 804 1 3.354s | Clean clean up arrays

2.879s| Clean clean up arrays
2.85s | particle compress
2.738s| begin_sen...edge_loop
1.916s| sync_jf: e.._edge_loop
1.617% | append moved particles
1.596s | copy movers to host
1.547 | compress clean up
1.509s | begin_sen...edge_loop
1.445s | Kokkos::S...pyPermute

1 | 1.118s| ZXY absorb...s: xy_edge 1.40% | sync_jf: e.._edge_loop
- 150 1.08s | begin_send...Edge Loop 1.303s | begin_sen...edge_loop
£ 1.08s | ZXY absorb...s: yx_edge 1.294s | advance_b main chunk
= 120 1.067% | begin_send...Edge Loop 1.18s | end_recv<Y...Edge loop
Function Summary Function Summary
a0 | All Processes,Number of Invocations per .. All Processes,Number of Invocations per ...
0k 0k
60|J\L FOEEE™ K okkos: ViewFill-1D FB,036™] Kokkos:ViewFill-1D
- - /6,000™ Clean clean up arrays 6,000 Clean clean up arrays
Master thread,Values of Met@l "GPU Power nvml:::Tesla_V100-SXM2-16GB:device_0:power" over Time W particle compress m particle compress
200 | begin_sen...edge_loop [begin_sen...edge_loop
S| P i 3,000 ™ compress clean up 3,000 ™™ compress clean up
180 — 7 Anvivivd N/] 3,000 ™™ append moved particles 3,000 ™ append moved particles
160 LU A AVl ATATREE| 3,000 ™™ copy movers to host 3,000 copy movers to host
W1 (! f Tt 3,000 ™™ advance 3,000 advance,
/ | ! PP Ve X _p i P
@ 140 | / f J L | 2,000 '-' advance_b::by 2,000 ZXY absorb...s: yx_edge
E | " 2,000 '-' XYZ absorb...s: zy_edge 2,000 begin_sen...edge_loop
= 120 oA 2,000 ™ begin_sen...edge_loop 2,000 ™ begin_send...Edge Loop
100 | 2,000 ™ begin_sen...edge_loop 2,000 ™ sync_jf: e..._edge_loop
| 2,000 ™ adjust_jf<..._edge_loop 2,000 sync_jf: e.._edge_loop
80 N 2,000 '-' adjust_jf<..._edge_loop 2,000 ™ begin_send...Edge Loop
, 2,000 ™ adjust_jf<..._edge_loop 2,000 begin_sen...edge_loop
601 — 2,000 ™ adjust_jf<..._edge_loop 2,000 ™ begin_sen...edge_loop

2,000 ™ adjust_jf<..._edge_loop

Figure 7. PAPI performance and power measurements of a Kokkos application using Vampir/Score-P on NVIDIA GPUs.

SDE that supports overflowing internally without the need
for periodic polling. This type is called created counter, and
it is implemented as variables created and managed inter-
nally by libsde. The main difference compared to registered
counters is that these counters are not native variables of the
producer. Modifying their value requires libsde API calls.
Consequently, updating a created counter incurs some
overhead for the producer. On the other hand, since libsde is
involved in changing the value of created counters, over-
flow notifications can be delivered to a consumer accurately
and without the much higher overhead of periodic polling.
This type of SDE is best suited for events that do not occur
very frequently and can benefit from the immediate reaction
of an external software layer. For example, the size of a
runtime’s work queue dropping to zero (signaling idle time),
or the receive queue of a communication library being
empty, etc.

4.3. Callback counters

The previous two categories associated a program variable
with an event counter. Callback counters allow libraries
to associate a callback function with a counter. This
means that the value that will be returned when a

consumer reads this type of SDE does not have to exist
anywhere in the program’s memory. Instead, upon
reading the SDE, the callback function will be invoked,
allowing the producer to generate complex dynamic
values that might not reside in any particular variable. An
example would be an event that counts a value that spans
multiple threads, with each thread having a partial count
of the total number. When the consumer tries to access
this SDE, the callback will be invoked, which will
compute the sum of the partial values across all threads
and return the result to the consumer. This type of event is
used by the task scheduling runtime PaRSEC (Bosilca
et al., 2013a, 2013b) to export the number of tasks that
reside in its “ready” queues. By using a callback counter,
instead of a simple registered counter, PARSEC avoids
adding to its critical path costly atomic operations that
would be needed for keeping the counters accurate in the
presence of task stealing among threads. Instead, the
overhead of synchronizing the information kept across
different threads is only incurred if a consumer calls
PAPI read() to obtain the current value of the
counter. Figure 8 shows the values of various SDEs
exported by PaRSEC measured at different times during
the execution of a program (Danalis et al., 2019).

260

The International Journal of High Performance Computing Applications 39(2)

Tasks in different PaRSEC queues/states (DPOTRF 12,000x12,000, Haswell, 20 cores, single node)

60000 T T T

RETIRED
READY —¥—
PENDING

50000 Il (READY - RETIRED) ——

40000

30000

20000

Counter Value for RETIRED and READY

10000 [
1

2000

1 1665

1 1332

Counter Value for PENDING and (READY - RETIRED)

15

Time (s)

20 25 30

Figure 8. SDEs exported by the task runtime PaRSEC.

