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Preface

Kinetic Monte Carlo (kMC) simulations form still a quite new area of research.
Figure 1 shows the number of publications (articles or reviews) with “kinetic Monte
Carlo” in the title or abstract according to the abstract and citation database Scopus.
There are two things to note. On the one hand it is not a very extensive area of
research yet. A very diligent researcher can still keep track of all publications that
appear. On the other hand, the number of publications is rapidly growing.

Figure 1 shows that there were no publications before 1993 that used the term
kMC. This does not mean that there have been no kMC simulations before that year.
There have been some but the term was not used yet. In fact, there are still people,
who do what we will call kMC simulations here, but who do not use the term. One
mundane reason for that is probably that they use an algorithm that they regard as
one of many possible algorithms for doing Monte Carlo (MC) simulations. Why
give it a special name? Another reason may be historical. Instead of kMC, people
have used and still use the term dynamic MC. This is a term introduced by D.T.
Gillespie for his algorithms that use MC to solve macroscopic rate equations. These
algorithms are often almost identical to the ones we will describe in Chap. 3, and
it seems reasonable to use the same term even when the algorithms are used for
different problems. There has been a tendency to be more strict in the terminology
however. For example, the term Stochastic Simulation Algorithm is now often used
when using MC for rate equations. There are even people that restrict the term kMC
to one particular algorithm, the Variable Step Size Method in our terminology (see
Sect. 3.2), even though all other algorithms in Chap. 3 give exactly the same results.
But the term kMC has also been used for rate equations. So the situation concerning
terminology is still fluent.

So what do we mean when we use the term kMC? There are always two aspects
to kMC as we will discuss it here. We will regard a system as a set of minima of a
potential-energy surface (PES). The evolution of a system in real time will then be
regarded as hops from one minimum to a neighboring one. These are the elementary
events of kMC. The second aspect concerns the algorithms. The hops in kMC will be
seen to be stochastic processes and the algorithms use random numbers to determine
at which times the hops occur and to which neighboring minimum they go. This is

vii



viii Preface

Fig. 1 Number of publications (articles or reviews) with “kinetic Monte Carlo” in the title or
abstract as a function of the year of publication

our general definition of kMC. We will use it however only in Chap. 2 and Sect. 8.4.
In the rest of this book we will make an additional assumption. This is where the
surface reactions in the title of this book come in. The surface on which the reactions
take place is often periodic and has translational symmetry in two directions. The
minima of the PES are related to the adsorption sites of the surface. The latter form
a lattice and the reactions can be modeled with a lattice-gas model. We will see that
this is even possible if the periodicity of the surface is not perfect. So kMC in this
book stands for a lattice-gas model that describes the evolution of the system in real
time and with elementary events that are stochastic and that correspond to reactions
and other processes.

This book has two objectives. First, it is about the kMC method. A derivation
of the method will be given from first principles, and we will discuss various algo-
rithms that can be used to do actual simulations. This means that much of the book
is also supposed to be useful to people who use kMC for other systems than sur-
face reactions. For example, the derivation of the master equation in Chap. 2, which
forms the basis of our theory of kMC, does not use any information particular to
surface reactions. It only assumes that you have a system that can be described by a
single-valued PES. This includes a very large majority of all systems one encounters
in chemical physics. Chapter 8 also has a section that discusses kMC for when this
is all one knows about a system.

Most of the book does however assume that a lattice-gas model is used, be-
cause this simplifies the applicability of kMC enormously. However, this still does
not restrict the usefulness only to surface reactions. In fact, most publications us-
ing lattice-gas kMC are not about surface reactions. There are many applications
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of kMC in crystalline solids, polymers, crystal growth, chemical vapor deposition,
molecular-beam epitaxy, ion implantation, etching, nanoparticles, and non-reactive
processes. The discussions of algorithms in Chap. 3 and the way processes can be
modeled in Chaps. 5, 6, 7, and 8 are just as useful for those applications as for sur-
face reactions. However, the second objective of this book is to show what kMC
simulations can teach us about the kinetics of surface reactions that one finds in
catalysis and surface science. The book was mainly written with this in mind. This
means that there are aspects that are relevant for the application of kMC to other
areas that will not be found here, whereas some aspects that are discussed here may
not be relevant for these areas.

The book is called an introduction because it is meant to give all information
on kMC simulations of surface reactions that you need if you want to start from
scratch. A lot of space is devoted to the basics, which are discussed in detail. The
term “introduction” is not meant to imply that everything in this book is low level
or easy. Some things are but others definitely are not. It is for example quite easy to
implement the algorithms of Chap. 3 for a simple system of surface reactions, and
the resulting code will probably yield very useful and interesting information on the
kinetics of the system. Writing a general-purpose code however is much harder. Also
the theoretical derivation of the master equation on which we base kMC, advanced
aspects of the algorithms, and certain new developments in Chap. 8 are anything but
easy.

The structure of this book is as follows. Chapter 1 discusses why one would want
to do kMC simulations. The kinetics of surface reactions is normally described with
macroscopic rate equations. There are different ways in which these equations can
be used, but it is shown that they all have substantial drawbacks.

Chapter 2 deals with the basic theory. It introduces the lattice gas as the model
for the systems in this book, and it gives the derivation of the master equation. This
is the central equation for kMC. It forms the basis of all kMC algorithms, it relates
quantum chemical calculations of rate constants to kMC, and it relates kMC to other
kinetic theories like microkinetics.

Chapter 3 discusses kMC algorithms. kMC generates a sequence of configura-
tions and times when the transitions between these configurations occur. This solves
the master equation. There are many algorithms that yield such a sequence of con-
figurations and which are statistically equivalent. We discuss a few in detail because
they are the ones that are efficient for models of surface reactions. Time-dependent
rate constants are discusses separately as the determination of when processes take
place pose special problems. Parallelization is discussed as well as some older algo-
rithms. Some guidelines are given of how to choose an algorithm for a simulation.

Chapter 4 shows how the rate constants that are needed for kMC simulations
can be obtained. It shows how rate constants can either be calculated or be derived
from experimental results. Calculating rate constants involves determining the initial
and the transition state of a process, the energies of these states, and their partition
functions. The phenomenological or macroscopic equation is the essential equation
to get rate constants from experiments. Lateral interactions can affect rate constants
substantially, but because they are relatively weak and special attention needs to be
given to the reliability of calculations of these interactions.
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Chapters 5 and 6 discuss ways to model surface processes. These chapters deal
with the same topic, but approach it from different angles. Chapter 5 shows the tools
that we can use in modeling. For simple systems there is a lattice corresponding to
the adsorption sites and the labels of the lattice points describe the occupation of
the sites. The labels can however also be used to model steps and other defects and
sites on bimetallic substrates. The lattice points don’t need to correspond to sites
however, but can also be used to store other information like the presence of certain
structures in the adlayer. Processes need not always to correspond to reactions or
other actual processes, but when they have an infinite rate constant they can be used
in a general-purpose code to handle exceptional situations that are normally hard-
coded in special-purpose codes.

Chapter 6 discusses typical surface processes and how each of them can be mod-
eled in different ways using the tools from Chap. 5. The way to model many pro-
cesses for kMC simulations is straightforward. There are however also processes
that one encounters regularly and for which there are more modeling options and
for which it is not always clear which the best. We discuss several of them.

Chapter 7 shows how the modeling of various surface processes can be inte-
grated. We discuss a number of complete surface reaction systems and show the
benefits of kMC simulations for them. Chapter 8 finally discusses some aspects of
kMC that one might want to improve and some likely new developments. kMC is
a very versatile and powerful method to study the kinetics of surface reactions, but
there are nevertheless some systems and phenomena for which one would like it to
be even more efficient or one would like to extend it.

Tonek JansenGeldrop, Netherlands
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Chapter 1
Introduction

Abstract The kinetics of surface reactions is normally described with macroscopic
rate equations. There are different ways in which these equations can be used, but it
is shown that they all have substantial drawbacks, which is the reason why we want
to do kinetic Monte Carlo simulations. These simulations allow us to bridge the gap
of many orders of magnitude in length and time scales between the processes on the
atomic scale and the macroscopic kinetics.

1.1 Why Do Kinetic Monte Carlo Simulations?

Kinetics of surface reactions is generally described using macroscopic rate equa-
tions, which are also just called rate equations, mass balance equations, Mean Field
equations, or phenomenological equations. If we have adsorbates A, B, C, et cetera,
then these equations can be written as [1, 2]

dθX

dt
=

∑

n

I
(n)
X k(n)f (n)(θA, θB, . . .) (1.1)

where θX is the coverage of adsorbate X, dθX/dt is the rate with which the coverage
of X changes, the sum is over all reactions, k(n) is the rate constant of reaction n,
and f (n) is a factor indicating how the rate of reaction n depends on the coverages.
I

(n)
X is the change in the number of X’s in reaction n with I

(n)
X > 0 if X’s are formed,

I
(n)
X < 0 if X’s react away, and I

(n)
X = 0 in all other cases (usually X doesn’t partici-

pate in the reaction, but it might also be for example a catalyst).
There are two extreme ways in which the rate Eq. (1.1) can be interpreted. The

first takes the different terms on the right-hand-side to reflect the rates of the actual
processes taking place on the atomic scale. This is sometimes called microkinetics
[3]. We will see that with this interpretation the rate equations can be derived from
first principles (see Sect. 4.6), provided some assumptions are made. In this inter-
pretation the constants k are the rate constants of the individual processes and the
f ’s indicate the number of ways a reaction can take place normalized with respect
to the area of the surface.

It is important to have a good understanding of this interpretation of the rate
equations, because one objective of this book is to relate the processes on the atomic
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scale to the macroscopic kinetics. Let’s therefore look at a simple example. Suppose
we have two different adsorbates A and B that can react when they are at neighbor-
ing sites to form a product AB: i.e., we have the reaction A + B → AB. A specific
example that we will encounter various times in this book is CO oxidation. In that
case A is CO and B an oxygen atom. Let’s also assume that all adsorbates prefer to
adsorb on the same sites at all coverages, and that these sites form a square lattice.
If we have only the reaction then

dθA

dt
= dθB

dt
= −kf (θA, θB). (1.2)

We see that IA = IB = −1, because each reaction removes one A and one B. If we
have a surface with S sites and there are NA A’s and NB B’s, then θA = NA/S and
θB = NB/S.

What does f (θA, θB) look like? To answer this question it is convenient to mul-
tiply Eq. (1.2) by S to get

dNA

dt
= dNB

dt
= −kSf (θA, θB). (1.3)

The right-hand-side now stands for the rate with which the total numbers of A’s and
B’s change. The rate constant k stands for the rate constant of an individual reaction,
so Sf (θA, θB) must stand for the number of individual reactions that can take place.
Because A and B can only react when they are at neighboring sites Sf (θA, θB) must
equal the number of neighboring A–B pairs. In general this number depends on how
the A’s and B’s are distributed over the sites: i.e., the adlayer structure. The normal
assumption for rate equations is that the adsorbates are distributed randomly over the
sites. In that case each A has a probability NB/(S − 1) that a particular neighboring
site is occupied by a B. Each A has four neighboring sites when we have a square
lattice, so the number of neighboring A–B pairs is then 4NANB/(S − 1). From this
we get f (θA, θB) = 4NANB/[S(S − 1)] which equals 4θAθB if S is large. So our
rate equations becomes

dθA

dt
= dθB

dt
= −4kθAθB. (1.4)

Textbooks on the kinetics of surface reactions generally simply pose equations
like (1.4) with little justification and generally leave out the factor 4 which derives
from the structure of the substrate. The problem with this equation is however that
the assumption that the adsorbates are randomly distributed over the sites is rarely
correct. The main reason is that there are interactions between the adsorbates. At
low temperature they lead to correlation in the occupation of neighboring sites and
at very low temperature may even result in island formation or ordered adlayers.
This correlation will become negligible only at very high temperatures. Calcula-
tions show that for a transition metal surface, small molecular adsorbates like CO
and NO or atoms, and adsorption at neighboring sites of the same type (e.g., two ad-
sorbates at neighboring top sites) there may be repulsive interactions of 20 kJ/mol
or more [4]. With such an interaction there will be correlation in the occupation of
neighboring sites at any temperature relevant to surface science or catalysis as it is
substantially higher than the thermal energy kBT .
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Although interactions between adsorbates are the main reason that they will not
be randomly distributed over the sites, they are not the only reason. Another one is
that the sites might differ because of defects in the substrate. Less obvious is that
reactions themselves may also lead to correlation. The reaction A + B → AB in the
example removes A’s and B’s when they are neighbors. This will make it less likely
that a neighboring A–B pair is found. How strong this effect is depends on the rate
constant of the reaction and how fast the adsorbates diffuse. In extreme cases (see
Sect. 7.4.3) the reaction may lead to ordered adlayers.

One might think that the problem is really the particular forms that we have used
above for the coverage dependence f . If the adsorbates are not randomly distributed,
then we might try to derive a form for f that reflects the way the adsorbates are
actually found on the surface. For example, if one adsorbate forms islands then the
coverage dependence in f of the adsorbate should reflect that only the adsorbates
on the edge of the island can react with other adsorbates.

There are two problems with this idea. The lesser is that it is generally not clear
in which way the adsorbates are distributed over the sites. In fact, this is part of the
kinetic problem. A kinetic theory that does not have an answer to the question of
what is the structure of the adlayer is at best incomplete. The bigger problem is that
there are situations where the macroscopic rate equations can never be correct. It is
quite possible to have two situations for a system with exactly the same coverage
but with a very different coverage dependence of the rates. Many systems form
ordered adlayers at low temperatures and disordered adlayers at high temperatures.
Of course, at different temperatures the rate constants are different, but there will
also be a different coverage dependence f at low and high temperature because the
correlation in the occupation of neighboring sites is different. This means that it is
not even in principle possible to describe the kinetics at low and high temperature
for such a system with only one macroscopic rate equation.

One should also be aware that when there are interactions between the adsorbates
the coverage dependence of the rate dθX/dt is not only described by the factors
f (n)(θA, θB, . . .). A consequence of these interactions is that the rate constants also
become dependent on the coverage or the adlayer structure. One should not mix up
these coverage dependences, because they have a different origin. The factor f (n)

stands for the number of possible occurrences of reaction n because of the way the
adsorbates are distributed over the surface. The coverage dependence of the rate
constants is a consequence of how interactions between the adsorbates change these
rate constants.

The arguments above show that the macroscopic rate equations have severe lim-
itations when we want to interpret them as describing the processes on the atomic
scale. This however should not be interpreted to mean that the rate equations are
always wrong and useless. In fact, they have been and still are extensively used in
chemical engineering with great success. There the rate equations are interpreted in
a different way. They are used to fit kinetic experiments and then to use the results
to predict the kinetics at other reaction conditions. This is possible provided these
other conditions do not differ too much from to ones that were used to fit the rate
equations. The reason for this is that the rate equations used in this way generally



4 1 Introduction

Fig. 1.1 The turnover number in the Ziff–Gulari–Barshad model as a function of the fraction of
CO molecules in the gas phase

do not really capture the chemistry of the system. Instead they just form mathemati-
cal expressions yielding reasonable numerical values for reaction rates. This is most
clearly when one looks at the rate constants. They can get highly unphysical values
in the fitting procedure, and should therefore not be interpreted as rate constants
of the microscopic processes. In this book we will not look at this descriptive or
phenomenological interpretation of the rate equations.

The discussion above shows the shortcomings of the rate equations and the need
for a more sophisticated approach. Such an approach is kinetic Monte Carlo (kMC),
which simulates individual processes on the microscopic scale, can include, among
other things, interactions between adsorbates and incorporates the dependence on
the structure of the adlayers properly.

1.2 Some Comparisons

To give some idea of the difference that one might expect between kMC simulations
and macroscopic rate equations, we discuss a few examples. Figure 1.1 shows the
reactivity in the Ziff–Gulari–Barshad (ZGB) model with and without diffusion [5].
The ZGB model is a simple model for CO oxidation. The original model has only
CO adsorption, dissociative adsorption of oxygen, and formation of CO2 immedi-
ately followed by desorption. The CO2 formation is assumed to by infinitely fast.
The steady state of the model can therefore be characterized by only one parameter:
the fraction of molecules in the gas phase that are CO. (For details see Sect. 7.4.3.)

In spite of its simplicity the model shows some very interesting behavior. There
are three phases. There is one reactive phase and two phases in which the surface
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is poisoned: one with CO and one with oxygen. There are two kinetic phase transi-
tions: one in which CO poisoning takes place when we are in the reactive phase and
then increase the fraction of CO molecules in the gas phase, and one in which oxy-
gen poisoning takes place when we are in the reactive phase and then decrease the
fraction of CO molecules in the gas phase. Figure 1.1 shows the reactive window.
If there is too little CO in the gas phase, then the surface will become completely
covered by oxygen. If there is too much CO in the gas phase, then the surface will
become completely covered by CO.

One point of critique on the ZGB model that one can have is that there is no
diffusion of the adsorbates, and that it is only to be expected that macroscopic rate
equations will be bad, because there is no mechanism that randomizes the adsorbates
over the surface. Indeed, without diffusion islands of CO and islands of oxygen
are formed, and if both adsorbates diffuse kMC simulations give the same results
as macroscopic rate equations. With diffusion the reactive window becomes much
wider. There is still CO poisoning, but only when the fraction of CO molecules in
the gas phase is substantially higher, and there is no oxygen poisoning anymore.

If we want to use the ZGB model to represent a real system, then the question
will be how much diffusion should be included. If both adsorbates diffuse, then
macroscopic rate equations can be used. It seems however more likely that only
CO diffuses substantially, whereas oxygen atoms are bound to tightly to diffuse
easily. So what if there is only CO diffusion. Figure 1.1 shows that macroscopic rate
equations then do not work. The phase transition to CO poisoning is then correctly
described by the macroscopic rate equations, but oxygen poisoning is still possible
and occurs at the same point as when there is no diffusion at all. The reason for this
behavior is that oxygen still forms islands. The islands are small just below the point
where CO poisoning occurs, and the adsorbates can be regarded as well mixed. Near
the point where oxygen poisoning occurs, the oxygen islands are large however, and
the adlayer is anything but well mixed.

Slow or no diffusion of some adsorbates is an important cause of incorrect re-
sults from macroscopic rate equations. In the case of the ZGB model one might
regard them as only quantitative errors. In Sect. 7.5.1 the Lotka model will be dis-
cussed. That model also has no diffusion, but for that model there is even a qualita-
tive difference between kMC and rate equations. The kMC simulations show very
well-defined oscillations (see Fig. 7.16), but the rate equations only give a steady
state.

Even if diffusion is fast, there may still be substantial differences between kMC
results and results obtained with macroscopic rate equations. Section 5.4.2 shows
that the diffusion manages to randomize adsorbates only on certain length and time
scales, and that the system shows structure at larger lengths and shorter times. More
common for the difference between kMC and rate equations are interactions be-
tween adsorbates (see Sect. 7.4.1). Figure 1.2 shows a Temperature-Programmed
Desorption (TPD) spectrum for CO desorption from a Rh(100) surface assuming
that CO prefers the top site at all coverages [6]. Although all sites are equivalent,
the spectrum obtained from kMC shows two peaks. There is a symmetry breaking
due to strong repulsive interactions between the CO molecules. At low temperatures
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Fig. 1.2 Temperature-Programmed Desorption spectrum (desorption rate versus temperature in
Kelvin) of adsorbates repelling each other obtained with kMC and with macroscopic rate equations.
Activation energy for desorption is Eact = 121.3 kJ/mol and the prefactor is ν = 1.435 · 1012 s−1.
These numbers were taken from CO desorption from Rh(100) at low coverage [6]. For diffusion
(i.e., hops from one site to a neighboring one) we have used the same activation energy but a
prefactor that is a factor ten higher. The repulsion between two adsorbates is 6.65 kJ/mol. The
heating rate is 5 K/s and the initial coverage 1.0 ML

the coverage is high. Each CO molecule has four neighbors that reduce the effec-
tive adsorption energy. As a result we find a desorption peak at the relatively low
temperature of about 385 K. After half the CO’s have desorbed, the remaining ones
form a checkerboard structure. None of the CO’s in that structure has a neighbor,
and as a consequence the remaining molecules have a much high adsorption energy.
They therefore only desorb at the much higher temperature of about 480 K.

We can derive a macroscopic rate equation that includes the repulsion between
the CO’s when we assume that they are randomly distributed over the surface in
spite of the strong repulsion. The derivation is given in Sect. 7.2 and the result is

dθ

dt
= −W

(0)
desθ

[
θeϕ/kBT + (1 − θ)

]4 (1.5)

with

W
(0)
des = νe−Eact/kBT (1.6)

the rate constant for desorption of an isolated CO molecule, Eact the activation en-
ergy, ν the prefactor, and ϕ the interaction energy of neighboring CO’s. This ex-
pression gives a TPD spectrum with just one peak: in Fig. 1.2 it is marked “1-site”.
Although the effective adsorption energy increases with the decreasing coverage,
this occurs in the same way for all adsorbates. A symmetry breaking with some
sites becoming vacant and others retaining a CO molecule is not possible.



1.2 Some Comparisons 7

One might try to extend the rate equations in a way that does allow for symmetry
breaking. We can partition all sites in two groups. Because the CO molecules form
a checkerboard structure at coverage 0.5 ML, we divide all sites into white and
black sites as for a checkerboard. We also allow the probability of these sites to be
occupied to differ. The rate equations then become

dθW

dt
= −W

(0)
desθW

[
θBeϕ/kBT + (1 − θB)

]4

− 4W
(0)
diffθW(1 − θB)

[
θBeϕ/2kBT + (1 − θB)

]3

×
[
θWe−ϕ/2kBT + (1 − θW)

]3

+ 4W
(0)
diffθB(1 − θW)

[
θWeϕ/2kBT + (1 − θW)

]3

×
[
θBe−ϕ/2kBT + (1 − θB)

]3 (1.7)

with θW the probability that a white site is occupied and θB a black site. There is
also an equation for dθB/dt that looks the same except with θW and θB interchanged.
Because θW and θB need not be the same, there might be hops of CO from black to
white sites and back. These hops are represented by the terms with W

(0)
diff. This is the

rate constant for an isolated CO molecule hopping from one site to a neighboring
one. Note that the way in which θW and θB appear in the equations reveal the origin.
The factor θW in the desorption term on the right-hand-side corresponds to a factor
f in Eq. (1.1). The factor in square brackets with θB derives from the coverage
dependence of the desorption rate constant. For the first diffusion term the factor f
equals 4θW(1 − θB), and the factors in the square brackets derive from the coverage
dependence of the hopping rate constant.

Equation (1.7) by itself does not necessarily result in a two-peak spectrum. If we
take initial coverages θW = θB = 1, then we get the same result as with Eq. (1.5).
However, the solution is unstable and the coverages want to diverge. This is what
we want for the symmetry breaking. We therefore start with θW = 1 and θB = 0.99.
This gives the curve marked “2-site” in Fig. 1.2. We see that we indeed get a second
peak, but it is much too small. So in spite of using an ad hoc assumption we still do
not get a correct spectrum.

The ZGB model and the model for CO/Rh(100) show phase transitions. The
macroscopic rate equations are based on a Mean Field Approximation (MFA) as
will be shown in Sect. 4.6.6. It is well known that MFA is worse for lower di-
mensional systems. The Ising model on a square lattice is a prototype model to
study phase transitions. It shows an order-disorder phase transition that can be
solved analytically [7]. The exact temperature of the phase transition is a factor
2 ln(1 +

√
2) ≈ 1.763 lower than the temperature that is obtained from MFA. Such

a large discrepancy is typical, and forms a good reason for doing simulations.
These simple models above may appear contrived. Realistic models are more

complicated, and one might think that when there are more factors affecting the
kinetics these factors may cause some averaging out or cancellation of errors and
that the net result can be described by rate equations after all. That turns out not to
be the case. The complexity may hide errors, but it doesn’t remove them. One reason
is that there are large interactions between the adsorbates in complicated reactions
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Fig. 1.3 The reaction profile of the reduction of NH3 on Pt(111). The energies are in kJ/mol

systems. This is because such systems will have adsorbates that prefer to adsorb
on different sites. These sites will be so close together, that two neighboring ones
can not be occupied simultaneously because there will be a very strong repulsion
between the adsorbates. This causes a very strong correlation in the occupation of
the sites, which can not be described properly by MFA.

As an example we look at a system for which all site preferences, reactions, and
their rate constants have been computed using Density-Functional Theory (DFT).
The system is the reduction of NH3 to molecular nitrogen and hydrogen on Pt(111).
Figure 1.3 shows the reaction profile [8]. NH3 prefers top sites, NH2 prefers bridge
sites, NH and atomic nitrogen prefer fcc hollow sites, and atomic hydrogen does not
really have a site preference. The DFT calculations also showed that there is a strong
repulsion between adsorbates at a distance equal to the Pt-Pt distance or closer.

Table 1.1 shows the coverages of the adsorbates obtained using kMC, microki-
netics, and a Boltzmann distribution based on adsorption energies. The reaction
profile in Fig. 1.3 shows that ammonia is the most stable species on the surface.
The Boltzmann distribution therefore has that adsorbate as the one with the highest
coverage. (The distribution is normalized so that the total coverage equals that of
the kMC simulation.) The system is however not at equilibrium but at steady state.
The desorption of molecular nitrogen and hydrogen make it irreversible. The conse-
quence is that there is no simple relation between the stabilities of the adsorbates and
their coverages, and an equilibrium approach using for example a grand canonical
ensemble will not give good results [9].
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Table 1.1 Coverages for the
reduction of ammonia on
Pt(111) at T = 1000 K and
PNH3 = 1.18 atm

kMC Microkinetics Boltzmann

NH3 0.002 0.0002 0.16

NH2 0.0002 0.0002 0.002

NH 0.004 0.17 0.03

N 0.28 0.81 0.006

H 0.0005 0.0002 0.10

The desorption of molecular nitrogen has by far the highest activation energy.
However, at steady state the rate of this process must be equal to half the net rates
of the dissociations of NH3, NH2, and NH. With net rates we mean the difference
between rates of the forward and reverse reactions. The factor of one half stems from
the fact that nitrogen desorbs associatively. Because the rate constant for nitrogen
desorption is extremely small due to the high activation energy, the rate can only be
high enough if there is a high coverage of nitrogen. This is indeed what is obtained
from kMC and microkinetics.

Although microkinetics is qualitatively correct, the coverages are predicted quite
wrong. The reason is that we made the usual assumption for microkinetics: one site
per unit cell and no interactions between the adsorbates. In this case it would not
have made sense to use equations like (1.5) or (1.7), because the interactions are
simply too strong. In fact, in the kMC simulations they were even assumed to be
infinite. Because of the absence of the interactions the total coverage according to
microkinetics is too high. The pressure is high and almost all sites are occupied.

In the kMC simulations this is simply not possible because of the repulsion be-
tween the adsorbates. As a consequence the coverages are lower. The difference
with microkinetics is not however just a matter of scaling or normalization. For ex-
ample, the ratio between the N and NH coverage is about 70 in kMC but less than 5
in microkinetics. Moreover, even if it would be matter of normalization, how would
we be able to determine the normalization constant? So we see that also for such a
realistic system it is necessary to do kMC simulations to get good kinetics.

The reason for the failure of the macroscopic rate equations is that they assume
that the system is homogeneous and the adsorbates are randomly distributed over
the surface. We have seen in the examples above that this is not the case. For the
ZGB model the fast formation of CO2 caused island formation, and for the TPD
of CO/Rh(100) and the reduction of NH3 on ammonia the interactions between
the adsorbates lead to a strong correlation in the occupation of neighboring sites.
Another reason for a non-random distribution of the adsorbates can be the substrate.
The substrates in the examples above have been perfect. In reality substrates have
defects.

Figure 1.4 shows simulated TPD spectra of a model of N2 desorption from
Ru(0001). It was hypothesized that the experimental spectra showed not desorp-
tion from a flat surface, but from steps on the surface. Gold was added to the surface
to block the steps sites and to test this hypothesis [10]. Indeed this shifted the peak to
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Fig. 1.4 Simulated TPD spectra (desorption rate versus temperature in Kelvin) of N2 desorption
from Ru(0001). The surface without Au has steps and terrace of four rows of Ru atoms wide. The
Au atoms on the surface with Au blocks the steps sites. The inset shows a snapshot of a simulation
and how the nitrogen atoms are distributed near a step. Black circles are nitrogen atoms and gray
circles indicate the step

much higher temperatures. The figure shows this effect, but from simulations. The
figure also shows a snapshot of a simulation with just a single step. Note that there
is a gradient in the coverage of nitrogen. The coverage is low near the step where
the nitrogen desorbs, and high on the terraces. Nitrogen on the terraces diffuses to
the steps.

Because of this gradient, macroscopic rate equations with a single coverage will
not be able to describe the desorption properly in this case, although it is not solely
the presence of the step why this is the case. Section 7.3 shows how for a simple
adsorption-desorption equilibrium with a step one can use macroscopic rate equa-
tions and even get exact results. The same procedure does not work here, because
the desorption is associative. We will see in Sect. 4.6.6 that the macroscopic rate
equations are then an approximation to the correct kinetics.

A step is just one example of a substrate that will induce a structure on the ad-
layer. More examples can be found in Chap. 7. There you will find an adsorbate-
induced step reconstruction (Sect. 7.3), how the width of a terrace can affect a
phase transition (Sect. 7.4.2), a synergistic effect of a bimetallic surface (Sect. 7.3),
and how surface reconstruction can lead to oscillations and chaos in the kinetics
(Sect. 7.5). All these phenomena can be studied in detail with kMC, but only at best
approximately and with great difficulty with macroscopic rate equations.
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1.3 Length and Time Scales

The discussion above has shown that we need to know the structure of the adlayer
on an atomic scale to understand the kinetics. To get the rate of the A + B reaction
it was necessary to know the number of A–B pairs. On the other hand kinetics is
generally studied on meso- or macroscopic scales. Atomic scales are of the order of
Ångstrøm and femtoseconds. Typical length scales in laboratory experiments vary
between micrometers to centimeters. The difference in time scales is often even
larger. Vibrations of molecules have periods in the order of femtoseconds. Some
reactions take only nanoseconds, but others seconds to many hours. This means that
there are many orders of difference in length and time scales between the individual
reactions and the resulting kinetics.

The length gap is not always a problem. Many systems are homogeneous, and the
kinetics of a macroscopic system can be reduced to the kinetics of a few reacting
molecules. This is generally the case for reactions in the gas phase and in solutions.
For reactions on the surface of a catalyst it is not always clear when this is the case.
It is certainly the case that in the overwhelming number of studies on the kinetics in
heterogeneous catalysis it is implicitly assumed that the adsorbates are well-mixed,
and that macroscopic rate equations (1.1) can be used. We have already seen exam-
ples of systems that show correlation in the occupation of sites that are close. There
may however also be ordering on a larger scale. For example, there are systems that
show pattern formation with a characteristic length scale of micro- to centimeters
[11]. For such systems the macroscopic rate equations can be extended by making
the coverages position dependent: θ = θ(r, t). One generally then also adds a dif-
fusion term. The resulting expressions are called reaction-diffusion equations [12].
The problem with these equations is however the same as the one with the macro-
scopic rate equations. On the atomic length scale the adsorbates are assumed to be
randomly distributed, but it is just this assumption that is rarely correct.

The real problem however is the time gap. The typical atomic time scale is given
by the period of a molecular vibration. The fastest vibrations have a reciprocal wave-
length of up to 4000 cm−1, and a period of about 8 fs. Reactions in catalysis take
place in seconds or more. It is important to be aware of the origin of these fifteen
orders of magnitude difference. A reaction can be regarded as a movement of the
system from one local minimum on a potential-energy surface (PES) to another. In
such a move a so-called activation barrier has to be overcome. Most of the time the
system moves around one local minimum. This movement is fast, takes place in the
order of femtoseconds, and corresponds to a superposition of all possible vibrations.
Every time that the system moves in the direction of the activation barrier can be re-
garded as an attempt to react. The probability that the reaction actually succeeds can
be estimated by calculating a Boltzmann factor that gives the relative probability of
finding the system at a local minimum or on top of the activation barrier. This Boltz-
mann factor is given by exp[−Ebar/kBT ], where Ebar is the height of the barrier.
A barrier of Ebar = 100 kJ/mol at room temperature gives a Boltzmann factor of
about 10−18. Hence we see that the very large difference in time scales is due to the
very small probability that the system overcomes activations barriers.
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The standard method to study the evolution of a system on an atomic scale is
Molecular Dynamics (MD) [13–15]. In MD a reaction with a high activation barrier
is called a rare event, and various techniques have been developed to get a reaction
even when a standard simulation would never show it. These techniques, however,
work for one reacting molecule or two molecules that react together, but not when
one is interested in the combination of thousands or more reacting molecules that
one has when studying kinetics. The objective of this book is to show how one deals
with such a collection of reacting molecules. It turns out that one has to sacrifices
some of the detailed information that one has in MD simulations. One can still work
on atomic length scales, but one cannot work with the exact position of all atoms
in a system. Instead one only specifies near which minimum of the PES the system
is. One does not work with the atomic time scale. Instead one has the reactions as
elementary events: i.e., one specifies at which moment the system moves from one
minimum of the PES to another. Moreover, because one doesn’t know where the
atoms are exactly and how they are moving, one cannot determine the times for
the reactions exactly either. Instead one can only give probabilities for the times of
the reactions. It turns out, however, that this information is more than sufficient for
studying kinetics. The resulting method is kMC: the topic of this book.
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Chapter 2
A Stochastic Model for the Description
of Surface Reaction Systems

Abstract The most important concept for surface reactions is the adsorption site.
For simple crystal surfaces the adsorption sites form a lattice. Lattices form the basis
for the description of surface reactions in kinetic Monte Carlo. We give the defini-
tion of a lattice and discuss related concepts like translational symmetry, primitive
vectors, unit cells, sublattices, and simple and composite lattices. Labels are intro-
duced to describe the occupation of the adsorption sites. This leads to lattice-gas
models. We show how these labels can be used to describe reactions and other sur-
faces processes and we make a start with showing how they can also be used to
model surfaces that are much more complicated than simple crystal surfaces. Ki-
netic Monte Carlo simulates how the occupation of the sites changes over time. We
derive a master equation that gives us probability distributions for what processes
can occur and when these processes occur. The derivation is from first principles.
Some general mathematical properties of the master equation are discussed and we
show how a lattice-gas model simplifies the master equation so that it becomes fea-
sible to use it as a basis for kinetic Monte Carlo simulations.

2.1 The Lattice Gas

We start the discussion of the way how we will model surface reactions by spec-
ifying how we will describe our systems. We want an atomic scale description of
our systems and relate this to the macroscopic kinetics: i.e., we want to be able to
talk about individual atoms and molecules reacting on a surface, and then link this
to global changes and reaction rates of the layer of adsorbates. It turns out that the
proper way to described a system is related to the different time scales with which
things change on the atomic and on the macroscopic scale. We will see that we need
to do some coarse-graining on the atomic length scale to bridge the gap in time
scales.

If we regard the evolution of a layer of atoms and molecules adsorbed on a sur-
face on an atomic scale, we will notice that there is a huge difference in time scale
of the motion of individual atoms and molecules on the one and of the macroscopic
properties on the other hand. For most systems of interest in catalysis, for example,
the latter typically vary over a period of seconds or even longer. Motions of atoms
occur typically on a time scale of femtoseconds. This enormous gap in time scales
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poses a large problem if we want to predict or even explain the kinetics (i.e., reaction
rates) in terms of the processes that take place on the atomic scale.

The conventional method to simulate the motions of atoms and molecules is
Molecular Dynamics (MD) [1–3]. This method generally discretizes time in inter-
vals of equal lengths. The size of this so-called time step, and with it the compu-
tational costs, is determined by the fast vibrations of chemical bonds [1]. A stretch
vibration of a C-H bond has a typical frequency of around 3000 cm−1. This cor-
responds to a period of about 10 fs. If one wants to study the kinetics of surface
reactions, then one needs a method that does away with these fast motions.

The kinetic Monte Carlo (kMC) method that we present here does this by us-
ing the concept of sites. The forces working on an atom or a molecule that adsorbs
on a surface move it to well-defined positions on the surface [4, 5]. These posi-
tions are called sites. They correspond to minima on the potential-energy surface
(PES) for the adsorbate. Most of the time adsorbates stay very close to these min-
ima. If we would take a snapshot of a layer of adsorbates at normal temperatures,
only about 1 in 1013 of them would not be near a minimum at normal reaction
conditions. Only when they diffuse from one site to another or during a reaction
they will not be near such a minima, but only for a very short time. Now instead
of specifying the precise positions, orientations, configurations, and motions of the
adsorbates we will only specify for each sites its occupation. A reaction and a diffu-
sion from one site to another will be modeled as a sudden change in the occupation
of the sites. These changes are the elementary events in a kMC simulation. The
vibrations of the adsorbates do not change the occupations of the sites. So they
are not simulated in kMC, and hence they do not determine the time scale of a
kMC simulation. Reactions and diffusion take place on a much longer time scale.
Thus by taking a slightly larger length scale, we can simulate a much longer time
scale.

If the surface has two-dimensional translational symmetry, or when it can be
modeled as such, the sites form a regular grid or a lattice. Our model is then a so-
called lattice-gas model. This chapter shows how this model can be used to describe
a large variety of problems in the kinetics of surface reactions.

2.1.1 Lattices, Sublattices, and Unit Cells

If the surface has two-dimensional translational symmetry then there are two lin-
early independent vectors, a1 and a2, with the property that when the surface is
translated over any of these vectors the result is indistinguishable from the situation
before the translation. It is said that the system is invariant under translation over
these vectors. In fact the surface is then invariant under translations for any vector
of the form

n1a1 + n2a2 (2.1)

where n1 and n2 are integers. If all translations that leave the surface invariant can
be written as (2.1), then a1 and a2 are so-called primitive vectors or primitive trans-
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lations, and the vectors of the form (2.1) are the lattice vectors. Primitive vectors are
not uniquely defined. For example a (111) surface of a fcc metal is translationally
invariant for a1 = a(1,0) and a2 = a(1/2,

√
3/2), where a is the lattice spacing.