4.4. Recorders

Unlike the previous types of SDEs, which all hold one
value, recorders are multi-value counters. This type of SDE
enables libraries to record an arbitrarily long sequence of
data. The storage of this data is managed internally by
libsde, so the producer can simply “record” the desired data
and forget about it. Furthermore, the type of the elements
that will be recorded is defined by the producer (i.e., not
dictated by libsde), giving the producer maximum flexi-
bility. Similarly to created counters, recorders incur over-
head for the producer every time data is recorded. On the
other hand, they offer producers the ability to keep track of
arbitrary amounts of arbitrary types of data with a simple
API call. The mechanism that enables this flexibility in-
volves a hierarchical data-structure that can dynamically
allocate additional memory on demand. This approach
keeps the amount of unused allocated memory to a mini-
mum, while avoiding the performance overhead of memory
copying associated with mechanisms such as realloc ().
This type of SDE is best suited for data whose evolution
over time holds meaning and is worth examining by a
consumer. For example, the residual of a matrix across the
different iterations of an iterative solver is a natural can-
didate for a recorder, as is showcased by its use in MAGMA.
Figure 9 shows the values stored by a MAGMA-sparse
iterative solver using SDE recorders (Jagode et al., 2019).

4.5. CountingSets

A traditional set data structure, common in many languages
and utility libraries, enables the storage of objects, where
each object is unique. A libsde counting set also stores

unique objects, but it also keeps track of the number of times
each object was added to the counting set. In other words,
counting sets enable libraries to create histograms of library-
specific objects with minimal effort. This functionality is
being integrated into the linear algebra package SLATE
(Gates et al., 2019). Another possible use of counting sets is
for correctness verification. Specifically, a third-party code
could use this type of SDE to ensure that all transient objects
created by the code have been properly destroyed. For
example, if a program adds an entry to a counting set every
time it allocates memory (e.g., with “malloc ()”) and
removes the entry from the counting set when the memory is
released (e.g., with “free ()”), then at the end of the
program the counting set should be empty. The existence of
any entries can be used to detect memory leaks.

4.6. Counter groups

Single-value SDEs can be grouped to form new SDEs. This
enables a consumer to read the sum, minimum, or maximum
value of all counters in a group by treating the counter group
as a new counter. Counter groups are first-class citizens and
can be recursively combined with other counters or groups
into larger groups. This type of SDE is useful when a
producer keeps track of information at fine levels of
granularity, e.g., per thread, and wishes to expose different
levels of granularity to the consumers by grouping indi-
vidual elements together. An example usage can be found in
the task runtime PaRSEC. Specifically, the runtime exports
SDE:s that hold the number of ready tasks per thread—as we
mentioned in Section 4.3. However, this level of granularity
is probably too fine for most users. Therefore, these SDE
belong to multiple hierarchical groups so that a consumer

Jagode et al.

261

PAPI SDE Recorder: Residual per lteration (nd24k: 72000-by-72000 with 28715634 nonzeros)
8
10 PBICG
PBICGSTAB =
PCG
108 PCGS =
PGMRES
PIDR
4 PQMR =
10 PTFQMR ———
102 i
S 100} U ll ‘ I .
2 k - o .! L Runtime of Solvers:
& 2
10 ;\ 7 330.7103 sec
104 \ ul | 241.7744 sec
-6 1
10 150.4123 sec
342.1692 sec
10 I
‘ |
0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 9. SDEs exported by the linear algebra library MAGMA.

can query the number of ready tasks at a single core by
accessing the SDEs directly, the number of ready tasks
across all cores of a socket by reading a group of SDEs, or
even the total number of ready tasks across all cores in a
node by reading the group of all socket-level groups.

5. Counter analysis toolkit (CAT)

The hardware components that comprise Exascale plat-
forms have complex internal structure. As a result, they
contain very large numbers of low-level performance
events, many of which differ from each other in subtle ways.
Furthermore, the names and descriptions of many low-level
events are often unclear and sometimes misleading or
wrong. To address these challenges, as part of the Exa-PAPI
project, we extended the functionality and applicability of
the Counter Analysis Toolkit (CAT) (Barry et al., 2021,
2023; Jagode et al., 2016) and released it as part of the PAPI
repository. CAT consists of a collection of microbenchmark
kernels that are designed to satisfy the following three goals.

e The benchmarks stress-test specific features of
modern hardware, each in isolation. That is, each
kernel aims to maximize the use of a specific function
of the hardware (e.g., Level-2 cache, Branch Pre-
diction Unit, AVX-256 Floating Point Unit, etc) while
minimizing the use of all others. As a result, if we
monitor a low-level event E; while executing a kernel
that exercises a particular part of the hardware, we can
derive whether the event E; relates to that part of the
hardware.

® The structure of each microbenchmark and the pa-
rameters that we use when executing it are chosen
such that the expected behavior of each kernel is
well understood. For example, we expect the
memory benchmark to cause a specific number of hits
and misses on the different levels of the cache hi-
erarchy based on the run parameters we use. Also, the
branch kernels are expected to lead to very specific
amounts of retired conditional branches and mis-
predictions, and the floating point kernels are ex-
pected to execute specific amounts of vector
instructions. Comparing these expectations against
measurements of low-level events, we can verify
whether an event accurately measures what it is
supposed to measure and opens up the way for au-
tomatic correlation between low-level events and
performance concepts.