But one can just as well choose a1 = a(1,0) and a2 = a(−1/2,
√

3/2). The area
defined by

x1a1 + x2a2 (2.2)

with x1, x2 ∈ [0,1⟩ is called the unit cell. The whole system is obtained by tiling the
plane with the contents of a unit cell.

Expression (2.1) defines a simple lattice, Bravais lattice, or net. Simple lattices
have just one lattice point, or grid point, per unit cell. It is also possible to have more
than one lattice point per unit cell. The lattice is then given by all points

s(i) + n1a1 + n2a2 (2.3)

with i = 0,1, . . . ,Nsub − 1 and Nsub the number of lattice points in the unit cell.
Each s(i) is a different vector in the unit cell. The set s(i) + n1a1 + n2a2 for a par-
ticular vector i forms a sublattice, which is itself a simple lattice. There are Nsub
sublattices, and they are all equivalent: they are only translated with respect to each
other. (For more information on lattices, also for a discussion of their symmetry, see
for example references [4] and [6].) All points of the form (2.3) from a composite
lattice.

The sites of a simple crystal surface form a lattice. The description so far sug-
gests that the different lattice points in a unit cell, corresponding to sites, are all in the
some plane, but that does not need to be the case. As we will see in Sect. 4.6.3, that
different lattice points may also correspond to positions for adsorbates in different
layers that are stacked on top of each other. Lattices can also be used to model sur-
faces that are much more complicated than simple crystal surfaces (see Sects. 5.5.2
and 5.5.3). In fact, we will see that sometimes lattice points do not correspond to
physical adsorption sites at all (see Sect. 5.5.4).

2.1.2 Examples of Lattices

Figure 2.1 shows top and hollow sites of the (100) surface of an fcc metal. Such a
surface has a1 = a(1,0) and a2 = a(0,1) as primitive translations with a the dis-
tance between the surface atoms. CO for example prefers the top sites on such sur-
face if the metal is rhodium [7–10]. We have Nsub = 1 if we would only include
these top sites. We can choose the origin of our reference frame any way we want
so we take s(0) = (0,0) for simplicity. If we would want to include the hollow sites
as well then Nsub = 2 and s(1) = a(1/2,1/2).

Figure 2.2 shows bridge sites of the same surface. Some CO moves to these
bridge sites at high coverages [7–10]. If we would include the top and bridge sites
to describe all adsorption sites for CO/Rh(100), then we would have Nsub = 3 and
s(0) = (0,0), s(1) = a(1/2,0), and s(2) = a(0,1/2) for the top and the two types of
bridge site, respectively.
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Fig. 2.1 The large white
circles with gray edges depict
the atoms of the top layer of a
(100) surface of an fcc metal.
The black circles indicate the
positions of the top sites, and
the gray circles with black
edges the positions of the
hollow sites. The top sites
form a simple lattice as do the
hollow sites. In the top-left
corner the unit cell and the
primitive translations of the
surface are shown

Figure 2.3 shows a (111) surface of an fcc metal. CO on Pt prefers to adsorb on
this surface on the top sites [4]. We can therefore model CO on this surface with a
simple lattice with the lattice points corresponding to the top sites. We have a1 =
a(1,0) and a2 = a(1/2,

√
3/2). As Nsub = 1 we choose the origin of our reference

frame so that s(0) = (0,0) for simplicity. Each lattice point corresponds to a site that
is either vacant or occupied by CO.

NO on Rh(111) forms a (2 × 2)-3NO structure in which equal numbers of NO
molecules occupy top, fcc hollow, and hcp hollow sites [11, 12]. Figure 2.3 shows
all the sites that are involved. We now have three sublattices with s(0) = (0,0) (top

Fig. 2.2 The large white circles with gray edges depict the atoms of the top layer of a (100) surface
of an fcc metal. The black circles and the gray circles with black edges indicate the positions of
the bridge sites. Although all bridge sites have the same adsorption properties, together they do not
form a simple lattice, but a composite lattice. This is because the relative positions of the surface
atoms with respect to the “black” bridge sites is different from those of the “gray” bridge sites.
However, if we ignore the surface atoms, then all bridge sites together from a square simple lattice.
In the top-left corner the unit cell and the primitive translations of the surface are shown



2.1 The Lattice Gas 17

Fig. 2.3 The large white circles with gray edges depict the atoms of the top layer of a (111) surface
of an fcc metal. The black circles indicate the positions of the top sites, and the gray circles with
black edges the positions of one type of hollow site, say fcc, and the small white circle with black
edges the positions of the other type, say hcp, of hollow site. The top sites form a simple lattice as
do the fcc sites and the hcp sites separately. The top and hollow sites together also form a simple
lattice if we disregard the different adsorption properties of the sites and the different positions
with respect to the surface atoms. Otherwise they form a composite lattice with three sublattices.
In the top-left corner the unit cell and the primitive translations of the surface are shown

Fig. 2.4 The large white
circles with gray edges depict
the atoms of the top layer of a
(111) surface of an fcc metal.
The black circles, the gray
circles with black edges, and
the small white circle with
black edges indicate the
positions of the bridge sites.
Together they form a
composite lattice even though
they have the same adsorption
properties. In the top-left
corner the unit cell and the
primitive translations of the
surface are shown

sites), s(1) = a(1/2,
√

3/6) (fcc hollow sites), and s(2) = a(1,
√

3/3) (hcp hollow
sites).

At high coverages the repulsion between the CO molecules on Pt(111) forces
some of them again to bridge sites [13]. Figure 2.4 shows the bridge sites. We have
now four sublattices with s(0) = (0,0), s(1) = a(1/2,0), s(2) = a(1/4,

√
3/4), s(3) =

a(3/4,
√

3/4). The first one is for the top sites (not shown in the figure, but see
Fig. 2.3). The others are for the three sublattices of bridge sites. The four sublattices
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together form a simple lattice, but only when we do not distinguish between top and
bridge sites.

The examples here are of simple single crystal surfaces. It would be wrong how-
ever to assume that a lattice-gas model can only be used for such surfaces. The unit
cell can be much larger and with many more sites. This makes it possible to model
a surface with steps. But it is even possible to model systems with no translational
symmetry at all with a lattice-gas model. It is possible to model steps at variable
distances, point defects, bimetallic surfaces, and many more systems through the
use of labels as explained in Sect. 2.1.3.

2.1.3 Labels and Configurations

The sites are the positions where the adsorbates are found on the surface, but for
each site we need something to indicate if it is occupied or not, and if it is occupied
with which adsorbate. We use labels for this.

We assign a label to each lattice point. The lattice points correspond to the sites,
and the labels specify properties of the sites. A particular labeling of all lattice points
together we call a configuration. The most common property that one wants to de-
scribe with the label is the occupation of the site. We use the short-hand notation
(n1, n2/s : A) to mean that the site at position s(s) + n1a1 + n2a2 is occupied by an
adsorbate A.

The labels are also used to specify reaction. A reaction can be regarded as nothing
but a change in the labels. An extension of the short-hand notation (n1, n2/s : A →
B) indicates that during a reaction the occupation of the site at s(s) + n1a1 + n2a2
changes from A to B. If more than one site is involved in a reaction then the spec-
ification will consist of a set changes of the form (n1, n2/s : A → B). Not only re-
actions can be specified in this way. Also other processes can be described like this.
For example, a diffusion of an adsorbate A might be specified by {(0,0/0 : A →
∗), (1,0/0 :∗ → A)}. Here ∗ stands for a vacant site, and the diffusion is from site
s(0) to s(0) + a1. We will also write this as (0,0/0), (1,0/0) : A∗ → ∗A.

There are many other uses for labels as will be discussed in Sect. 2.1.4 and
Chaps. 5, 6, and 7. Most kMC programs are special-purpose codes with hard cod-
ing of the processes. Labels play only a minor role in these programs. Labels are
however an important and very versatile tool in general-purpose kMC codes. They
allow great flexibility in creating models for reaction systems, and a clever use of
them can greatly enhance the speed of simulations.

2.1.4 Examples of Using Labels

Desorption of CO from Pt(111) can be written as (0,0 : CO → ∗) when we use a
model of the top sites shown in Fig. 2.3. We have left out the index of the sublattice,
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Fig. 2.5 The change of labels for CO desorption from a Pt(111) surface. The encircled CO
molecule on the left desorbs and the label becomes ∗ indicating a vacant site. The lines are guides
for the eyes

because, as there is only one, it is clear on which sublattice the reaction takes place
(see Fig. 2.5). Desorption on other sites can be obtained by translations over lattice
vectors: i.e., (0,0 : CO → ∗) is really representative for (n1, n2 : CO → ∗) with n1
and n2 arbitrary integers. Diffusion of CO can be modeled as hops from one site
to a neighboring site. We can write that as {(0,0 : CO → ∗), (1,0 :∗ → CO)} or
(0,0), (1,0) : CO∗ → ∗CO. Hops on other sites can again be obtained from these
descriptions by translations over lattice vectors, but also by rotations that leave the
surface is invariant.

Specifying adsorbates is the most obvious and most frequent use of labels, but
other properties can be modeled by labels to great effect. Note that in the case
of NO on Rh(111) (Fig. 2.3) the lattice is a composite one, but if we ignore the
difference between the sites we get a simple lattice with a1 = a(1/2,

√
3/6) and

a2 = a(
√

3/3,0). It is possible to use the simple lattice and at the same time retain
the difference between the sites. The trick is to use labels not just for the occupa-
tion, but also for indicating the type of site. So instead of labels NO and ∗ indicating
the occupation, we use NOt, NOf, NOh, ∗t, ∗f, and ∗h. The last letter indicates the
type of site (t stands for top, f for fcc hollow, and h for hcp hollow) and the rest
for the occupation. Instead of (0,0/0 : NO) and (0,0/1 :∗) we have (0,0 : NOt) and
(1,0 :∗f), respectively. It depends very much on the processes that we want to sim-
ulate which way of describing the system is more convenient and computationally
more efficient.

Because a lattice is used to represent the adsorption sites, one might think that
only systems with translational symmetry can be modeled. That is not the case how-
ever. Figure 2.6 shows how to model a step [14, 15]. The difference in the top sites
can be modeled with different labels just as for the NO/Rh(111) example above. If
the terraces are small then it might also be possible to work with a unit cell spanning
the width of a terrace, but when the terraces become large this will be inconvenient
as there will be many sublattices. If the width of the terraces varies this is even im-
possible. In a similar way as in Fig. 2.6 bimetallic surfaces can be modeled [16].
Notice that some distances between the sites on the left in Fig. 2.6 are different
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Fig. 2.6 A Ru(0001) surface with a step with the top sites indicated on the left. On the right is
shown the lattice. The large open circles are the atoms. The small open circles indicate top sites on
the terraces, the small black circles top sites at the bottom of the step, and the small gray circles
top sites at the top of the step. Notice the difference in distance between the top sites at the step on
the left and on the right

from those on the right. The distance between the sites on the top and bottom of a
step is smaller on the left than on the right. On the right this distance is increased
so that the sites form a lattice. Such a distortion of the system is quite acceptable in
kMC simulations. The elementary events (reactions, diffusion, and possibly other
processes) are described in terms of changes of the labels of sites. We only need to
know which sites and how the labels change. Distances between sites are not part of
the description of events.

Site properties like the sublattice of which the site is part of and if it is a step
site or not are static properties. The occupation of a site is a dynamic property.
There are also other properties of sites that are dynamic. Bare Pt(100) reconstructs
into a quasi-hexagonal structure [17]. CO oxidation on Pt(100) is substantially in-
fluenced by this reconstruction because oxygen adsorbs much less readily on the
reconstructed surfaces than on the unreconstructed one. This can lead to oscilla-
tions, chaos, and pattern formation [17, 18]. It is possible to model the effect of
the reconstruction on the CO oxidation by using a label that specifies whether the
surface is locally reconstructed or not [19–21].

Chapters 5, 6, and 7 will show more esoteric uses of labels. Labels can be used
as flags or as counters as well. Very often this use is combined with fictitious pro-
cesses and fictitious sites, which can either be a way of modeling actual physical
and chemical processes, or a way to get kinetic information.

2.1.5 Shortcomings of Lattice-Gas Models

The lattice-gas model is simple yet very powerful, as it allows us to model a large
variety of systems and phenomena. Still, not everything can be modeled with it.
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Let’s look again at CO oxidation on Pt(100). As stated above this system shows
reconstruction which can be modeled with a label indicating that the surface is re-
constructed or not. This way of modeling has shown to be very successful [19–21],
but it does neglect some aspects of the reconstruction. The reconstructed and the un-
reconstructed surface have very different unit cells, and the adsorption sites are also
different [22, 23]. In fact, the unit cell of the reconstructed surface is very large, and
there are a large number of adsorption sites with slightly different properties. These
aspects have been neglected in the kinetic simulations so far. As these simulations
have been quite successful, it seems that these aspects are not very relevant in this
case, but that need not always be so. Another example would be catalytic partial
oxidation (CPO), which takes place at high temperatures at which the surface is so
dynamic that all translational symmetry is lost. In this case using a lattice to model
the kinetics seems inappropriate.

The example of CO on Pt(111) has shown that at high coverage the position at
which the molecules adsorb change. The reason for this is that these positions are
not only determined by the interactions between the adsorbates and the substrate,
but also by the interactions between the adsorbates themselves. At low coverages
the former dominate, but at high coverages the latter may be more important. This
may lead to adlayer structures that are incommensurate with the substrate [4]. Ex-
amples are formed by the nobles gases. These are weakly physisorbed, whereas
at high coverages the packing onto the substrate is determined by the steric re-
pulsion between them. At low and high coverages different lattices are needed to
describe the positions of the adsorbates, but a single lattice describing both the
low and the high coverage sites is not possible. Simulations in which the cov-
erages change in such a way from low to high coverage and/or vice versa then
cannot be based on a lattice-gas model except by making substantial approxima-
tions.

Although not all systems can be modeled well by a lattice gas, it is a much more
flexible model than might initially appear. Figure 2.6 already shows some of this
flexibility. Note that the sites in the system in the figure have only translational
symmetry in the direction parallel to the step, whereas in the corresponding lattice-
gas model there is the usual two-dimensional periodicity. This is accomplished by
displacing the sites at the step somewhat from their real positions. As has been
explained above, this is perfectly acceptable. Similarly, it is possible to describe
with a lattice-gas model a layer of adsorbates that have been displaced from their
normal site positions by the interactions between them, and that have formed an
adlayer with a structure that is incommensurate with that of the preferred adsorp-
tion sites. The reason for this flexibility is the labels that we attach to each lattice
point. It will be shown in Chaps. 5, 6, and 7 that these labels make it possible to
model a very large variety of systems with a lattice gas. Whether or not a sys-
tem can be described by a lattice-gas model depends very much on one’s ingenu-
ity.
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2.1.6 Boundary Conditions

The surface of a real catalyst will very often contain many more sites than we can
include in a kMC simulation. In fact, such a surface is generally regarded as infinite
in two directions. In a kMC simulation we need to restrict ourselves to a much more
limited number of sites. It is possible to do kMC simulations with all sites in a small
part of the catalyst’s surface. This gives an acceptable description except for the sites
at the edge. It is more customary to use periodic boundary conditions. In that case
all sites s(i) +n1a1 +n2a2 with n1 = 0,1, . . . ,N1 − 1 and n2 = 0,1, . . . ,N2 − 1 are
explicitly included in the simulation. Sites with values of n1 and/or n2 outside this
range are thought to have the same label as those of n1 modN1 and n2 modN2. The
system can be thought as if being rolled up on a torus. The values of N1 and N2 in
real simulations vary. Sometimes they can be smaller than 100, but simulations with
N1 = N2 = 8192 have been reported as well [24].

2.2 The Master Equation

2.2.1 The Definition and Some Properties of the Master Equation

The derivation of the algorithms and a large part of the interpretation of the results
of kMC simulations are based on a master equation

dPα

dt
=

∑

β

[WαβPβ − WβαPα]. (2.4)

In this equation t is time, α and β are configurations of the adlayer (i.e., different
ways in which adsorbates are distributed over the sites, or more generally ways in
which labels can be assigned to lattice points), Pα and Pβ are their probabilities,
and Wαβ and Wβα are so-called transition probabilities per unit time that specify the
rate with which the adlayer changes due to reactions and other processes. The mas-
ter equation is the single most important equation in kMC. It relates everything that
we do in kinetics to each other as will be shown below. Here we start with looking
at some of its mathematical properties. The master equation is a loss-gain equa-
tion. The first term on the right stands for increases in Pα because of processes that
change other configurations into α. The second term stands for decreases because
of processes in α. From

d

dt

∑

α

Pα =
∑

α

dPα

dt
=

∑

αβ

[WαβPβ − WβαPα] = 0 (2.5)

we see that the total probability is conserved. (The last equality can be seen by
swapping the summation indices in one of the terms.)

The master equation can be derived from first principles as will be shown below,
and hence forms a solid basis for all subsequent work. There are other advantages
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Fig. 2.7 Scheme showing the central position of the master equation for kinetics. Quantum chem-
ical calculations yield the rate constants of the master equation, and kMC, rate equations, and other
kinetic theories, methods, and approaches can be regarded as ways to solve the master equation

as well. First, the derivation of the master equation yields expressions for the transi-
tion probabilities that can be computed with quantum chemical methods [25]. This
makes ab-initio kinetics for catalytic processes possible. Such calculations gener-
ally use the term rate constants instead of transition probabilities and we will use
that term for the W ’s in the master equation as well. We will show however that
these rate constants are generally not the same as the rate constants in macroscopic
rate equations (see Sect. 4.6). Second, there are many different algorithms for kMC
simulations. Those that are derived from the master equation all give necessarily
results that are statistically identical. Those that cannot be derived from the mas-
ter equation conflict with first principles. Third, kMC is a way to solve the master
equation, but it is not the only one. The master equation can, for example, be used
to derive the normal macroscopic rate equation (see Sect. 4.6), although this gener-
ally involves the introduction of approximations. In general, it forms a good basis to
compare different theories of kinetics quantitatively, and also to compare these the-
ories with simulations. Figure 2.7 shows that the master equation can be regarded as
the central equation of the kinetics of surface reactions and that it relates the quan-
tum chemical calculation of rate constants, kMC, and other kinetic theories to each
other.

There is an extensive mathematical literature on the master equation. This litera-
ture also often talks about continuous-time Markov chains. If a system is in configu-
ration αn then the master equation gives the probabilities that the system will move
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to another configuration αn+1. These probabilities do not depend on the configura-
tions that the system was in before αn. This makes αn → αn+1 a Markov process
[26, 27]. Continuing the transitions from one configuration to another gives a series
αn → αn+1 → αn+2 → . . . that is called a Markov chain.

We discuss here only a few basic properties [26, 27]. The reader should be aware
however that even these properties have only a limited use in relation to kMC sim-
ulations and should not be overinterpreted. For example, the Ziff–Gulari–Barshad
(ZGB) model of CO oxidation has been extensively studied with kMC simulations
(see Sect. 7.4.3). The physics literature mentions three states. Two of these states
correspond to CO poisoning and oxygen poisoning of the surface. The third corre-
sponds to a reactive state. The point here is that strictly speaking this reactive state
is not stable. This means that it can not represent a steady state. The ZGB model
might therefore seem a rather useless model for CO oxidation. However, the time it
takes for the reactive state to turn into one of the poisoning states is so enormously
long, even for small system sizes, that it can effectively be regarded as a stable state.
This is what is actually done in the literature.

We start with a discussion of the class structure [27]. Suppose we mean by α → β

that there is a chain of processes that can convert configuration α into β . (Note
that we normally use this notation to indicate a change of configuration by a single
process.) We then define α ↔ β to mean α → β and β → α. This relation ↔ defines
an equivalence relation [28]. This means α ↔ α for all α, if α ↔ β then β ↔ α, and
if α ↔ β and β ↔ γ then α ↔ γ . Because of these properties we can partition all
configurations into equivalence classes: i.e., α and β belong to the same class if and
only if α ↔ β .

A class is closed if α is in the class and α → β implies that β is also in the same
class as α: i.e., β → α also holds. If the system ends up in a closed class, then it
will never leave it. Such a situation may for example arise when no reactions are
possible in a system anymore, and the adsorbates can only hop from one site to
another. A system in a closed class visits each of the configurations in the class an
infinite number of times. This does not hold for configurations in a class that is not
closed. If a closed class consists of a single configuration, then the configuration is
called an absorbing state. The poisoned states mentioned above for the ZGB model
are examples of such absorbing states.

If all configurations can be partitioned into two or more sets such that neither
α → β nor β → α holds if α and β are in different sets, then the system is said
to be reducible or decomposable. This terminology is related to the way in which
the master equation can be written in matrix-vector form. With the vector P with
components Pα = Pα , and the matrix W with components

Wαβ =
{

Wαβ , if α ≠ β, and
−∑

γ Wγβ , if α = β, (2.6)

we can write the master equation as

Ṗ = WP. (2.7)
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For a completely reducible or decomposable system the matrix W can be written in
the form

(
A 0
0 B

)
(2.8)

with A and B square matrices by appropriately ordering the configurations. The
configurations in the different sets can be treated completely independently from
each other. A system that is not reducible is called irreducible.

If there is a closed class, but the system is irreducible, then we can write W in
the form

(
A D
0 B

)
(2.9)

with D a non-zero matrix, A and B square matrices, and the rows and columns of
A indexed by the configurations in the closed class. Such a system is called (incom-
pletely) reducible. If there are two closed classes, then W can be written as

(A 0 D
0 B E
0 0 C

)

(2.10)

with A, B, and C square matrices, D and E non-zero matrices, and the rows and
columns of A and B being indexed by the configurations in the two closed classes.
Such a system is called splitting, because it ends up in one closed class or the other.

The definition of W immediately gives
∑

α

Wαβ = 0. (2.11)

Matrices with this property can be shown to have at least one right eigenvector with
eigenvalue equal to zero [26]. The components of such eigenvector are all non-
negative and by proper normalization can be identified with the probabilities to find
the system in a configuration when the system is in a steady state. It can also be
shown that the system will evolve toward such an eigenvector.

There are various ways to prove this [26]. One way is to write the solution of the
master equation as

P(t) = eWtP(0), (2.12)

where P(0) are the probabilities of the configurations at t = 0. If we can diagonalize
W and write

WU = UV, (2.13)

then this becomes

P(t) = UeVtU−1P(0). (2.14)

The matrix V is diagonal and all matrix elements on the diagonal are non-positive.
This means that for large t , all components of exp[Vt] vanish, except those with
zero on the diagonal of V. P evolves to the corresponding eigenvector in U.
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Note that an eigenvector with eigenvalue equal to zero does not exclude the exis-
tence of an oscillation. Suppose we have configurations α1,α2, . . . ,αN with N ≥ 2
and the system always moves from αn directly to αn+1 for n = 1,2, . . . ,N − 1 and
from αN directly to α1. This means that we have a cycle. The eigenvector with zero
eigenvalue has Wαn+1αnPαn = Wα1αN PN for n = 1,2, . . . ,N − 1. Although the sys-
tem has a cycle, this can still be regarded as a stationary state because the time it
takes the system to move through the cycle will not always be exactly the same. It
can be shown (see Sect. 3.7.3) that on average this will take a time equal to

T =
N−1∑

n=1

W−1
αn+1αn

+ W−1
α1αN

. (2.15)

If we would start the system in α1 at time t = 0 and follow the system, then after a
time T we would find it most likely again in α1, but also with some small probability
in αN and α2, with an even smaller probability in αN−1 and α3, et cetera. After an-
other period T the probability of finding the system in α1 would be reduced and the
probabilities for configurations before and after α1 would be increased. After many
periods T we would find the system in one of the configurations with a probability
corresponding to the one given by the eigenvector with zero eigenvalue.

2.2.2 The Derivation of the Master Equation

The master equation can be derived by looking at the surface and its adsorbates
in phase space.1 This is, of course, a classical mechanics concept, and one might
wonder if it is correct to look at the processes on an atomic scale and use classical
mechanics. The situation here is the same as for the derivation of the rate equations
for gas phase reactions. The usual derivations there also use classical mechanics
[29–33]. Although it is possible to give a completely quantum mechanical derivation
formalism [34–37], the mathematical complexity hides much of the important parts
of the chemistry. We therefore give only a classical derivation. It is possible at the
end to replace the classical expressions by quantum mechanical ones, in exactly the
same way as for gas phase reactions. The new expressions will depend on the type
of motion (vibration, rotation, et cetera). This will be shown in detail in Chap. 4.

The derivation of the master equation is usually based on the observation that
there is a separation between the time scale on which reactions take place and the
time scale of much faster motions like vibrations [38, 39]. The longer time scale of
reactions defines states, in which the system is localized in configuration space, and
the transitions between them can be described by a master equation. The rates of
the individual transitions can each be computed separately by one of the methods

1Parts of Sect. 2.2.2 have been reprinted with permission from X.Q. Zhang, A.P.J. Jansen, Ki-
netic Monte Carlo method for simulation reactions in solutions, Phys. Rev. E 82, 046704 (2010).
Copyright 2010, American Physical Society.
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of chemical kinetics: e.g., Transition-State Theory (TST) [38–40]. We present here
a different derivation that incorporates all process at the same time [41–43]. It is a
generalization of the derivation of Variational TST (VTST): i.e., we partition phase
space in many regions [29, 32, 33], and it is an alternative to the derivation using
projection operators [44, 45]. It has the advantage that the result is somewhat more
general. We will use this in Sects. 2.2.3 and 8.2. The derivation does not use the fact
that we are interested in surface reactions, and has a much more general validity. We
will show in Sect. 2.2.3 how the results simplify for surface reactions.

A point in phase space completely specifies the positions and momenta of all
atoms in the system. In MD simulations one uses these positions and momenta at
some starting point to compute them at later times. One thus obtains a trajectory of
the system in phase space. We are not interested in that amount of detail, however.
In fact, as was stated before, too much detail is detrimental if one is interested in
simulating many processes. The time interval that one can simulate a system using
MD is typically of the order of nanoseconds. Reactions in catalysis have a charac-
teristic time scale that is many orders of magnitude longer. To overcome this large
difference we need an approach that removes the fast processes (vibrations) that de-
termine the time scale of MD, and leaves us with the slow processes (reactions).
This approach looks as follows.

Instead of the precise position of each atom, we only want to know how the dif-
ferent adsorbates are distributed over the sites of a surface. So our physical model
is a lattice. Each lattice point corresponds to one site, and has a label that specifies
which adsorbate is adsorbed. (A vacant site is simply a special label.) This gives us a
configuration. As each point in phase space is a precise specification of the position
of each atom, we also know which adsorbates are at which sites: i.e., we know the
corresponding configuration. Different points in phase space may, however, corre-
spond to the same configuration. These points differ only in slight variations of the
positions and momenta of the atoms. This means that we can partition phase space
in many regions, each of which corresponds to one configuration. The processes
are then nothing but the motion of the system in phase space from one region to
another.

More generally and in line with the idea of different time scales mentioned above,
we can start with identifying the regions in configuration space where the fast mo-
tions take place. Figure 2.8 shows a sketch of a PES of an arbitrary system. We
assume that only the electronic ground state is relevant, so that the PES is a single-
valued function of the positions of all the atoms in the system. The points in the
figure indicate the minima of the PES. Each minimum of the PES has a catchment
region. This is the set of all points that lead to the minimum if one follows the
gradient of the PES downhill [46].

We now partition phase space into these catchment regions and then extend each
catchment region with the momenta. Let’s call C the configuration space of a system
and P its phase space [47, 48]. The minima of the PES are points in configuration
space. We define Cα to be the catchment region of minimum α. This catchment
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Fig. 2.8 A sketch of a potential-energy surface of an arbitrary system and its corresponding graph.
The points are minima of the potential-energy surface. The edges in the graph connect minima that
have catchment regions that border on each other. They correspond to reactions or other activated
processes

region is a subspace of configuration space C, and all catchment regions form a
partitioning of the configuration space.

C =
⋃

α

Cα. (2.16)

(There is a small difficulty with those points of configuration space that do not
lead to minima, but to saddle points, and with maxima. These points are irrelevant
because the number of such points are vanishing small with respect to the other
points. They are found where two or more catchment regions meet, and we can
arbitrarily assign them to one of these catchment regions.) With q the set of all
coordinates and p the set of all conjugate momenta we can extend the catchment
region Cα to a corresponding region in phase space Rα as follows.

Rα =
{
(q,p) ∈ P|q ∈ Cα

}
. (2.17)

We then have for phase space

P =
⋃

α

Rα. (2.18)

If we use the regions Rα , we can derive the master equation exactly as for the lattice-
gas model. This starting point based on the PES for the derivation of the master
equation is more general than the one that defines the regions in phase space in
terms of configurations of adlayers. It applies in principle to any molecular system.
However, for an adlayer both lead to the same partitioning of phase space.

The probability to find the system in region Rα is given by

Pα(t) =
∫

Rα

dqdp
hD

ρ(q,p, t), (2.19)
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where h is Planck’s constant, D is the number of degrees of freedom, and ρ is
the phase space density. The denominator hD is not needed for a purely classical
description of the kinetics. However, it makes the transition later on from a classical
to a quantum mechanical description easier [47].

The master equation tells us how these probabilities Pα change in time. Differ-
entiating Eq. (2.19) yields

dPα

dt
=

∫

Rα

dqdp
hD

∂ρ

∂t
(q,p, t). (2.20)

This can be transformed using the Liouville-equation [48]

∂ρ

∂t
= −

D∑

i=1

[
∂ρ

∂qi

∂H

∂pi
− ∂ρ

∂pi

∂H

∂qi

]
(2.21)

into

dPα

dt
=

∫

Rα

dqdp
hD

D∑

i=1

[
∂ρ

∂pi

∂H

∂qi
− ∂ρ

∂qi

∂H

∂pi

]
, (2.22)

where H is the system’s classical Hamiltonian. To simplify the mathematics, we
will assume that the coordinates are Cartesian and the Hamiltonian has the usual
form

H =
D∑

i=1

p2
i

2mi
+ V (q), (2.23)

where mi is the mass corresponding to coordinate i. The area Rα has been defined
above by coordinates only, and the limits of integration for the momenta are ±∞.
Although Rα can be defined more generally (we would like to mention reference
[49] for a more general derivation), the definition here allows us to go from phase
space to configuration space. The first term on the right-hand-side of Eq. (2.22) now
becomes

∫

Rα

dqdp
hD

D∑

i=1

∂ρ

∂pi

∂H

∂qi
=

D∑

i=1

∫

Rα

dq
∂V

∂qi

∫ ∞

−∞

dp
hD

∂ρ

∂pi

=
D∑

i=1

∫

Rα

dq
∂V

∂qi

∫ ∞

−∞

dp1 . . . dpi−1 dpi+1 . . . dpD

hD

×
[
ρ(pi = ∞) − ρ(pi = −∞)

]

= 0, (2.24)

because ρ has to go to zero for any of its variables going to ±∞ to be integrable.
The second term becomes

−
∫

Rα

dqdp
hD

D∑

i=1

∂ρ

∂qi

∂H

∂pi
= −

∫

Rα

dqdp
hD

D∑

i=1

∂

∂qi

(
pi

mi
ρ

)
. (2.25)
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Fig. 2.9 Schematic drawing of the partitioning of configuration space into regions R, each of
which corresponds to some particular configuration of the adlayer or catchment region of a mini-
mum of the potential-energy surface. The process that changes α into β corresponds to a flow from
Rα to Rβ . The transition probability Wβα for this process equals the flux through the surface Sβα ,
separating Rα from Rβ , divided by the probability to find the system in Rα

This particular form suggests using the divergence theorem for the integration over
the coordinates [50]. The final result is then

dPα

dt
= −

∫

Sα

dS

∫ ∞

−∞

dp
hD

D∑

i=1

ni
pi

mi
ρ, (2.26)

where the first integration is a surface integral over the surface of Rα , and ni are
the components of the outward pointing normal of that surface. Both the area Rα

and the so-called dividing surface Sα are now regarded as parts of the configuration
space of the system [32, 33]. As pi/mi = q̇i , we see that the summation in the last
expression is the flux through Sα in the direction of the outward pointing normal
(see Fig. 2.9).

The final step is now to decompose this flux in two ways. First, we split the
dividing surface Sα into sections Sα = ⋃

β Sβα , where Sβα separates Rα from Rβ .
Second, we distinguish between an outward flux,

∑
i nipi/mi > 0, and an inward

flux,
∑

i nipi/mi < 0. Equation (2.26) can then be rewritten as

dPα

dt
=

∑

β

∫

Sαβ

dS

∫ ∞

−∞

dp
hD

(
D∑

i=1

ni
pi

mi

)

Θ

(
D∑

i=1

ni
pi

mi

)

ρ

−
∑

β

∫

Sβα

dS

∫ ∞

−∞

dp
hD

(
D∑

i=1

ni
pi

mi

)

Θ

(
D∑

i=1

ni
pi

mi

)

ρ, (2.27)
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where in the first term Sαβ (= Sβα) is regarded as part of the surface of Rβ , and
the ni are components of the outward pointing normal of Rβ . The function Θ is the
Heaviside step function [51]

Θ(x) =
{

1, if x ≥ 0, and
0, if x < 0,

(2.28)

Equation (2.27) can be cast in the form of the master equation

dPα

dt
=

∑

β

[WαβPβ − WβαPα], (2.29)

if we define the transition probabilities as

Wβα =
∫
Sβα

dS
∫ ∞
−∞ dp/hD(

∑D
i=1 nipi/mi)Θ(

∑D
i=1 nipi/mi)ρ

∫
Rα

dq
∫ ∞
−∞ dp/hDρ

. (2.30)

The expression for the transition probabilities can be cast in a more familiar form
by using a few additional assumptions. We assume that ρ can locally (i.e., in Rα and
on Sβα) be approximated by a Boltzmann-distribution

ρ = N exp
[
− H

kBT

]
, (2.31)

where T is the temperature, kB is the Boltzmann-constant, and N is a normalizing
constant. We also assume that we can define Sβα and the coordinates in such a way
that ni = 0, except for one coordinate i, called the reaction coordinate, for which
ni = 1. The integral of the momentum corresponding to the reaction coordinate can
then be done and the result is

Wβα = kBT

h

Q‡

Q
, (2.32)

with

Q‡ =
∫

Sβα

dS

∫ ∞

−∞

dp1 . . . dpi−1 dpi+1 . . . dpD

hD−1 exp
[
− H

kBT

]
, (2.33)

Q =
∫

Rα

dq
∫ ∞

−∞

dp
hD

exp
[
− H

kBT

]
. (2.34)

We see that this is an expression that is formally identical to the TST expression for
rate constants [52]. There are differences in the definition of the partition functions
Q and Q‡, but they can generally be neglected. For example, it is quite common that
the PES has a well-defined minimum in Rα and on Sβα , and that it can be replaced
by a quadratic form in the integrals above. The borders of the integrals can then be
extended to infinity and the normal partition functions for vibrations are obtained.
This is sometimes called harmonic TST (see Chap. 4) [53]. The dividing surface
Sβα is then chosen so that it contains the transition state of the process, which is
then also where the PES has its minimum on Sβα .

The W ’s indicate how fast the system moves from (the catchment region of) one
minimum to another. We will often call them therefore rate constants. The system
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can only move from minimum α to minimum β if the catchment region of these
minima border on each other. Only in such a case we have Wβα ≠ 0. The right-hand-
side of Fig. 2.8 shows the minima of the PES as points. Two minima are connected
if their catchment regions border on each other, and the system can move from one
to the other without having to go through a third catchment region. The result is the
graph in Fig. 2.8. The vertices of the graph are the minima of the PES and the edges
indicate how the system can move from one minimum to another.

Although we have presented the partitioning of phase space based on the catch-
ment regions of the PES, this is actually not required. In fact, we have not used
this particular partitioning in the derivation up to Eq. (2.30) anywhere. One can in
principle partition phase space in any way one likes and derive a master equation. It
is the partitioning that defines the processes that the master equation describes. Of
course, most partitionings lead to processes that are hard to interpret physically, but
there are variations in the partitioning above that are useful.

The dividing surface Sβα was split to distinguish fluxes in opposite directions. If
there is a trajectory of the system that crosses the surface and then recrosses it, then
effectively no process has occurred, but both crossings contribute to the rate con-
stants of α → β and β → α. For surface reactions such a recrossing is well known
for adsorption and leads to the definition of a sticking coefficient (see Sect. 4.4.3).
The idea of VTST is to move Sβα to remove recrossings and to minimize the rate
constants [29, 32, 33, 40]. It can be shown that when we have a canonical ensem-
ble, this is equivalent to locating Sβα at a maximum of the Gibbs energy along the
reaction coordinate [54, 55]. The transition state need then not be on Sβα . The tran-
sition state need then generally not be on Sβα . As our derivation is a generalization
of VTST, it has the same limitations and possible ways to deal with them. We refer
to Chap. 4 of [40] for a fuller discussion.

2.2.3 The Master Equation for Lattice-Gas Models

In the derivation of the master equation above the subscripts α and β refer to min-
ima of the PES. We want however a master equation with subscripts referring to
configurations. We have already stated that using configurations to derive the mas-
ter equation gives the same result, but there are some subtleties. So we take a closer
look at how minima of the PES and configurations relate to each other. As the co-
ordinates of all atoms have well-defined values for a minimum of a PES, we also
know which adsorbate is at each site: i.e., we know the corresponding configuration.
So it is easy to go from the minima of the PES to the configurations. The reverse is
not true in general.

The first problem is that not all configurations need to correspond to a minimum
of the PES. For example, suppose that we have an adsorbate that is so large that there
is a very high repulsion when another adsorbate is at a neighboring site. A config-
uration with two adsorbates at such relative positions may then not correspond to a
minimum. The forces between them may push them farther apart and to other sites.
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This however does not prevent us from identifying the subscripts in the master equa-
tion with configurations. We only need to make sure that the rate constant Wαβ for
the process β → α equals zero when the configuration α can not be identified with
a minimum of the PES.

The other problem is that there may be more than one minimum of the PES
that leads to the same configuration. This is the case when an adsorbate has differ-
ent (meta)stable structures or adsorption modes. For example, an NO molecule on
Rh(100) may be adsorbed perpendicular to the surface with the N end down or it
may be adsorbed parallel to the surface [56, 57]. In this case we have a choice. We
may regard the different geometries as different adsorbates. This solves the problem,
because we then do get a 1-to-1 correspondence between configurations and min-
ima of the PES. Alternatively we may ignore these differences in geometry. We can
deal with this by redefining the areas Rα in the partitioning of configuration space.
Instead of the catchment region of one minimum, we define them as the union of
the catchment regions of all the minima leading to the same configuration. We can
also first regard the different geometries as different adsorbates as before and then
do a coarse-graining as explained in Sect. 8.2. The result is the same. The advan-
tage of disregarding these differences is that it leads to a simpler model and faster
kMC simulations. We need to point out however that disregarding the difference in
geometry may constitute an approximation that needs to be justified.

Now that we have established that the master equation can be regarded in terms
of configurations of lattice-gas models, we can discuss the advantage this gives us.
The number of rate constants Wαβ is enormous even if we use only a small model.
Suppose that we do a simulation with a modest 100 × 100 lattice. Also suppose
that we have only one type of adsorbate so that each site can either be occupied
or vacant. This gives us 2100×100 different configurations and 22×100×100 ≈ 106000

rate constants Wαβ . In general, if we have a number of sites S and each site can be
occupied in A ways then the number of configurations equals AS and the number of
rate constants is A2S . A lattice model allows us to reduce this number by the same
order of magnitude, because what matters is only the number of different non-zero
values that the rate constants can have.

First we note that Wαβ = 0 unless the change β → α corresponds to an actual
physical or chemical process like a reaction or diffusion of an adsorbate. This means
that for a configuration β the number of configurations α with values Wαβ ≠ 0 does
not equal the number of possible configurations, but only the number of processes
that can actually take place in β . This number is only proportional to the number
of sites, and not to an exponential function of the number of sites. So the number
of rate constants is thereby reduced to cSAS with c a constant depending on the
number of types of process but not on S.

This is still a huge number of values for the rate constants. Using translational
symmetry only reduces this number by a factor S. Point-group symmetry only re-
duces it by a factor of the order of unity. To reduce it to a workable number of rate
constants, we need to make some assumptions. Fortunately, such assumptions are
almost always valid and easy to find. The reason why the number of values for the
rate constants depends exponentially on the number of sites is that so far we have
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assumed that the occupation of each and every site in the system can affect these
values. This will often be unlikely however. If we have a process involving one site
or a pair of neighboring sites, then the occupation of a site well away from this site
or these sites will not be relevant. The extreme case is where we only need to look
at the sites that change occupation, and which define the process, to determine the
rate constant. This means that we have just one value for a desorption of a particular
adsorbate, one value for the reaction of two adsorbates, et cetera. Adsorbates that do
not desorb, react, et cetera do not affect the value of the rate constant. In such a case
the number of different values of the rate constants reduces to c, the proportionality
constant introduced above. A large majority of kMC simulations done so far have
assumed that this case is valid.

Suppose that the occupation of Senv sites in the environment of a process does
not change but does affect the value of the rate constant because of interactions
with the adsorbates that change in the process. These interactions are called lateral
interactions. The number of values of the rate constants is then cASenv . This number
need not be large. Suppose we look at CO desorption from a Rh(100) surface. At
low coverage we can model this with a square lattice representing the top sites which
CO prefers [10]. We also assume that only interactions between CO molecules at
nearest-neighbor positions need to be included. We then have A = 2. For desorption
we have Senv = 4 so that there are at most 24 = 16 possibly different values for the
rate constants for desorption. For diffusion modeled as a CO hopping from one site
to a neighboring one we have Senv = 6 and 26 = 64 possibly different values. We
can use point-group symmetry to reduce the number of values further.

This example shows that there are situations in which the number of values of
rate constants is relatively small even with lateral interactions, but the exponential
dependence on Senv will often necessitate another approach. We want to reduce the
number of values for the rate constants, because these values are generally hard to
determine as will be shown in Chap. 4. For a lattice-gas model it is often possible to
split the effect of the lateral interactions from the determination of a rate constants
without lateral interactions. The determination of rate constants even without lateral
interactions is difficult, but need only be done for a few processes. The determination
of lateral interactions is also difficult, but here too often only few values need to be
determined. It is the large number of combinations of lateral interactions that leads
to a very large number of possible values for rate constants with lateral interactions.
These combinations can however often be determined quite easily. This is shown
explicitly in Chap. 4 and in particular Sect. 4.5. However, the number of values of
the rate constants does also determine which kMC algorithm is the most efficient.
If the number of values is small, faster algorithms can be used than when we have a
large number of values of the rate constants even if these values can be determined
easily and fast. See Chap. 3.

To summarize. The reason why kMC simulations of surface reactions can be
done much more efficiently than simulations of systems without translational sym-
metry has to do with the number of rate constants. For surface reactions this number
is either very limited when there are no lateral interactions, or can often be com-
puted easily from a limited set of parameters when there are lateral interactions. In
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both cases only a relatively small number of values need to be determined, although
they require costly calculations or time-consuming experiments (see Chap. 4). This
can however be done before and separately from the kMC simulations. This is not
the case for simulations of other systems.
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Chapter 3
Kinetic Monte Carlo Algorithms

Abstract Kinetic Monte Carlo generates a sequence of configurations and times
when the transitions between these configurations occur. This solves the master
equation in the sense that a configuration α is obtained at time t with a probabil-
ity Pα(t) that is a solution of the master equation. There are many algorithms that
yield such a sequence of configurations and which are statistically equivalent. They
all need to determine repeatedly the time that the next process will occur, the type
of process that will occur, and the position on the surface where the process will oc-
cur. Each of these can be determined in a number of ways, which can be combined
in even more ways. This results in many algorithms. Few of them are however ef-
ficient. We discuss in detail the Variable Step Size Method, the Random Selection
Method, and the First Reaction Method. We use the Variable Step Size Method to
show how to handle lists of processes, different ways to make selections of pro-
cesses and process types, and how computer time and memory scales with system
size. Time-dependent rate constants are discusses separately as the determination
of when processes take place pose special problems. Parallelization is discussed
as well as some older algorithms. Some guidelines are given of how to choose an
algorithm for a simulation.

3.1 Introduction

Deriving analytical results from the master equation is not possible for most systems
of interest. Approximations can be used, but they may not be satisfactory. In such
cases one can resort to kinetic Monte Carlo (kMC) simulations.

Monte Carlo methods have been known already for several decades for the mas-
ter equation [1]. Following Gillespie they have become quite popular to simulate
reactions in solutions [2–4]. A configuration α in that case is defined as a set
{N1,N2, . . .} where Ni is the number of molecules of type i in the solution. There
is no specification of where the molecules are, as in our case for surface reactions.
In fact, the method is generally used to solve rate equations for chemical reactions.
When simulating reactions one talks about Dynamic Monte Carlo (DMC) simula-
tions, a term that we will use as well, or more recently Stochastic Simulation Al-
gorithm (SSA) [5–7]. Many of the algorithms developed in that area can be used
for surface reactions as well. However, the efficiency of the various algorithms (i.e.,
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the computer time and memory) can be different. There are also tricks to increase
the efficiency of simulations of reactions in solutions that do not work for surface
reactions and vice versa [8–10].

This chapter starts with a discussion of the most widely used algorithm, which
we call the Variable Step Size Method (see Sect. 3.2). Several aspects of the algo-
rithm are improved in Sect. 3.3. These improvements are put in a broader context
as they can also be used in other algorithms. Sections 3.4 and 3.5 discuss two other
algorithms that have been shown to be very useful. Section 3.6 extends the discus-
sion to include situations in which rate constants vary in time. Section 3.7 discusses
other approaches for surface reactions and Sect. 3.8 parallel algorithms. Section 3.9
presents a pragmatic approach to the question of which algorithm to use, and dis-
cusses other practical aspects of implementing and doing kMC simulations.

3.2 The Variable Step Size Method

The Variable Step Size Method (VSSM) method is probably the most widely used
algorithm for kMC simulations. In fact, sometimes the name kMC is specifically
used to denote this method. We will not do this. The algorithms in this section
and those of Sects. 3.4 and 3.5 give the same results, so we prefer to include all
algorithms that solve the master equation in kMC. VSSM is also often called the n-
fold way [11]. This refers to the algorithm developed by Bortz, Kalos, and Lebowitz
which is indeed equivalent to VSSM, but was originally developed for equilibrium
Monte Carlo [12]. The name VSSM was coined by Gillespie, and was developed
for DMC [2, 3].

3.2.1 The Integral Form of the Master Equation

To start with the derivation of the kMC algorithms for the master equation it is
convenient to cast the master equation in an integral form. First we simplify the
notation of the master equation. We define a matrix W by

Wαβ = Wαβ , (3.1)

which has vanishing diagonal elements, because Wαα = 0 by definition, and a diag-
onal matrix R by

Rαβ =
{

0, if α ≠ β,∑
γ Wγβ , if α = β. (3.2)

If we put the probabilities of the configurations Pα in a vector P, we can write the
master equation as

dP
dt

= −(R − W)P. (3.3)
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This equation can be interpreted as a time-dependent Schrödinger-equation in imag-
inary time with Hamiltonian R − W. This interpretation can be very fruitful [13],
and leads, among other things, to the integral form we present here.

We do not want to be distracted by technicalities at this point, so we assume that
R and W are time independent. We also introduce a matrix Q, which is defined by

Q(t) = exp[−Rt]. (3.4)

We can rewrite the master equation with this definition in the integral form

P(t) = Q(t)P(0) +
∫ t

0
dt ′Q

(
t − t ′

)
WP

(
t ′
)
, (3.5)

as can be seen by substitution of this expression in Eq. (3.3). The equation is a
recurrence relation implicit in P. By substitution of the right-hand-side for P(t ′)
again and again we get

P(t) =
[

Q(t) +
∫ t

0
dt ′Q

(
t − t ′

)
WQ

(
t ′
)

+
∫ t

0
dt ′

∫ t ′

0
dt ′′Q

(
t − t ′

)
WQ

(
t ′ − t ′′

)
WQ

(
t ′′

)
+ . . .

]
P(0). (3.6)

This equation is valid also for other definitions of R and W, but the definition we
have chosen leads to a useful interpretation. Suppose at t = 0 the system is in con-
figuration α with probability Pα(0). The probability that at time t the system is still
in α (i.e., no process has occurred that would change the configuration) is given by
Qαα(t)Pα(0) = exp(−Rααt)Pα(0). This shows that the first term in Eq. (3.6) rep-
resents the contribution to the probabilities if no process occurs up to time t . The
matrix W determines how the probabilities change when some process occurs. The
second term of Eq. (3.6) therefore represents the contribution to the probabilities if
no process occurs between times 0 and t ′, some process occurs at time t ′, and then
no process occurs between times t ′ and t . So the second term stands for the contribu-
tion to the probabilities if a single process occurs between times 0 and t . Subsequent
terms represent contributions if two, three, four, et cetera processes occur. (Note that
we use the term process for any change of the configuration. This includes chemi-
cal reactions, but also for example diffusional hops of adsorbates from one site to a
neighboring one. In Chaps. 5, 6, and 7 we will encounter also other processes.)

3.2.2 The Concept of the Variable Step Size Method

The idea of kMC is not to compute probabilities Pα(t) explicitly, but to start with
some particular configuration, representative for the initial state of the experiment
one wants to simulate, and then generate a sequence of other configurations with the
correct probability. The integral form gives us directly a useful algorithm to generate
subsequent configurations and the times when the configuration changes. At these
times some process (e.g., a chemical reaction) occurs.
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Let’s call the initial configuration α, and let’s set the initial time to t = 0. Then
the probability that the system is still in α at a later time t is given by

Qαα(t) = exp[−Rααt]. (3.7)

The probability distribution that the first process occurs at time t is minus the deriva-
tive with respect to time of this expression: i.e.,

Rαα exp[−Rααt]. (3.8)

This can be seen by taking the integral of this expression from 0 to t , which yields
the probability that some process has occurred in this interval, which equals 1 −
Qαα(t). We now make an important step. We move from a probability distribution
for the time that the first process may occur to a time t ′ when the first process
actually occurs. This can be done by equating the probability that the system is still
in α at a later time t to a uniform deviate on the unit interval: i.e., by solving

exp
[
−Rααt ′

]
= r, (3.9)

for t ′ where r is the uniform deviate on the unit interval [14].
At time t ′ some process occurs. According to Eq. (3.6) the different processes

that transform configuration α to another configuration α′ have rate constants Wα′α .
This means that the probability that the system will be in configuration α′ at time
t ′ + dt is Wα′α dt , where dt is some small time interval. We therefore generate a
new configuration α′ by choosing one of all possible new configurations α′ with a
probability proportional to Wα′α . This gives us a new configuration α′ at time t ′. At
this point we’re in the same situation as when we started the simulation, and we can
proceed by repeating the previous steps. So we generate a new time t ′′, using

exp
[
−Rα′α′

(
t ′′ − t ′

)]
= r, (3.10)

for the time of the new process, and a new configuration α′′ with a probability pro-
portional to Wα′′α′ . Here r is again a uniform deviate on the unit interval, but not
the same one of course as in Eq. (3.9). In this manner we continue until some preset
condition is met that signals the end of the simulation.

We call this whole procedure the Variable Step Size Method (VSSM). It’s a sim-
ple method that can be made very efficient. The algorithm is as follows.

Variable Step Size Method: concept (VSSMc)

1. Initialize

Generate an initial configuration α.
Set the time t to some initial value.
Choose conditions when to stop the simulation.

2. Time

Generate a time interval ∆t when no process occurs

∆t = − 1∑
β Wβα

ln r, (3.11)

where r is a uniform deviate on the unit interval.
Change time to t → t + ∆t .
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3. Process

Change the configuration to α′ with probability Wα′α/
∑

β Wβα : i.e., do the
process α → α′.

4. Continuation

If the stop conditions are fulfilled then stop. If not repeat at step 2.

Equation (3.11) is obtained from Eqs. (3.9) or (3.10) if we solve them for the time.
We see that the algorithm yields an ordered set of configurations and times when

processes occur that can be written as

(α0, t0)
t1→ α1

t2→ α2
t3→ α3

t4→ . . . (3.12)

Here α0 is the initial configuration and t0 is the time at the beginning of the simula-
tions. The changes αn−1 → αn are caused by processes occurring at times tn. These
processes that actually occur are often called events. We will see that all algorithms
in this section and in Sects. 3.4 and 3.5 also give such a result (3.12). They are all
equivalent because all give at time t a configuration α with probability Pα(t) which
is the solution of the master equation with boundary condition Pα(t0) = δαα0 with
t0 the time at the beginning of the simulation.

3.2.3 Enabled and Disabled Processes

Although the algorithms in this section and in Sects. 3.4 and 3.5 yield the same
result, they often do so at very different computational costs. We are very interested
in how computer time and memory scale with system size. It is clear that in general
the number of processes in a system is proportional to the size of the system and also
to the length of the simulation in real time. The computational costs will therefore
scale at least linear with system size and simulation length. We will therefore focus
not on costs for a whole simulation, but instead on costs per process.

Looking at the VSSMc algorithm above, we see that it scales in the worse possi-
ble way with system size. In step 2, for example, we have to sum over all possible
configurations. For a simple lattice with S sites and each lattice point having N

possible labels we have a total number of configurations equal to NS . This means
that VSSMc scales exponentially with system size. Fortunately, it is easy to improve
this. Most of the terms in the summation are zero because there is no process that
changes α into β and hence Wβα = 0. So we should only use those changes that
can actually occur: i.e., we should keep track of the possible processes. Processes
that can actually occur at a certain location we call enabled. The total number of
(enabled) processes is proportional to the system size, so we can reduce the scaling
of computer time per process so that it is not worse than proportional to the system
size. Actually, we can reduce the costs even further because we need not determine
all enabled processes every time at steps 2 and 3. A process generally has only a
local effect and does not affect processes far away. If a process occurs, this causes a
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Fig. 3.1 The left drawing shows part of a configuration for a model of CO oxidation. The fat
CO and oxygen form CO2 which is removed from the surface. The middle drawing shows newly
enabled processes: CO can adsorb at the sites marked by dark gray circles, oxygen can adsorb
dissociatively on neighboring sites indicated by two light gray circles on the line connecting the
sites. The right drawing indicates a disabled process: the two encircled sites had a CO and an
oxygen that could form a CO2

local change in the configuration. This change makes new processes possible only
locally, whereas other processes are not possible anymore also locally. We say that
such latter processes become disabled. The number of newly enabled and disabled
processes only depends on what the configuration looks like at the location where a
process has just occurred, but it does not depend on the system size (see Fig. 3.1). So
instead of determining all enabled processes again and again we do this only at the
initialization and then update a list of all enabled processes. Such a list is sometimes
called an event list. The algorithms then becomes as follows.

Variable Step Size Method: improved version (VSSMi)

1. Initialize

Generate an initial configuration α.
Make a list Lproc of all processes.
Calculate kα = ∑

β Wβα , with the sum being done only over the processes in
Lproc.
Set the time t to some initial value.
Choose conditions when to stop the simulation.

2. Time

Generate a time interval ∆t when no process occurs

∆t = − 1
kα

ln r, (3.13)

where r is a uniform deviate on the unit interval.
Change time to t → t + ∆t .

3. Process

Choose the process α → α′ from Lproc with probability Wα′α/kα : i.e., do the
process α → α′.

4. Update
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Remove the process α → α′ from Lproc.
Add new enabled processes to Lproc and remove disabled processes.
Use these changes to Lproc to calculate kα′ from kα .

5. Continuation

If the stop conditions are fulfilled then stop. If not repeat at step 2.

The reasoning leading to VSSMi suggests that the computer time per process of
this algorithm does not depend on system size. However, that is still not true. There
are two problems. First, choosing the process in step 3 can in general not be done in
constant time just with the list of all processes as we will see in Sect. 3.3.1. Second,
adding new enabled processes to the list of processes can be done easily in constant
time, but removing disabled processes presents a problem. One can scan the list of
all processes and remove all disabled processes from the list, but that is an operation
proportional to the system size.

3.3 Some General Techniques

There are a number of concepts and techniques that are useful to improve VSSMi,
but that can also be used to speed up the other algorithms that we will discuss.
This is because all algorithms essentially have to do the same thing. They have to
determine repeatedly which process occurs, when it occurs, and where it occurs. We
will introduce in this section hierarchical selection, using disabled processes, and
oversampling. We will also show explicitly how to use these techniques in VSSM.
Other algorithms using these techniques will be discussed in subsequent sections.

3.3.1 Selection Methods

Step 3 of VSSMi (Sect. 3.2.3) is a selection. Because different processes have dif-
ferent probabilities of being selected it is called a weighted selection. To make this
selection one has to define cumulative rate constants Cα′α = ∑

β≤α′ Wβα . The pro-
cesses in Lproc need to be ordered. In principle, it does not matter what criterion
is used for the ordering. A simple and convenient one is to order the processes ac-
cording to the order in which the processes are generated in steps 1 and 4 of the
VSSMi algorithm. The summation is over all processes α → β preceding α → α′

(β < α′) and α → α′ itself. The process α → α′ can then be picked by choosing
α′ using Cα′−1,α < rkα ≤ Cα′α where r is a uniform deviate on the unit interval
and α → α′ − 1 is the process before α → α′ in the ordering of the processes. This
weighted selection scales linearly with the number of processes and the system size.
The reason for this is that we have to scan all the cumulative rate constants Cα′α .

It is often possible to choose a process in constant time. To accomplish this we
split the list of all processes in groups containing processes of the same type (or
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Fig. 3.2 For a weighted selection the lengths of the bars in the top part of the figure have to be
added. If all bars have the same length then we can simply choose a bar at random. This is uniform
selection. The bottom part shows how selection can be done with a binary tree. You store partial
sums of subtrees in the nodes, which makes traversing the tree easier. The middle part shows a
form of selection using oversampling (see Sect. 3.3.4). All bars have a length smaller or equal
to M . A bar is chosen randomly (uniform selection) and then accepted with probability Wn/M

more general with the same rate constant). Two processes are of the same type if
they differ only in their position and/or orientation. So CO adsorption, NO disso-
ciation (NO → N + O) and N2 associative desorption (2N → N2) are examples
of process types. If L

(i)
proc is the list of N(i) processes with rate constant W(i),

then we proceed as follows. First, we pick a type of process j with probability
N(j)W(j)/

∑
i N

(i)W(i), and then we pick from L
(j)
proc a process at random. The first

part scales linearly with the number of lists, because it is a weighted selection. This
number does not depend on the system size, however, but only on the number of
process types or the number of rate constants. The second part is a uniform selec-
tion, which means that each process has the same probability of being chosen. This
can be done in constant time. So the second part also does not depend on the system
size. If the number of process types is small, and it often is, this method is very
efficient (see Fig. 3.2). Selecting first the process type and then a specific process of
the type is a hierarchical selection.

It is possible to do the weighted selection of the processes also in a time propor-
tional to the logarithm of the system size by using a binary tree or priority queue
as shown in the bottom part of Fig. 3.2 [15]. Each node of the tree has a process,
its rate constant, and the cumulative rate constants of all processes of the node and
both branches below the node. After rkα has been calculated we look for the node
with Cleft < rkα ≤ Cleft + Wnode where Wnode is the rate constant of the process of
the node and Cleft is the cumulative rate constant of the top node of the left branch.



3.3 Some General Techniques 45

If there is no left branch then we define Cleft = 0. To find the node we do the fol-
lowing.

1. Start

Set X = rkα .
Take the top node of the tree.

2. Process found?

if Cleft < X ≤ Cleft + Wnode
then stop: take the process of the node
else go to the next step

3. Continue in the left branch?

if X ≤ Cleft
then take the top node of the left branch and continue at step 2
else go to the next step

4. Continue in the right branch.

Set X → X − (Cleft + Wnode).
Take the top node of the right branch and continue at step 2.

The number of nodes we have to inspect is equal to the depth of the tree. If the
tree is well-balanced with all subtrees below a level of approximately equal depth
this is proportional to the logarithm of the system size. We can use this method also
for a weighted selection of the process type, if the number of process types is large.
In fact this occurs in DMC simulations of reactions in solutions and the method we
describe here is one method that is used for these simulations [4].

Of the three selection methods described above, uniform selection is clearly the
fastest. The drawback is of course that it can only rarely be used, because all prob-
abilities must be the same. If the selection has to be made from a large number of
processes, then using a binary tree is more efficient than weighted selection, because
it scales better with the number of processes. However, if the number of processes
is small, than a weighted selection is faster. There is more overhead in setting up a
binary tree and updating the information in the nodes. This overhead determines the
efficiency if the number of processes becomes too small. Hierarchical selection is a
way to use the advantage of uniform selection as much as possible even when the
probabilities are not the same.

Because uniform selection is so efficient, another variation might even be used
if the probabilities are not the same but still similar. Suppose M ≥ Wβα for all
processes α → β . First use a uniform selection to choose a process randomly, say
γ → γ ′. Next accept that process with probability Wγ ′γ /M . If the process is not
accepted, then repeat the procedure until a process has been accepted. Accepting a
process with a probability less than one is a form of oversampling (see Sect. 3.3.4).
This variation of uniform selection is efficient provided a process is accepted before
too many uniform selections have occurred: i.e., the average of Wβα/M should not
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be too small. We will see later that in this form of selection it is not always necessary
to know Wβα/M explicitly (see Sects. 3.3.3 and 3.4).

We will see that grouping all processes with the same rate constant in a process
type is not efficient if there are many different rate constants, because each list L

(i)
proc

will then have one few processes and choosing a process type is little different from
choosing a process directly. The following procedure by Schulze may then help
[16, 17]. Define a series of ordered rate constants M(i) with M(i) < M(j) if and
only if i < j . Make lists L(i) with processes. Put process α → β in list L(i) if
M(i−1) < Wβα ≤ M(i). To select a process first select a list L(i) with probability
N(i)L(i)/

∑
j N(j)L(j) with N(i) the number of processes in L(i). Next select a

process α → β from L(i) uniformly but accept it with probability Wβα/M(i). The
procedure is the same as the one for process types except that in the last step uniform
selection has been replaced by uniform selection with oversampling. This allows us
to restrict the number of list even if there are many rate constants.

3.3.2 Using Disabled Processes

The problem of removing disabled processes mentioned at the end of Sect. 3.2.3
has a surprisingly simple solution, although it is a bit more difficult to see that it is
actually correct. Instead of removing the disabled processes, we simply leave them
in the list of all processes, but when a process has to occur we check if it is disabled.
If it is, we remove it. If it is an enabled process, we treat it as usual. That this is
correct can be proven as follows. Suppose that ken is the sum of the rate constants
of all enabled processes, and we have one disabled process with rate constant kdis.
Also suppose without loss of generality that the system is at time t = 0. The prob-
ability distribution for the first process to occur is ken exp(−kent) (see Eq. (3.8)).
If we work with the list that includes the disabled process then the probability dis-
tribution for the first process occurring at time t being also an enabled process is
ken exp(−(ken + kdis)t), which is the probability that no process occurs until time t

(= (ken + kdis) exp(−(ken + kdis)t)) times the probability that the process is enabled
(= ken/(ken + kdis)). This is the first contribution to the probability distribution for
the enabled process if the disabled process is not removed. The probability distribu-
tion that the first process is disabled but the second process is enabled and occurs at
time t is given according to Eq. (3.6) by

∫ t

0
dt ′

[
kene

−ken(t−t ′)] kdis

ken + kdis

[
(ken + kdis)e

−(ken+kdis)t
′]

= kene
−kent kdis

∫ t

0
dt ′e−kdist

′

= kene
−kent

[
1 − e−kdist

]
. (3.14)

Adding this to ken exp(−(ken + kdis)t) gives us ken exp(−kent), which is what we
should have.
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This shows that adding a single disabled process does not change the probability
distribution for the time that the first enabled process occurs. In the same way we
can show that adding a second disabled process gives the same probability distri-
bution as having a single disabled process, and that adding a third disabled process
is the same as having two disabled processes, et cetera. So by induction we see
that disabled processes do not change the probability distribution for the occurrence
of the enabled processes. Also step 3 of VSSMi in Sect. 3.2.3 is no problem. The
enabled processes are chosen with a probability proportional to their rate constant
whether or not disabled processes are present in he list.

The VSSM algorithm now gets the following form.
Variable Step Size Method with an approximate list of processes (VSSMa)

1. Initialize

Generate an initial configuration α.
Make lists L

(i)
proc containing all processes of type i.

Calculate k(i) = N(i)W(i), with N(i) the number of processes of type i and
W(i) the rate constant of these processes.
Set the time t to some initial value.
Choose conditions when to stop the simulation.

2. Time

Generate a time interval ∆t when no process occurs

∆t = − 1∑
i k

(i)
ln r, (3.15)

where r is a uniform deviate on the unit interval.
Change time to t → t + ∆t .

3. Process

Pick a type of process j with probability k(j)/
∑

i k
(i), and then pick the pro-

cess β → α′ from L
(j)
proc at random. If the process is enabled go to step 4. If it is

disabled go to step 6. (Note that during the simulation k(j) may have obtained
contributions from disabled processes starting from configurations different
from the current configuration α, which means that β need not be equal to α.)

4. Enabled process

Change the configuration to α′.

5. Enabled update

Remove the process β → α′ from L
(j)
proc. Change k(j) → k(j) − W(j). (Note

that because the process is enabled β = α.)
Add new enabled processes to the lists L

(i)
proc.

Use these processes to calculate the new values for k(i) from the old ones.
Skip to step 8.
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6. Disabled process

Do not change the configuration: α′ is the same configuration as α.

7. Disabled update

Remove the disabled process from L
(j)
proc.

Change k(j) → k(j) − W(j).

8. Continuation

If the stop conditions are fulfilled then stop. If not repeat at step 2.

The computer time per process of algorithm VSSMa does not depend on system
size. This is achieved by working with an approximate list of all processes: a list
that can contain disabled processes. Note that picking the process type at step 3 can
be done by weighted selected or with a binary tree as explained in Sect. 3.3.1.

Although VSSMa does not depend on system size, there still seems a price to
pay. The lists L

(i)
proc become polluted with disabled processes, and, when there are

many of them, the algorithm will spend a lot of time in steps 6 and 7. The time
will be incremented with every disabled process that is encountered, but the con-
figuration does not change. Actually the only inefficiency is in the updating of the
time in step 2. Disabled processes in VSSMa are only removed when it is unavoid-
able. That seems more efficient than removing them at the moment they become
disabled.

Encountering a disabled process in step 3 of VSSMa is also called a null event.
Algorithms that avoid null events are called rejection-free. It might seem that null
events are wasteful and that rejection-free algorithms should be preferred. The prob-
lem is that a rejection-free algorithm needs to get rid of disabled processes at the
moment they become disabled. This can be costly. We have already seen that scan-
ning the list of processes is simply too expensive. Much better is to use so-called
inverted lists [17–19]. When the occupation of a site changes, then these lists link
that site to the disabled processes in the list of processes, thus allowing them to
be removed. This works in constant time. However, such lists are complicated data
structures and updating them is costly. It seems better to compute (3.15) a few times
extra in the case of a null event.

A nasty problem can occur when an enabled process becomes disabled and then
becomes enabled again. An example of this is when there is an adsorbate at a par-
ticular site, and the desorption from that site may then be enabled. That adsorbate
may however hop to a neighboring site instead of desorbing. The desorption from
the original site becomes then disabled. Later the adsorbate may hop back to the
original site, after which the desorption becomes enabled again. In VSSMa the des-
orption is added to the list of processes every time the adsorbate is moved to the
site. Consequently, there may be multiple occurrences of the same desorption in the
list of processes. This poses no problem provided only one of the occurrences is
enabled. The most convenient way to accomplish this is to keep track of the time
when a process has been put on the list of processes, and also the time when each
site has got its label. By comparing these time stamps it is possible to determine the
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last time that a process has been put in the list of processes. That process is the only
one that should be enabled. Because of round-off errors one should not use floating
point representation for the time stamps. Instead on should use integers time stamps:
for example, the number of processes that have occurred since the beginning of a
simulation.

3.3.3 Reducing Memory Requirements

We might also want to change the VSSM algorithm, not because of time, but because
of memory considerations. The descriptions of the algorithms so far use a list of all
processes. This list is quite large and scales with system size. We can do away with
this list at the cost of increasing computer time, although the algorithm will still not
depend on the system size.

Instead of keeping track of all individual processes we only keep track of how
many processes there are of each different type: i.e., no lists L

(i)
proc but only the num-

bers N(i). Because there are no lists we have to count how many processes become
enabled and disabled after a process has occurred. This is similar to adding only
enabled processes and can be done in constant time. (Note that this is only because
we are using no lists. Searching for disabled processes in lists and then removing
them is what costs time, not counting how many processes become disabled.) This
means that the number N(i) will be exact. The only problem is, after the type of
process is determined, how to determine which particular process will occur. This
can be done by randomly searching on the surface. The number of places one has
to look does not depend on the system size, but on the probability that the process
can occur on a randomly selected site. This random search for the location of the
process is a form of uniform selection with oversampling as described in Sect. 3.3.1.
Another application of such a uniform selection will be given in Sect. 3.9. If the type
of process can occur on many places, then a location for a that process will be found
rapidly.

To make the formulation of the new algorithm not too difficult we use here a
more restrictive definition of a process type, in the sense that two processes are of
the same type if one can be obtained from the other by a translation. Previously we
also talked about the same process type if the orientation was different. We don’t do
this here, because we want to have an unambiguous meaning if we say that a process
occurs at a particular site (see step 4 of VSSMs) even if more sites are involved. For
example, if we have a process type of an A reacting with a B where the B is at a site
to the right of the A, then by the site of this process we mean the site where the A
is. The new algorithm now becomes as follows.

Variable Step Size Method with random search for the location of processes
(VSSMs)

1. Initialize

Generate an initial configuration.
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Count how many processes N(i) of type i there are.
Calculate k(i) = N(i)W(i), with W(i) the rate constant of the processes of
type i.
Set the time t to some initial value.
Choose conditions when to stop the simulation.

2. Process time

Generate a time interval ∆t when no process occurs

∆t = − 1∑
i k

(i)
ln r, (3.16)

where r is a uniform deviate on the unit interval.
Change time to t → t + ∆t .

3. Process type

Choose a type of process j with probability k(j)/
∑

i k
(i).

4. Process location

Pick randomly a site for the process, until a site is found where the process
can actually occur.

5. Update

Change the configuration.
Determine the new enabled processes, and change the N(i)’s accordingly.
Determine the disabled processes, and change the N(i)’s accordingly.

6. Continuation

If the stop conditions are fulfilled then stop. If not repeat at step 2.

3.3.4 Supertypes

We have mentioned oversampling already a couple of times. We talk about over-
sampling when we use probabilities for generating samples that are higher than the
actual ones. The examples so far were about using oversampling for selection. Here
we show how it can also be used for sampling the probability distribution of the
times of the processes with a higher rate constant.

Suppose that the rate constant of a process is W . Then the probability that it
occurs at time t equals W exp(−Wt). If we use W ′ with W ′ > W instead of W ,
and then accept the process with probability W/W ′ we get the same probability
distribution. To prove this we need to add the contributions that the process has to
be generated one, two, three et cetera times before one is found that is accepted.
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W

W ′ W
′ exp

(
W ′t

)

+
∫ t

0
dt ′

W

W ′ W
′e−W ′(t−t ′)

[
1 − W

W ′

]
W ′e−W ′t ′

+
∫ t

0
dt ′

∫ t ′

0
dt ′′

W

W ′ W
′e−W ′(t−t ′)

×
[

1 − W

W ′

]
W ′e−W ′(t ′−t ′′)

[
1 − W

W ′

]
W ′e−W ′t ′′ + . . .

= We−W ′t
[

1 +
[

1 − W

W ′

]
W ′t + 1

2

[
1 − W

W ′

]2

W ′2t2 + . . .

]

= We−W ′t e[1−W/W ′]W ′t = We−Wt . (3.17)

A useful application of this is VSSM with supertypes [20]. Suppose that the num-
ber of process types is very large so that one does no longer want to do a weighted se-
lection of the process type in step 3 of VSSMs (Sect. 3.3.3) or VSSMa (Sect. 3.3.2).
One can of course use a binary tree, but one can also partition all process types in
a small number of supertypes. We define a rate constant for each supertype as fol-
lows. Suppose (j, k) is a process type k of supertype j with rate constant W(j,k). We
define Wj as the largest of all rate constants W(j,k). Instead of selecting a process
type directly, we first select a supertype using for example weighted selection with
a probability proportional to Wj , update the time, then select a process uniformly,
and finally accept it with probability W(j,k)/Wj . Note that this method can be re-
garded as a variation of the method by Schulze discussed in Sect. 3.3.1. Here the
Wj ’s function as the M(i)’s in Schulze’s method.

Such supertypes might be very useful when we have a system with interactions
between the adsorbates that affect the rate constants. In that case the rate constants
do not only depend on the process type, but also on the occupation of the sites around
the sites on which the process occurs. The number of these surrounding sites may
become several dozen and each may be occupied in several ways. All possible ways
the surrounding sites can be occupied, and hence the number of rate constants, can
be enormous. In this case we can define a supertype as the process type itself, and
the corresponding rate constant as the highest possible rate constant for the process
depending on the occupation of the surrounding sites.

How efficient oversampling and the use of supertypes is depends very much on
the probability that processes are accepted. In the example with the lateral interac-
tions it turns out that the interactions should not be larger than the thermal energy
(see Sect. 4.5.5).

3.4 The Random Selection Method

The determination of a process and the time it occurs can be split in three parts:
the time of the process, the type of the process, and the site of the process. The last
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two parts were combined in the previous versions of VSSM. The determination of
the process type has to be done before the determination of the location of the pro-
cesses in VSSMs, as otherwise one doesn’t know when to stop searching in step 4,
but the time of the process can be determined independently from which processes
occurs where. It is also possible to determine all three parts independently. This has
the advantage that less bookkeeping is necessary: adding and removing processes to
update lists or numbers of types of processes is not necessary. However the draw-
back is the same as in VSSMs, only worse, as in step 4 of VSSMs processes will
be attempted at certain locations where the processes cannot occur. If this does not
occur too often however, then this drawback may be small.

The trick is again to use oversampling. Suppose we have just one type of process
and that we have N of them. (A process type is defined here in the same way as for
VSSMs. Two processes are only of the same type if they can be transformed into
each other by a translation.) The time to the next occurrence of a process is then
given by the probability distribution NW exp(−NWt) where W is the rate constant
of the process. If we assume, however, that we have M of these processes with
M > N then we can also generate the time of the next process from the distribution
MW exp(−MWt), but then accept the process with probability N/M . The proof of
this is given in Sect. 3.3.4. See Eq. (3.17) and substitute NW for W and MW for
W ′.

The following algorithm is useful if we do not need to determine N explicitly.
This can be accomplished if we assume that all process types can occur everywhere
on the surface. In terms of lists this means that each list L

(i)
proc has the same S pro-

cesses during an entire simulation. Because the lists do not change and they have a
simple definition, we do not need to determine them explicitly. Also the times of the
processes are always taken from the same probability distribution, and the probabil-
ities to choose a process type do not change. The algorithm looks as follows.

Random Selection Method (RSM)

1. Initialize

Generate an initial configuration.
Set the time t to some initial value.
Define k = SWsum where Wsum is the sum of the rate constants W(i)’s of
type i.
Choose conditions when to stop the simulation.

2. Process time

Generate a time interval ∆t when no process occurs

∆t = −1
k

ln r, (3.18)

where r is a uniform deviate on the unit interval.

3. Process type

Choose a type of process randomly.
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4. Process location

Choose a site randomly.