The kernels are written in C. The motivation behind
this choice is not only portability but also readability.
We made this design decision to enable application
developers to read and understand the code so they
can understand how parts of their code might affect
different hardware components. Also, keeping the
code of our kernels simple and readable enables code
sharing with other performance analysis experts and
promotes collaboration.

5.1. Kernel categories

CAT as a tool compiles into a single executable, cat -
collect. By selecting the appropriate flags a user can

262

The International Journal of High Performance Computing Applications 39(2)

execute one or more of the different kernel categories that
are described below.

5.1.1. Data cache. The core kernel of the data cache
benchmark performs a very simple pointer-chasing opera-
tion: p = (uintptr t *)*p. However, modern caches
have powerful internal logic for performing effective pre-
fetching and replacement policies. As a result, the bench-
mark’s nuance is in the patterns used to create the pointer
chain that the core kernel will operate on, and the careful use
of threads to apply the correct amount of pressure on the
memory subsystem. Furthermore, we have parameterized
the access patterns that we use to create the pointer chains so
that we can achieve different memory access patterns for
each set of parameters. This, in turn, exercises the different
levels of the cache hierarchy and the prefetch units in
different ways.

Figure 10 shows the measurements collected when
monitoring two different low-level events' when running
the CAT data cache kernel with three different sets of pa-
rameters. By modifying the parameter “Block”, we modify
the working set of the benchmark, which has a direct effect
on the behavior of the L2-prefetcher (and therefore an effect
on L2-hits for large buffer sizes, as shown in the figure).
Similarly, by modifying the stride, we can defeat the
“Adjacent line” prefetcher, which also affects L2-hits for
large buffer sizes. The exact interplay of these parameters
and the measured value are outside the scope of this paper,
and more information can be found in (Barry et al., 2021).
However, even without these details, the reader can easily
see the vastly different pattern of the two events across all
three subplots, and the difference across subplots. These
complex but deliberate response curves allow us to identify
what each event measures and verify that it measures it
accurately.

5.1.2. Instruction cache. In the data cache benchmark, dis-
cussed above, the number of data elements accessed (and
therefore the pressure on the different cache levels) can
be programmatically selected and modified during the

execution. However, this cannot be done in a reasonable way
in the case of the benchmark designed to exercise the in-
struction cache, because the number of instructions in an
executable cannot be modified at run-time as readily as a data
buffer. To achieve varying pressure on the instruction cache,
our benchmark must contain multiple kernels with different
amounts of code each. This way, we can choose which kernel
to execute each time. Note that we cannot simply use a loop
that executes a kernel multiple times because the instructions
contained in the loop will be stored in the instruction cache
once, regardless of the number of loop iterations. Instead, we
need kernels that contain different numbers of instructions.
The kernels of this benchmark are generated via a script and
contain different numbers of copies of a basic pattern. This
approach has an upper limit however, because kernels with
more than tens of thousands of lines of code require a pro-
hibitively high compilation time and quite often lead to a failed
compilation. To address this we use dynamic loading. Namely,
we build the instruction cache kernels into a dynamic library
and we create twelve copies of the library. At run-time, we load
all twelve libraries and execute the largest kernel (which has
5000 copies of the basic block) from each of the twelve li-
braries. This way the instruction cache is presented with
kernels that go from 10 copies of the basic block to
12x5000 copies. Consequently, the response curves that come
out of executing this benchmark resemble those of the data
cache benchmark, with distinct regions of hits and misses in
the different levels of the instruction cache hierarchy.

5.1.3. Floating point operations (FLOPs). Modern hardware
contains vector units of different lengths. These units
contain instructions that perform multiple operations each.
This presents a challenge in defining high-level events that
measure concepts such as “total floating point operations”.
The reason is that in order to count the total number of
floating point operations we need to measure all the different
types of floating point instructions and scale each one
appropriately, based on the depth of each vector instruction.
This is complicated further by the fact that some vendors do
not provide a full set of basic events. For example, the events in

Stride=64,Block=512 Stride=64,Block=16 Stride=128,Block=512
1.0 oo —0-o-0
0.8 oo O
0.6 WL HT
o0 -m @ L3_READ
0.4 \
0.2 e
0.0 mE - 0=0 o o-0o-0 =E o 0@ |
L1 L2 L3 RAM L1 L2 L3 RAM L1 L2 L3 RAM

Figure 10. Multi-parameter Data Cache benchmark runs.

Jagode et al.

263

Measuring Various Precisions on Fugaku
(CAT FLOPs Benchmarks, Fujitsu A64FX)
10 T T I
F FP_HP_FIXED_OPS_SPEC
- FP_SP_FIXED_OPS_SPEC =——
1077 ' FP_DP_FIXED_OPS_SPEC
M Expectation
1010 - : :
" T HP HP Sp sp DP DP
€ 'Normalize | Cholesky |Normalize | Cholesky |Normalize | Cholesky
S
3 108
O
-+
c 106
)
>
w
104
102
100 | | 171 | 11 | | | 11 1 171 | |
58 g 2 g8 g2 g8 g2 o
Matrix/Vector Size (N)
Figure 1. FLOPs events of different precisions.

some AMD processors do not differentiate between single-
precision and double-precision instructions, and the events in
some Intel processors do not differentiate between FMA
(Fused Multiply-Add) and non-FMA instructions.