5. Update

Change time to t → t + ∆t .
If the process is possible at the site from step 4, then accept the process with
probability W(i)/Wsum where i is the type of process from step 3.
If the process is possible and accepted, change the configuration.

6. Continuation

If the stop conditions are fulfilled then stop. If not repeat at step 2.

This algorithm is called the Random Selection Method (RSM). Note that the time
for a process, the type of the process, and the location of the process can be done
in any order. Only the time and the configuration of the system need to be updated.
The method is therefore very efficient, provided that processes are accepted often
in step 5. Also note that in the proof that this algorithm is correct we used the
probability N/M , but that this probability is never used explicitly in the algorithm.
Step 5 accepts processes with this probability implicitly.

3.5 The First Reaction Method

Instead of splitting the time, the type, and the location of a process, it is also possible
to combine them. This is done in the First Reaction Method.

The First Reaction Method (FRM)

1. Initialize

Generate an initial configuration α.
Set the time t to some initial value.
Make a list Lproc containing all processes.
Generate for each process α → β in Lproc a time of occurrence

tβα = t − 1
Wβα

ln r (3.19)

with Wβα the rate constant for the process and r a uniform deviate on the unit
interval.
Choose conditions when to stop the simulation.

2. Process

Take the process α → α′ with tα′α ≤ tβα for all β .
If the process is enabled go to step 3. If not go to step 4.

3. Enabled update

Change the configuration to α′.
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Change time to t → tα′α .
Remove the process α → α′ from Lproc.
Add new enabled processes to Lproc and generate for each new process α′ → β

a time of occurrence

tβα′ = t − 1
Wβα′

ln r. (3.20)

Skip to step 5.

4. Disabled update

Do not change the configuration: α′ is the same configuration as α.
Do not change the time.
Remove the disabled process from Lproc.

5. Continuation

If the stop conditions are fulfilled then stop. If not set α to α′ and repeat at
step 2.

This algorithm is also known in computer science where it is called Discrete
Event Simulation (DES) [21]. In FRM the determination of the type and the site of
a process is replaced by comparing times of occurrences for individual processes.
That this is correct can be seen as follows. Suppose we have N processes with rate
constants W1,W2, . . . ,WN . The probability that no process occurs in the interval
[0, t] is then exp[−t

∑N
n=1 Wn], whereas the probability that neither process 1 nor

process 2 nor any other process occurs in that interval equals
∏N

n=1 exp(−Wnt),
which is obviously the same as the previous expression. This proves that FRM gen-
erates correct times for processes. It’s a bit more work to show that the processes
are chosen with the correct probability. The probability distributions for the times of
the processes are Wi exp(−Wit) with i = 1,2, . . . ,N . The probability that process
1 occurs before any of the other processes in the FRM algorithm is given by

∫ ∞

0
dtW1e

−W1t

∫ ∞

t
dt ′W2e

−W2t
′
. . .

∫ ∞

t
dt ′′WNe−WNt ′′

= W1

∫ ∞

0
dte−W1t e−W2t . . . e−WNt = W1

W1 + W2 + . . . + WN
. (3.21)

For process i we find Wi/(W1 + W2 + . . . + WN), which shows that FRM also
chooses the processes with the correct probability. So we see that one can either
generate one time for all processes and then choose one process, or generate times
for all processes and then take the first that will occur. We will use this in Sect. 3.9
in another way.

The disadvantage of FRM is the determination of the process with the smallest
time of occurrence. Scanning a list of all process for each new process scales linearly
with system size. More efficient is to make the list of all processes an ordered one,
and keep it ordered during a simulation. This can for example be done with a binary
tree. Getting the next process does not depend on system size, but inserting new
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processes in Lproc is proportional to the logarithm of the system size [15]. This is
not as good as constant time, but it is not particularly bad either. Still VSSM is often
more efficient than FRM, but VSSM cannot always be used as we will show later,
whereas FRM can always be used.

Note that disabled processes are not removed from the list of all processes. Note
also that we only have to generate times for the new enabled processes. Times for
processes already in Lproc need not be generated again. Suppose that at time t = t1
a time has been generated for a process with rate constant W . The probability distri-
bution for that time is W exp[−W(t − t1)]. Now assume that at time t = t2 > t1 the
process has not occurred. We might generate a new time using the new probability
distribution W exp[−W(t − t2)]. However, the ratio of the values of these proba-
bility distributions for times t > t2 is W exp[−W(t − t2)]/W exp[−W(t − t1)] =
exp[W(t2 − t1)] is a constant. Hence relative probabilities for the times t > t2 that
the process can occur are the same for both probability distributions, and no new
time needs to be generated. Another way to look at this is that the probability that
the process has not occurred yet at time t2 is exp[−W(t2 − t1)]. The conditional
probability that the process will take place at time t provided it has not occurred yet
at time t2 equals W exp[−W(t − t1)]/ exp[−W(t2 − t1)] = W exp[−W(t − t2)].

3.6 Time-Dependent Rate Constants

If the rate constants Wαβ are themselves time dependent, then the integral form
(3.6) needs to be adapted. This situation arises, for example, when dealing with
Temperature-Programmed Desorption or Reactions (TPD/TPR) [22–24], and when
dealing with voltammetry [25]. The definitions of the matrices W and R remain the
same, but instead of a matrix Q(t) we get

Q
(
t ′, t

)
= exp

[
−

∫ t ′

t
dt ′′R

(
t ′′

)]
. (3.22)

With this new Q matrix the integral form of the master equation becomes

P(t) =
[

Q(t,0) +
∫ t

0
dt ′Q

(
t, t ′

)
W

(
t ′
)
Q

(
t ′,0

)

+
∫ t

0
dt ′

∫ t ′

0
dt ′′Q

(
t, t ′

)
W

(
t ′
)
Q

(
t ′, t ′′

)
W

(
t ′′

)
Q

(
t ′′,0

)
+ . . .

]

× P(0). (3.23)

The interpretation of this equation is the same as that of Eq. (3.6). This means that
it is also possible to use VSSM to solve the master equation. The relevant equation
to determine the times of the processes becomes

Q(tn, tn−1) = r, (3.24)

where tn−1 is the time of the last process that has occurred, and the equation should
be solved for tn, which is the time of the next process. If just after tn−1 the system is
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in configuration αn−1, then the next process leading to configuration αn should be
chosen from all possible process with probability proportional to Wαnαn−1(tn). Note
the argument of Wαnαn−1 here.

The drawback of VSSM for time-dependent rate constants is that the equation
for the times of the processes is often very difficult to be solved efficiently. Equa-
tion (3.24) can in general not be solved analytically, but a numerical solution may
also not be easy. The problem is that R in Eq. (3.22) can contain many terms or
terms from processes that have a very different time dependence. A possible solu-
tion is to use VSSM for each process type separately: i.e., we solve Eq. (3.24) for
each process type separately. This avoids the problem of the different time depen-
dences. The next process is then of the type with the smallest value for tn, and the
first process is chosen from those of that type as in VSSM [20, 26]. This works
provided the number of process types is small.

Instead of computing a time for the next process using the sum of the rate con-
stants of all possible processes, we can also compute a time for each process. So if
we’re currently at time t and in configuration α, then we compute for each process
α → β a time tβα using

exp
[
−

∫ tβα

t
dt ′Wβα

(
t ′
)]

= r, (3.25)

where r is again a uniform deviate on the unit interval. The first process to occur
is then the one with the smallest tβα . It can be shown that this time has the same
probability distribution as that of VSSM just as for time-independent rate constants.
This method is FRM for time-dependent reaction rate constants [22].

The equations defining the times for the processes, Eq. (3.25), are often much
easier to solve than Eq. (3.24). It may seem that this is offset by the fact that the
number of equations (3.25) that have to be solved is very large, but that is not really
the case. Once one has computed the time of a certain process, it is never necessary
to compute the time of that process again just as for the case of time-independent
rate constants. In fact, the only difference concerning the number of times (3.24)
and (3.25) has to be solved is due to there possibly still being processes in the list
of processes at the end of a simulation. In FRM equation (3.25) has already been
solved for these processes, as this is done when a process becomes enabled. This
is not necessary, and in VSSM this is not done for these processes. Apart from this
difference the number of times Eqs. (3.24) and (3.25) have to be solved is equal to
the number of processes (enabled or disabled) that are chosen to actually change the
configuration during a simulation: step 3 in VSSMa (Sect. 3.3.2) and step 2 of FRM
(Sect. 3.5).

Equation (3.25) can have the interesting property that it may have no solution.
The expression

Pnot(t) = exp
[
−

∫ t

tnow

dt ′Wβα

(
t ′
)]

(3.26)

is the probability that the process α → β has not occurred at time t if the current
time is tnow. As Wβα is a non-negative function of time, this probability decreases
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with time. It is bounded from below by zero, but it need not go to zero for t → ∞,
because the integral need not diverge. If it does not, then there is no solution when
r in Eq. (3.25) is smaller than limt→∞ Pnot(t). This means that there is a finite
probability that the process will never occur. This is the case with some process in
voltammetric experiments [25]. There is always a solution if the integral goes to
infinity. This is the case when Wβα goes slower to zero than 1/t , or does not go to
zero at all.

How to solve Eq. (3.25) depends very much on the time dependence of the rate
constants W . The dependence for voltammetry leads to an equation that can be
solved analytically fairly easily, despite the fact that for some processes there may
not be a solution. The rate constant for processes on an electrode can be written as
[27, 28]

W = W0 exp
[
αγ eE

kBT

]
(3.27)

with α the transfer coefficient (0 ≤ α ≤ 1), γ the number of electrons transferred to
the electrode when the process takes place, e the elementary charge, E the electrode
potential, and W0 the rate constant at E = 0. In voltammetry we have E = E0 + ϕt

with ϕ the sweep rate: i.e., the rate with which the electrode potential is changed.
This gives us

∫ t

tnow

dt ′W0 exp
[
αγ e(E0 + ϕt ′)

kBT

]
(3.28)

= W0kBT

αγ eE0
exp

[
αγ eE0

kBT

]{
exp

[
αγ eϕt

kBT

]
− exp

[
αγ eϕtnow

kBT

]}
. (3.29)

We see that this is finite if γ ϕ ≤ 0 with a maximum of

−W0kBT

αγ eE0
exp

[
αγ e(E0 + ϕtnow)

kBT

]
. (3.30)

We have to equate this to − ln r to find a solution for Eq. (3.25). If − ln r is larger
than this maximum, there is no solution. Otherwise the solution is

t = kBT

αγ eϕ
ln

{
exp

[
αγ eϕtnow

kBT

]
− αγ eϕ

W0kBT
exp

[
−αγ eE0

kBT

]
ln r

}
. (3.31)

For TPD there always is a solution that needs to be determined numerically, but
this can be done very efficiency. The rate constant can be written as

W = ν exp
[
− Eact

kB(T0 + Bt)

]
(3.32)

with Eact the activation energy, ν the prefactor, T0 the temperature at time t = 0,
and B the heating rate. We now get

∫ t

tnow

dt ′ν exp
[
− Eact

kB(T0 + Bt ′)

]
= Ω(t) − Ω(tnow) (3.33)
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with

Ω(t) = ν

B
(T0 + Bt)E2

[
− Eact

kB(T0 + Bt)

]
(3.34)

and E2 and exponential integral defined by [29]

E2(z) =
∫ ∞

1
dt

e−zt

t2 . (3.35)

Because Ω and also its derivative, which is nothing but W , are monotonically in-
creasing functions, we can use the Newton–Raphson method, which is not only very
fast, but also guaranteed to converge in this case [29]. Subsequent approximations
can be computed from

tn+1 = tn − Ω(tn) − Ω(tnow) + ln r

W(tn)
(3.36)

whereas any initial value for this sequence (e.g., t0 = tnow) will do. For other exper-
iments than TPD and voltammetry however an analytical or fast numerical solution
may not be found.

We note that time-dependent rate constants are sometimes treated as if they
are piecewise constant. This means that the total time interval of a simulation
[tbegin, tend] is split into n subintervals of equal duration, and the rate constants on
each subinterval are taken equal to those at the time at the beginning of the subinter-
val. An obvious drawback is that this is an approximation. This may be especially
bothersome, because rate constants are often monotonically increasing or decreas-
ing functions of time, which means that one systematically under- or overestimates
the rate constant. An advantage on the other hand is that all algorithms for time-
independent rate constants can be used. However, as soon as a simulation leaves
one subinterval and enters the next, all information on times for processes needs to
be recomputed. This means effectively starting a new simulation. This may bring
a substantial overhead with it. Taking larger intervals may reduce this, but only by
introducing a cruder approximation.

3.7 A Comparison with Other Methods

We briefly discuss here a few other approaches. The fixed time step method dis-
cretized time into intervals of equal length. The algorithmic methods are older meth-
ods that are still occasionally being used and that express time, if at all, in Monte
Carlo steps. The kMC method of Fichthorn and Weinberg in Sect. 3.7.3 is very sim-
ilar to VSSM and is quite popular. Cellular Automata are mentioned also but they
are really outside the scope of this book on kMC methods.



3.7 A Comparison with Other Methods 59

3.7.1 The Fixed Time Step Method

If we discretize time then the master equation can be written as

Pα(t + ∆t) = Pα(t) + ∆t
∑

β

[
WαβPβ(t) − WβαPα(t)

]
. (3.37)

This means that if at time t we are in configuration α, then at time t +∆t we are still
in configuration α with probability 1 −∆t

∑
β Wβα and in configuration β different

from α with probability Wβα∆t . This leads to the following algorithm. We generate
a uniform deviate on the unit interval. If r ≥ ∆t

∑
β Wβα then we only change time

to t + ∆t . If r < ∆t
∑

β Wβα then we also change the configuration to β with a
probability proportional to Wβα .

The algorithm avoids the evaluation of integrals like (3.25). However, it is ob-
viously an approximation, which might necessitate small time steps. As the proba-
bility that no process occurs ∆t

∑
β Wβα is an approximation to the correct value

1 − exp[−∆t
∑

β Wβα], we see that ∆t
∑

β Wβα ≪ 1 must hold. This means that
∆t must be so small that at most one, but for most steps no, process occurs.

3.7.2 Algorithmic Approach

Almost all older kMC methods are based on an algorithm that defines in what way
the configuration changes. (A review with many references to work with these meth-
ods is reference [30].) The generic form of that algorithm consists of two steps. The
first step is to choose a site. The second step is to try all processes at that site. This
may involve choosing additional neighboring sites. If a process is possible at that
site, then it is executed with some probability that is characteristic for that process.
These two steps are repeated many times. The sites are generally chosen at random.
In a variant of this algorithm just one process is tried until on average all sites have
been visited once, and then the next process is tried, et cetera. This variant is par-
ticular popular in situations with fast diffusion: the “real” reactions are tried first on
average once on all sites, and then diffusion is used to equilibrate the system before
the next cycle of “real” reactions.

These algorithmic kMC methods have provided very valuable insight in the way
the configuration of the adsorbates on a catalyst evolves and the development of
concepts that are useful in the description of that, but they have some drawbacks.
First of all there is no real time. Instead time is specified in so-called Monte Carlo
steps (MCS). One MCS is usually defined as the cycle in which every site has on av-
erage been visited once for each process. Real time and time in MCS’s can be shown
to be proportional, but the proportionality constant depends on the configuration of
the adlayer [31]. This means that a conversion from one to the other is relatively
easy at steady state and in the absence of fluctuations, but not in other situations like
oscillatory reactions and varying reaction conditions.
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The second drawback is how to choose the probabilities for processes to occur.
It is clear that faster processes should have a higher probability, but it is not clear
how to quantify this. This drawback is related to the first. Without a link between
these probabilities and microscopic reaction rate constants it is not possible a priori
to tell how many real seconds one MCS corresponds to. We have used the similarity
between the algorithmic approach and RSM to compute the proportionality between
real time and MCS’s explicitly [31]. In practice people have used the algorithmic
approach to look for qualitative changes in the behavior of the system when the
reaction probabilities are varied, or they have fitted the probabilities to reproduce
experimental results.

The third drawback is that it is difficult with this algorithmic definition to com-
pare with other kinetic theories. Of course, it is possible to compare results, but an
analysis of discrepancies in the results is not possible as a common ground (e.g., the
master equation in our approach) is missing. The generic form of the algorithm de-
scribed above resembles the algorithm of RSM. Indeed one may look upon RSM as
a method in which the drawbacks of the algorithmic approach have been removed.

3.7.3 The Original Kinetic Monte Carlo

The problem of real time in the algorithmic formulation of kMC has also been
solved by Fichthorn and Weinberg [32]. Their method was the first to be called
kinetic Monte Carlo and has become quite popular. They replaced the reaction prob-
abilities by rate constants, and assumed that the probability distribution Pproc(t) of
the time that a process occurs is a Poisson process: i.e., it is given by

Pproc(t) = k exp
[
−k(t − tnow)

]
, (3.38)

where tnow is the current time, and k is the rate constant. Using the properties of this
distribution they derived a method that is really identical to our VSSM, except in
two aspects. One aspect is that the master equation is absent, which makes it again
difficult to make a comparison with other kinetic theories. Instead the method was
derived by asking under which conditions an equilibrium Monte Carlo simulation
can be interpreted as a temporal evolution of a system. The other aspect is that in
the original formulation time is incremented deterministically using the expectation
value of the probability distribution of the first process to occur: i.e.,

∆t = 1∑
i Niki

, (3.39)

where ki is the rate constant of process type i (this is the same as our rate constants
W in Eq. (2.4)), and Ni is the number of processes of type i. This avoids having
to solve Eq. (3.10), and has been used subsequently by many others. However, as
solving that equation only involves generating a random number and a logarithm,
which is only a small contribution to the total computer time, this is not really much
of an advantage. Equation (3.39) does neglect temporal fluctuations, which may be
incorrect for systems of low dimensionality [33].
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Although the derivation of Fichthorn and Weinberg only holds for Poisson pro-
cesses, their method has also been used to simulate TPD spectra [34]. In that work it
was assumed that, when ∆t computed with Eq. (3.39) is small, the rate constants are
well approximated over the interval ∆t by their values at the start of that interval.
This seems plausible, but, as the rate constants increase with time in TPD, Eq. (3.39)
systematically overestimates ∆t , and the peaks in the simulated spectra are shifted
to higher temperatures. In general, if the rate constants are time dependent then it
may not even be possible to define a proper value for ∆t . We have already men-
tioned the case of voltammetry where there is a finite probability that a process will
not occur at all.

3.7.4 Cellular Automata

There is an extensive literature on Cellular Automata. A discussion of this is outside
the scope of this chapter, and we will restrict ourselves to some general remarks. We
will also restrict ourselves to Cellular Automata in which each cell corresponds to
one site. The interested reader is referred to references [35–40] for an overview of
the application of Cellular Automata to surface reactions.

The main characteristic of Cellular Automata is that all cells, each of which cor-
responds to a lattice point in our model of the surface, are updated simultaneously.
This allows for an efficient implementation on massively parallel computers. It also
facilitates the simulation of pattern formation, which is much harder to simulate
with some asynchronous updating scheme as in kMC [41]. The question is how re-
alistic a simultaneous update is, as processes seem to be stochastic. One has tried to
incorporate this randomness by using so-called probabilistic Cellular Automata, in
which updates are done with some probability. These Cellular Automata differ little
from kMC. In fact, probabilistic Cellular Automata can be made that are equivalent
to the RSM algorithm [20].

3.8 Parallel Algorithms

There has been surprisingly little work done on parallel algorithms for kMC [20, 42–
54]. There are two reasons why one might want to use parallelism. The first is that
one may want to speed up simulations by using multiple processors. The second
is that one might want to simulate a larger system than can be done with a single
processor. We will argue that although parallelism can speed up simulations and
deal with larger systems, the algorithms are not efficient.

There is actually a third reason for using parallelism. That is if one wants to do
many simulations. Each one can be done on a single processor. This trivial form of
parallelism is for example useful if one wants to do many simulations at different
reaction conditions. Another useful application would be to do a simulation many



62 3 Kinetic Monte Carlo Algorithms

Fig. 3.3 Two possible ways to partition a system for data parallelism. On the left the system is split
into (nine) blocks. On the right the system is split into (nine) strips. Each processor handles all sites
in a single chunk, with a chunk being a block or a strip. Each one has the occupation of the sites
in one chunk, and it needs to get information of neighboring processors for processes that involve
sites in multiple chunks. It is also possible to store the occupation of the sites at the boundaries
of the chunks on different processors. Each processor has then the occupation of the sites in the
areas indicated by larger block or wider strip as indicated for one processor by the gray areas.
Communication between the processors is then needed to keep information on the occupation of
the sites at the boundaries consistent

times. To see why one might want to do this one should remember that kMC is a
stochastic method. The results will therefore be noisy. To reduce the noise one can
either do simulations with large systems, average over long times (only possible
for steady states), or average over many simulations (see Sect. 5.2). This kind of
parallelism is, of course, optimal and is very easy to use.

Apart from this trivial kind of parallelism one can distinguish between control
and data parallelism [55]. The former tries to do the various computational tasks
of an algorithm in parallel. For example, calculating a time for the next process,
choosing the type of the next process, and choosing the place on the surface where
the next process will take place are independent tasks that can be done in parallel in
RSM (see Sect. 3.4). Inspection of the algorithms in this chapter however shows that
this form of parallelism can only be used with few processors working in parallel.
The best opportunity to use parallelism in this way is if there are many types of
processes that can be handled independently. One needs to realize however that not
only must there be many types of processes, they also have to occur about equally
often. If not, then a processor that is assigned a type of process that occurs only
rarely will be idle most of the time. Systems that fulfill these requirements are rare.
So this type of parallelism seems to be of limited use for kMC.

Data parallelism seems to be more promising. This kind of parallelism splits up
the system and assigns different parts to different processors. Figure 3.3 shows two
ways of doing this. The surface is divided into blocks or strips and each processor
handles the sites and processes in one block or strip. The problem with data paral-
lelism for kMC is that time is a global property of the system and that there may
be so-called causality errors affecting the sites at the boundaries of the chunks. The
chunks here are blocks or strips into which the system has been partitioned. When
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the processors handle the processes in each chunk independently each chunk will
get a different local time during a simulation even if at the start they will all have
the same time. A problem now may occur if there is a process that involves sites at
two (or more) neighboring chunks. Suppose that this process has become enabled
by processor A and will occur at time tA. When this process then actually occurs the
time of the neighboring processor B with site(s) also involved in the process may be
tB > tA. Consequently, processor B has simulated his chunk between times tA and
tB assuming the wrong occupation for its sites. If the correct occupation might have
affected the evolution of the chunk of processor B, we have a causality error. This is
an error when an event causes something to happen in the past instead of the future.

The example above shows that the processors need to communicate with each
other. First they need to tell neighboring processors the occupation of the sites on
the boundary, as otherwise they will not be able to determine which processes should
occur involving sites at two or more chunks. There also needs to be some mecha-
nism that synchronizes the local times of the processors. Communication between
processors reduces however the efficiency of a parallel algorithm.

Because the communication is needed for the sites at the boundary, it can be min-
imized by reducing he fraction of all sites that are at the boundary: i.e., by making
large chunks. This immediately shows that using parallelism to speed up the simu-
lation of a small system can not be done efficiently. Too much time will be wasted
on communication. Using large chunks means also fewer chunks which of course
also reduces the parallelism. This means that only really large systems may benefit
from parallelization.

There are two approaches to deal with the synchronization problem of the times
of the different processors: the conservative and the optimistic [56]. This distinction
is based on the use of safe and unsafe processes. A safe process is a process that
occurs at a later time than other processes with which it shares sites and for which
it can be shown that it also will not lead to processes at earlier times. Such a safe
process will not lead to causality errors and a simulation can always let such a
process take place. An unsafe process is a process that is not safe and may possibly
lead to causality errors.

A conservative algorithm only does safe processes. Such an algorithm will never
show causality errors, but it may result in deadlock. This is a situation in which
there are no more safe processes and the simulation stops even though there are
still enabled processes. There are mechanisms to deal with such a situation, but they
require extensive communication between the processors. Even if deadlock can be
avoided, conservative algorithms are not very efficient, because processors often
have to wait for neighboring processors to catch up so as to avoid large differences
in local times that may lead to causality errors.

Although unsafe processes may lead to causality errors, this does not need to be
necessarily so. Optimistic algorithms use this. They allow unsafe processes to occur
and assume that causality errors will occur only rarely or not at all. These algorithms
have mechanisms to detect and correct for causality errors. If we look again at the
example above where a process occurs at the boundary of two chunks A and B at
time tA when the processor of chunk B is already at time tB > tA, then a so-called
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rollback mechanism will undo all effects of the processes that occurred between
times tA and tB. This means of course that the computation of these processes has
been a waste of processor time. The algorithm will be very inefficient if the rollback
mechanism is invoked often.

Both conservative and optimistic algorithms have been implemented for kMC
simulations. Korniss et al. have used a conservative algorithm by Lubachevky in
which processors wait if necessary for neighboring processors to catch up so that
differences in local times are minimized [20, 42–46, 57]. They have done mainly
model studies on the kinetic Ising model for which it could be shown that deadlock
would not occur. Optimistic algorithms were developed by Merrick and Fichthorn
and by Nandipati et al. [51, 54].

There are good reasons to think that a parallel algorithm will have trouble sim-
ulating those systems efficiently for which one really would like to use a parallel
algorithm. If a system is reasonably homogeneous, then a small part of it is already
representative for the whole system. A parallel algorithm is then not useful. We
have already noted before that only large systems can benefit from parallelization.
However, such a system needs to be heterogeneous. As a consequence the kinetics
of different chunks will proceed at different rates. This means that a conservative
algorithm will have processors that are idle a large part of the time because little
is happening in their chunk. Optimistic algorithms will show frequent rollback be-
cause the local time changes fast in chunks were there are few processes whereas it
changes slowly in chunks with many processes.

Several studies have been done that did allow causality errors to occur. The idea
to use approximate algorithms is that these errors may possibly have only a small
or negligible effect on the kinetics [20, 47–50, 52, 53]. In the work of Shin et al.
the chunks were grouped into sublattices (see Fig. 3.4) [48–50, 52]. (Note that these
sublattices are different from the ones we have defined in Chap. 2.) This group-
ing was done in such a way that all chunks could be done in parallel without the
possibility of causality errors if the simulation restricted itself to one sublattice.
A simulation then did one sublattice, then another, et cetera either in a random or
predetermined order. Nedea showed that the same idea could be used with sublat-
tices as defined in Chap. 2 [47]. The chunks in that work consisted of single sites
(see Fig. 3.4).

Another idea by Shin et al. was to simulate all chunks for a preset time T with-
out worrying about causality errors [49]. They synchronized the simulations of the
chunks after each period T . The effect of the causality error was shown to be negli-
gible provided T was smaller than the reciprocal of the largest rate constant. Nandi-
pati et al. compared various algorithms and also extended the idea by Merrick and
Fichthorn to have dynamics boundaries [51, 54]. Sites might be reassigned during a
simulation to a different processor.

All of the studies mentioned above were primarily aimed at the development and
implementation of the algorithms. So little experience has yet been obtained with
realistic models.
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Fig. 3.4 Two possible uses of sublattices in parallelization. On the left the system is partitioned in
blocks (thick lines) and each block is split into four regions A, B, C, and D. All sites in regions A
form a sublattice, as do all sites in regions B, C, and D. Each processor handles one block. If all
processor at a certain time deal with the sites of only one sublattice then there will be no causality
errors. On the right each block stands for a site. All sites are partitioned in sublattices A, B, C, D,
and E. Processes for all sites in a single sublattice can be done in parallel if they involve only one
site or one site and a neighboring site. This is because all the sites of a single sublattice have no
common neighboring sites as indicated by the thick lines

3.9 Practical Considerations Concerning Algorithms

There are different aspects to consider if you just want to use the algorithms above to
simulate a particular reaction system, or if you want to implement them. We consider
first aspects related to the implementation of the algorithms. For the implementation
the efficiency of the methods described above depends very much on details of the
algorithm that we have not discussed. For example, a binary tree for storing all pro-
cesses can be implemented in many ways. Each has its advantages and drawbacks.
Which implementation is best may depend on the processes that one wants to sim-
ulate. However, some general guidelines can and will be given here. The interested
reader is referred to references [20] and [31] for a more extensive analysis.

An important point is that memory and computation time depend mainly on the
data structures that are used. Except for the time steps there is actually relatively
little to calculate. Calculations involve the generation of a random number to com-
pute times for processes and to choose processes or process types and sites. The
data structures that contain the processes and/or process types have a larger affect
on computer time and memory however. These lists are priority queues [15], and
in particular for FRM these may become quite large. A problem are the disabled
processes. Removing them depends linearly on the size of the lists and is generally
inefficient, and should not be done after each process. It is better to remove them
only when they should occur, and it is found that they have become disabled. Alter-
natively, one can do garbage collection when the size of the list becomes too large
[58]. There is a trade-off here. Doing garbage collection often keeps the lists small,
which reduces the costs of handling them. On the other hand doing garbage col-
lection can be costly itself, and should therefore be done as few times as possible.
There will be an optimum for the frequency with which garbage collection should
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be done, but that will depend on the processes to be simulated. Handling the lists de-
pends in the worst case only logarithmically on the size of them in FRM. In VSSM
and RSM this can even be done in constant time.

There are a few other aspects that are important and that we haven’t mentioned
yet. A central step in all algorithms is the determination of what are the new pro-
cesses that have become possible just after a process has occurred. There are depen-
dencies between the processes that may be used to speed up the simulation. A small
example may make this clearer. Suppose we have just adsorption of A or B onto va-
cant sites, and formation of AB from an A next to a B leaving two vacant sites. The
formation of an AB will allow new A and B adsorptions, but no new AB formation.
So it is not necessary to check if any AB formations have become enabled after an
AB formation has just occurred.

Testing if a process is disabled is not trivial. It won’t do to see if the occupation
of the relevant sites allows the process to occur. It may be that the occupation of
the sites has changed a few times but has converted back to a situation so that the
process can occur again. What has happened then is that when the process became
enabled for the second time it was added to the list of processes for the second time
too. If the first instance of the process on the list is not recognized as disabled, then
the process will occur at the first time of occurrence. This means that effectively the
process has a double rate constant. This is similar to oversampling (Sect. 3.3.4) and
accepting each process with probability 1. (This problem does not occur, of course,
in VSSMs and in RSM.)

Recognizing that a process is disabled can be done by keeping track of when a
process became enabled and when the occupation of a site last changed. If a site
involved in the process was modified after the process became enabled, then the
process should be regarded as being disabled. Using the times of these changes may
however lead to problems because of rounding errors in the representation of real
(floating point) numbers. Instead one can use integers that count processes when
they become enabled. Each process is assigned then its count number, and each
site is assigned the number of the process that last changed it. It a site involved in
a process has a number larger than the number of the process, then the process is
disabled.

From the point of view of using the algorithms to simulate a system an important
aspect seems to be the scaling with system size. The important difference between
FRM on the one, and VSSM (i.e., VSSMa and VSSMs) and RSM on the other hand
is the dependence on the system size. Computer time per process in VSSM and RSM
does not depend on the size of the system. This is because in these methods choosing
a process is done using uniform selection, which does not depend on the size of the
list of processes. In RSM there is not even such a list. In FRM the computer time
per process depends logarithmically on the system size. Here we have to determine
which of all processes will occur first. So for large systems VSSM and RSM are
generally to be preferred. The data structure of FRM is so time consuming that
FRM should only be used if really necessary.

There are however a number of cases that occur quite frequently in which VSSM
and RSM are not efficient. This is when there are many process types and when the
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rate constants depend on time. Time-dependent rate constants have been discussed
in Sect. 3.6. Many process types arise, for example, when there are lateral interac-
tions. In this case VSSM becomes inefficient because it will take a lot of time to
determine the process type, as with lateral interactions each different rate constant
counts as a different process. If many adsorbates affect the rate constant of a process
because of the lateral interactions, then the number of process types easily becomes
larger than the number of sites (see Sects. 2.2.3 and 6.3). RSM can be used for lat-
eral interactions, provided that the effect of them is small. With RSM one need only
include in the process description those sites for which the occupation changes. If
one also includes the sites with the adsorbates affecting the rate constants then the
probability that one chooses a process type that can occur at the randomly chosen
site is too low. The adsorbates affecting the rate constants should, of course, be in-
cluded when one calculates the rate constant for the determination of the acceptance
of a process. If the effect of lateral interactions is large then this acceptance will of-
ten be low, and RSM will not be very efficient. This is usually the case. In general,
one should realize that simulations of systems with lateral interactions are always
costly.

If VSSM and RSM can be used, then the choice between them depends on how
many sites in the system the processes can occur. RSM is efficient for processes
that occur on many sites. The probability that a process is possible on the randomly
chosen location is then high. If this is not the case then VSSM should be used.

The choice between FRM, VSSM, and RSM need not be made for all processes
in a system together, but can be made per process type, because it is easy to combine
the different methods. Suppose that process type 1 is best treated by VSSM, but
process type 2 best by RSM. We then determine the first process of type 1 using
VSSM, and the first of type 2 by RSM. The first process to occur actually is then
simply found by comparing the times of the processes: the first to occur is the one
with the smallest value for its time. The proof that this is correct is identical to the
proof of the correctness of FRM (see Eq. (3.21) and the text before that equation).
Combining algorithms in this way can be particularly advantageous for models with
many process types.

To summarize, VSSM is generally the best method to use unless the number of
process types is very large. In that case use FRM. If you have a process that occurs
almost everywhere, RSM should be considered. Simply doing the simulation with
different methods and comparing is of course best. This can be done easily with a
code that implements all these algorithms: e.g., Carlos [59]. One simply does a num-
ber of short exploratory simulations just to see how much computer time they take.
Table 3.1 gives on impression of the variation in the efficiency of the algorithms for
a selection of models. The fastest simulation (i.e., the one with the largest number of
processes simulated per second) is the one of the Ziff–Gulari–Barshad model with
RSM. It is however very exceptional that RSM does so well. For more complicated
models it can perform extremely poorly. There is a general trend that the speed of a
simulation goes down if the model becomes more complicated: i.e., when there are
more processes and when more sites are involved in the processes. (See Chaps. 5,
6, and 7 to understand how it can be possible that processes can involve dozens of
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Table 3.1 Number of processes simulated per second for different models of surface reactions
using Carlos version 5.1 [59]. The numbers have to be multiplied by 1000. All simulations were
run on a single processor of a HP Compaq dc7800 Desktop PC running the Debian 4.0 Linux
operating system

FRM VSSM RSM FRM + RSM VSSM + RSM # sites

Ziff–Gulari–Barshad model1 940 1900 3200 – – 1–2
TPD of CO/Rh(100)2 35 – – – – 5–8

263 2.33 – – – 5–8
CO electrooxidation on PtRu4 570 – – – – 1–2

3705 4605 – – – 1–2
Bisulfate/Cu(111)6 100 – – – – 2–10

1407 1507 – – – 2–10
CO + O/Pt(100)8 67 250 16 110 290 2–10
TPR of NO/Rh(111)9 21 – – – – 7–23
NH3/Pt(111)10 16 17 0.03 – 14 1–39

1See reference [60]. The simulations were done on a square lattice of size 128 × 128 with periodic
boundary conditions. The system was first brought to steady state and then simulated for 1000 units
of time. The parameter of the model was set to y = 0.5255. 2See reference [61] for a description
of the system except that only the nearest-neighbor interaction between the CO molecules was
included. The simulations were done on a square lattice of size 256 × 256 with periodic boundary
conditions. The initial coverage of CO was 0.5 ML. The initial temperature was 250 K and the
system was then heated by 5 K/s up to a temperature of 650 K. The interactions between the CO
molecules were included by splitting all sites involved in a process in a group of sites for which
the occupation changed when the process took place, and a group of sites with adsorbates that
only affected the rate constant (see Sect. 6.3). 3An alternative way to model lateral interactions
in which all possible occupations of all sites involved in the processes were specified explicitly
was used (see Sect. 6.3). For VSSM the rate constants were assumed to be piecewise constant
over intervals of 1 s. The reduced speed of the simulation was caused by the fact that the list of
processes had to be recomputed for each interval. FRM showed the same speed as VSSM when
piecewise constant rate constants were used. 4See references [62]. The simulations were done on
a square lattice of size 256 × 256 with periodic boundary conditions. The initial coverage with
CO was 0.99 ML. Half of the sites were on Pt, half on Ru, with both metals forming islands with
thousands of sites. The temperature was 300 K, and the initial electrode potential was 0.05 V and
was then increased by 0.1 V/s up to 0.35 V. 5The rate constants were assumed to be piecewise
constant over intervals of 0.02 s. 6See reference [63]. The simulations were done on a square
lattice of size 128 × 128 with periodic boundary conditions. The substrate was initial empty. The
temperature was 300 K, and initial electrode potential was −0.250 V and was then increased by
0.05 V/s up to 0.375 V. 7The rate constants were assumed to be piecewise constant over intervals
of 0.05 s. 8See reference [64]. The simulations were done on a square lattice of size 512 × 512
with periodic boundary conditions and two sites per unit cell. The substrate was initial completely
covered by CO except for four sites in a row that were occupied by oxygen atoms. The temperature
was 490 K. When RSM was used in combination with FRM or VSSM, oxygen adsorption, CO2
formation, and all diffusion was modeled with FRM or VSSM, and the other processes with RSM.
For these simulations Carlos version 3.0 was used. 9See reference [65]. The simulations were
done on a hexagonal lattice of size 66 × 66 with periodic boundary conditions. Labels where used
to distinguish between top and the two types of hollow site (see Sect. 5.5.2). The initial coverage
with NO was 0.75 ML. The initial temperature was 225 K and the system was then heated by
10 K/s up to a temperature of 625 K. 10Reduction of NH3 to N2 and H2. See references [66, 67]
for a determination of the rate constants. The simulations were done on a hexagonal lattice of size
128 × 128 with periodic boundary conditions and six sites per unit cell: one top, three bridge,
and two hollow sites. The substrate was initial empty. The temperature was 1000 K and the NH3
pressure 1 atm. For the VSSM + RSM all processes involving five or fewer sites were simulated
with RSM, the others, with at least 16 sites, with VSSM
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sites.) Note also that for some systems only a number for FRM is given. In those
cases the simulation code Carlos that was used only allowed FRM to be used either
because of lateral interactions or because of time-dependent rate constants [59].
There were lateral interactions in the TPD model and the NO/Rh(111) model, but
only a few sites were involved. A VSSM simulation could be done by simply spec-
ifying all possible occupations of the sites explicitly (also those that did not change
occupation in the processes), but only affected the rate constants. This is differ-
ent from the normal way lateral interactions are specified in the Carlos code (see
Sect. 6.3). Note that the simulation did not become faster, even though in that case
VSSM could be used. The reason for this is that finding enabled and disabled pro-
cesses takes more time the more sites are included in the process specification. There
were time-dependent rate constant for the TPD model, the sulphate/Cu(111) model,
and the NO/Rh(111) model. For the TPD model with VSSM and sulphate/Cu(111)
the rate constants were assumed to be piecewise constant. This yielded a substantial
speed-up for the sulphate/Cu(111) model, but not for TPD for the reasons mentioned
above. For CO + O/Pt(100) it is shown that combining methods can lead to some
speed-up, especially for FRM + RSM compared to FRM and RSM separately.
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Chapter 4
How to Get Kinetic Parameters

Abstract This chapter shows how rate constants can either be calculated or be
derived from experimental results. Calculating rate constants involves determining
the initial and the transition state of a process, the energies of these states, and their
partition functions. We show that the general expression for the partition functions
can often be simplified when a degree of freedom is a vibration, a rotation, or a
free translation. Recipes can be given for how to combine partition functions to get
rate constants for processes like Langmuir–Hinshelwood and Eley–Rideal reactions,
adsorption and desorption, and diffusion. The phenomenological or macroscopic
equation is the essential equation to get rate constants from experiments. It is shown
how to use it for simple desorption, simple and dissociative adsorption, uni- and
bimolecular reactions, and diffusion. Lateral interactions can affect rate constants
substantially, but because they are relatively weak, special attention needs to be
given to the reliability of calculations of these interactions. Cross validation and
Bayesian model selection are discussed in relation to the cluster expansion for these
interactions.

4.1 Introductory Remarks on Kinetic Parameters

Kinetic parameters are part of the input of kinetic Monte Carlo (kMC) simulations.
The determination of them is therefore strictly speaking not part of kMC, but, as
they are essential for kMC simulations, it is important to have some idea of how to
obtain them. It is possible to simply guess values in model studies and in studies
of “what-if” scenarios. In such studies one is usually interested in how the kinetics
changes as a function of these values. There is however an increasing tendency
to make models more realistic, and one tries to model processes as they actually
take place in the system of interest. For example, one does not just have a site for
adsorbates, but one wants to use the specific site for each adsorbate that it actually
prefers. One also wants to use the precise rate constants of the processes. It then
won’t do to just guess values. This chapter is about how to obtain good values for
kinetic parameters in realistic models.

There are basically two ways to get kinetic parameters. One way is to calculate
them. The other is to derive them from experimental data. One should be aware that
it is often better to get kinetic parameters from experiments. It may be easier to do

A.P.J. Jansen, An Introduction to Kinetic Monte Carlo Simulations of Surface
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an experiment than a calculation, and the result may also be more reliable. One the
other hand, some kinetic parameters are simply not possible to obtain from an ex-
periment. For example, in the reduction of NO on Rh(111) one possible process is
NO desorption (see Sect. 7.2), but this process only takes place when all neighbor-
ing sites of the NO are blocked either by actual occupation by another adsorbate or
by strong repulsive interactions. There is an enormous number of different ways in
which such blocking can occur. Each of these ways can have a different rate constant
for NO desorption. In a kMC simulation these possibilities are treated as modifica-
tions of desorption of an isolated NO [1]. One therefore needs the rate constant for
such isolated molecule. It is not possible however to get this from experiments, be-
cause such molecule will never desorb because it dissociates. One must therefore
calculate the rate constant.

In principle there is only one kinetic parameter for each process which is its rate
constant. Because one very often wants to know how this rate constant depends on
temperature, one uses a so-called Arrhenius form (see Eq. (4.2)), which defines an
activation energy and a prefactor. These can be given a physical interpretation and
have become standard kinetic parameters as well. One can also look at the depen-
dence of the rate constant on other reaction conditions (e.g., pressure). This can nor-
mally be treated as a dependence of the prefactor or the activation energy on these
reaction conditions, which is generally quite straightforward. We will therefore not
deal with this here in general, but only in relation to certain types of processes: e.g.,
in Sect. 4.4.3 on adsorption.

A set of kinetic parameters that does need a separate discussion is formed by lat-
eral interactions. These interactions between adsorbates affect the rate constants, but
in a very complicated way. We assume here that the lateral interactions only affect
the activation energy. The main reason for this is that changes in the activation en-
ergy have a much larger effect on the rate constant. Effects of the lateral interactions
on the prefactor are much smaller and can often by ignored.

Rate constants are part of a particular description of the kinetics. The rate con-
stants of kMC are not the same as those in macroscopic rate equations, although
sometimes they can be related to each other. The rate constants of kMC are the most
fundamental in the sense that they refer to microscopic processes and are based on
the smallest number of assumptions. Section 4.6 discusses the relation between the
rate constants in kMC and those of other approaches.

4.2 Two Expressions for Rate Constants

This section gives the general expression for the rate constants that are used in kMC,
and we discuss the relation with the Arrhenius form.
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4.2.1 The General Expression

The rate constants in kMC simulations are those we find in the master equation
derived in Chap. 2.

dPα

dt
=

∑

β

[WαβPβ − WβαPα]. (4.1)

Here t is time, α and β are configurations of the adlayer, Pα and Pβ are their prob-
abilities, and Wαβ and Wβα are so-called transition probabilities per unit time that
specify the rate with which the adlayer changes due to processes that can take place.
We will call these W ’s rate constants or rate coefficients, but one should be aware
that they are not necessarily the same constants that one has in macroscopic rate
equations. This will be discussed more fully in Sect. 4.6.

The derivation in Chap. 2 not only has given us the master equation, but also an
expression for the rate constants.

W = kBT

h

Q‡

Q
exp

[
−Ebar

kBT

]
(4.2)

with T the temperature, kB the Boltzmann constant, and h Planck’s constant. The
Q’s are partition functions, and Ebar is the height of the activation barrier. This
expression is formally identical to the Transition-State Theory (TST) expression for
rate constants [2]. There are differences in the definition of the partition functions
Q and Q‡, but they can often be neglected.

Note that Eq. (4.2) has an extra factor compared to Eq. (2.32). This is because
two exponential factors have been take out off the partition functions. The exact
expressions for the partition functions in expression (4.2) are

Q‡ =
∫

Sβα

dS

∫ ∞

−∞

dp1 . . . dpi−1 dpi+1 . . . dpD

hD−1 exp
[
−H − ETS

kBT

]
, (4.3)

Q =
∫

Rα

dq
∫ ∞

−∞

dp
hD

exp
[
−H − EIS

kBT

]
, (4.4)

where q stands for all coordinates, and p stands for all momenta, D is the number of
degrees of freedom, and the integration is over the region Rα in configuration space
that corresponds to configuration α (see Fig. 2.9) or surface Sβα that separates Rα

from Rβ . H is the Hamiltonian of the system, EIS is the minimum of the potential
energy in Rα , and ETS is the minimum of the potential energy on Sβα . The sub-
scripts of the energies stand for initial and transition state, respectively. We tacitly
assume that the transition state is on Sβα and corresponds to the minimum of the
potential energy on that surface. The partition functions are then also those of the
initial (Eq. (4.4)) and transition state (Eq. (4.3)). The energies EIS and ETS are new
and are absent in Eqs. (2.33) and (2.34). We have

Ebar = ETS − EIS (4.5)

with Ebar the activation barrier in Eq. (4.2). The advantage of writing the rate con-
stants in this way is that the potential energy has a minimum equal to zero in Rα and



76 4 How to Get Kinetic Parameters

Sβα in the expressions for the partition functions. This simplifies the calculation of
the partition functions. It also is convenient for the introduction of the activation
energy.

4.2.2 The Arrhenius Form

Often an activation energy plus prefactor (or pre-exponential factor) is given instead
of the rate constants. The relation with the rate constants is given by

W = ν exp
[
− Eact

kBT

]
(4.6)

with W the rate constant, Eact the activation energy, and ν the prefactor.
A superficial comparison of Eqs. (4.2) and (4.6) may suggest that Eact = Ebar and

that ν is given by the factors before the exponential in (4.2), but that is generally not
correct. The partition functions in (4.2) often hide exponential factors that contribute
to Eact. Moreover, the Arrhenius form is really only useful if we can assume that
the prefactor and activation energy do not depend on temperature, because then it
yields a simple dependence of the rate constant on temperature.

The Arrhenius form (4.6) with temperature-independent activation energy and
prefactor is an approximation, but almost always a very good one. If we set the
partition functions equal to 1, which is often reasonable as we will see in Sect. 4.3.4,
then we get Fig. 4.1. If the Arrhenius form were exact, the figure should show a
straight line. There is some deviation, but it is very small. Moreover, the temperature
range in the figure is much larger than the range that one normally has to deal with,
and the temperature is also generally lower than the temperature where there is a
clear deviation.

There are two ways to get values for the activation energy. The first, and best,
is to use Eq. (4.2). Calculate the rate constant for the temperature range that one is
interested in, and do linear regression to fit of lnW as a function of 1/T [3]. We
have

lnW = lnν − Eact

kB

1
T

, (4.7)

so the constant of this fit equals lnν, and the coefficient of the linear term equals
−Eact/kB.

The second way is less accurate, but also simpler. Start by determining the factors
in the partition functions that have the same exponential dependence as the activa-
tion barrier. (See Sect. 4.3.2 for details.) Suppose Q‡ has a factor exp(−εTS/kBT ),
and Q has a factor exp(−εIS/kBT ). Set

Eact = Ebar + εTS − εIS. (4.8)

The contributions εTS and εIS are usually so-called zero-point energies. Next cal-
culate the rate constant at the temperature that you think is most important for the
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Fig. 4.1 The logarithm of the rate constant ln(Wh/Ebar) according to Eq. (4.2) with Q‡ = Q = 1
plotted versus reciprocal temperature Ebar/kBT . Although the expression is not linear, the devi-
ation of linearity is only very small, and only visible at high temperatures (i.e., small values of
Ebar/kBT ). A very similar plot is obtained even if the partition functions can not be approximated
by Q‡ = Q = 1

processes that you are interested in. If we call the calculated rate constant Wcalc,
then take ν = Wcalc exp(Eact/kBT ) as prefactor.

Sometimes the activation energy is defined by

Eact = − ∂ lnW

∂(1/kBT )
(4.9)

with W given by Eq. (4.2) or a similar expression. This gives Eq. (4.8) for the
activation energy plus some additional term. One should realize that this expression
and the procedures described above are all just definitions of the activation energy.
Expression (4.8) has a simple physical interpretation as will be shown in Sect. 4.3,
but it leads to an Arrhenius form that is valid over only a limited temperature range.
The activation energy derived from the linear regression is valid over a much wider
temperature range, but it has no good physical interpretation. Expression (4.9) seems
to be the least useful. It has no good physical interpretation, and it does not yield
a simple temperature dependence compared to the Arrhenius form. One may argue
that it is more accurate, but if that is important then one can just is well use the TST
expression (4.2). Note also that working with activation energy and prefactor is only
useful when one wants to do simulations at different temperatures. Otherwise, it is
easier to specify the rate constant directly.
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4.3 Partition Functions

Whether one wants just to calculate a rate constant, or compute also activation en-
ergies and prefactors explicitly, one needs to compute partition functions. As they
form such an important part of the expression of the rate constants, we will discuss
them in some detail.

4.3.1 Classical and Quantum Partition Functions

The derivation of the master equation in Sect. 2.2.2 is based on phase space and
the classical Liouville equation. The expressions for the rate constants (Eqs. (2.32)–
(2.34) and (4.2)–(4.4)) are also classical expressions. For some situations this is per-
fectly acceptable, but when there are coordinates that correspond to motions with a
quantum mechanical excitation energy that is at least of the order of the thermal en-
ergy kBT , it is not. Of course, one might try to rederive the master equation starting
from quantum mechanics, but that is very difficult and seldom necessary. In many
cases it suffices to replace expressions (4.3) and (4.4) by their quantum mechani-
cal analogue. Indeed, in the following we will discuss first the quantum mechanical
form of a partition function and only then the classical one. One aspect that can be
important and that is still absent even if one uses quantum mechanical partition func-
tions is the effect of tunneling. To deal with this one can use a tunneling correction
for the rate constants [4–6].

4.3.2 Zero-Point Energy

The main reason for the difference between the activation barrier Ebar and the acti-
vation energy Eact is that the partition functions in Eq. (4.2) may contribute to the
exponential factor. This is especially true if there are motions that, when treated
quantum mechanically, have an excitation energy that is of the same order of mag-
nitude or larger then kBT . Such motions should not be treated classically, and the
partition functions (4.3) and (4.4) should be replaced by quantum mechanical ones.
A quantum mechanical partition function can be written as

Q =
∞∑

n=0

exp
[
− En

kBT

]
(4.10)

with the summation over all eigenstates of the Hamiltonian of the system (i.e., the
solutions of the time-independent Schrödinger equation) and En the energy of state
n [7]. If the we define state n = 0 as the ground state, then we can rewrite this also
as

Q = exp
[
− E0

kBT

] ∞∑

n=0

exp
[
−En − E0

kBT

]
. (4.11)
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We can combine the first factor on the right-hand-side with the exponential term
exp(−Ebar/kBT ) in Eq. (4.2). The summation in Eq. (4.11) will not have such an
exponential dependence. The first term in the summation is always equal to 1. If
the excitation energies En −E0 for n ≥ 1 are large compared to kBT , then the other
terms are very small and it may be appropriate to neglect them. The summation then
is simply equal to 1. This often happens for vibrations (see Sect. 4.3.4).

The definitions of the partition functions (Eqs. (4.3) and (4.4)) show that the
energies of the states should be taken with respect to a minimum of the potential
energy. The difference between E0 and this minimum is called the zero-point energy
[8]. Equation (4.2) is often written as

W = kBT

h

Q̃‡

Q̃
exp

[
−Ebar + Ezp

kBT

]
. (4.12)

Ezp contains all the zero-point energy contributions from the partition functions. We
have

Ezp = εTS − εIS (4.13)

with εTS the zero-point energy extracted from Q‡ and εIS that from Q (see also
Eq. (4.8)). The quantity Ebar + Ezp is called the zero-point energy corrected acti-
vation barrier. The partition function Q̃‡ and Q̃ are defined by the summation in
Eq. (4.11): i.e., the reference level of the energy is chosen so that the ground state
has by definition an energy equal to zero. It is very important for the calculation of
the partition function to be aware if one is using Eq. (4.2) or Eq. (4.12).1

4.3.3 Types of Partition Function

General expressions for partition functions are not very useful. They have to be sim-
plified, and for this we need to make some approximations. It depends on the type of
motion which approximation is appropriate. The type of motion also determines if
we need to work with the quantum mechanical expression given by Eq. (4.11), or if
we may use the classical expression Eqs. (4.3) and (4.4). In principle, this depends
on the ratio between the excitation energy for a certain motion and the thermal en-
ergy kBT . At high temperatures the difference between the quantum mechanical and
the classical expressions becomes negligible.2 This will turn out to be convenient,

1If one determines the activation energy Eact by a linear regression of a set of rate constants at
different temperatures, then this energy is not exactly equal to Ebar + Ezp. This is because the
factors (kBT/h)(Q̃‡/Q̃) also give a small contribution to Eact. See the discussion at the end of
Sect. 4.2.2.
2Strictly speaking this is not always true. There may be a factor in the quantum version that is
absent in the classical one, and that is related to the statistics of identical particles. See for example
the geometry factor in Eqs. (4.22) and (4.23).
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because for some motions the quantum mechanical expression is much harder to
evaluate than the classical one.

We will split the degrees of freedom of a system in several groups. These groups
allow us to write a partition function as a product.

Q = QtransQrotQvib (4.14)

with Qtrans the partition function of the translations, Qrot the partition function of
the rotations, and Qvib the partition function of the vibrations.3 These partition func-
tions can often be split further. For example, for the vibrations one can often use the
harmonic approximation (see Eq. (4.16)). The vibrations can then be decoupled into
so-called normal modes, [9], and we can write

Qvib =
∏

n

Q
(n)
vib (4.15)

where the product is over all normal modes with Q
(n)
vib the partition function of nor-

mal mode n (see Eq. (4.18) Sect. 4.3.4). Also Qtrans and Qrot can often by decoupled
at least partially.

4.3.4 Vibrations

Most degrees of freedom of the molecules involved in a reaction are vibrations. The
potential energy of such a degree of freedom can be approximated by

V (x) = 1
2
mω2x2 (4.16)

with x the coordinate of the degree of freedom, m the corresponding mass, and
ω some constant, which turns out to be equal to the (angular) frequency of the
vibration. The minimum energy of the potential here has been set equal to 0 and x

is defined in such a way that x = 0 corresponds to the position of the minimum of
the potential. The energies of the states are then given by [8]

En =
(

n + 1
2

)
!ω (4.17)

with n a non-negative integer.

3There are actually two more factors [7]. There is the partition function of the electronic states
Qel and the partition function of the spins of the nuclei Qnucl. We will ignore both. The electronic
ground state defines the potential energy of the system, so the partition function is defined only by
the summation in Eq. (4.11). As the electronic excitation energies are, except for rare case, much
larger than the thermal energy, we get Qel = 1. The spin state of the nuclei generally does not
change during a reaction. So its partition functions for the transition and initial state cancel in the
expression for the rate constant, and can therefore be ignored.
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Fig. 4.2 Q̃vib of Eq. (4.19) as a function of !ω/kBT

The minimum of the potential energy is 0, so the zero-point energy is !ω/2. The
summation of Eq. (4.11) can be done analytically and the result for the partition
function is

Qvib = Q̃vibe
−!ω/2kBT (4.18)

with

Q̃vib = 1
1 − e−!ω/kBT

. (4.19)

The reason to split off Q̃vib is that exp[−!ω/2kBT ] is a zero-point energy factor
that can be combined with exp(−Ebar/kBT ). Moreover, Q̃vib can be approximated
by 1 if !ω ≫ kBT , which is quite common. If on the other hand !ω ≪ kBT we have
Q̃vib = kBT/!ω (see Fig. 4.2).

4.3.5 Rotations

There are three different partition functions for rotation that are relevant. If we have
a chemical group that rotates around some axis (e.g., CH3), then we have a one-
dimensional rotation. If we have a linear molecule in the gas phase (relevant for
adsorption and desorption), then we have two rotational degrees of freedom. If we
have a non-linear molecule in the gas phase, then we have even three rotational
degrees of freedom. There are no closed-form expressions for the quantum me-
chanical partition functions, but the rotational excitations are small compared to the
thermal energy for almost all molecules and temperatures. So we will give the high-
temperature limit of the quantum mechanical expressions [7]. These are equal to the
classical expressions apart from geometric factors.
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For a chemical group rotating around an axis we have

Qrot,1D = 2π

h

√
2πIkBT (4.20)

with I a moment of inertia that is defined as

I =
∑

n

mnr
2
n. (4.21)

The summation in this expression is over all atoms of the group, and rn is the dis-
tance of atom n to the rotation axis and mn the mass of the atom n.

For a freely rotating linear molecule we have4

Qrot,2D = 8π2IkBT

σh2 . (4.22)

Here I is again a moment of inertia. It is defined formally again by expression
(4.21), but rn is now the distance of atom n to the center of mass of the molecule.
The symmetry number σ is 2 for molecules with an inversion center and 1 otherwise.

For a freely rotating non-linear molecule we have

Qrot,3D =
√

π

σ

∏

n

√
8π2InkBT

h2 . (4.23)

The summation is over the principle moments of inertia. These are the eigenvalues
of the matrix with the moments of inertia. This matrix has diagonal components

Iαα =
∑

n

mn

[
|rn|2 − r2

nα

]
(4.24)

and non-diagonal components

Iαβ =
∑

n

mnrnαrnβ . (4.25)

The summation is over all atoms in the molecule, rn is the vector from the center of
mass of the molecule to atom n, and α,β = x, y, z. The symmetry number σ is the
number of proper rotations in the point group of the molecule.

One can define so-called rotational temperatures θrot for a molecule via

θrot = h2

8π2IkB
(4.26)

with I a principle moment of inertia. With this definition we can write

Qrot,2D = 1
σ

T

θrot
(4.27)

4Note that below room temperature this expression should not be used for molecular hydrogen.
The rotational excitations for this molecule are so high, that the high-temperature approximation
only becomes valid at higher temperatures.
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Table 4.1 Rotational temperatures and geometry factors for some small molecules. There is only
one temperature for linear molecules. (Note that these temperature are not necessarily very ac-
curate. They were calculated assuming a rigid structure of the molecule based on DFT/B3LYP
calculations with a 6-31G+(d) basis set [10])

Molecule θrot,A/K θrot,B/K θrot,C/K θrot,Aθrot,Bθrot,C/K3 σ

H2 87.9 2

CH4 7.60 7.60 7.60 438.2 12

NH3 14.4 14.4 8.97 1856 3

H2O 39.7 20.4 13.5 1089 2

CO 2.73 1

CO2 0.554 2

N2 2.84 2

NO 2.42 1

NO2 11.3 0.619 0.587 4.112 1

and

Qrot,3D =
√

π

σ

(
T 3

θrot,Aθrot,Bθrot,C

)1/2

(4.28)

with three different rotational temperatures for a non-linear molecule. Table 4.1
shows values for some small molecules. The advantage of these temperatures is
that they simplify the calculations of rotational partition functions.

4.3.6 Hindered Rotations

The rotation of a chemical group around an axis is often not completely free, be-
cause of steric repulsion or other interactions. For such hindered rotation it is not
possible to give a closed-form expression of the partition function. On the other
hand, because it is only a one-dimensional problem, it is relatively easy to compute
the partition function numerically.

The Schrödinger equation for the rotation is given by

HΨn(ϕ) =
[
−!2

2I

d2

dϕ2 + V (ϕ)

]
Ψn(ϕ) = EnΨn(ϕ) (4.29)

with H the Hamiltonian, ϕ the rotational angle, I the moment of inertia given by
Eq. (4.21), and V (ϕ) the potential energy that describes the barriers that prevent the
free rotation. The subscript n is a non-negative integer that labels the various solu-
tions. The function V might be determined by doing quantum chemical calculations
of the system for various values of ϕ, and then fitting the results to some functional
form: e.g., a Fourier series [11].

To solve this Schrödinger equation we expand the wave functions in a basis
and then use the variation principle [12]. It seems obvious to use the geometric
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functions sin and cos as a basis, or complex exponential function. Suppose we
take a basis e−iMϕ/

√
2π, e−i(M−1)ϕ/

√
2π, . . . , e−iϕ/

√
2π,1/

√
2π, eiϕ/

√
2π, . . . ,

ei(M−1)ϕ/
√

2π , eiMϕ/
√

2π , write

Ψn(ϕ) =
M∑

m=−M

eimϕ

√
2π

cmn (4.30)

and use the variation principle. We then get

HC = CE (4.31)

with the matrices given by the following definitions of the matrix elements.

Hmn = 1
2π

∫ 2π

0
dϕe−imϕHeinϕ, (4.32)

Cmn = cmn, and Emn = Enδmn. So we get an eigenvalue equation with the energies
in the diagonal matrix E and the coefficients of the wave functions in the columns
of the matrix C.

Once the energies have been determined, the partition function then follows im-
mediately from Eq. (4.11). Note that the accuracy depends on the size of the basis:
i.e., on the value of M . One should increase M until the value of Q does not change
anymore.

4.3.7 Translations

Free translations are rare for surface processes. They are only found when the corru-
gation of the surface is very small, and an adsorbate can move almost unhindered in
some direction. This can occur either for the initial state of a process or the transition
state.

The classical partition function is appropriate and quite easy to compute. Using
Eq. (4.3) for a one-dimensional translation gives

Qtrans =
∫ L

0
dx

∫ ∞

−∞

dp

h
exp

[
− p2

2mkBT

]
= L

√
2πmkBT

h
. (4.33)

Note that L is the length of the interval over which the translation is free. In simu-
lations it is generally related to the size of an adsorption site (see Sect. 4.4.2). The
exception is adsorption (see Sect. 4.4.3).

4.3.8 Floppy Molecules

A floppy molecule is a molecule with a potential-energy surface (PES) that has many
minima that are separated by barriers that can easily overcome by thermal excitation
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or tunneling. Partition functions for floppy molecules can be quite hard to compute,
and we know of no simple expressions or methods that one can use. If the floppy part
of a molecule is not involved in the reaction, then one may assume that the motions
of that part are the same in the initial and transition state so that their contribution
to the partition functions in Eq. (4.2) cancel. If one really needs to compute the
partition function of a floppy molecule, then free-energy techniques from Molecular
Dynamics (MD) are probably the most appropriate [13], as the partition function and
the free energy F are related via [7]

F = −kBT lnQ. (4.34)

There are also so-called rare event techniques in MD to compute rate constants
directly for floppy molecules [13].

4.4 The Practice of Calculating Rate Constants

The first thing to do before one starts doing any actual calculations, certainly if they
are electronic structure calculations, is to determine which type of process one want
to calculate the rate constant of. For some processes it may not even be necessary to
do any calculations.

The general approach is as follows. First, determine the initial state of a process.
This is a stable configuration corresponding to a minimum of the PES. Compute the
energy and the partition function (Eq. (4.3)) for that minimum. Next determine the
transition state for the process. Again compute the energy and the partition function
(Eq. (4.4) in this case). The difference of the energies is Ebar, and the rate constant
can be computed using Eq. (4.2). The details on how to actually do these calcu-
lations is outside the scope of this monograph. Most of the calculations that have
actually been done have been electronic structure calculations about which various
excellent textbooks have already been written [14–17]. There have been also a few
calculations based on PES’s [18–20].

4.4.1 Langmuir–Hinshelwood Reactions

The general approach just described is exactly what one has to do for reactions for
which reactants and products remain on the surface. The hardest part is in general
the determination of the transition state. Some methods (e.g., the dimer method
[21]) only need the initial state as a starting point. Others (e.g., the nudged-elastic
band method [22, 23]) also need the final state. In the latter case one only needs to
calculate extra the partition function of the final state and then one can calculate the
rate constant of the reverse reaction too. The transition state of the reverse reaction
and its partition function is of course the same as that of the forward reaction.

The energies of the initial state EIS and the transition state ETS give the acti-
vation barrier Ebar = ETS − EIS. To compute the partition functions one should
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do calculations of the vibrational frequencies of the initial and the transition state.
Before doing such calculations one should determine which degrees of freedom to
include in the calculation. Vibrations that do not change in a reaction give partition
functions that are the same for the initial and the transition state. They cancel in
the expression of the rate constant, and need not be included. It is not always clear
which degrees of freedom can be left out however. Including too many never gives
incorrect results, but is less efficient. Leaving out important degrees of freedom may
give less accurate results, although this is generally much less serious than an error
in the determination of the activation barrier.

After calculating the vibrational frequencies, one should inspect the correspond-
ing vibrations. In particular, one should check if all motions actually correspond to
vibrations. If that is the case, then the partition functions of the initial and transition
states are simply products of vibrational partition functions. To be precise, add the
zero-point energies of the vibrations of the transition state to the activation barrier
Ebar and subtract those of the initial state. The partition functions are products of
Q̃vib’s given by Eq. (4.19). Note that the transition state should have one and only
one vibration with an imaginary frequency (ω2 < 0). Do not include the zero-point
energy and the partition function of this vibration in the calculation of the rate con-
stant.

Very often (kBT/h)(Q̃‡/Q̃) ≈ 1013 s−1. This is because there are two limiting
cases that accidentally give results of the same order of magnitude. The vibrational
excitation energies are either of the same order of magnitude as the thermal energy,
or they are much larger. In the former case partition functions become approximately
kBT/!ω and (kBT/h)(Q̃‡/Q̃) becomes the product of vibrational frequencies of
the initial state divided by the product of the vibrational frequencies of the transition
state. The result is generally in the order of 1013 s−1. In the latter case partition
function become approximately equal to 1. Now Q̃‡/Q̃ ≈ 1 and kBT/h is also
about 1013 s−1. If one does not want to calculate partition functions, then 1013 s−1

is a good value to take for the prefactor.
Really different prefactors are obtained if there is a degree of freedom that is

not a vibration. This can be a rotation (e.g., of a methyl group or a small molecule
as a whole rotating around an axis perpendicular to the surface). If the barrier for
rotation is large (i.e., much larger than the thermal energy kBT ), then such a degree
of freedom can be treated as a vibration. If not the vibrational partition function
should be replaced by expression (4.20) or be treated as a hindered rotation.

4.4.2 Desorption

The reason why desorption needs to be treated differently from Langmuir–
Hinshelwood reactions is that often the transition state is equal to the final state:
i.e., it is a molecule in the gas phase. If that is not the case, and the transition state
is a structure with the molecule still adsorbed on the surface, then the calculation
of the rate constant for desorption can be done in exactly the same way as for a
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Langmuir–Hinshelwood reactions.5 We therefore deal here only with the situation
in which the transition state is a molecule in the gas phase.

The activation barrier Ebar in that case equals the adsorption energy. The par-
tition functions and the zero-point energy of the initial state can be calculated in
exactly the same way as for Langmuir–Hinshelwood reactions. For the molecule in
the gas phase this also holds for the internal vibrations and possible internal degrees
of freedom that correspond to rotations of chemical groups. The difference with
Langmuir–Hinshelwood reactions is in the motions of the molecule as a whole.
A calculation of the vibrations of the molecule will yield five (for a linear molecule)
or six vibrations (for a nonlinear molecule) with a frequency that should be exactly
zero. These correspond to overall translations and overall rotations. The zero-point
motions of both are zero. The partition function for the overall rotation is either
given by Eq. (4.22) for a linear molecule or Eq. (4.23) for a non-linear molecule.
The overall rotation can yield prefactors for desorption that are substantially larger
than the customary 1013 s−1.

A little bit of care needs to be taken when calculating the partition function of
the overall translations. Here the limits on the integration over the coordinates in
Eq. (4.3) become important. The coordinates in that expression are the two center-
of-mass coordinates parallel to the substrate, because we take the surface Sβα to
distinguish the adsorbed from the desorbed state of course parallel to the substrate.
The integration region is the region of an adsorption site. This is because we want
to have the rate constant for desorption from a particular site. Because we choose
the surface Sβα far from the substrate so that the corrugation of the potential is
negligible, the integration of the coordinates is equal to the area of a site Asite. This
area is defined as the total area of the substrate divided by the number of sites from
which the adsorbate can desorb. (Note that there may be other sites from which no
desorption is possible. These should not be counted here, because it is really the
dividing surface Sβα that should be partitioned into areas corresponding to the sites
from which desorption takes place.) The partition function for the center-of-mass
motion contributing to Q‡ is then a factor 2πmkBT Asite/h2.

In the discussion of adsorption rate constants (Sect. 4.4.3) we will see an ef-
fect of recrossing the surface Sβα . This same effect also influences desorption rate
constants as will be shown there.

4.4.3 Adsorption

Because the initial state of adsorption is a molecule in the gas phase, we need to
include the gas phase if we want to calculate the rate constant for adsorption. Sup-
pose our system consists of a gas of just one molecule in a rectangular box, and we

5It may be that there is a very low barrier for diffusion of the adsorbed molecule. In that case the
partition function of the initial or transition state will have a 2D translational partition function for
the center of mass motion as a factor. See the example of CO desorption in Sect. 4.4.6.
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are interested in the adsorption of that gas onto one of the interior sides of the box.
Suppose this side has an area A and the volume of the box is V .

We first look at adsorption that is not activated: i.e., the surface Sβα is a plane far
from the side where the adsorption takes place and on which the potential energy is
constant and equal to its value in the gas phase. The partition function (4.3) of the
center-of-mass is then a product of two translational partition functions of transla-
tions parallel to the side. (We can ignore the other degrees of freedom, because they
cancel in the two partition functions in Eq. (4.2).) The partition function (4.4) has
a third factor which is the translational partition function of a translation perpen-
dicular to the side. The ratio Q‡/Q of the partition functions is then one over that
third translational partition function. The activation barrier is zero, so Eq. (4.2) for
adsorption somewhere on the side becomes

Wads = AkBT

V
√

2πmkBT
(4.35)

where we have used Eq. (4.33) for the translational partition function and L = V/A.
It looks as if this depends on the actual size of the box, but that is not the case.

First we have PV = kBT with P the pressure exerted by the single molecule. Sec-
ond for a kMC simulation we do not want to know the rate constant for adsorption
somewhere on the side, but at a particular site. We have to divide therefore by the
number of sites. This then yields

Wads = PAsite√
2πmkBT

(4.36)

with Asite the area of a single site. (Asite is really the area A divided by the number
of ways a molecule may adsorb. This number is not always equal to the number of
sites. For example, when we have dissociative adsorption it is two or four times the
number of sites depending on whether the fragments of the dissociation are the same
or not.) Although we have derived this expression for a gas with just one molecule, it
also holds if there are more molecules. The only thing that changes is the numerical
value of the pressure P . The expression can also be derived by determining the
number of molecules that hit the side per unit time. The expression is very simple,
and none of the quantities need to be determined via an extensive computation.

If the adsorption is activated (i.e., there is a transition state), then the results
change substantially. We start again with just one molecule in the gas phase. The
rate constant for adsorption on a specific site becomes

Wads = kBT

h

Q‡

QtransQrot,3DQint
exp

[
−Ebar

kBT

]
. (4.37)

Here Qtrans is the translational partition function for the center-of-mass of molecule
in the gas phase, Qrot,3D its partition function for its overall rotation, and Qint for its
internal motions (probably lots of vibrations, but maybe also rotations of chemical
groups, etc.). For Qrot,3D Eq. (4.23) holds, and Qint can be written as a product
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of function of the type (4.19) and possibly (4.20). (Note that the vibrations yield
zero-point energies.) For the Qtrans we have

Qtrans = V

[
2πmkBT

h2

]3/2

. (4.38)

If we substitute this in the expression for the rate constant and use PV = kBT again,
we get

Wads = h2P

(2πmkBT )3/2

Q‡

Qrot,3DQint
exp

[
−Ebar

kBT

]
. (4.39)

As before this expression also holds for a gas consisting of many molecule. Only
the numerical value of the pressure P is different.

If we compare a molecule in the gas phase with a molecule adsorbed on the sur-
face, we note that the molecule can freely translate and rotate in the gas phase, but
not when adsorbed. This means that the molecule in the gas phase has a higher
entropy then when it is adsorbed. This should of course affect the adsorption-
desorption equilibrium, and also the rate constants for adsorption and desorption.
Remarkably, only one of these rate constants is affected, but which one depends on
the transition state. If there is no transition state (or what is the same thing, the final
and transition state corresponding to the molecule in the gas phase), then the desorp-
tion rate constant is large. This is because of the increase of rotational entropy in the
transition/final state upon desorption. The adsorption rate constant on the other hand
has a normal value given by the number of molecules in the gas hitting the substrate
per unit time. If there is a transition state in which the molecule is adsorbed on the
substrate, then the desorption rate constant has a normal value, but the adsorption
rate constant is small. This is because the molecule loses rotational entropy when it
adsorbs. In both cases the molecule loses translation entropy when it adsorbs.

Note that the expression for the adsorption rate constant does not contain a stick-
ing coefficient. This coefficient reflects the influence of trajectories in phase space
that cross and then recross the dividing surface as explained at the end of Sect. 2.2.2.
So far we have neglected this phenomenon, assuming that its effect on the rate con-
stant is negligible. For adsorption this is often not the case, and an extra factor σ

should be added to the expressions for the adsorption rate constant. This σ is the
sticking coefficient.

Figure 4.3 shows characteristic trajectories and how they give rise to the sticking
coefficient. Trajectory 1 is a regular adsorption. Trajectory 2 shows a molecule being
scattered from the substrate leading to a recrossing of the dividing surface. This
trajectory should not be included in the calculation of the adsorption rate constant,
but Eqs. (4.36) and (4.39) however do not exclude it. These equations include the
effect of crossings at 1+, 2+, and 3+. The effect of the last is probably negligible, but
the effect of 2+ is not. By introducing a sticking coefficient σ we have the effects of
the crossings at 2− and 3− cancel those of the crossings at 2+ and 3+, respectively.

Note that the crossings at 2−, 3−, 4− all affect the rate constant of desorption,
whereas only the one at 4− constitute a real desorption. This means that the expres-
sions for desorption should also be corrected for recrossings. It turns out that this
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Fig. 4.3 Schematic drawing of four characteristic trajectories in phase space of adsorption and
desorption. The hatched part on the left is the part of space that is unaccessible because of the
presence of the substrate. The dashed line is the dividing surface for adsorption and desorption
separating the molecule being in the gas phase from it being adsorbed on the substrate. The mean-
ing of 1+, 2+ et cetera is explained in the text

correction factor is also the sticking coefficient. To see this let’s look at an arbitrary
reaction and its reverse. The forward reaction has a rate constant

Wf = kBT

h

QTS

QIS
e−(ETS−EIS)/kBT (4.40)

with TS referring to the transition state and IS to the initial state of the forward
reaction. Zero-point energies are included in the partition functions. For the reverse
reaction we have

Wr = kBT

h

QTS

QFS
e−(ETS−EFS)/kBT (4.41)

with FS referring to the final state of the forward reaction. These expressions neglect
the effect of recrossing. Incorporating this would give rate constants W̃f and W̃r for
which W̃f = ff Wf and W̃r = frWr holds. In these expressions ff and fr are so-
called dynamic correction factors. The sticking coefficient is the dynamic correction
factor for adsorption.