There are two categories of kernels that exercise this part
of the hardware. The first category implements well known
linear algebra operations that perform a known number of
floating point operations. The second category of kernels
utilizes intrinsics that guide the compiler to generate the
appropriate vector instructions. In our current version of
CAT we support intrinsics for x86, ARM, and POWER
architectures. The benchmark includes kernels that span the
following orthogonal dimensions:

e Scalar instructions, AVX-128, AVX-256, AVX-512
e FMA and non-FMA
® Single-precision (SP) and double-precision (DP).

In other words, the space, S, covered by our kernels is the
following:

S={scalar, 128, 256, 512} x {FMA, non-FMA}x {SP, DP}

In Figure 11 we show the results of the flops benchmark
run on the Fugaku system, which enabled us to create preset
events for the A64FX architecture.

5.1.4. Branches. The part of the hardware responsible for
branches contains some sophisticated logic for dealing with
branch prediction. Still, it is among the most straightforward
to exercise in ways that yield clean results. This part of CAT

T T T
CONDITIONAL —&—
COND. TAKEN

[_.COND. NTAKEN —%—

ud
«

Event Measurement per Iteration
=
«

0 L L L L L L L L
1 2 3 4 5 6 7 8 9 10 11

Micro-Benchmark

Figure 12. Branch event verification on Sapphire Rapids.

contains eleven kernels, each different from the others in at
least one aspect related to branches. Since the kernels are
different, if we monitor a low-level event while executing all
kernels in sequence, the resulting measurements will form a
unique signature that will allow us to differentiate between
the concepts of:

Branches Executed
Branches Retired
Branches Taken
Branches Mispredicted
Direct Branches

Furthermore, by combining the signatures, we can create
composite events, or verify that the event measurements are

264

The International Journal of High Performance Computing Applications 39(2)

for (i=0; 1i<M; i++){
for (j=0; J<N; J++){
f64_00 += f64_03;
f64 01 += f£64_00;
fe4_02 += f64_01;
f64_03 += f64_02;

for (i=0; 1i<M; i++){
for (j=0; J<N; J++){
f64_00 += £64_100;
fod4_01 += £64_100;
f64_02 += £64_100;
f64_03 += £64_100;

Figure 13. Kernels with different level of ILP.

accurate. For example, as we see in Figure 12, the “fotal
number of conditional branches” matches the sum of
“conditional branches taken” and “conditional branches
not-taken”.

5.1.5. Instructions. The last benchmark in CAT contains
kernels that test different types of instructions. Specifically,
the kernels exercise integer, floating point, memory read,
and memory write instructions. Some of the operations
performed by these kernels overlap with functionality
tested by the previously mentioned benchmarks. How-
ever, the structure of this benchmark is different from the
previous ones. As a result, there are some subtle dif-
ferences in what is being tested. For example, this
benchmark contains kernels with different levels of
Instruction-Level Parallelism (ILP). Figure 13 shows two
simplified code snippets from our kernels. The code on
the left has data dependencies between subsequent in-
structions, so it cannot be parallelised. In contrast, the
code on the right has no dependencies between in-
structions and can utilize the maximum level of ILP found
in a given architecture.

The kernels in this benchmark differ from those in the
FLOPs benchmark in one more way. Namely, these kernels
do not utilize intrinsics but instead rely on the compiler to
detect that the structure of the kernel allows for vectori-
zation. This means that the code of these kernels is more
portable and easier to read, but the resulting assembler code
is not guaranteed to contain vector instructions. However,
the structure of our kernels is chosen so that it is simple
enough to be well within the ability of modern compilers to
detect as “vectorizable”. Figure 14 shows a snippet of code
that the compiler can vectorize by using vector instructions
twice as wide as the original double-precision variables
(such as AVX-128). Underneath the code we show a graphic
representation of the memory access pattern when using
double-precision and AVX-128. Using kernels like this and
controlling the offset of the data dependency (“2” in this
example), we force the compiler to use vector instructions of
specific widths.

for (int j=2; j<BUFFER_SIZE;
aljl = alj-2] + bljl;

B

Figure 14. Kernel with loop that can be vectorized.

J++) {

}

double
precision
AVX-128

5.2. Data analysis

If we monitor a native hardware event E; during the execution
of one of the kernels we mentioned above, we will obtain a
value. Repeating the measurement for multiple kernels will
result in a series of values, such as those shown by each curve
in Figures 10 and 12. Such a series of values can be viewed as
the measurement vector of £;. If we repeat this process for all
the native events in a target architecture and concatenate the
resulting vectors, we produce a measurement matrix 4. At the
same time, we can handcraft a vector whose values corre-
spond to a performance metric that does not exist on the target
architecture. For example, while most modern systems pro-
vide native events that count floating-point instructions, they
do not provide an event for counting floating-point operations.
Nevertheless, since we know how many operations our
benchmark kernels perform, we can handcraft a vector b that
contains the measurements that a hypothetical floating-point
operations event would produce. Solving the linear algebra
problem A4 - x = b would result in a vector x that would tell us
which columns of 4 need to be combined (and scaled) to
produce vector b. Therefore, this would tell us which native
events in the target architecture to combine (and scale) to
construct the missing floating-point operations event.
However, this problem cannot be solved directly, for
multiple reasons. First, the matrix 4 is singular, i.e., it
contains columns that are linear combinations of other

Jagode et al.

265

columns. Second, the measurements contain noise, which
masks linear dependencies and creates bogus dependencies
where none exist. Finally, the scale between different events
is substantial. Consider, for example, the column containing
the values of level-3 cache misses compared to the column
with values of idle cycles when running the same memory-
intensive kernel. Such large-scale differences would cause
traditional matrix “cleaning” (orthogonalization) algorithms
to pick irrelevant events in the resulting matrix.

To address these problems in analyzing the measure-
ments that result from our kernels, we deploy several noise
suppression techniques, both in our data collection and
during post-processing, and utilize specialized orthogonal
matrix factorizations that produce the most relevant result
for our particular problem. The details of these data analysis
steps are outside the scope of this paper, but can be found in
(Barry et al., 2024). Using this analysis, we can determine
higher level performance metrics, such as PAPI’s preset
events, in a rigorous and systematic way.

6. Related work

The LIKWID lightweight performance tool suite (Treibig
et al., 2010) allows for accessing performance counters by
bypassing the Linux kernel and directly accessing hardware
performance monitoring registers. While PAPI provides a
universal API for accessing hardware performance counters
and power management capabilities across various plat-
forms, allowing for fine-grained performance monitoring
through integration into applications, LIKWID offers a
complementary approach with command-line tools that
enable users to collect performance data without the need
for user-level instrumentation of applications.

The perf tool (Molnar, 2009) utilizes the perf event API,
which is part of the Linux kernel. While perf event attempts
to provide a generic interface for accessing hardware counters
on CPUs on Linux platforms, it is very low-level. As a result,
the information returned often requires significant interpre-
tation to be useful for tool developers or end users.

Different vendors provide tools for performance analy-
sis, including NVIDIA Nsight Systems (NVIDIA, 2024b),
AMD Omnitrace (AMD, 2024d), and Intel VTune Profiler
(Intel, 2024a). These tools are tailored to the specific ar-
chitectures of their respective vendors and do not offer a
standard API for accessing performance data.

A wide range of third-party performance tools rely on
PAPI for performance counter and power usage measure-
ments by using PAPI internally as middleware to fetch
hardware performance and power monitoring data. They
then apply and visualize this information as part of their
event records. Some of these tools include Caliper (Bohme
et al,, 2016), CrayPat (Kaufmann and Homer, 2003),
Vampir (Brunst and Kniipfer, 2011), TAU (Shende and

Malony, 2006), Scalasca (Geimer et al., 2010), Score-P
(Schliitter et al., 2014), and APEX (Huck, 2022).

7. Conclusions

Through the initiatives of ECP, the PAPI product has sig-
nificantly enhanced its functionality. Notably, PAPI has sig-
nificantly expanded its performance monitoring capabilities to
include support for the latest AMD, Intel, and NVIDIA GPUs,
alongside modern interconnects, CPU architectures, and
ARM chips. Additionally, PAPI now extends beyond tradi-
tional performance counter monitoring to include: (1) support
for power management across a variety of state-of-the-art
hardware platforms, (2) a new API and a new command line
tool for detecting and exposing details of the available
hardware, (3) the introduction of SDEs, enabling users to
register and monitor new metrics that reveal the internal
behavior of libraries to applications using those libraries, and
(4) semantic analysis of hardware counters, assisting re-
searchers in interpreting the ever-growing list of events.

These advancements have been seamlessly integrated
into the existing PAPI framework, maintaining its tradi-
tional interface and methodologies for collecting low-level
performance counters across CPUs, GPUs, memory, in-
terconnects, and I/O systems, as well as power management.

Furthermore, PAPI’s integration with Spack and E4S not
only improves its accessibility and usability on HPC sys-
tems but also significantly enhances its reliability due to the
implementation of continuous integration and deployment
practices. Every new PAPI component ships with Spack
“smoke tests” to quickly verify basic functionalities. These
tests ensure that the components configured within PAPI are
fully operational in the version installed via Spack.

In summary, ECP’s support has enabled PAPI to sig-
nificantly enhance its community impact by serving as a
portability layer that consolidates monitoring of hardware
counters, power consumption, and software-defined events
into a unified open-source software package. By offering a
single, portable interface, PAPI facilitates the monitoring of
metrics across advanced hardware and software technolo-
gies. Because of PAPI, application developers and re-
searchers can avoid the cumbersome necessity of using
multiple APIs to access all available counters on a system,
thus significantly improving productivity.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
research was supported by the Exascale Computing Project (17-

266

The International Journal of High Performance Computing Applications 39(2)

SC-20-SC), a collaborative effort of the U.S. Department of En-
ergy Office of Science and the National Nuclear Security
Administration.

ORCID iDs

Heike Jagode
Anthony Danalis
Giuseppe Congiu

https://orcid.org/0000-0002-8173-9434
https://orcid.org/0009-0002-9846-0066
https://orcid.org/0009-0008-7165-7591

Note

1. L2 HIT = L2 RQSTS:DEMAND DATA RD HIT, and
L3 READ = OFFCORE REQUESTS:DEMAND DATA RD.

References

Agullo E, Demmel J, Dongarra J, et al. (2009) Numerical linear
algebra on emerging architectures: the PLASMA and
MAGMA projects. Journal of Physics: Conference Series
180: 012037.

AMD (2024a) AMD’s Radeon open compute platform. https://
rocm.docs.amd.com/en/latest/.