For equilibrium we can define an equilibrium constant

K = Wf

Wr
= QFS

QIS
e(EIS−EFS)/kBT . (4.42)

We note that this expression is completely independent of the transition state. It is
obvious that this should be so, as the equilibrium depends only on the thermody-
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namic properties of the initial and final states. This has an important consequence,
because also the shape of the trajectories at the dividing surface (i.e., recrossings)
do also not affect the equilibrium, and we must also have

K = W̃f

W̃r

. (4.43)

Consequently, ff = fr must hold as well: i.e., the dynamic correction factors for a
reaction and its reverse are the same. For an adsorption-desorption equilibrium this
means that including a sticking coefficient in the adsorption rate constant forces us
to include it also in the desorption rate constant, as otherwise we get an incorrect
equilibrium.

4.4.4 Eley–Rideal Reactions

Eley–Rideal reactions have expressions for the rate constant that are very similar
to those of activated adsorption. The difference is that in expression (4.39) for the
Eley–Rideal reaction P , m, Qrot,3D, and Qint refer only to the reactant in the gas
phase, that there is another partition function in the denominator for the degrees of
freedom of the adsorbed reactant, and that Q‡ contains the degrees of freedom of
the atoms of both reactants.

4.4.5 Diffusion

In the lattice-gas model diffusion is represented as a hopping of an adsorbate from
one site to a neighboring one. The calculation of rate constants for diffusion can
then be done in exactly the same way as for Langmuir–Hinshelwood reactions.

4.4.6 Examples

To illustrate how rate constants are actually calculated we will discuss a few exam-
ples. Note that not all numbers have really been computed. In those instances where
data is missing we will guesstimated the numbers. This does not affect the manner
in which the rate constant are computed in any way.

Let’s start with what is the most common case by looking at the reaction NH2 →
NH + H on a Rh(111) surface [24]. Density-Functional Theory (DFT) calculations
have shown that NH2 prefers to adsorb on a bridge site. NH on the other hand prefers
an fcc hollow site and the H atom that is formed in this reaction also ends up at an fcc
hollow site. A nudged-elastic band calculation was used to determine the transition
state. This gave an activation barrier of Ebar = 1.07 eV. The vibrational frequencies
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were calculated for both NH2 at a bridge site, and for the transition state. Only the
atoms of the adsorbates were allowed to move. These calculations gave a zero-point
energy correction of Ezp = −0.23 eV. Inspection of the vibrations showed that all
motions were indeed vibrations, so that the partition functions of Eq. (4.2) could be
written as products of vibrational partition functions. It was found that Q̃‡/Q̃ ≈ 1.
With these results rate constants were calculated between 100 K and 1000 K. Linear
regression of the logarithm of the rate constant as a function of 1/T then gave an
activation energy Eact = 0.86 eV and a prefactor ν = 1.68 ·1013 s−1. There is a small
difference of 0.02 eV between Eact and the zero-point energy corrected activation
barrier Ebar + Ezp.

In the previous example the partition functions Q̃ and Q̃‡ are very close to 1. We
have typically found that the rate constant varies not more than a factor of about 3, as
long as the motions of the adsorbates are all vibrations. For the reaction NH2 +H →
NH3 on Rh(111) the effect is much larger however. All calculations for this reaction
were done in the same way as for the previous example. (Both reactions were part
of an extensive study on the dehydrogenation and oxidation of NH3 on rhodium
[24, 25].) The essential difference in the new reaction is that in the transition state
NH3 has almost its equilibrium geometry. In particular, there is a free rotation of
NH3 around its three-fold axis. This rotation was treated as a 1D rotation with a
partition function give by Eq. (4.20). All other motions were vibrations. Because
of this 1D rotation, the partition function of the transition state Q̃‡ became much
larger than when there would be only vibrations. Proceeding as for NH2 → NH+H,
except for the replacement of one vibrational partition function by Qrot,1D, it was
found that Eact = 1.10 eV and ν = 1.90 · 1015 s−1. Note the substantially larger
prefactor due to the gain in rotation entropy in the transition state. The difference
between Eact and Ebar + Ezp was not affected by this rotation: it was only 0.04 eV.

There have been extensive studies of CO on numerous transition metal surfaces.
We look at desorption of CO from Rh(100) assuming that the transition state is
equal to the final state: i.e., CO in the gas phase. The calculated adsorption en-
ergy, and therefore also the activation barrier, is 1.85 eV [26]. In the initial state all
the motions are vibrations. The experimental C-O stretch vibration is 1990 cm−1

and the metal-CO stretch is 470 cm−1 [27]. Let’s assume that the other four vi-
brations of CO are 250 cm−1 based on a comparison with NO/Rh(100) [28]. As
a consequence the zero-point energy is 0.43 eV, and Q̃ = 19.5 at T = 500 K,
which is the peak maximum temperature of the Temperature-Programmed Des-
orption (TPD) spectrum at low coverage [27]. For the transition state we have a
product of three different partition functions. There is a vibrational one Q̃vib for the
C-O stretch. The second is the rotational Q̃rot,2D. The third is a 2D translational
one Q̃trans. The stretch vibration gives a zero-point energy of 0.27 eV, so that the
zero-point energy corrected activation barrier is 1.69 eV. We have Q̃vib = 1.003 at
T = 500 K, Q̃rot,2D = 191.5 (see Eq. (4.22) with I = 1.542 · 10−46 kg.m2), and
Q̃trans = 2πmkBT Asite/h2 = 341.0 (with Asite = 7.43 · 10−20 m2). Consequently,
Q̃‡ = 6.55 · 104. With ν = (kBT/h)(Q̃‡/Q̃) = 3.5 · 1016 s−1. For the adsorption of
CO onto the same surface we can use Eq. (4.36). Again at T = 500 K and a pressure
of P = 1 atm we get Wads = 1.68 · 108 s−1.
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It is interesting to compare the result for the desorption rate constant to experi-
mental results and look at the consequences for the adsorption rate constant. TPD
experiments give Eact = 1.44 eV and ν = 3.98 ·1013 s−1 [27]. It looks at first glance
that there is a substantial difference between the calculated and the experimental
values. However, if we would use the calculated parameters to simulate the TPD
spectra we would find peaks that are almost at the same temperature as in the exper-
iment, but only somewhat narrower. The experimental activation energy and pref-
actor give a rate constant for desorption at T = 500 K of 0.122 s−1. The calculated
rate constant is 0.515 s−1. This differs only by a factor of 4.2. (Remarkable there is a
molecular beam experiment that does give a prefactor that is close to the calculated
one [29].) There is clearly a compensating effect in the derivations of the activa-
tion energy and the prefactor. The difference between the activation energy and the
adsorption energy above may be due to errors in the DFT calculations. A possible
explanation for the large discrepancy in the prefactor is that our assumptions of a
transition state of CO in the gas phase is incorrect. An alternative explanation is that
the motion of the center of mass of the adsorbed CO parallel to the surface con-
sists not of two vibrations, but of a free 2D translation. Instead of two vibrational
partition functions we then get a 2D translational partition function. This causes an
increase of Q̃ by a factor of 340, and makes the prefactor 1.03 · 1014 s−1. Note that
then also part of the zero-point correction disappears, which unfortunately increases
the discrepancy between calculated and experimental activation energy.

The calculated prefactor for the desorption is a factor 880 too large. Yet another
explanation is related to the adsorption. The reason is that the adsorption-desorption
equilibrium does not depend on the transition state, and hence neither does the ratio
between the rate constants for adsorption and desorption. This means that if the des-
orption prefactor is too large then so is the adsorption rate constant. The reason why
the latter may be too large is that the sticking coefficient may be small. So the cal-
culated prefactor for desorption may be too large, because trajectories of scattered
CO molecules may be been included in that calculation. See Sect. 4.4.3 for a more
extensive discussion of this.

4.4.7 Summary

The previous sections describe the most common way to calculate the rate constants
of different types of processes. There are however exceptional cases as the discus-
sion of the CO desorption from Rh(100) in Sect. 4.4.6 shows. We will attempt here
to describe a systematic approach.

Do the following for the initial and transition state. First, look at the overall
translations: i.e., the motions of the center of mass of a molecule. Are some of these
degrees of freedom free: i.e., is the PES (nearly) flat for those degrees of freedom? If
yes, use a translational partition function for those degrees of freedom. If not, these
degrees of freedom become part of the group of vibrational degrees of freedom.

Second, look at the overall rotations: i.e., rotations in which the structure of the
molecule remains the same. Are some of these degrees of freedom free or possible
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but hindered? If yes, use a rotational partition function for those degrees of freedom.
If not, these degrees of freedom too become part of the group of vibrational degrees
of freedom. The particular rotational partition function that one needs to use depends
on whether the molecule is linear or nonlinear, on the number of axes around which
the molecule can rotate freely, and on whether the rotation is hindered or not.

Third, take the vibrational degrees of freedom obtained from inspecting the over-
all translations and rotations and add the internal degrees of freedom. All these
degrees of freedom may be coupled. Do a vibrational analysis of them. If the vi-
brational analysis gives only normal modes that are indeed vibrations, then use vi-
brational partition functions for them. If some of them are rotations of chemical
groups, use 1D rotational partition functions or the partition functions of a hindered
rotation. If some of them correspond to a floppy motion, then consider using the
MD techniques mentioned in Sect. 4.3.8.

Fourth, for vibrational degrees of freedom one should use the partition function
defined by the summation in Eq. (4.11). Add the zero-point energy of the vibration
of the transition state to the activation barrier, and subtract those of the initial state.

Fifth, combine all partition functions and energies according to Eq. (4.12) to
compute the rate constant.

4.5 Lateral Interactions

Interactions between adsorbates, or lateral interactions have at least been known for
as long as diffraction techniques have revealed that adlayers can form very well-
defined structures at low temperatures. The importance of these interactions for ki-
netics at higher temperatures has only more recently been acknowledged, but forms
now an active area of research. This is understandable if one realizes that even small
interactions between adsorbates can be of the same magnitude or larger than the
thermal energy, and can therefore change rate constants by an order of magnitude
or more, especially at low temperatures.

It is now possible to do quantum chemical calculations on quite realistic mod-
els of adsorbates on transition metal surfaces especially using DFT. However, many
lateral interactions are small, and although it may be possible to get a value for a
particular lateral interaction using DFT, it does not mean that the result is accu-
rate. One should therefore always determine if a particular lateral interaction can be
calculated reliably at all.

4.5.1 The Cluster Expansion

Lateral interactions are most commonly described with a cluster expansion. The
adsorption energy Eads per adsorbate in a particular adlayer structure is then written
as
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Eads =
∑

m

cmVm (4.44)

with Vm the value of the interaction of type m, and cm the number of interactions
of type m per adsorbate. The interactions Vm stand for the interaction of the ad-
sorbate with the substrate (adsorption energy of an isolated adsorbate), pair inter-
actions between adsorbates at various distances, all possible three-particle interac-
tions, four-particle interactions, et cetera. This expansion can be made to reproduce
the calculated adsorption energy as accurately as one wants [30]. This generally
takes however a very large number of terms. Moreover, it may lead to overfitting:
i.e., the cluster expansion will not only describe the interactions, but also the errors
one makes in the calculation of the adsorption energies. This occurs because errors
in the calculated Eads can easily be as large or even larger than some Vm’s. To avoid
this one needs to truncate the cluster expansion. We will call a particular choice of
Vm’s that one includes in the summation of Eq. (4.44) an interaction model.

The truncation of the cluster expansion for lateral interactions between adsor-
bates has so far mainly been done based on the desired accuracy with which the
truncated expansion should reproduce the calculated results, the number of accept-
able terms in the expansion, the type of terms in the expansion (pair, three-particle,
et cetera), the estimated accuracy of the calculated results, and possibly other fac-
tors. Often these factors involve a trade-off: e.g., one prefers a short expansion, but
it should also have a certain accuracy. Researchers have usually dealt with this using
their personal experience and insight, and few objective criteria have been used. We
will here describe two statistical techniques that do yield such criteria for truncating
the cluster expansion.

There are a few useful remarks we can make independently of the method that
we use to determine the lateral interactions. Let’s define

Efit
ads(n) =

∑

m

cm(n)Vm (4.45)

with n indicating the various adlayer structures that we use to determine the lateral
interactions, and cm(n) the number of interactions of type m per adsorbate in struc-
ture n. If Ecalc

ads (n) is the calculated adsorption energy per adsorbate in structure n,
then we want the difference between the Efit

ads(n)’s and Ecalc
ads (n)’s to be as small as

possible. Let’s also define the errors

εn = Efit
ads(n) − Ecalc

ads (n). (4.46)

These errors need not be independent. There may be a systematic component σ that
is the same for all adlayer structures, and a rest ρn = εn − σ that is independent.
The systematic error may be caused by a specific shortcoming of the calculations
of the adsorption energy (e.g., incorrect description of van-der-Waals interactions in
DFT), but that need not be the case. Here it is just a numerical error common to all
calculations.
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If there is only one adsorbate adsorbing at one type of site, then we can write for
each adlayer structure

Ecalc
ads (n) = (V0 − σ ) +

(∑

m>0

cm(n)Vm − ρn

)
(4.47)

with V0 the adsorption energy of an isolated adsorbate, because c0(n) = 1 for all
structures n. We see that the terms that differ for various adlayer structures are not
affected by the systematic error σ . These terms are also the only ones that contain
the lateral interactions. This means that the systematic error does not affect the lat-
eral interactions. They depend only on the smaller random errors ρn. Consequently
lateral interactions can be determined better than one might suppose having some
idea of the accuracy with which one can compute adsorption energies. The system-
atic error affects only V0.

The expression above does not hold when there are different adsorbates or when
there is adsorption on different types of site. The conclusion drawn above still holds
however. This can be seen as follows. Suppose V0,V1, . . . , VA are the adsorption
energies originating from various isolated adsorbates and adsorption sites. Because
Eads is the adsorption energy per adsorbate, we have c0(n)+c1(n)+ . . .+cA(n) = 1
for all structures n. We can therefore write

Ecalc
ads (n) =

(
A∑

m=0

cm(n)(Vm − σ )

)

+
(∑

m>A

cm(n)Vm − ρn

)
. (4.48)

This shows again that a change in the calculated adsorption energies Ecalc
ads (n) that

can be represented by a change in the systematic error σ gives the same errors εn

with a corresponding change in the adsorption energies V0,V1, . . . , VA, but with the
same lateral interactions.

Looking at errors as above also shows that singling out one adlayer structure, say
n = 1, to determine the adsorption energy of an isolated adsorbate V0 is not a good
idea. Because then we would have E

(1)
fit = E

(1)
calc = V0 and work with E

(n)
calc − E

(1)
calc

to determine the lateral interactions. However

Ecalc
ads (n) − E

(1)
calc =

(
Efit

ads(n) − Efit
ads(1)

)
− (ρn − ρ1). (4.49)

We see that Ecalc
ads (n) − E

(1)
calc has a different error from Ecalc

ads (n). In fact, as the ρ’s
are independent ρn − ρ1 has a standard deviation that is

√
2 times the one of ρn.

Consequently the errors we will make in the determination of the lateral interactions
will also be a factor

√
2 larger. It is better to treat the adsorption energy V0 in the

same way as the lateral interaction parameters.

4.5.2 Linear Regression

Suppose one has determined which Vm’s in Eq. (4.44) should be included, then there
remains the problem of computing their values. Because the adsorption energy Eads
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depends linearly on the Vm’s, they can be determined using linear regression [3].
This means we use a least-squares approach by minimizing

χ2 = 1
Nstr

∑

n

[∑

m

cm(n)Vm − Ecalc
ads (n)

]2

(4.50)

as a function of the Vm’s.
Differentiating the expression with respect to the different Vm’s and equating the

results to zero gives the so-called normal equations
∑

m

αkmVm = βk (4.51)

with

αkm =
∑

n

ck(n)cm(n) (4.52)

and

βk =
∑

n

ck(n)Ecalc
ads (n) (4.53)

from which we can determine the Vm’s. We refer to the literature for discussions on
problems with these equations because they may be (approximately) linear depen-
dent, and how to deal with this [3]. It should however be obvious that if one has
Nstr different adlayer structures, that one certainly will not be able to compute more
than Nstr different Vm’s. In general Nstr should be much larger than the number
of Vm’s.

If the matrix α of the normal equations is not (approximately) singular, then it
can be used to get an idea of how well the Vm’s are determined. The inverse matrix
of α has matrix elements that are proportional to the covariances of the Vm’s. In
particular, the diagonal elements of α−1 are proportional to the standard errors for
the Vm’s. The proportionality constant is equal to χ2.

4.5.3 Cross Validation

The truncation problem of the cluster expansion has been earlier encountered for
the calculation of interactions between atoms forming an alloy. This has led to the
development of the leave-one-out cross-validation (LOO-CV) method [31, 32]. This
is a statistical technique that uses part of the results of a set of calculations to deter-
mine values for the interactions between the atoms and the rest of the calculations
to test these values. Because determination and testing of the interactions is done on
independent results of calculations, one obtains an estimate of how well the values
for the interactions one calculates will predict energies of unknown structures. This
method has recently also been applied to the determination of lateral interactions
[33–35].
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The LOO-CV method works as follows [31, 32, 36]. We take all structures except
one structure n. We then do a linear regression for a particular interaction model (i.e.,
a set of Vm’s) using these structures. This gives us a set of interaction parameters
that we can use to predict the adsorption energy for structure n. We then compare
this energy E

pred
ads (n) with the calculated energy Ecalc

ads (n). We do this not just for one
structure n but for all structures, and define the cross-validation score or leave-one-
out error

R2
CV = 1

Nstr

Nstr∑

n=1

[
E

pred
ads (n) − Ecalc

ads (n)
]2

. (4.54)

This error indicates how well an interaction model predicts the energy. One starts
with a model with few interaction parameters, and determines the CV score. Adding
parameters will initially lower the CV score, which means that the model becomes
better. Adding too many parameter should however increase the CV score because
of overfitting.

If the number of structures n is large, one may not want to leave out every struc-
ture n, determine the lateral interactions, and compare E

pred
ads (n) to Ecalc

ads (n). Instead
one can partition all structures into groups. Each structure should be in one and
only one group. One does the same as for LOO, but now one leaves out all struc-
tures in one group instead of just one structure. This is called the leave-many-out
(LMO) method. The groups are generally made of similar size, but the structures
are partitioned randomly [36].

The minimum of the CV score indicates a best set of interaction parameters. The
problem with the method is that often the CV score becomes almost constant when
more parameters are added, and it is very hard to determine the minimum of the CV
score [37–40].

4.5.4 Bayesian Model Selection

An alternative solution to the truncation problem can be obtained using Bayesian
statistics [37, 41].6 Instead of the CV score of the LOO-CV method, one assigns
a probability to each interaction model. The best model is the one with the high-
est probability. This approach does not have the drawback of the LOO-CV method.
Moreover, it seems that the approach leads to models with fewer interaction param-
eters. The method also lends itself well to an analysis of the importance of param-
eters: it is easy to compute probabilities for individual parameters, and correlation
between parameters.

6Parts of Sect. 4.5.4 have been reprinted with permission from A.P.J. Jansen, C. Popa, Bayesian
approach to the calculation of lateral interactions: NO/Rh(111), Phys. Rev. B 78, 085404 (2008).
Copyright 2008, American Physical Society.
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We assume again that we have done calculations resulting in the adsorption en-
ergy per adsorbate Ecalc

ads (n) with n an index to distinguish the adlayer structures,
and we describe the energy Ecalc

ads (n) using a cluster expansion for the lateral inter-
actions. The expression (4.45) for Efit

ads(n) should approximate Ecalc
ads (n) as well as

possible. Let’s use S to indicate a subset of all interaction parameters Vm: i.e., it
indicates the interaction model. Let’s use V as a shorthand for the set of all val-
ues of the interaction parameters in S. For all calculated adsorption energies we
use E. We will determine which interaction model is best by calculating P(S|E),
which stands for the probability that the calculated adsorption energies E can be
described by interaction parameters in S. The best interaction model has the highest
P(S|E).

We can use Bayes’s theorem to relate the probability of S given E (i.e., P(S|E))
to the probability of E given S (i.e., P(E|S)) [42–44].

P(S|E) ∝ P(E|S)P (S). (4.55)

The proportionality constant that is missing in this expression can be determined
by normalizing P(S|E) as a function of S. The probability P(E|S) is often called
the likelihood of S given E, the probability P(S) is called the prior (probability)
of S, and the probability P(S|E) is called the posterior (probability). The likeli-
hood P(E|S) is the probability that we should find certain values Ecalc

ads (n) if the
interaction model S is the right one. We will determine this from P(E|S,V ): i.e.,
we not only know which parameters are in the interaction model, but also their val-
ues (see also Eq. (4.58)). The prior P(S) represents what we think are plausible
models before we look at the results of our calculations.

Bayes’s theorem is used as follows in the selection of models for the lateral inter-
actions. We want to calculate P(S|E). How good an interaction model is will also
depend on whether we can find good values for the lateral interactions. It is impor-
tant to distinguish between S (the parameters in the model) and V (the values of
these parameters). We can introduce the values by regarding P(E|S) as a marginal
distribution of P(E,V |S) via [44]

P(E|S) =
∫

dV P (E,V |S) (4.56)

where the integration is over all possible values for the interaction parameters. The
integrand can be written as

P(E,V |S) = P(E|S,V )P (V |S). (4.57)

Substitution in the Bayes’s expression for P(S|E) then gives

P(S|E) ∝ P(S)

∫
dV P (E|S,V )P (V |S). (4.58)

This allows us to compute P(S|E), because we can make a good guess of what
the calculated adsorption energies should be given the lateral interactions (i.e.,
P(E|S,V )), and it should be possible to think of reasonable priors P(V |S) and
P(S).
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Suppose we have a set of interaction parameters S with values V . A normal
way to obtain such a set is via a least-squares procedure to fit Efit

ads(n) to Ecalc
ads (n).

Suppose that the set has all interaction parameters to describe the system and that
they have the correct values. The most likely values for Ecalc

ads (n) should then be
equal to Efit

ads(n). Due to errors in the calculations Efit
ads(n) and Ecalc

ads (n) will not be
exactly equal. It can be shown using the Maximum Entropy Principle (MEP) that
if we have no information on the difference, it can best be described by a Gaussian
probability distribution [42]: i.e.,

P(E|S,V ) = exp
[
−1

2
χ2

1

] Nstr∏

n=1

1
√

2πσ 2
n

(4.59)

with

χ2
1 =

Nstr∑

n=1

[
Efit

ads(n) − Ecalc
ads (n)

σn

]2

, (4.60)

Nstr the number of adlayer structures for which we have calculated adsorption ener-
gies, and σn an error estimate of the calculated adsorption energies Ecalc

ads (n). Note
that P(E|S,V ) is a function of the adsorption energies Ecalc

ads (n), but the integration
in Eq. (4.58) is over V . This means that we should regard χ2

1 as a function of the
interaction parameters V .

Usually one does not know much about the interaction parameters before one
starts with the calculations of the adsorption energies, nor about which interaction
parameters to include in the model. Ideas on which model S is appropriate are split
in Eq. (4.58) from ideas on which values V seem reasonable. The former have a prior
P(S), the latter a prior P(V |S). The MEP shows again that the best expression for
P(V |S), which is also computationally convenient, is a Gaussian distribution [42]

P(V |S) = exp
[
−1

2
χ2

2

] Npar∏

m=1

1
√

2πs2
m

(4.61)

with

χ2
2 =

Npar∑

m=1

[
− (Vm − V

(0)
m )2

s2
m

]
, (4.62)

Npar the number of parameters in the interaction model, V
(0)
m the most likely prior

value for parameter m, and sm the standard deviation. The lack of prior knowledge
of the values of the interactions can be implemented by choosing large values for
these deviations. We find it harder to give a general expression for P(S). If a model
contains a pair interaction for adsorbates at a certain distance, then pair interactions
at shorter distances should be included as well. Also, if there is a three-particle
interaction in a model, then all pair interactions between these three particles having
such three-particle interaction should be included too. One also will want to cut off
the summation in Eq. (4.45). Apart from these considerations it seems natural to
take all interaction models equally likely.
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The integration in Eq. (4.58) can be done easily because the integrand is a Gaus-
sian expression in the integration variables. We define a column vector c via cn =
Ecalc

ads (n), a column vector e via en = Efit
ads(n), and a matrix A via Anm = σ−2

n δnm.
With these we can write χ2

1 = (e − c)T A(e − c). The fitted adsorption energies e
can be written as e = Mv with v a column vector with the interaction parameters
(vm = Vm), and the matrix M contains the coefficients of the interaction parame-
ters in Eq. (4.45). Similarly we write χ2

2 = (v − v̄)T B(v − v̄), with v̄n = V
(0)
n and

Bnm = s−2
m δnm. We can combine χ2

1 and χ2
2 , and write the result as a quadratic

function of the interaction parameters. This gives us

χ2
1 + χ2

2 = (v − ṽ)T
[
MT AM + B

]
(v − ṽ) + µ, (4.63)

with

ṽ =
[
MT AM + B

]−1(MT Ac + Bv̄
)
, (4.64)

and

µ = cT Ac + v̄T Bv̄ − ṽT
[
MT AM + B

]
ṽ. (4.65)

With this expression the integration in Eq. (4.58) then becomes

P(S|E) = P(S)

P (E)

1
√∏

n(2πσ 2
n )

Npar∏

m=1

[
s̃m

sm

]
e−µ/2, (4.66)

with 1/s̃2
m being an eigenvalue of the matrix MT AM + B.

Equation (4.66) can be interpreted as follows. The probability of an interaction
model is higher when µ is smaller. If we assume that the prior distribution P(V |S)
is very broad, so that we can set B = 0, then χ2

2 = 0, ṽ minimizes χ2
1 , and µ is

the least-squares sum of the difference between the calculated and fitted adsorption
energies. This means that the probability P(S|E) become higher if the fit becomes
better. This is of course as it should be.

The probability P(S|E) also becomes higher when the prior errors sm become
smaller. This too is to be expected, because it more-or-less means that we know a
parameter already in advance. Less easy to interpret is the dependence on the s̃2

m’s.
It seems that a high value for s̃m would improve the model. This however would be
incorrect, and is also counter-intuitive. As will be shown below the s̃m’s are error
estimates for a set of statistically independent interaction parameters. So a high
value for s̃m would mean a parameter that is ill-defined, which one would not expect
to improve an interaction model. The solution of this paradox is hidden in µ which
also depends on the s̃m’s. To see this let’s compare two interaction models S(1) and
S(2) with the difference that S(2) has one additional parameter compared to S(1).
Let’s also assume, for simplicity, they have the same prior (P(S(2)) = P(S(1))), that
B = 0, and that this additional parameter is independent from the others. This means
that each s̃m of S(1) is also found for S(2), but S(2) has an additional factor in the
product of Eq. (4.66) which we call s̃N . We then get

P(S(2)|E)

P (S(1)|E)
= s̃N

sN
e−(µ(2)−µ(1))/2 (4.67)
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with µ(n) the least-squares sum for S(n). When the additional parameter in S(2)

is independent from the others, the matrix MT AM blocks and µ(2) − µ(1) =
−(MT AM)NN(ṽN)2 holds. This leads to

P(S(2)|E)

P (S(1)|E)
= s̃N

sN
e(ṽN/s̃N )2/2. (4.68)

This function is for small values of s̃N a decreasing function. Consequently, if
the interaction parameters are defined better (i.e., smaller s̃m), then the probabil-
ity P(S|E) becomes higher, again as expected. Equation (4.68) shows also how
adding a parameter can reduce the probability of an interaction model, because the
ratio s̃N/sN will usually be smaller than one, because the error estimates in the prior
P(V |S) will be large.

The results above depend on the error estimates σn. This means that the pos-
terior really has these estimates as a parameter and should be written P(S|E,σ ).
Because we need to know the σn’s but have no good information on them, they
are often called nuisance parameters. There are various ways to deal with this
[43, 44]. We find it the most convenient to put σn = σ for all n and to get a value
for σ by determining the maximum of its probability distribution P(σ |E). This
probability can be related to probability distributions that we have dealt with be-
fore.

P(σ |E) ∝ P(σ )
∑

S

∫
dV P (E|S,V,σ )P (S,V |σ ). (4.69)

P(E|S,V,σ ) is given by Eq. (4.59) and P(S,V |σ ) by Eq. (4.61). The proportion-
ality constant can be determined by normalization. Only P(σ ) is new. However, if
we assume that it is a uniform distribution then we only need to do the integral and
sum over all models. The integral has already been done before, so we only need to
add all results for the different models.

The parameters V
(0)
m and sm can also be regarded as nuisance parameters, but

it is more convenient to handle them differently. We do not want to use any prior
information for the interaction parameters, so we take large values for the error
estimates sm. As a consequence the values that we take for the V

(0)
m ’s have then only

a negligible effect on the final results,
Once we have determined S we also need the parameters V . For this we can

used P(S,V |E), which equals P(E|S,V )P (S,V ). We have already seen the two
factors in this product: the only difference with what we have done before is that we
do not need to integrate out the interaction parameters. The interaction parameters
themselves can be obtained from P(S,V |E) by computing the expectation values
of V . The derivation above shows that the parameters should be chosen equal to
components of the vector ṽ. P(S,V |E) can give us also error estimates for the
parameters: the covariance matrix is given by (MT AM + B)−1.
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4.5.5 The Effect of Lateral Interactions on Transition States

The previous sections have dealt with equilibrium situations for the lateral interac-
tions: i.e., minima of the PES. For the kinetics we also need to know how lateral
interactions affect transition states. There has hardly been any work done on this
[45]. From a theoretical point of view one can in principle use quantum chemical
calculations just as one would for the stable states.

One can also use the following pragmatic approach. For a reaction we have a
model of the lateral interactions that tells us how the energies of the initial and the
final states (both minima of the PES) depend on the lateral interactions. We then
use a Brønsted–Polanyi relation to relate the shifts in the initial and final state to a
change in the activation energy [46, 47]

Eact = E
(0)
act + α

(
∆E − ∆E(0)

)
. (4.70)

Here Eact (E(0)
act ) is the activation energy with (without) lateral interactions, and

∆E (∆E(0)) is the reaction energy with (without) lateral interactions. ∆E < 0 for
exothermic and ∆E > 0 for endothermic reactions. The Brønsted–Polanyi coeffi-
cient α varies between 0 and 1, and is a measure of how much the effect of the
lateral interactions of the initial and final states influences the activation energy. The
idea of the Brønsted–Polanyi relation is that if we have a transition state that resem-
bles the initial state (a so-called early barrier), then lateral interactions will affect
the transition state as much as the initial state, and the activation energy will not
depend on the lateral interactions. So we choose α = 0 in that situation. If the tran-
sition state resembles the final state (a so-called late barrier), then changes in the
lateral interactions of the initial and final states will fully end up in the transition
state, and we choose α = 1 (see Fig. 4.4). In general, the Brønsted–Polanyi relation
interpolates the lateral interactions between the initial and final state.

4.5.6 Other Models for Lateral Interactions

There are many other models for the lateral interactions [34]. These are all based
on a particular physical model describing the mechanism of the interactions. This
is different from the cluster expansion, which is a purely mathematical model. For
example, the bond-order conservation model is based on the observation that adsorp-
tion of an atom or molecule changes the electronic structure of a metal and therefore
changes the energy of subsequent adsorption of other atoms and molecules. Elas-
tic deformation models are based on a similar effect when adsorption changes the
structure of a substrate.

The advantage of models based on the mechanism of the interactions is that they
are often more compact: i.e., there are fewer parameters to determine. Disadvantages
of these models are that they are often restricted to a certain type of system, and
it is hard to improve them when they are not accurate enough: e.g., when there
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Fig. 4.4 Sketches showing how changes in the lateral interactions affecting the reactants or the
products change the activation energy (vertical arrows) depending on whether the barrier is early,
late, or in between. The thin line indicates the reaction profile without lateral interactions, the fat
line with interactions

are several mechanisms contributing to the lateral interactions. Moreover, there has
hardly any work been done on the reliability of the determination of the parameters
in these models.

4.6 Rate Constants from Experiments

One of the problems of calculating rate constants is the accuracy. The method that is
mostly used to calculate the energetics of adsorbates on a transition metal surface is
DFT [48–50]. Estimates of the error made using DFT for such systems are at least
about 10 kJ/mol. An error of this size in the activation energy means that at room
temperature the rate constant is off by about two orders of magnitude. How well
a pre-exponential factor can be calculated is not really known at all. This does not
mean that calculating rate constants is useless. The errors in the energetics have less
effect, if the temperature is higher, but even more important is that one can calculate
rate constants for processes that are experimentally hardly or not accessible at all.
If, on the other hand, one can obtain rate constants from an experiment, then the
value that is obtained is generally more reliable than one that has been calculated.

In general, one has to deal with a system in which several reactions can take place
at the same time. The crude approach to obtain rate constants from experiments is
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then to try to fit all rate constants to the experiments at the same time. This is seldom
a good idea. First of all such a procedure can be quite complicated. The data that
one gets from an experiment are hardly ever a linear function of the rate constants.
Consequently the fitting procedure consists of minimizing a nonlinear function that
stands for the difference between experimental and the calculated or simulated data.
Such a function normally has many local minima, and it is very hard to find the
global minimum. But this isn’t even the most important drawback. Although one
may be able to do a very good fit of the experimental data, this need not mean that
the rate constants are good: they may be physically unrealistic, and given enough fit
parameters, one can fit anything.

Deriving kinetic parameters from experiments does work well, when one has
an experiment of a single simple process that can be described by just one or two
parameters. The process should be simple in the sense that one has an analytical
expression with which one can derive relatively easily the kinetic parameters given
the experimental data. The analytical expression should be exact or at least a very
good approximation. If one has to deal with a reaction system that is complicated
and consists of many reactions, then one should try to get experiments that measure
just one of the reactions. For example, in CO oxidation one has at least adsorption of
CO, dissociative adsorption of oxygen, and the formation of CO2. Instead of trying
to fit rate constants of these three reactions simultaneously, one should look at ex-
periments that show only one of these reactions. An experiment that only measures
adsorption as a function of CO pressure can be used to get the CO adsorption rate
constant. The following sections show a number of processes which can be used to
get kinetic parameters, and we show how to get the parameters for these processes.

4.6.1 Relating Macroscopic Properties to Microscopic Processes

The analytical expressions mentioned above should relate some property that is
measured to the rate constants. We will address first the general relation. This re-
lation is exact, but rarely very useful. In the next sections we will show situations
were the general relation can be simplified either exactly or with the use of some
approximation.

If a system is in a well-defined configuration then a macroscopic property can in
general be computed easily. For example, the number of molecules of a particular
type in the adlayer can be obtained simply be counting. If the property that we are
interested in is denoted by X, then its value when the system is in configuration α
is given by Xα . We look at the expectation value of X, which is given by

⟨X⟩ =
∑

α

PαXα. (4.71)

Kinetic experiment measure changes, so we look at d⟨X⟩/dt . This is given by

d⟨X⟩
dt

=
∑

α

dPα

dt
Xα, (4.72)



106 4 How to Get Kinetic Parameters

because Xα is a property of a fixed configuration. We can remove the derivative of
the probability using the master equation. This gives us

d⟨X⟩
dt

=
∑

αβ

[WαβPβ − WβαPα]Xα,

=
∑

αβ

WαβPβ [Xα − Xβ ]. (4.73)

The second step is obtained by swapping the summation indices. The final result
can be regarded as the expectation value of the change of X in the process β → α

times the rate constant of that process. Equation (4.73) is called the phenomenolog-
ical or macroscopic equation [51]. It forms the basis for deriving relations between
macroscopic properties and rate constants.

4.6.2 Simple Desorption

Suppose we have an atom or a molecule that adsorbs onto one particular type of
site. We assume that we have a surface of area A with S adsorption sites. If Nα is
the number of atoms/molecules in configuration α then

d⟨N⟩
dt

=
∑

αβ

WαβPβ [Nα − Nβ ]. (4.74)

Diffusion does not change the number of atoms/molecules, and it does not matter in
this case whether we include it or not. The only relevant process that we have to look
at is desorption. We mentally fix configuration β and look only at the summation
over α. We have to distinguish between two types of terms: the ones where α can
originate from β by a desorption, and the ones where it cannot. The latter terms
have Wαβ = 0, because there is no process that changes β into α, and so they do
not contribute to the sum. The former do contribute and we have Wαβ = Wdes, with
Wdes the rate constant for desorption. We also have in this case Nα − Nβ = −1,
because desorption removes one atom/molecule from the surface. So all these non-
zero terms contribute the same value −Wdes to the sum for a given configuration β .
Moreover, the number of these terms is equally to the number of atoms/molecules
in β that can desorb, because each desorbing atom/molecule yields a different α.
This number of atoms/molecules is Nβ , so

d⟨N⟩
dt

= −Wdes
∑

β

PβNβ = −Wdes⟨N⟩. (4.75)

This is an exact expression. Dividing by the number of sites S gives the rate equation
for the coverage θ = ⟨N⟩/S.

dθ

dt
= −Wdesθ . (4.76)
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If we compare this to the macroscopic rate equation dθ/dt = −kdesθ with kdes the
macroscopic rate constant, we see that kdes = Wdes.

For isothermal desorption kdes does not depend on time and the solution to the
rate equation is

θ(t) = θ(0) exp[−kdest], (4.77)

where θ(0) is the coverage at time t = 0. Kinetic experiments often measure rates,
and for the desorption rate we have

dθ

dt
(t) = −kdesθ(0) exp[−kdest]. (4.78)

We can now obtain the rate constant by measuring, for example, the rate of desorp-
tion as a function of time and plotting minus the logarithm of the rate as a function
of time. Because

ln
[
−dθ

dt
(t)

]
= ln

[
kdesθ(0)

]
− kdest, (4.79)

we can obtain the rate constant which equals minus the slope of the straight line.
The same would hold if we would plot the logarithm of the coverage as a function
of time. Because of the equality this immediately also yields the rate constant Wdes
to be used in a simulation.