AMD (2024b) AMD’s ROCm system management interface.
https://rocm.docs.amd.com/projects/rocm_smi_lib/en/latest/.

AMD (2024c) hipBLAS: basic linear algebra on AMD GPUs.
https://rocm.docs.amd.com/projects/hipBLAS/en/latest/.

AMD (2024d) Omnitrace: application profiling, tracing, and
analysis. https://github.com/AMDResearch/omnitrace.

Barry D, Danalis A and Jagode H (2021) Effortless monitoring of
arithmetic intensity with PAPI’s counter analysis toolkit. In:
Tools for High Performance Computing 2018/2019, Dresden,
Germany, 195-218.

Barry D, Jagode H, Danalis A, et al. (2023) Memory traffic and
complete application profiling with PAPI multi-component
measurements. In: 2023 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW),
St. Petersburg, FL, USA, 15-19 May 2023, pp. 393-402.
DOI: 10.1109/IPDPSW59300.2023.00070.

Barry D, Danalis A and Dongarra J (2024) Automated data
analysis for defining performance metrics from raw hardware
events. In: IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), San Francisco,
CA, USA.

Bohme D, Gamblin T, Beckingsale D, et al. (2016) Caliper:
performance introspection for hpc software stacks. In: SC
’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis,
Salt Lake City, UT, USA, 13-18 November 2016,
pp. 550-560. DOI: 10.1109/SC.2016.46.

Bosilca G, Bouteiller A, Danalis A, et al. (2013a) PaRSEC: ex-
ploiting heterogeneity to enhance scalability. IEEE Com-
puting in Science Engineering 15(6): 36—45.

Bosilca G, Bouteiller A, Danalis A, et al. (2013b) Scalable dense
linear algebra on heterogeneous hardware. Advances in

Parallel Computing 24: 65-103. DOI: 10.3233/978-1-61499-
324-7-65.

Brunst H and Kniipfer A (2011) Vampir. In: Padua D (ed) En-
cyclopedia of Parallel Computing. New York, NY: Springer
US, pp. 2125-2129. DOIL: 10.1007/978-0-387-09766-4_60.

Danalis A, Jagode H, Herault T, et al. (2019) Software-defined
events through PAPIL. In: 2019 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW),
Rio de Janeiro, Brazil, 2024 May 2019, pp. 363-372. DOI:
10.1109/IPDPSW.2019.00069.

Gamblin T, LeGendre M, Collette M, et al. (2015) The Spack
package manager: bringing order to HPC software chaos. In:
SCl15:
Computing, Networking, Storage and Analysis, Los Ala-
mitos, CA, USA, 15-20 November 2015, pp. 1-12. IEEE
Computer Society. DOI: 10.1145/2807591.2807623.

Gates M, Kurzak J, Charara A, et al. (2019) Slate: design of a
modern distributed and accelerated linear algebra library. In:

International Conference for High-Performance

Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis,
pp. 1-18.

Geimer M, Wolf F, Wylie B, et al. (2010) The Scalasca perfor-
mance toolset architecture. Concurrency and Computation:
Practice and Experience 22(6): 702—719. DOI: 10.1002/cpe.
1556.

Haidar A, Jagode H, YarKhan A, et al. (2017) Power-aware
computing: measurement, control, and performance analy-
sis for intel Xeon Phi. In: 2017 IEEE High Performance
Extreme Computing Conference (HPEC *17), Waltham, MA,
USA, 12-14 September 2017.

Haidar A, Jagode H, Vaccaro P, et al. (2018) Investigating power
capping toward energy-efficient scientific applications.
Concurrency Computation: Practice and Experience
(CCPE): Special Issue on Power-Aware Computing 31:
e4485. DOI: 10.1002/cpe.4485.

Huck K (2022) Broad performance measurement support for
asynchronous multi-tasking with APEX. In: 2022 IEEE/
ACM 7th International Workshop on Extreme Scale Pro-
gramming Models and Middleware (ESPM2), Dallas, TX,
USA, 13-18 November 2022, pp. 20-29. DOI: 10.1109/
ESPM256814.2022.00008.

Intel (2024a) Intel VTune profiler. https://www.intel.com/content/
www/us/en/developer/tools/oneapi/vtune-profiler.html.

Intel (2024b) Intel’s oneAPI level zero interface. https://spec.
oneapi.io/level-zero/latest/index.html.

Jagode H and Hein J (2008) Custom assignment of MPI ranks for
parallel multi-dimensional FFTs: evaluation of BG/P versus
BG/L. In: 2008 IEEE International Symposium on Parallel
and Distributed Processing with Applications, Sydney, NSW,
Australia, 10-12 December 2008, pp. 271-283. DOIL: 10.
1109/ISPA.2008.136.

Jagode H, YarKhan A, Danalis A, et al. (2016) Power management
and event verification in PAPIL. In: Tools for High Perfor-
mance Computing 2015: Proceedings of the 9th International

https://orcid.org/0000-0002-8173-9434
https://orcid.org/0000-0002-8173-9434
https://orcid.org/0009-0002-9846-0066
https://orcid.org/0009-0002-9846-0066
https://orcid.org/0009-0008-7165-7591
https://orcid.org/0009-0008-7165-7591
https://rocm.docs.amd.com/en/latest/
https://rocm.docs.amd.com/en/latest/
https://rocm.docs.amd.com/projects/rocm_smi_lib/en/latest/
https://rocm.docs.amd.com/projects/hipBLAS/en/latest/
https://github.com/AMDResearch/omnitrace
https://doi.org/10.1109/IPDPSW59300.2023.00070
https://doi.org/10.1109/SC.2016.46
https://doi.org/10.3233/978-1-61499-324-7-65
https://doi.org/10.3233/978-1-61499-324-7-65
https://doi.org/10.1007/978-0-387-09766-4_60
https://doi.org/10.1109/IPDPSW.2019.00069
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.1002/cpe.1556
https://doi.org/10.1002/cpe.1556
https://doi.org/10.1002/cpe.4485
https://doi.org/10.1109/ESPM256814.2022.00008
https://doi.org/10.1109/ESPM256814.2022.00008
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://spec.oneapi.io/level-zero/latest/index.html
https://spec.oneapi.io/level-zero/latest/index.html
https://doi.org/10.1109/ISPA.2008.136
https://doi.org/10.1109/ISPA.2008.136

Jagode et al.

267

Workshop on Parallel Tools for High Performance Com-
puting, September 2015, Dresden, Germany. Cham: Springer
International Publishing, pp. 41-51. DOI:10.1007/978-3-
319-39589-0_4.

Jagode H, Danalis A, Anzt H, et al. (2019) PAPI software-defined
events for in-depth performance analysis. The International
Journal of High Performance Computing Applications 33(6):
1113-1127. DOI: 10.1177/1094342019846287.

Jagode-McCraw H, Terpstra D, Dongarra J, et al. (2013) Beyond
the CPU: hardware performance counter monitoring on blue
gene/Q. In: Proceedings of the International Supercomputing
Conference 2013. Heidelberg: Springer, pp. 213-225.
ISC’13.

Jagode-McCraw H, Ralph J, Danalis A, et al. (2014) Power mon-
itoring with PAPI for Extreme scale architectures and dataflow-
based programming Models. In: Workshop on Monitoring and
Analysis for High Performance Computing Systems Plus
Applications (HPCMASPA 2014), Madrid, Spain, 22-26 Sep-
tember 2014, pp. 385-391. IEEE Cluster 2014.

Kaufmann S and Homer B (2003) CrayPat-cray X1 performance
analysis tool. In: Proceedings of the Cray User Group 2003,
pp. 1-32. https://cug.org/5-publications/proceedings
attendee lists/2003CD/S03_Proceedings/Pages/Authors/
Kaufmann.pdf.

Kowalski K, Bair R, Bauman N, et al. (2021) From NWChem to
NWChemEx: evolving with the computational chemistry
landscape. Chemical Reviews 121(8): 4962-4998. DOI: 10.
1021/acs.chemrev.0c00998.

Malony A, Biersdorff S, Shende S, et al. (2011) Parallel perfor-
mance measurement of heterogeneous parallel systems with
gpus. In: Proceedings of the 2011 International Conference
on Parallel Processing, ICPP ’11. Washington, DC, USA:
IEEE Computer Society, pp. 176-185. DOI: 10.1109/ICPP.
2011.71.

Molnar I (2009) perf: Linux profiling with performance counters.
https://perf.wiki.kernel.org/.

NVIDIA (2024a) cuBLAS: basic linear algebra on NVIDIA GPUs.
https://developer.nvidia.com/cublas.

NVIDIA (2024b) NVIDIA Nsight systems. https://developer.
nvidia.com/nsight-systems.

NVIDIA (2024c) NVIDIA’s CUDA profiling tools interface.
https://developer.nvidia.com/cupti.

NVIDIA (2024d) NVIDIA’s Nsight perf SDK. https://developer.
nvidia.com/nsight-perf-sdk.

Schliitter M, Philippen P, Morin L, et al. (2014) Profiling hybrid
HMPP applications with Score-P on heterogeneous hardware.
In: Parallel Computing: Accelerating Computational Science
and Engineering (CSE), Advances in Parallel Computing.
Amsterdam: I0S Press, Vol. 25, pp. 773-782. DOI: 10.3233/
978-1-61499-381-0-773.

Shende S and Malony A (2006) The Tau parallel performance
system. International Journal of High Performance Com-
puting Applications 20(2): 287-311. DOI: 10.1177/

1094342006064482.

Terpstra D, Jagode H, You H, et al. (2010) Collecting performance
data with papi-c. In: Miiller MS, Resch MM, Schulz A, et al.
(eds) Tools for High Performance Computing 2009. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 157-173.

Treibig J, Hager G and Wellein G (2010) LIKWID: a lightweight
performance-oriented tool suite for x86 multicore environ-
ments. In: Proc. Of the First International Workshop on
Parallel Software Tools and Tool Infrastructures.

Vanecek S and Schulz M (2023) Sys-sage: a fresh view on dynamic
topologies & attributes of HPC systems. In: International
Conference for High Performance Computing, Networking,
Storage and Analysis (SC), Poster Session.

Willenbring J, Shende S, Spear W, et al. (2023) E4S: extreme-scale
scientific software stack. https://www.osti.gov/biblio/
2432176.