If the rate constant depends on time then solving the rate equation is often much
more difficult. We can always rewrite the rate equation as

1
θ

dθ

dt
= d ln θ

dt
= −kdes. (4.80)

Integrating this equation yields

ln θ(t) − ln θ(0) = −
∫ t

0
dt ′kdes

(
t ′
)
, (4.81)

or

θ(t) = θ(0) exp
[
−

∫ t

0
dt ′kdes

(
t ′
)]

. (4.82)

Whether of not we can get an analytical solution depends on whether we can deter-
mine the integral. In TPD experiments we have

kdes(t) = ν exp
[
− Eact

kB(T0 + Bt)

]
(4.83)

with Eact an activation energy, ν a pre-exponential factor, kB the Boltzmann-factor,
T0 the temperature at time t = 0, and B the heating rate. The integral can be calcu-
lated analytically. The result is

∫ t

0
dt ′ν exp

[
− Eact

kB(T0 + Bt ′)

]
= Ω(t) − Ω(0) (4.84)

with

Ω(t) = ν

B
(T0 + Bt)E2

[
Eact

kB(T0 + Bt)

]
, (4.85)
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where E2 is an exponential integral [11]. Although this solution has been derived
some time ago [52], it has not yet been used in the analysis of experimental spectra,
but there are several numerical techniques that work well for such simple desorption
[53]. Note that we have not made any approximations here and the rate constant Wdes
that we obtain will be exact except for experimental errors.

4.6.3 Simple Adsorption

We start with the simplest case in which the adsorption rate is proportional to the
number of vacant sites, which is called Langmuir adsorption. We will only indicate
in this section in what way the common situation in which the adsorption is higher
than expected based on the number of vacant sites differs [2, 54, 55]. This so-called
precursor-mediated adsorption is really a composite process.

Again suppose we have atoms or molecules that adsorb onto one particular type
of site. We assume that we have a surface of area A with S adsorption sites. If Nα is
the number of atoms/molecules in configuration α then again

d⟨N⟩
dt

=
∑

αβ

WαβPβ [Nα − Nβ ]. (4.86)

Diffusion can again be ignored as for desorption (see Sect. 4.6.2). For the summation
over α we have to distinguish between two types of terms: the ones in which α can
originate from β by a adsorption, and the ones it cannot. The latter terms have
Wαβ = 0 and so they do not contribute to the sum. The former do contribute and
we have Wαβ = Wads, with Wads the rate constant for adsorption, and Nα − Nβ = 1,
because adsorption adds one atom or molecule to the surface. So all these non-
zero terms contribute equally to the sum for a given configuration β . Moreover, the
number of these terms is equal to the number of vacant sites in β onto which the
molecules can adsorb, because each adsorption yields a different α. The number of
vacant sites in configuration β equals S − Nβ , so

d⟨N⟩
dt

= Wads
∑

β

Pβ(S − Nβ) = Wads
(
S − ⟨N⟩

)
. (4.87)

Dividing by the number of sites S gives the rate equation for the coverage θ =
⟨N⟩/S.

dθ

dt
= −Wads(1 − θ). (4.88)

If we compare this to the macroscopic rate equation dθ/dt = kads(1 − θ) with kads
the macroscopic rate constant, we see that kads = Wads.

So far adsorption is almost the same as desorption. The only difference is where
we had θ for desorption we have 1 − θ for adsorption on the right-hand-side of
the rate equation. An important difference now arises however. Whereas the macro-
scopic rate constant for desorption kdes is an basic quantity in kinetics of surface
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reactions, kads is generally related to other properties. This is because the adsorp-
tion process consists of atoms or molecules impinging on the surface, and that is
something that can be described very well with kinetic gas theory.

Suppose that the pressure of the gas is P and its temperature T , then the number
of molecules F hitting a surface of unit area per unit time is given by [7, 56]

F = P√
2πmkBT

(4.89)

with m the mass of the atom or molecule. Not every atom or molecule that hits
a surface will stick to it. The sticking coefficient σ is defined as the ratio of the
number of molecules that stick to the total number hitting the surface. It can also be
looked upon as the probability that an atom or molecule hitting the surface sticks.
The change in the number of molecules in an area A due to adsorption can then
be written as the vacant area times the flux F times the sticking coefficient σ . The
vacant area equals the area A times the fraction of sites in that area that is not
occupied. This all leads to

d⟨N⟩
dt

= A(1 − θ)Fσ. (4.90)

If we compare this to the equations above we find

Wads = AFσ

S
= PAsiteσ√

2πmkBT
, (4.91)

where Asite is the area of a single site.
Section 4.4.3 contains a discussion of the role of the sticking coefficient in the

calculation of adsorption rate constants. The remarks there are just as appropriate
here. In particular, whether or not the sticking coefficient is included in the expres-
sions for the kMC rate constant depends on how adsorption, but also desorption (see
Sect. 4.4.3), is defined.

Adsorption described so far is proportional to the number of vacant sites. Exper-
iments measure the rate of adsorption and with the expressions derived above one
can calculate the microscopic rate constant Wads. However, it is often found that
the rate of adsorption starts at a certain value for a bare surface and then hardly
changes when particles adsorb until the surface is almost completely covered when
it suddenly drops to zero. This behavior is generally explained by describing the ad-
sorption as a composite process [2, 54, 55]. A molecule impinging unto the surface
adsorbs with the probability σ when the site it hits is vacant just as before. How-
ever, a molecule that hits a site that is already occupied need not be scattered. It can
adsorb indirectly. It first adsorbs, with a certain probability, in a second adsorption
layer. Then it starts to diffuse over the surface in this second layer. It can desorb at a
later stage, or, and that’s the important part, it can encounter a vacant site and adsorb
there permanently. This last part can increase the adsorption rate substantially when
there are already many sites occupied. The precise dependence of the adsorption
rate on the coverage θ is determined by the rate of diffusion, by the rate of adsorp-
tion onto the second layer, and by the rate of desorption from the second layer. If
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there are factors that affect the structure of the first adsorption layer, e.g. lateral in-
teraction, then these too influence the adsorption rate. If the adsorption is not direct,
one talks about a precursor mechanism. A precursor on top of an adsorbed particle
is an extrinsic precursor. An intrinsic precursor can be found on top of a vacant site
[57]. The precursor mechanism will not always be operative for a bare surface: i.e.,
there is not always an intrinsic precursor. This means that we can use Eq. (4.91) if
we take for σ the sticking coefficient for adsorption on a bare surface.

4.6.4 Unimolecular Reactions

With the knowledge of simple desorption and adsorption given above it is now easy
to derive an expression for the rate constant Wuni for a unimolecular reaction in term
of a macroscopic rate constant. In fact the derivation is exactly the same as for the
desorption. Desorption changes a site from A to ∗, whereas a unimolecular reaction
changes it to B. Replace ∗ by B in the expression for the desorption (and Wdes by
Wuni) and you have the correct expression. As the expression for desorption do not
contain a ∗, the procedure is trivial and we find Wuni = kuni where kuni is the rate
constant from the macroscopic rate equation.

4.6.5 Diffusion

We treat diffusion in kMC as any other process, but experimentally one doesn’t
look at changes in coverages but at displacements of atoms and molecules. We will
therefore also look here at how the position of a particle changes.

We assume that we have only one particle on the surface, so that the particle’s
movement is not hindered by any other particle and the relation between the macro-
scopic properties and the kMC rate constant is simple. In practice this means that
the coverage should be low. We also assume that we have a square lattice with axis
parallel to the x- and the y-axis and that the distance between lattice points is given
by a. We will later look at other lattices. If xα is the x-coordinate of the particle in
configuration α, then

d⟨x⟩
dt

=
∑

αβ

WαβPβ [xα − xβ ]. (4.92)

The x-coordinate changes because the particle hops from one site to another. When
it hops we have xα −xβ = a,−a, and 0 for a hop along the x-axis toward larger x, a
hop along the x-axis toward smaller x, or a hop perpendicular to the x-axis, respec-
tively. All these hops have a rate constant Whop and are equally likely. This means
d⟨x⟩/dt = 0. The same holds for the y-coordinate.
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More useful is to look at the square of the coordinates. We then find

d⟨x2⟩
dt

=
∑

αβ

WαβPβ

[
x2
α − x2

β

]
. (4.93)

Now we have x2
α − x2

β = 2axβ + a2,−2axβ + a2, and 0, respectively. Because the
hops are still equally likely, we have

d⟨x2⟩
dt

= 2Whopa
2. (4.94)

We find the same for the y-coordinate. The macroscopic equation for diffusion is

d⟨x2 + y2⟩
dt

= 4D, (4.95)

with D the diffusion coefficient. From this we see that we have Whop = D/a2.
On a hexagonal lattice a particle can hop in six different directions for which

xα − xβ = a, a/2,−a/2,−a,−a/2, and a/2 and yα − yβ = 0, a
√

3/2, a
√

3/2,0,

−a
√

3/2, and −a
√

3/2. From this we get again d⟨x⟩/dt = 0. For the squared dis-
placement we find x2

α − x2
β = 2axβ + a2, axβ + a2/4,−axβ + a2/4,−2axβ +

a2,−axβ + a2/4, axβ + a2/4. This yields again d⟨x2⟩/dt = 2Whopa
2. We find

the same expression for the y-coordinate, so that also for a hexagonal lattice
Whop = D/a2. The same expression holds for a trigonal lattice. The derivation is
identical to the ones for the square and hexagonal lattices.

4.6.6 Bimolecular Reactions

For all of the processes we have looked at so far it was possible to derive exact
macroscopic equations from the master equation. This is not the case for bimolec-
ular reactions. Bimolecular reactions will give rise to an infinite hierarchy of exact
macroscopic rate equations. There are two bimolecular reactions we will consider:
A + B and A + A. The problem we have mentioned above is the same for both re-
actions, but there is a small difference in the derivation of a numerical factor in the
macroscopic rate equation. We will start with the A + B reaction.

We look at the number of A’s. The expressions for the number of B’s can be
obtained by replacing A’s by B’s and B’s by A’s in the following expressions. We
have

d⟨N(A)⟩
dt

=
∑

αβ

WαβPβ

[
N(A)

α − N
(A)
β

]
, (4.96)

where N
(A)
α stands for the number of A’s. We look at the summation over α and

mentally fix β . If α can originate from β by a A + B reaction, then Wαβ = Wrx,
otherwise Wαβ = 0. If such a reaction is possible, then N

(A)
α − N

(A)
β = −1. The
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problem now is with the number of configurations α that can be obtained from β by
a reaction. This number is equal to the number of AB pairs N

(AB)
β . This leads then

to

d⟨N(A)⟩
dt

= −Wrx
∑

β

PβN
(AB)
β = −Wrx

〈
N(AB)

〉
. (4.97)

We get the same right-hand-side for the change in the number of B’s. We see that
on the right-hand-side we have obtained a quantity that we didn’t have before. This
means that the rate equations are not closed.

We can now proceed in two ways. The first is to write down rate equations for
the new quantity ⟨N(AB)⟩ and hope that this will lead to equations that are closed. If
we do this, we find that this will not happen. Instead we will get a right-hand-side
that depends on the number of certain combinations of three particles. We can write
down rate equations for these as well, and hope that this will lead finally to a closed
set of equations. But that too won’t happen. Proceeding by writing rate equations
for the new quantities that we obtain will lead to an infinite hierarchy of equations
[58–63].

The second way to proceed is to introduce an approximation that will make a
finite set of these equations into a closed set. We can do this at different levels. The
crudest approximation, and the one that will lead to the common macroscopic rate
equations, is to approximate ⟨N(AB)⟩ in terms of ⟨N(A)⟩ and ⟨N(B)⟩. This actually
turns out to involve two approximations. The first one is that we assume that the
number of adsorbates are randomly distributed over the surface. In this case we
have N

(AB)
β = ZN

(A)
β [N(B)

β /(S − 1)], with Z the coordination number of the lattice:
i.e., the number of nearest neighbors of a site. (Z = 4 for a square lattice, Z = 6 for
a hexagonal lattice, and Z = 3 for a trigonal lattice.) The quantity between square
brackets is the probability that a neighboring site of an A is occupied by a B. This
approximation is called the Mean Field Approximation (MFA) and leads to

d⟨N(A)⟩
dt

= − Z

S − 1
Wrx

∑

β

PβN
(A)
β N

(B)
β = − Z

S − 1
Wrx

〈
N(A)N(B)

〉
. (4.98)

This is still not a closed expression. We have
〈
N(A)N(B)

〉
=

〈
N(A)

〉〈
N(B)

〉
+

〈[
N(A) −

〈
N(A)

〉][
N(B) −

〈
N(B)

〉]〉
. (4.99)

The second term on the right stands for the correlation between fluctuations in the
number of A’s and the number of B’s. In general this is not zero. Because the number
of A’s and B’s decrease simultaneously because of the reaction, this term is expected
to be positive. Fluctuations however decrease when the system size is increased. In
the thermodynamic limit S → ∞ we can set it to zero. (Neglecting the fluctuations
is often included in MFA.) We then finally get

d⟨N(A)⟩
dt

= −Z

S
Wrx

〈
N(A)

〉〈
N(B)

〉
(4.100)
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with S − 1 replaced by S because S ≫ 1. Dividing by the number of sites S leads
then to

dθA

dt
= −ZWrxθAθB. (4.101)

This should be compared to the macroscopic rate equation

dθA

dt
= −krxθAθB. (4.102)

We see from this that we have Wrx = krx/Z, but only if the two approximations are
valid. This may not be the case when the adsorbates form some kind of structure
(e.g. islands or a superstructure) or when the system is small (e.g. a small cluster of
metal atoms) and the fluctuations are large.

The derivation for the A + A reaction is almost the same. We have

d⟨N(A)⟩
dt

=
∑

αβ

WαβPβ

[
N(A)

α − N
(A)
β

]
. (4.103)

If α can originate from β by a A+A reaction, then Wαβ = Wrx, otherwise Wαβ = 0.
If such a reaction is possible, then N

(A)
α − N

(A)
β = −2, because now two A’s react.

The number of configurations α that can be obtained from β by a reaction is equal
to the number of AA pairs N

(AA)
β . This leads then to

d⟨N(A)⟩
dt

= −2Wrx
∑

β

PβN
(AA)
β = −2Wrx

〈
N(AA)

〉
. (4.104)

If we do not want to get an infinite hierarchy of equations with rate equations
for quantities of more and more A’s, we have to make an approximation again.
We approximate ⟨N(AA)⟩ in terms of ⟨N(A)⟩. We first assume that the number
of adsorbates are randomly distributed over the surface. In this case we have
N

(AA)
β = (1/2)ZN

(A)
β [N(A)

β /S]. Note the factor 1/2 that avoids double counting
of the number of AA pairs. The quantity between square brackets is the probability
that a neighboring site of an A is occupied by a A. We have immediately assumed
here that S ≫ 1. This approximation leads to

d⟨N(A)⟩
dt

= −Z

S
Wrx

∑

β

Pβ

(
N

(A)
β

)2 = −Z

S
Wrx

〈(
N(A)

)2〉
. (4.105)

The factor 2 that we had previously has canceled against the factor 1/2 in the ex-
pression for the number of AA pairs. To proceed we note that

〈(
N(A)

)2〉 =
〈
N(A)

〉2 +
〈(

N(A) −
〈
N(A)

〉)2〉
. (4.106)

The second term on the right stands for the fluctuations in the number of A’s. This
is clearly not zero, but positive. Setting it to zero is again the thermodynamic limit.
We finally get

d⟨N(A)⟩
dt

= −Z

S
Wrx

〈
N(A)

〉2
. (4.107)
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Dividing by the number of sites S leads then to

dθA

dt
= −ZWrxθ

2
A. (4.108)

This should be compared to the macroscopic rate equation

dθA

dt
= −2krxθ

2
A. (4.109)

Note that there is a factor 2 on the right-hand-side, which is used because a reaction
removes two A’s. We see from this that we have Wrx = 2krx/Z.

4.6.7 Dissociative Adsorption

We deal here with the quite common case of a molecule of the type B2 that adsorbs
dissociatively on two neighboring sites. An example of such adsorption is oxygen
adsorption on many transition metal surfaces. We will see this adsorption for exam-
ple when we will discuss the Ziff–Gulari–Barshad model in Chap. 7. We will see
here that it is often convenient to look at limiting cases to derive an expression of
the rate constant of adsorption.

We look at the number of B’s. We have again

d⟨N(B)⟩
dt

=
∑

αβ

WαβPβ

[
N(B)

α − N
(B)
β

]
, (4.110)

where N
(B)
α stands for the number of B’s. If α can originate from β by an adsorption

reaction, then Wαβ = Wads, otherwise Wαβ = 0. If such a reaction is possible, then
N

(B)
α − N

(B)
β = 2. The problem now is with the number of configurations α that can

be obtained from β by a reaction. This number is equal to the number of pairs of
neighboring vacant sites N

(∗∗)
β . This leads then to

d⟨N(B)⟩
dt

= 2Wads
∑

β

PβN
(∗∗)
β = 2Wads

〈
N(∗∗)

〉
. (4.111)

The right-hand-side can in general only be approximated, but such an approximation
is not needed for the case of a bare surface. In that case we have N(∗∗) = ZS/2,
where Z is the coordination number of the lattice and S the number of sites in the
system. This leads to

d⟨N(B)⟩
dt

= ZSWads. (4.112)

The change in the number of adsorbates for a bare surface is also equal to

d⟨N(B)⟩
dt

= 2AFσ, (4.113)



4.6 Rate Constants from Experiments 115

where A is the area of the surface, F is the number of particles hitting a unit area
of the surface per unit time, and σ is the sticking coefficient. The factor 2 is due to
the fact that a molecule that adsorbs dissociatively yields two adsorbates. The flux
F we’ve seen before and is given by

F = P√
2πmkBT

(4.114)

with P the pressure, T the temperature and m the mass of a molecule. This means
that

d⟨N(B)⟩
dt

= 2APσ√
2πmkBT

. (4.115)

If we compare this with expression (4.112), we get

Wads = 2AsitePσ

Z
√

2πmkBT
(4.116)

with Asite the area of a single site. (See Sects. 4.4.3 and 4.6.3 for a discussion of the
role of the sticking coefficient.)

4.6.8 A Brute-Force Approach

Because kMC can be derived from first-principles it is exact for a given model or
set of processes. So if we know which processes take place in a system, we know
which lateral interactions are important, and we know the atomic structure of the
system and which sites are relevant, then we can in principle determine all kinetic
parameters by fitting kMC simulations to the experimental results. In fact, it might
even be possible to use this to compare models and decide which one is the better
one. Fitting kinetic parameters of different models and comparing the quality of the
fits might allow us to choose between various candidate models.

There are however a number of pitfalls to this approach. Most of them are typical
for fitting procedures but there is also one that has to do with the nature of kMC
simulations. General problems with the approach are the following. Fitting will en-
tail minimizing a function that indicates how much the kMC and the experimental
results differ. Such a function may have multiple minima. Often one wants to have
the global minimum, but it may be that such a minimum corresponds to kinetic pa-
rameters that are unphysical (e.g., ridiculous values for interaction parameters or
negative activation energies). The fitting procedure should therefore be restricted
to those areas of the parameter space that correspond the acceptable values for the
kinetic parameters.

Although a minimum of the fitting function may be mathematically well defined,
it is not uncommon that the fitting function changes very little in certain directions.
This means that the experimental results do not depend very much or not at all
on one or more kinetic parameters or certain combinations of kinetic parameters.
As a consequence such parameters can not be determined well and the value that
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Fig. 4.5 The value of the fitting function as a function of the value of the lateral interaction (di-
vided by kB in K) between CO molecules at top sites on Rh(100) at nearest neighbors-distances
(left) and at next-nearest-neighbors distances (right). Each cross corresponds to a single set of ki-
netic parameters for which kMC results have been compared to experimental TPD-spectra during
the fitting procedure

the fitting procedure will give for them will be extremely sensitive to errors in the
experimental results.

kMC has on top of this the problem that it is a stochastic method. This means that
many numerical methods can not be used, for example because they use derivatives
or because they become unstable. So we need a method that does a global mini-
mization in a restricted parameter space and that can handle noisy data. It should
also indicate when a parameter does not influence the quality of the fit so that it
can not be determined. If possible it should also be efficient so that the number
of simulations that need to be done is small. There are a number of methods that
can be considered. Simulating annealing and computational evolution methods are
prime candidates [64–69], but particle swarm optimization, memetic algorithms,
tabu search, and possibly others might be useful as well [69, 70].

Differential evolution was used in a study to obtain kinetic parameters for desorp-
tion of CO on Rh(100) at low coverages [71]. The prefactor, the activation energy,
and lateral interactions at three different distances between the CO molecules were
determined. Figure 4.5 shows how the quality of the fit (i.e., the fitting function
that needs to be minimized) depends on the interaction between nearest- and next-
nearest neighbors. Note that variations in the nearest-neighbor interaction affects the
fit hardly at all. This is because this interaction is strongly repulsive. The coverage is
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Fig. 4.6 Results of a fitting procedure to determine the kinetic parameters for desorption of CO
molecules at top sites on Rh(100). Each cross corresponds to a single set of kinetic parameters for
which kMC results have been compared to experimental TPD-spectra during the fitting procedure
and for which the fitting function was less than 10. The 10-base logarithm of the prefactor (in 1/s)
is plotted on the horizontal and the activation energy (divided by kB in K) is plotted on the vertical
axis

low so that the system can and does avoid it and it does therefore not affect the TPD
spectra. The spectra do depend on the next-nearest-neighbor interaction, which is
consequently much better defined. Figure 4.6 shows the region in (prefactor, activa-
tion energy) space for which the fitting function is less than 10. Note that this region
is very elongated. This means that there is a combination of these parameters that is
well defined and another one that is not. The one that is well defined turns out to be
the rate constant for desorption.

A follow-up study looked at higher coverages where some CO molecules not
only adsorbed at the preferred top but also at bridge sites and where there were
more relevant kinetic parameters [72]. This study showed that it is important to
have a good model for the interactions in a system to get meaningful values for the
interaction parameters. Although the model in this study had double the number of
kinetic parameters as the one for low coverages, and the experimental TPD spectra
could reasonably well be reproduced, the values of the lateral interactions were quite
dubious. More work on this way to use kMC simulations to get kinetic parameters
is needed.
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Chapter 5
Modeling Surface Reactions I

Abstract The main part of modeling surface reactions is concerned with the de-
scription of the processes. For simple systems there is a lattice corresponding to
the adsorption sites and the labels of the lattice points describe the occupation of
the sites. The labels can however also be used to model steps and other defects and
sites on a bimetallic substrates. The lattice points need not necessarily correspond
to sites, but can also be used to store other information like the presence of certain
structures in the adlayer. Processes need not always correspond to reactions or other
actual processes but when they have an infinite rate constant they can be used in a
general-purpose code to handle exceptional situations that are normally hard-coded
in special-purpose codes. Apart from implementing the processes, modeling also
involves specifying system size, length of a simulation, and I/O. This is discussed
in relation to reducing the noise in the output of a kinetic Monte Carlo simulation.

5.1 Introduction

In this chapter we will start looking at how to model surface processes. This may
seem rather trivial. One “just” has to specify which sites are involved in a process,
and the occupation of these sites before and after the process. It turns out that this
is often indeed all one needs to do to simulate a system, but often there are var-
ious ways to model a system, and then the question is which one gives the most
efficient simulation. This is typically the case when one has a system with different
types of site, processes with very different rate constants, diffusion, and/or lateral
interactions.

This chapter is particularly important for people using general-purpose codes
to do kinetic Monte Carlo (kMC) simulations, because they have the opportunity
to vary their model. If you use a special-purpose code then you do not have that
luxury. You are forced to use the model that is hard-coded. However, this chapter is
also relevant if you want to write such special-purpose codes, because there may be
various ways your model can be coded.

The modeling framework that we present here is based on the assumption that
a kMC code can recognize patterns in the occupation of sites, and that it can then
change those patterns according to rules that stand for how processes change the site
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occupations. This framework is explained in Sect. 5.3, and how simple processes are
modeled with it in Sect. 5.4.

The framework however is much more flexible and powerful than the straightfor-
ward implementation of simple processes. Section 5.5 shows how it can be used to
model various types of substrate: e.g., multiple sites in the unit cell, steps and other
defects, bimetallic surfaces, and reconstructions.

For some systems the pattern matching approach seems not to be appropriate
however. For example, if we have a long reptating chainlike molecule, the number
of possible patterns or configurations of the molecule can simply be too large to
specify. In a special-purpose code this would be modeled by code that would first
move the head of the molecule, then move along its length to find the tail, and finally
move the tail. We will show that we can do something similar within our framework
with so-called immediate processes. Such processes are also convenient for many
other situations. Some examples are shown in Sect. 5.6.

This chapter discusses only the components that can be used to model reaction
systems. It gives an overview of the tools that we can use in modeling reaction sys-
tems with a general-purpose kMC code. It does not say anything about what would
be a good way to model certain processes. This is done in Chap. 6, which shows how
these tools can then be used to model specific processes in various ways. Chapter 7
shows examples how reaction systems have actually been modeled. That chapter
focuses on the kind of kinetic information one can obtain from kMC simulations.

Apart from specifying the processes, to do a kMC simulation you also need to
specify other parameters like the size of the system that you want to simulate, the
length of the simulation, information on I/O, and possibly other things. We start
this chapter with a discussion of these other parameters and in particular on how to
deal with the stochastic nature of kMC. We will see that there are different ways to
reduce the noise that is intrinsic in the results of kMC simulations.

5.2 Reducing Noise

kMC is a stochastic method. This means that the results will show fluctuations and
will be noisy, and one often wants to do something to reduce the noise as it may be
unacceptably large. This is often the case because one wants to simulate a surface
with macroscopic dimensions, but one can only simulate much smaller systems. In
principle, there are three methods that one can use. We will discuss these methods
for the Ziff–Gulari–Barshad (ZGB) model of CO oxidation and for Temperature-
Programmed Desorption (TPD) spectra of simple desorption. Details of the ZGB
model and its implementation can be found in Sect. 7.4.3. Section 5.4.1 has de-
tails on TPD and simple desorption. These details are not relevant however for the
discussion here on noise reduction.

Figure 5.1 shows how the rate of CO2 production in kMC simulations of the
ZGB model changes if we average over several simulations. As the number of sim-
ulations increases, the noise decreases. Because the simulations are independent of
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Fig. 5.1 The reactivity (in reciprocal units of time) defined as the number of reactions forming
CO2 per unit cell per unit of time as a function of time in the ZGB model. All simulations were done
with a square lattice with 128×128 lattice points and periodic boundary conditions. The parameter
of the model was chosen to be y = 0.5255 which is about the value with maximum reactivity.
This parameter stands for the fraction of molecules in the gas phase that are CO molecules and it
also defines the unit of time as explained in Sect. 7.4.3. The numbers on the right of the curves
indicate the number of simulations over which the reactivity has been averaged. Only the curve
with the result from a single simulation shows the actual reactivity. Each other result has been
offset vertically by an additional 0.03 reciprocal units of time. The inset shows a log-log plot of
the noise, defined as the root-mean-square deviation of the reactivity, as a function as the number
of simulations that were used for the averaging. The points lie very close to a line with slope − 1

2

each other the noise is inverse proportional to the square root of the number of simu-
lations. This way to reduce noise is straightforward. It only requires more computer
time the smaller one wants the noise to be.

A second way to reduce noise is to increase the size of the system. That is shown
in Fig. 5.2. The effect of this is the same as averaging over multiple simulations.
Doubling the linear dimension of a system quadruples the number of sites and gives
the same result as averaging over four simulations with the original system size. The
only difference may be that changing the system size may cost more computer time.
For example, computer time per event in First Reaction Method increases slightly
with system size so doubling the linear dimension of a system costs more than four
times in computer time (see Sect. 3.5). For other algorithms that need not be the
case however.

Figure 5.2 also shows the noise in the coverage of CO. Oxygen shows the same
variation. We see that the noise in the coverage relative to the average coverage is
somewhat larger than the noise in the reactivity relative to the average reactivity.
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Fig. 5.2 The reactivity (in reciprocal units of time) on the left, defined as the number of reactions
forming CO2 per unit cell per unit of time, and the coverage of CO on the right as a function of
time in the ZGB model. The parameter of the model was chosen to be y = 0.5255 which is about
the value with maximum reactivity. This parameter stands for the fraction of molecules in the gas
phase that are CO molecules and it also defines the unit of time as explained in Sect. 7.4.3. All
simulations were done with a square lattice with L × L lattice points with L given by the number
to the right of the curves and periodic boundary conditions. Only the curves for L = 16 show the
actual reactivity and coverage. Each other result has been offset by an additional 0.03 reciprocal
units of time for the reactivity and by 0.1 ML for the coverage

This is not always the case. Figure 5.3 shows the desorption rate and the coverage
for various system sizes for TPD spectra of simple desorption. We see that the noise
in the coverage is much less than the noise in the desorption rate.

Figure 5.4 shows a third way to reduce noise. Instead of averaging over simula-
tion or larger areas one can also average over longer time intervals. The figures of
the rates in this section show output at times tstart + n∆t with tstart the time at the
start of a simulation, ∆t a time interval, and n a non-negative integer. The rate at
time tstart + n∆t for a particular n is obtained by counting the number of processes
that have occurred between tstart + (n − 1)∆t and tstart + n∆t and then dividing by
the size of the system (i.e.: the number of unit cells) and by ∆t . The number of
processes that occurs in an interval fluctuates but it is expected that the fluctuation
relative to the length of the interval becomes smaller. That is indeed what is seen in
the figure.

This last way to reduce noise is the cheapest as the system size can be kept
relatively small and only one simulation needs to be done. The drawback is that
the amount of data is reduced by averaging over larger and larger intervals. For
a steady state this is no problem as for such a situation one is not interested in
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Fig. 5.3 The desorption rate (in 1/s) on the left and the coverage on the right as a function of
temperature (in K) for a TPD experiment with simple desorption. The activation energy for des-
orption was 124.7 kJ/mol and the prefactor 1013 s−1. The heating rate was 2 K/s and the initial
coverage 1 ML. All simulations were done with a square lattice with L × L lattice points and pe-
riodic boundary conditions with L given by the number to the right of the curves. Only the curves
for L = 16 show the actual desorption rate and coverage. Each other result has been offset by an
additional 0.012 s−1 for the desorption rate and by 0.1 ML for the coverage

temporal fluctuations anyway and one might as well average over the whole length
of a simulation. Note that we are using here the ergodic hypothesis or ergodicity
theorem [1]. It states that such average over time is the same as an average over many
identical systems. Instead of taking a large time interval ∆t for steady states to get
average coverages and rates, it is also possible to use a small ∆t and average over
the variations as a functions of time after a simulation has been done. This has the
advantage that the fluctuations can be used to derive error estimates of the averages.

It is important to realize that we only want to reduce noise if a single simulation
shows noise and it is meant to model a system in which this noise is supposed
to be absent. There are other situations. For example, if the system that we try to
simulate is small, then the coverages and rates may actually fluctuate. The noise in a
simulation then represents these fluctuations, and we do not want to average [2, 3].

5.3 A Modeling Framework

An implementation of kMC has to have information on the sites of the system that
is being simulated and the occupation of these sites. The sites will most likely be
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Fig. 5.4 The reactivity (in reciprocal units of time) defined as the number of reactions forming
CO2 per unit cell per unit of time as a function of time in the ZGB model. All simulations were done
with a square lattice with 128×128 lattice points and periodic boundary conditions. The parameter
of the model was chosen to be y = 0.5255 which is about the value with maximum reactivity. This
parameter stands for the fraction of molecules in the gas phase that are CO molecules and it also
defines the unit of time as explained in Sect. 7.4.3. The numbers on the right of the curves indicate
the time interval ∆t over which the reactivity was averaged. Only the curve with the result with
a time interval of 1 time unit shows the actual reactivity. Each other result has been offset by an
additional 0.03 reciprocal units of time

implemented as some two-dimensional array of integers, characters, booleans, or
strings, which indicates the occupations. As a string can be used to represent an
integer, character, or boolean as well, we will use only strings here, but we will call
them labels from now on. Such labels have the advantage over integers, characters,
and booleans that they can often be given values with a meaning that is obvious.

Apart from the occupation, other information on the sites may be useful as well.
Such additional information we will also represent with a label. One may think that
a real or floating-point numbers can be useful if one wants to model for example
a local temperature. However a continuous change of a property does not fit in the
theory as described in Chap. 2. If one wants to model a continuous property of a
site, it will have to be discretized, and then a label can be used again.

Our framework has already been discussed briefly in Sects. 2.1.3 and 2.1.4. We
can indicate a site by a triplet (n1, n2/s). This is the site at position x(s)

0 + n1a1 +
n2a2 with a1 and a2 the primitive vectors of the lattice formed by the sites, and
x(s)

0 is the position of site number s within a unit cell. If there is only one site
per unit cell, then the “s” can be left out, leaving us with (n1, n2). Adding a label
specifies information on the site. This can most easily be seen using an example.
With (0,0/0) : CO we mean that there is a CO molecule adsorbed at the site at
position x(0)

0 . Note however that the meaning of the label is up to the user. For
example, (1,2/0) : S may indicate a sulfur atom adsorbed on the site at x(0)

0 + a1 +
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2a2, but that need not be the meaning of the label S at all. It may also be defined by
a user to indicate a step site, or something entirely different.

The meaning of a label is really defined implicitly by the way it can change: i.e.,
by the processes in which it plays a role. For example, if the label S above stands for
a sulfur atom then there will probably be reactions between the sulfur atom and other
adsorbates, there will be hops from one site to another to model diffusion, et cetera.
If S stands for a step site, then there are processes in which it becomes occupied, or
it is converted into a terrace site when the substrate changes its structure, et cetera.
We therefore need to look at how processes are implemented.

It is in this aspect that general-purpose and special-purpose codes differ most.
The processes in a special-purpose code are hard code: i.e., how the occupations or
other properties of the sites change is determined by the code. In a general-purpose
code the processes are descriptions specified by the user on input that are interpreted
by the program.

The way we do this here is as follows. Each process has to be specified as a list
of sites involved in the process, the labels of the sites before, and the labels of the
sites after the process has taken place. For example, in

(0,0), (1,0) : A B → ∗ ∗ (5.1)

an integer pair (n1, n2) indicates as before a unit cell, A and B are reactants, and ∗
the product. This can be interpreted as an molecule A reacting with a molecule B at
a neighboring site to the right to form AB which immediately desorbs leaving two
vacant sites. This interpretation, however, is based on the meaning of the labels A,
B, and ∗ as mentioned before.1

The indices specifying the unit cells are relative. The specification above stands
not just for a process at (0,0) and (1,0), but at (n1, n2) and (n1 +1, n2) for any pair
of integers n1 and n2. Having more than one site per unit cell is also possible. For
example in

(0,0/0), (0,0/1) : A B → ∗ ∗ (5.2)

the reaction takes place on two sites in the same unit cell. The integers after the
slash indicate which sites are involved. Note that we do not make any assumptions
on distances or angles. So

(0,0), (1,0) : A B → ∗ ∗ (5.3)

1The point that the meaning of the labels is up to the user can not be emphasized often enough.
Suppose we model CO oxidation on some transition metal surface. Then (0,0), (1,0) : CO O →
∗ ∗ can be interpreted as a CO2 formation reaction that is followed immediately by desorp-
tion of CO2 leaving two vacant sites. This interpretation is obvious as is the interpretation of
(0,0), (1,0) : carbonmonoxide oxygenatom → vacant vacant for the same process. However, we
may also have (0,0), (1,0) : vase gravity → shard shard. This is just as correct, although of course,
very misleading. For more complicated models the interpretation and the choice of meaningful
labels is not always straightforward. For a kMC simulation only the way labels can change as
specified by the processes and the rates with which these changes occur is what counts.
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may refer to a square, a hexagonal, or any other type of lattice. This too is
implicit in the reactions. If (0,0), (1,0) : A B → ∗ ∗ stands for a reaction on
a square lattice, then there should also be reactions (0,0), (0,1) : A B → ∗ ∗,
(0,0), (−1,0) : A B → ∗ ∗, and (0,0), (0,−1) : A B → ∗ ∗. If we have a hexag-
onal lattice, then we should have the reaction specifications as for a square lattice
plus (0,0), (1,1) : A B → ∗ ∗, and (0,0), (−1,−1) : A B → ∗ ∗ where we assume
that the angle between the primitive translations is 120◦.

Processes also have a reaction rate constant. That need not concern us here except
that for general-purpose codes it may be convenient to have the possibility of hav-
ing processes with infinite rate constants. Such processes occur immediately when
they become possible. We will call such processes immediate processes. In special-
purpose codes immediate processes are often not regarded as processes at all, but as
situations in which some special action needs to be taken. By extending our concept
of processes to these immediate processes, such situations need not be treated dif-
ferently, and they fit neatly in the theoretical framework that we have described in
Chap. 2.

5.4 Modeling the Occupation of Sites

5.4.1 Simple Adsorption, Desorption, and Unimolecular
Conversion

Modeling simple adsorption, desorption, and unimolecular conversion is essentially
the same. The essential part is that only one site is involved. In each case the process
can then be written as A → B. For adsorption A is a vacant site and B the site
occupied by an adsorbate, for desorption A is the site occupied by an adsorbate
and B a vacant site, and for conversion A is the adsorbate that is converted and
B the adsorbate into which A is converted. Note that we only look at the site and
its occupation. We ignore the fact that prior to adsorption the adsorbate is in the gas
phase or dissolved in a solution. For the simulation this is irrelevant. In the following
we use A → B as a generic form for all three cases.

Note that an Eley–Rideal reaction that takes place on a single site is also included
here. If the product is a molecule that immediately desorbs, then A is an adsorbate
and B is a vacant site. The reaction is then effectively the same as a desorption, but
with a rate constant that depends not only on temperature but also on the pressure
of the gas-phase reactant. If the product stays on the surface at the same site as the
adsorbed reactant, then B is the product. The reaction is then effectively the same as
a conversion with the same caveat concerning the rate constant.