Author biographies

Heike Jagode is a Research Associate Professor at the
Innovative Computing Laboratory (ICL) at the University
of Tennessee, Knoxville (UTK). She has led the ICL Per-
formance Group since 2013 and specializes in high-
performance computing, with a focus on performance
analysis, tuning, and energy efficiency of parallel scientific
applications. She holds a Ph.D. in Computer Science from
UTK, where she was advised by Jack Dongarra, an M.S. in
High Performance Computing from the University of Ed-
inburgh, UK, and an M.S. in Applied Mathematics from the
University of Applied Sciences Mittweida, Germany.

Anthony Danalis is a Research Assistant Professor at the
University of Tennessee, Knoxville. His research interests
include performance measurement and optimization, sys-
tems, compiler analysis, MPI, and accelerators. He holds a
Ph.D. in Computer Science from the University of Dela-
ware, an M.S. in Computer Science from the University of
Delaware, and an M.S. in Computer Science from the
University of Crete, Greece.

Giuseppe Congiu is a consultant Research Scientist at In-
novative Computing Laboratory (ICL) at the University of
Tennessee, Knoxville, where he works on performance
measurement and modeling. Before joining ICL he was a
Postdoctoral Fellow at Argonne National Laboratory, where
he worked on Programming Models and Runtime Systems
for large scale supercomputing clusters. He holds a Ph.D. in
Computer Science from the Johannes Gutenberg University
of Mainz, Germany, and a B.Sc. and M.Sc. in Electrical and
Electronic Engineering from the University of Cagliari, Italy.

Daniel Barry is a Data Science and Engineering Ph.D.
student at the University of Tennessee, Knoxville (UTK),
advised by Jack Dongarra. He conducts research with the
Innovative Computing Labs Performance Group. Daniel
received a Bachelor of Science in Computer Engineering
from UTK. His research interests include performance

https://doi.org/10.1007/978-3-319-39589-0_4
https://doi.org/10.1007/978-3-319-39589-0_4
https://doi.org/10.1177/1094342019846287
https://cug.org/5-publications/proceedings_attendee_lists/2003CD/S03_Proceedings/Pages/Authors/Kaufmann.pdf
https://cug.org/5-publications/proceedings_attendee_lists/2003CD/S03_Proceedings/Pages/Authors/Kaufmann.pdf
https://cug.org/5-publications/proceedings_attendee_lists/2003CD/S03_Proceedings/Pages/Authors/Kaufmann.pdf
https://doi.org/10.1021/acs.chemrev.0c00998
https://doi.org/10.1021/acs.chemrev.0c00998
https://doi.org/10.1109/ICPP.2011.71
https://doi.org/10.1109/ICPP.2011.71
https://perf.wiki.kernel.org/
https://developer.nvidia.com/cublas
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/cupti
https://developer.nvidia.com/nsight-perf-sdk
https://developer.nvidia.com/nsight-perf-sdk
https://doi.org/10.3233/978-1-61499-381-0-773
https://doi.org/10.3233/978-1-61499-381-0-773
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1177/1094342006064482
https://www.osti.gov/biblio/2432176
https://www.osti.gov/biblio/2432176

268

The International Journal of High Performance Computing Applications 39(2)

monitoring technology, benchmarking methodologies, ap-
plication optimization, and numerical methods.

Anthony Castaldo holds an M.S. in Mathematics (2005)
from Texas A&M University, an M.S. in Computer Science
(2007) from the University of Texas, and a Ph.D. in
Computer Science (2010) from the University of Texas,
where he was advised by R. Clint Whaley. His research
focused on developing new high-performance computing
algorithms.

Jack Dongarra specializes in numerical algorithms in linear
algebra, parallel computing, the use of advanced computer
architectures, programming methodology, and tools for

parallel computers. He holds appointments at the University
of Manchester, Oak Ridge National Laboratory, and the
University of Tennessee. In 2019, he received the ACM/
SIAM Computational Science and Engineering Prize. In
2020, he received the IEEE-CS Computer Pioneer Award.
In 2022, he received the ACM A.M. Turing Award for his
pioneering contributions to numerical algorithms and
software that have driven decades of extraordinary progress
in computing performance and applications. He is a Fellow
ofthe AAAS, ACM, IEEE, and SIAM; a foreign member of
the British Royal Society and a member of the U.S. National
Academy of Sciences and the U.S. National Academy of
Engineering.

	Advancements of PAPI for the exascale generation
	1. Introduction
	2. Performance and power monitoring capabilities for GPUs
	2.1. AMD
	2.1.1. Performance monitoring capabilities
	2.1.2. GPU
	2.1.3. Power usage

	2.2. Intel
	2.3. NVIDIA
	2.3.1. Performance monitoring capabilities
	2.3.2. Power usage

	3. Detection of hardware topology features
	3.1. “sysdetect” user API
	3.2. “sysdetect” command Line tool

	4. Software defined events (SDEs)
	4.1. Registered counters
	4.2. Created counters
	4.3. Callback counters
	4.4. Recorders
	4.5. CountingSets
	4.6. Counter groups

	5. Counter analysis toolkit (CAT)
	5.1. Kernel categories
	5.1.1. Data cache
	5.1.2. Instruction cache
	5.1.3. Floating point operations (FLOPs)
	5.1.4. Branches
	5.1.5. Instructions

	5.2. Data analysis

	6. Related work
	7. Conclusions
	Declaration of Conflicting Interests
	Funding
	ORCID iDs
	Note
	References
	Author biographies