Modeling this reaction is very simple. In the notation of our framework (see
Sect. 5.3) we have

(0,0) : A → B. (5.4)
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Fig. 5.5 Change of the coverage (in ML: dashed curves) and the desorption rate (in reactions per
second per site: solid curves) as a function of time (in seconds) for isothermal (left) and tempera-
ture-programmed (right) simple desorption. The lattice size in the kMC simulations was 128×128
with periodic boundary conditions and each result is an average of 1000 simulations. The initial
coverage was 1 ML for all simulations. On the left the desorption rate constant is 0.4 s−1. On the
right the activation energy is 124.7 kJ/mol, the prefactor is 1013 s−1, the heating rate is 2 K/s, and
the initial temperature is 350 K. The inset shows a snapshot of a simulation with a 64 × 64 square
lattice with the black circles depicting the adsorbates. It shows a situation in which about two third
of the sites has been vacated

This means that for each lattice point that has a label A, this label can change to B.
This is the whole specification of the process except for the rate constant.

Figure 5.5 shows a snapshot of a simulation of simple desorption. A square lattice
is used, and about one third of the sites are occupied. Note that the adsorbates are
randomly distributed over the lattice. There is no mechanism that can lead to any
kind of ordering. Figure 5.5 also shows how the coverage and the desorption rate
change in time. The coverage is given in monolayers (ML) which is the fraction
of all sites that is occupied. For the isothermal desorption the coverage and the
desorption rate are simple exponential decreasing functions of time. For the TPD
case we have

θ(t) = θ(0) exp
[
Ω(0) − Ω(t)

]
(5.5)

as was shown in Sect. 4.6.2.
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5.4.2 Bimolecular Reactions and Diffusion

Bimolecular reactions are not really more difficult to model than processes involving
only one site, but there are a few differences. The first one is that there are different
orientations that the reactants can have with respect to each other. One should also
be aware that there is a difference if in A + B we have B ≠ A or B = A. We have
already seen this difference in Sect. 4.6.6.

We start with the case with A + A and for simplicity we assume that we have
a square lattice with periodic boundary conditions and that the A’s are adsorbates
that react to form a molecule that immediately desorbs. So we have the associative
desorption 2A → 2∗. In our notation we get

(0,0), (1,0) : A A → ∗ ∗,

(0,0), (0,1) : A A → ∗ ∗.
(5.6)

We see that we have to specify two ways in which the A’s can react corresponding
to the different relative orientations of a pair of AA neighbors. Again we also have
to specify the rate constant.

Figure 5.6 show a snapshot of a simulation of such associative desorption. We
see that we get isolated A’s. If we have no diffusion then these will remain on the
surface indefinitely. Figure 5.6 also shows how the coverage and the desorption rate
change in time.

If we include diffusion all the A’s will eventually react. Figure 5.7 shows that
indeed the coverage then goes to zero for large time t . We model the diffusion by

(0,0), (1,0) : A ∗ → ∗ A,

(0,0), (0,1) : A ∗ → ∗ A,

(0,0), (−1,0) : A ∗ → ∗ A,

(0,0), (0,−1) : A ∗ → ∗ A.

(5.7)

There are four processes because an A can hop to one of four neighboring sites if
vacant. If the diffusion is so fast that the particles are randomly mixed then we have

dθ

dt
= −ZWdesθ

2. (5.8)

This was shown in Sect. 4.6.6. For the isothermal case this yields

θ(t) = θ(0)

1 + ZWdesθ(0)t
, (5.9)

and for the TPD case

θ(t) = θ(0)

1 + Z[Ω(t) − Ω(0)]θ(0)
(5.10)
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Fig. 5.6 Change of the coverage (in ML: dashed curves) and the desorption rate (in reactions
per second per site: solid curves) as a function of time (in seconds) for isothermal (left) and tem-
perature-programmed (right) associative desorption. The lattice size in the kMC simulations was
128×128 with periodic boundary conditions and each result is an average of 1000 simulations. The
initial coverage was 1 ML for all simulations. On the left the desorption rate constant is 0.4 s−1. On
the right the activation energy is 124.7 kJ/mol, the prefactor is 1013 s−1, the heating rate is 2 K/s,
and the initial temperature is 350 K. The inset shows a snapshot of a simulation with a 64 × 64
square lattice with the black circles depicting the adsorbates. It shows a situation in which about
half of the sites has been vacated. We get horizontal and vertical rows of adsorbates, because the
adsorbates desorb in pairs. Note that there is no diffusion in the simulations

with Ω given by Eq. (4.85). The coverages in Fig. 5.7 vary according to Eqs. (5.9)
and (5.10) because the diffusion is fast.

Next we deal with the case with B ≠ A and for simplicity we again assume that
we have a square lattice with periodic boundary conditions and that A and B react to
form a molecule that immediately desorbs so that we have the associative desorption
A + B → 2∗. We get

(0,0), (1,0) : A B → ∗ ∗,

(0,0), (0,1) : A B → ∗ ∗,

(0,0), (−1,0) : A B → ∗ ∗,

(0,0), (0,−1) : A B → ∗ ∗.

(5.11)

We see that we have to specify four ways in which an A can react with a B corre-
sponding to the different relative orientations of a pair of AB neighbors. There are
two more than for 2A → 2∗, because AB and BA are of course the same when A
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Fig. 5.7 Change of the coverage (in ML: dashed curves) and the desorption rate (in reactions
per second per site: solid curves) as a function of time (in seconds) for isothermal (left) and tem-
perature-programmed (right) associative desorption with diffusion with a rate constant that is 100
times the one of desorption. The lattice size in the kMC simulations was 128 × 128 with periodic
boundary conditions and each result is an average of 1000 simulations. The initial coverage was
1 ML for all simulations. On the left the desorption rate constant is 0.4 s−1. On the right the ac-
tivation energy is 124.7 kJ/mol, the prefactor is 1013 s−1, the heating rate is 2 K/s, and the initial
temperature is 350 K

and B are the same. We can also include diffusion of A and B, which is modeled as
in Eq. (5.7).

Figure 5.8 show a snapshot of a simulation of such a model. The initial config-
uration corresponds to a random mixture of equal numbers of A’s and B’s. It can
be noted that there are areas that have almost no B’s and others that have almost
no A’s. The reason is that locally the number of A’s and the number of B’s are not
the same. After some time the particles in the minority have reacted and the only
particles of the other type are left [4]. The size of the areas with only A’s or only
B’s depends on the ratio between the rate constant of the reaction and the hopping
rate constant. This size increases as

√
t with time [5]. Figure 5.8 also shows that the

coverages decrease as 1/
√

t for large t [4, 6, 7]. Initially, however, the particles are
still randomly mixed, and the coverage decreases according to the macroscopic rate
equations which yields θ(0)/[1 + ZWrxθ(0)t].
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Fig. 5.8 Change of the coverage (solid line) as a function of time (in seconds) for the reaction
A + B → 2∗ on a 128 × 128 square lattice with periodic boundary conditions. The initial con-
figuration was a fully occupied lattice with equal numbers of A’s and B’s. The rate constant for
the reaction is Wrx = 10 s−1 and for diffusion Whop = 1 s−1. The lower dashed line depicts the
change in coverage obtained from the macroscopic rate equations: i.e., when the adsorbates would
be randomly distributed at all times. The upper dashed line is proportional to t−1/2, and shows the
dependence of the coverage at long times. The inset shows a snapshot of an area of 64 × 64 sites
at the end of the simulation. A’s are closed and B’s are open circles

5.5 Modeling Adsorption Sites

5.5.1 Using the Sublattice Index

The previous sections have shown how to model processes involving one or two sites
on a surface with just one site per unit cell. If there is more than one site per unit cell,
then we can use the third index in our notation to model the processes. Figure 5.9
shows a (111) surface of an fcc metal (e.g., Pt). A study of the dehydrogenation of
NH3 on Pt(111) showed that NH3 prefers to adsorb at top sites, NH2 prefers bridge
sites, NH and N prefer fcc sites, and H does not really have a preference [8, 9].
To model the dehydrogenation of NH3 (NH3 → N2 + H2) we can choose primitive
translations a1 and a2 making an angle of 60◦, the top site at 0 with index 0, the fcc
site at 1

3 a1 + 1
3 a2 with index 1, the hcp site at 2

3 a1 + 2
3 a2 with index 2, the bridge

sites at 1
2 a1 with index 3, at 1

2 a2 with index 4, and at 1
2 a1 + 1

2 a2 with index 5. The
dehydrogenation can then be written as

(0,0/0), (−1,0/3), (0,0/1) : NH3 ∗ ∗ → ∗ NH2 H (5.12)

with ∗ a vacant site. We see that the site preference of the adsorbates necessitates
a process in which three sites are involved even though it is just a unimolecular
reaction. This is quite usual for realistic models of reaction systems.
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Fig. 5.9 A (111) surface of
an fcc metal with top (black),
hollow (gray), and bridge
sites (white). The numbers are
the indices of the sites

In fact, the description misses an important aspect that increases the number of
sites substantially. With so many sites in the unit cell as in Fig. 5.9, the distance
between the sites is quite small. As a consequence there is a very strong repulsion
between adsorbates at two different sites in the unit cell. In fact, in the Density-
Functional Theory study mentioned above it was found that the adsorbates did not
stay at their preferred site during a geometry optimization when two of them were
placed together in one unit cell [8, 9]. One way to deal with this is to say that
this repulsion is so strong that an adsorbate at some site prevents other adsorbates
from occupying some of the neighboring sites. We can also say that these sites are
blocked. For the dissociation of NH3 this means that it can only take place if the
target sites for NH2 and H are not blocked. Suppose that an adsorbate blocks all
sites within a circle with a radius equal to the lattice cell parameter of the substrate.
The description above then has to be replaced by

(0,0/0), (−1,0/3), (0,0/1),

(−2,0/2), (−2,0/5), (−1,0/0), (−1,0/1), (−1,0/2), (−1,0/4), (−1,0/5),

(0,0/2), (0,0/3), (0,0/4), (0,0/5), (1,0/0), (1,0/4),

(−1,−1/1), (−1,−1/2), (−1,−1/4), (−1,−1/5),

(0,−1/1), (0,−1/2), (0,−1/4), (0,−1/5), (1,−1/4) :
NH3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
→ ∗ NH2 H ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ (5.13)

We see that only three sites actually change their occupation, but a further 22 have
to be included in the description to make sure that sites (−1,0/3) and (0,0/1) are
not blocked.
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Fig. 5.10 A (100) surface of an fcc metal with top (black) and hollow sites (gray) indicated on
the left. On the right it is shown that a simple lattice with the indicated unit cell is obtained if we
ignore the difference between the sites

5.5.2 Using Labels to Distinguish Sublattices

Using an index to distinguish between the various sites in a unit cell is not the only
way to model sublattices. It is often also possible to do this with labels. Whether one
or the other method is more efficient depends on the substrate and the processes. It
is sometimes also a matter of personal preference.

Suppose that we are dealing with a (100) surface of an fcc metal and that we have
processes involving the top (1-fold) and the hollow (4-fold) site (see Fig. 5.10). Such
system has two sites per unit cell. However, we can ignore this difference as is shown
in the right part of Fig. 5.10. The main advantage is that we can work with a smaller
unit cell with just one site. This can be seen as follows. If a1 and a2 are the primitive
vectors which span the unit cell of the (100) surface (see the left part of Fig. 5.10),
then the sites in the unit cell can be given positions 0 and (a1 + a2)/2. If we can ig-
nore the difference between the two sites, then these sites form a simple lattice with
primitive vectors (a1 + a2)/2 and (a2 − a1)/2. The advantage of working with such
a simple lattice is that in general we may have fewer processes to specify because
we do not distinguish between the two sites, and it will be easier (and computation-
ally cheaper) to do the calculations of position on the surface where a process will
take place. Whether or not this is useful depends on the processes.

Even if we need to distinguish between the two sites, then it is still possible to
work with the lattice with just one site per unit cell. We need, however, to use labels
that distinguish the sites. For example, suppose we are dealing with CO oxidation
with CO adsorbing on top sites and atomic oxygen on 4-fold sites. If the reaction
to form CO2 occurs when a CO and oxygen are at neighboring sites, then we can
model this with

(0,0), (1,0) : CO O → t h,

(0,0), (0,1) : CO O → t h,

(0,0), (−1,0) : CO O → t h,

(0,0), (0,−1) : CO O → t h.

(5.14)
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Here position (1,0) is at direction (a1 + a2)/2 from (0,0), whereas (0,1) is at di-
rection (a2 − a1)/2 from (0,0). The labels “t” and “h” indicate a top or hollow site,
respectively, being vacant. It is important to make sure that a “t” site is always asso-
ciated with CO, and a “h” site always with oxygen. This means that CO adsorption
should be modeled by

(0,0) : t → CO, (5.15)

and dissociative oxygen adsorption by

(0,0), (1,1) : h h → O O,

(0,0), (1,−1) : h h → O O.
(5.16)

The relative positions (1,1) and (1,−1) here correspond to the translations a2 and
a1, respectively. It is also important to make sure that the initial configuration cor-
responds to a checkerboard pattern of “t” or CO and “h” or O. This kind of book-
keeping has the obvious drawback of being error-prone.

With a unit cell with two sites we get for the CO adsorption

(0,0/0) : ∗ → CO, (5.17)

with the third “0” in (0,0/0) referring to the top site in the unit cell. The dissociative
adsorption of oxygen becomes

(0,0/1), (1,0/1) : ∗ ∗ → O O,

(0,0/1), (0,1/1) : ∗ ∗ → O O.
(5.18)

The “1” in (0,0/1) indicates the hollow site. Note that we can now use the same
label “∗” for any vacant site. The oxidation reaction becomes

(0,0/0), (0,0/1) : CO O → ∗ ∗,

(0,0/0), (−1,0/1) : CO O → ∗ ∗,

(0,0/0), (0,−1/1) : CO O → ∗ ∗,

(0,0/0), (−1,−1/1) : CO O → ∗ ∗.

(5.19)

Whether it is better to use labels to distinguish the sites or to work with a unit cell
with two sites depends on the processes and the substrate. Also coding may play a
role. Calculations of the positions of where processes can take place can often be
done more efficient when the lattice sizes are powers of two using shift operators
[10]. If we use labels, then this might not be possible. For example, suppose we
have a (111) surface of an fcc metal and we are dealing with top and the two hollow
sites. These form again a simple lattice, but if we use this simple lattice and periodic
boundary conditions then we have to work with system sizes that are multiples of
three.

Sometimes extra sites need to be introduced if we want to use labels to distin-
guish sublattices. Suppose that we have a (111) surface of an fcc metal. Suppose
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Fig. 5.11 A (111) surface of an fcc metal with only hollow sites indicated on the left. These sites
form a honeycomb lattice. If we add top sites we get a simple lattice as shown on the right

also that all adsorbates prefer the 3-fold sites: both the fcc and hcp sites. These sites
together form the honeycomb structure shown in Fig. 5.11. If we ignore the differ-
ence between the hcp and fcc sites, we do not get a simple lattice. So it seems not
possible to work with a smaller unit cell and use labels to distinguish between the
sublattices. That impression is incorrect however.

The trick is to add sites to make a simple lattice. The right part of Fig. 5.11 shows
that if we add a site in the middle of each hexagon formed by the 3-fold sites, we do
get a simple lattice. The extra site is at the position of a top site, but that is irrelevant
as we will not use the site anyway. With the extra sites we can work with a smaller
unit cell, but we need labels to distinguish between three types of sites.

It is clear that we are paying a price when we add extra sites. Although we do not
use them in the processes, we still need to store them. That price is however very
modest. It depends of course on the size of the system, but the number of sites rarely
exceeds 1 000 000, which means that our trick costs only a few Mb extra storage at
most.

5.5.3 Systems Without Translational Symmetry

The kMC simulations discussed here always assume that the sites form a lattice, but
this does not mean that we can only model systems with translational symmetry. The
previous section on multiple sites in the unit cell has shown that by adding labels
specifying extra properties of a site we can modify the lattice. We can use this to
model a system without translational symmetry.

Suppose we want to model a stepped surface. We can model such a surface with a
large unit cell and multiple sites. This may not be a good idea, however. Suppose we
have parallel steps separated by wide terraces. We will then be dealing with a large
unit cell with many sites, and we will have to specify for each site its processes.
This will generally lead to a long list of processes, even if the different sites on the
terraces have the same properties, and only the sites at the steps behave differently.
Moreover, we can not define such a unit cell if the width of the terraces varies. In
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such a case it is better to use a label to distinguish the sites at the step. For example,
if we are dealing with simple desorption of an adsorbate A then we can model
desorption from a terrace site as

(0,0) : A → ∗, (5.20)

and desorption from a site at the step as

(0,0) : As → ∗s. (5.21)

We add an “s” to indicate the adsorbate on a step site and a vacant step site. Note
that there is a difference with the example of CO oxidation on a (100) surface of the
section on multiple sites in Sect. 5.5.2. There the label “CO” already implied one
type of site and “O” another. Here the same adsorbate can be found on both types
of site. We also need to specify different rate constants for the desorption for both
types of site, because otherwise distinguishing them would not be meaningful. The
precise position of the steps has to be specified in the initial configuration.

For a unimolecular reaction on a step we need to specify just two reactions. If we
have a bimolecular reaction we need to specify reactions for all possible combina-
tions of occupations of step and terrace sites. So if we have a reaction A + B → 2∗,
then we will have A B → ∗ ∗, As B → ∗s ∗, A Bs → ∗ ∗s, and As Bs → ∗s ∗s.
Diffusion can also be regarded as a bimolecular reaction, and we need to spec-
ify A ∗ → ∗ A, As ∗ → ∗s A, A ∗s → ∗ As, and As ∗s → ∗s As for the diffusion
of A. Needless to say that all these possibilities will have in general different rate
constants.

In a realistic model of a surface it may not suffice to just change labels to indicate
step sites. Figure 5.12 shows a so-called (111) step of an fcc(111) surface. The figure
also shows the relevant sites if we assume that all adsorbates prefer top sites. If we
draw only the sites, we see that we have no translational symmetry in the direction
perpendicular to the step. We can try to get translational symmetry by introducing
extra sites as we have done with using labels to distinguish different sublattices (see
Sect. 5.5.2). That is possible as is shown in the figure, but there is a much simpler
approach.

It is important to realize that the only geometric information that is used in kMC
simulations is the translational symmetry of the lattice points. There is no informa-
tion on distances between the lattice points and their relative position with respect
to each other. All that information is implicitly contained in the processes and their
rate constants. We have already seen that in the discussion of the modeling frame-
work in Sect. 5.3 where we saw the difference in the associative desorption on a
square and a hexagonal lattice.

The relevance of these remarks on the geometric information is that we are al-
lowed to shift sites and draw them as shown on the right in Fig. 5.12. We see that
we have restored the translational symmetry in two directions. The way we can im-
plement the step is now as follows. We label the sites at the step on the upper terrace
using “u” (for “up”), those at the step on the lower terrace using “d” (for “down”),
and those on the terraces using “t” (for “terrace”). The processes use these labels to
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Fig. 5.12 A (111) step on a (111) surface of an fcc metal on the left, the top sites in the middle-left,
top sites with extra sites in gray to form a simple lattice in the middle-right, and the simple lattice
that is formed after the top sites of one terrace have been shifted on the right

Fig. 5.13 A (100) step on a (111) surface of an fcc metal on the left, the top sites in the middle,
and the simple lattice that is formed after the top sites of one terrace have been shifted as indicated
by the arrow on the right

distinguish between terrace sites and those at the step just as before. That there is no
translational symmetry perpendicular to the step at the step is irrelevant.

Extra care is sometimes necessary. Figure 5.13 shows a (100) step of an fcc(111)
surface. Again the top sites show only translational symmetry in two directions if
we shift the sites of the upper terrace with respect to those of the lower terrace.
But the shift is not perpendicular to the step in this case. There is also a compo-
nent parallel to the step. This has two consequences. The first and most important
one has to do with the specification of the processes. Suppose we have a reaction
between an adsorbate A at the bottom of the step and a neighboring adsorbate B
at the top of the step. This will give us a specification of the form Ad Bu → . . . ,
where we have added “u” and “d” as defined above for a (111) step. The problem
is the indexing of the sites. The right part of Fig. 5.13 suggests that we should have
(0,0), (0,1) : Ad Bu → . . . and (0,0), (−1,1) : Ad Bu → . . . (a1 is then parallel to
the step and a2 makes an angle of 60◦ with a1), but the middle part of the figure
clearly shows that a top site at the bottom of the step has only one top site as neigh-
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bor at the top of the step. One of these specification should therefore be left out. It
depends on how we shift the sites which specification is the correct one to keep.

The second and more subtle consequence of the shift parallel to the step has to
do with periodic boundary conditions. If we use the normal ones for the right part of
Fig. 5.13, then we are effectively using skewed periodic boundary conditions for the
actual system. As these conditions should not affect the results of the simulations
anyway, this does not matter for a proper simulation. It may matter however if we
have a system with a large correlation length. Suppose that we want to study a
reaction system that shows pattern formation (e.g., see Sect. 7.5.2). If the patterns
have a length scale that is comparable to the size of the system, then the boundary
conditions can affect the results. Of course, one can argue that the system is then
chosen too small, but it may not be practical to increase the size of the system.

Using labels to indicate defects will be unavoidable if we have point defects
that are not regularly distributed over the surface. The specification of the initial
configuration determines where the defects are. It is of course also possible to have
more than one type of defect.

On a surface with defects most sites will be normal sites and only a minority will
be a defect site. Labels can also be used when that is not the case. This means that
we can use it to model a surface of a bimetallic catalyst. Only the interpretation of
the label changes: it will not indicate a normal or defect site, but a site on one or the
other metal or even a site at the interface between the metals.

So far the occupation of the sites have been allowed to change through processes,
but the properties of the sites themselves have been fixed. This need not be the
case. The surface composition of a bimetallic catalyst may change, or we might be
dealing with a reconstructing surface. For a reconstructing surface we can introduce
a label that specifies to which phase of the substrate a site belongs. A change of
surface composition of a bimetallic catalyst or a reconstruction can be modeled
with processes that specify the changes in the substrate. For example, there have
been many studies of CO oxidation on reconstructing platinum surfaces. In one of
the simplest models of this process there are process for the growth of the phases
[11–13]. One phase, called the α phase, growths if there are no adsorbates. This can
be modeled by

(0,0), (1,0) : ∗α ∗ β → ∗α ∗ α. (5.22)

The β phase growths in an area with sites occupied by CO.

(0,0), (1,0) : COβ COα → COβ COβ. (5.23)

It should be realized that there are restrictions in what one can do with a changing
substrate in kMC simulations. One does need to be able to put everything on a
lattice. Reconstructions that lead, for example, to surface structure with a different
density can only be modeled if this change is ignored [14]. Also it may not be
possible to model changes of the local point group symmetry.
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5.5.4 Bookkeeping Sites

All the lattices that we have seen so far correspond to the actual adsorption sites of
a substrate. That need not be. Often it is convenient to introduce an extra sublattice
(i.e., extra sites in a unit cell) to store information. Suppose we have a Pt-Ru alloy
that is used as an electrode for electrocatalytic CO oxidation [15, 16]. Also suppose
for simplicity that the sites form a simple lattice, but some sites are on Pt and others
on Ru. We have CO and OH as adsorbates. The latter is formed when water disso-
ciatively adsorbs. This forms OH on the electrode, a proton that dissolves, and an
electron that is taken up by the electrode. CO and OH react to form CO2 that desorbs
immediately, a proton, and an electron. To distinguish between adsorbates on Pt or
Ru we can use, for example, the labels CO(Pt), CO(Ru), OH(Pt), OH(Ru), ∗(Pt),
and ∗(Ru) with obvious meaning. This would be the approach used in Sect. 5.5.3.

Another way to model this CO oxidation however is to use two sublattices or to
have two lattice points in the unit cell that both correspond to the same adsorption
site. The idea of these two lattice points is that one has information on the occupation
(CO, OH, or vacant) and the other on the metal of the substrate (Pt or Ru). The
formation of CO2 in the former approach would be represented by

(0,0), (1,0) : CO(Pt) OH(Ru) → ∗(Pt) ∗(Ru) (5.24)

and similar reactions. In the model with two sublattices this becomes

(0,0/0), (0,0/1), (1,0/0), (1,0/1) : CO Pt OH Ru → ∗ Pt ∗ Ru. (5.25)

The drawbacks of this approach are obvious. The description of the processes are
more extensive, and there is a higher memory use. The advantage is that the labels
become simpler, because we decouple the occupation from the type of site. Some-
times it also makes the process description simpler. Suppose we have a diffusion of
CO that is the same on Pt and Ru. In such a case

(0,0/0), (1,0/0) : CO ∗ → ∗ CO (5.26)

is a good description. There is no reference to the substrate. This makes not only the
description simpler, but it is also more efficient, because no checking is needed for
the labels of the other sublattice.

It is clear that splitting the information on a site over two or more sublattices
can also be used to model steps and reconstruction. But that is not the only way
such extra lattice points can be used. We will see later that it can be convenient for
storing all kinds of useful information. This information can refer to one site or to
a group of sites. We will call such extra lattice points bookkeeping sites, because of
the nature of the information that is often stored in them.



142 5 Modeling Surface Reactions I

5.6 Using Immediate Processes

We have not given much attention in this chapter to the rate constants of the pro-
cesses. We have only said that there is such a rate constant and from Chap. 3 we
know that this means that there is a probability distribution for the time that the
process will take place. It turns out to be very convenient to allow the rate constant
to become infinite and even to distinguish between different orders of infinity. Pro-
cesses with an infinite rate constant occur immediately when they become possible
(i.e., enabled in the terminology of Chap. 3) and we call them therefore immediate
processes.

5.6.1 Very Fast Processes

The most trivial use of immediate processes is to model a very fast process: i.e., a
process with a rate constant that is so large that it is almost certain that the process
will occur before any other process. In such a situation it is advantageous to use an
immediate process. The first advantage is that one need not bother about determining
the precise value of the rate constant. The second, and more important, advantage
is that the time that the process occurs is the time that it has become possible, and
no random number needs to be generated and a time determined. All computations
concerning Eq. (3.11) or Eq. (3.25) are thus avoided.

There are many examples in the literature of such a use of immediate processes,
in particular in studies of simple models directed at understanding certain kinetic
aspects and the development of kinetic concepts. For example, in the ZGB model
(see Sect. 5.2) the formation of CO2 is assumed to be infinitely fast. This, and a few
other assumptions, allows the reduction of the number of kinetic parameters to just
one: the fraction of gas molecules that are CO [17].

Using immediate processes does not mean that the generation of random num-
bers is completely avoided for such processes. Suppose that in the ZGB model just
mentioned a CO molecule adsorbs next to two oxygen atoms. Because CO2 forma-
tion is an immediate process, CO will react with one of the oxygen atoms, but which
one is arbitrary and we need to generate a random number to decide which process
will actually take place.

Suppose that the CO molecule after adsorption could also react differently: e.g., it
could also dissociate. The question is then what the molecule will actually do. If the
other process has a finite rate constant, then the immediate process (CO2 formation)
will occur. But what if the other process is also an immediate process. For example,
there is no CO diffusion in the original ZGB model, but diffusion is generally a very
fast process. So if we would have diffusion as an immediate process as well, then
the situation is not clear. We might simply choose one of the processes, but that may
be unrealistic.

For such a case we distinguish between different orders of infinite rate constants:
i.e., we give the immediate processes priorities. An immediate process with a high
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Fig. 5.14 Snapshots of holes in an oxygen layer that have been formed from reactions with CO. In
both cases the initial situation was a surface completely covered with oxygen except for one site.
Diffusion of CO and reaction with oxygen are infinitely fast, but on the left the reaction is infinitely
faster than the diffusion (i.e., it has a higher priority) and on the right it is the other way around

priority will occur before an immediate process with a low priority. This can be
important. Figure 5.14 shows an oxygen layer that started with a small hole after
exposure to CO. CO adsorbs, reacts with oxygen possibly after diffusing over the
surface, and then forms CO2 which will desorb from the surface, thus enlarging the
hole in the oxygen layer. The shape of the hole depends on whether diffusion or
CO2 formation is the faster of the two processes.

The ZGB model uses a square lattice representing a (100) surface of an fcc metal.
A CO molecule on such a lattice has a probability of reacting with a neighboring
oxygen atom no matter on which neighboring site the oxygen atom sits. This should
not be the case for a rectangular lattice that represents a (110) surface of an fcc metal.
There should be a different rate constant for a reaction with a neighboring oxygen
atom in one direction than for the direction perpendicular to it. It is possible in this
situation too to have different priorities for the infinitely fast reactions. Suppose
a CO molecule has an oxygen atom neighbor in direction [1 1̄ 0] and an oxygen
atom neighbor in direction [1 0 0]. It will react with both of them infinitely fast, but
it prefers to react with the one in direction [1 1̄ 0] because it is nearer. In such a
situation one should give the reaction with the neighbor in direction [1 1̄ 0] a higher
priority.

5.6.2 Flagging Structural Elements

Very fast processes are certainly not the most important use of immediate processes.
They are more important in situations where a special-purpose code would have a
piece of code to handle special situations. We will show here that the same can
often be done with immediate processes. This has the advantage that the theoretical
framework of Chap. 2 still applies.
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As a first application we will look at using immediate processes to determine
the presence of certain structural elements. Suppose we do a simulation of Fischer–
Tropsch synthesis [18]. The reaction conditions are such that chain growth is diffi-
cult and we expect a high selectivity for methane and a rapidly decreasing amount of
Cn species with increasing n. However, we find that hardly any methane is formed.
The question is if this is due to the small rate constant of the CH3 + H → CH4 reac-
tion, or if the diffusion of the reactants is hindered by a high coverage so much that
CH3 and H never meet.

There are various ways to answer that question, but we will look at one that
looks at how often configurations in which the reactants can actually react occur. In
a special-purpose code this would be accomplished by code that would check the
system by scanning the adlayer or by checking every time that a favorable configu-
ration might have formed. Immediate processes do however as well. Apart from the
processes we need bookkeeping sites to store information.

Let’s suppose for simplicity that we have a square lattice, and the CH4 can be
formed if CH3 and H are at neighboring sites. For each pair of neighboring sites we
create one bookkeeping site. Per unit cell we then have one real and two bookkeep-
ing sites. Site (n1, n2/1) is the bookkeeping site for the pair of sites (n1, n2/0) and
(n1 + 1, n2/0), and (n1, n2/2) for (n1, n2/0) and (n1, n2 + 1/0). The bookkeep-
ing sites have a label “set” or “unset”. We start with all labels for the bookkeeping
sites equal to “unset”. A site becomes “set” via one of the next immediate pro-
cesses.

(0,0/0), (1,0/0), (0,0/1) : CH3 H unset → CH3 H set,

(0,0/0), (1,0/0), (0,0/1) : H CH3 unset → H CH3 set,

(0,0/0), (0,1/0), (0,0/2) : CH3 H unset → CH3 H set,

(0,0/0), (0,1/0), (0,0/2) : H CH3 unset → H CH3 set.

(5.27)

These processes allow us to determine the number of CH3–H pairs in a configura-
tion.

The procedure above is all we need if we have a given configuration and want to
count the number of CH3–H pairs in that configuration. The immediate processes
are then also the only processes that we need in a simulation: i.e., we have a separate
simulation for counting the number of CH3–H pairs. This is straightforward, but also
quite cumbersome if we want to know how the number of CH3–H pairs varies in a
kMC simulation. What we rather have is a procedure that keeps track of the number
of CH3–H pairs during the Fischer–Tropsch simulation. For that we can still use the
immediate processes above, but we also need processes that unset the bookkeeping
sites if processes occur that remove CH3–H pairs.
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If we have only CH3 or H as adsorbates on the surface, then we only need

(0,0/0), (1,0/0), (0,0/1) : CH3 ∗ set → CH3 ∗ unset,

(0,0/0), (1,0/0), (0,0/1) : ∗ CH3 set → ∗ CH3 unset,

(0,0/0), (0,1/0), (0,0/2) : CH3 ∗ set → CH3 ∗ unset,

(0,0/0), (0,1/0), (0,0/2) : ∗ CH3 set → ∗ CH3 unset

(5.28)

where ∗ is a vacant site, to handle situations where hydrogen is removed from the
site. A similar set of immediate processes is needed for the case where CH3 is
removed. This method becomes rather cumbersome if CH3 or H can also react to
form other adsorbates. For example, CH3 may split off another hydrogen atom and
form CH2. We can of course extend the set of immediate processes, but another
approach may be easier.

We define another bookkeeping site (n1, n2/3). This site normally has a label
“idle”. For each process that involves CH3 or H at site (n1, n2/0) the label of
(n1, n2/3) is changed to “reset”. This triggers the following immediate processes,
which change the older bookkeeping sites.

(0,0/3)(0,0/1) : reset set → reset unset,

(0,0/3)(0,0/2) : reset set → reset unset,

(0,0/3)(−1,0/1) : reset set → reset unset,

(0,0/3)(0,−1/2) : reset set → reset unset.

(5.29)

We don’t want the label of (n1, n2/3) to remain “reset” so we also need

(0,0/3) : reset → idle. (5.30)

This gives us all the necessary immediate processes, except that we also need
some control that makes sure that process (5.30) does not occur before all appropri-
ate “set” labels are changed to “unset”. So as long as processes (5.29) are possible,
process (5.30) should not take place. This can be accomplished by giving (5.29) a
higher priority than (5.30).

Suppose we have a process that swaps CH3 and H when they are neighbors. We
do not want to change the “set” label corresponding to this pair, but because CH3
and H might be part of other CH3–H pairs, we do change the “idle” labels of these
adsorbates to “reset”. This causes all neighboring “set” labels to “reset”, including
the one of the CH3–H pair that is swapped. This is not what we want, but it is not
really a problem, because (5.27) changes it back to “set” again. However, this works
only if (5.27) is the last immediate process to occur. So (5.27) should be given a
lower priority than (5.30) and (5.29).

We can now keep track of the number of CH3–H pairs in the Fischer–Tropsch
simulation. There are two ways in which sublattices 1 and 2 can be used. One way
is simply to look at the “coverage” of the “set” labels. This is equal to the number
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of CH3–H pairs. This method might not work if this pairs exist only very briefly
and the labels of sublattices 1 and 2 are always all “unset”. It is then better to count
the number of times (5.27) occurs minus the number of times (5.29) occurs. There
should be no “set” labels in the initial configuration with this approach. This method
may not work however if CH3–H pairs are very often formed and removed. The
reason is that one tries to determine a small difference between two large numbers,
which is hard to do accurately.2

The method described above can be used to detect all other kind of structures.
It can be transferred to the detection of any pair correlations as is, but also the way
to set up the detection of more complicated structures is straightforward. The idea
is always to have an immediate process that is triggered when the structure that we
are looking for is formed. This should change the label of a bookkeeping site. The
difficult part is to change this label back when the structure is broken up. A careful
assignment of priorities is required as incorrect priorities can easily lead to infinite
loops of immediate processes.

5.6.3 Counting

Sometimes one wants to count how often some structural element is found at a
certain position on the surface. This is really an extension of setting a flag to indicate
that a structural element is present or not. We will see in Sect. 6.3 how the result of
such counts can be used.

Suppose we have a site and we want to know how many of the neighboring sites
are occupied. For simplicity we assume that we have a square lattice and that there
is only one type of adsorbate which we call “A”. To store the count we need book-
keeping sites: one for each real site. So we use a second sublattice. We need labels
that indicate how many of the neighboring sites are occupied. It is natural to use the
labels “0”, “1”, “2”, “3”, and “4”. Note however that they look like integers, but in
our formalism they are labels. In particular, we can not use them for arithmetic.

2Yet another way to determine the number of CH3–H pairs would be to have a normal process
that takes place if there is a CH3–H pair, but that does not change the configuration. The rate
of such a process is equal to its rate constant times the coordination number of the lattice times
the probability that a pair of neighboring sites is occupied by a CH3–H pair. As we know the
coordination number and can choose the rate constant, the rate allows us to calculate the probability
of a CH3–H pair. This method has however one drawback. The result is approximate, because
the process is a stochastic process. We can make the result more accurate by increasing the rate
constant, but that would increase the number of times that the process occurs and slow down the
simulation. The method with the immediate processes does not have this drawback, but it does
require more computer memory because of the bookkeeping sites and it is also more complex.
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If a site becomes occupied, then we need to increase the counts of the neighboring
sites by 1. Just having processes

(0,0/0), (1,0/1) : A 0 → A 1,

(0,0/0), (1,0/1) : A 1 → A 2,

(0,0/0), (1,0/1) : A 2 → A 3,

(0,0/0), (1,0/1) : A 3 → A 4,

(5.31)

and symmetry-related processes won’t do, because these processes will continue to
occur until all counts have become “4”. To avoid this we need to change the labels
“0”, “1”, “2”, “3”, and “4” to labels for which there are no processes that lead to a
further increase of the count. At some stage however we want to change these labels
back to the labels “0”, “1”, “2”, “3”, and “4” again without a further increase of the
count. This means that we also need to use other labels for the adsorbate.

A solution to the problem of runaway counts is the following. If there is an ad-
sorption, this does not create a new label “A” at the site of adsorption, but a label
“new”. We have the following processes for that label.

(0,0/0), (1,0/1) : new 0 → new t1,

(0,0/0), (1,0/1) : new 1 → new t2,

(0,0/0), (1,0/1) : new 2 → new t3,

(0,0/0), (1,0/1) : new 3 → new t4.

(5.32)

Note that instead of “1”, “2”, “3”, and “4” we have labels “t1”, “t2”, “t3”, and “t4”
for the counts. Because there are no processes for these labels, there is no runaway
effect.

After all the counts have been updated we change the “new” label.

(0,0/0) : new → A. (5.33)

This creates the proper label for an adsorbate. There are no processes containing “A”
that change the counts, so they retain there correct value. After the “new” label has
been removed we have

(0,0/1) : t0 → 0,

(0,0/1) : t1 → 1,

(0,0/1) : t2 → 2,

(0,0/1) : t3 → 3,

(0,0/1) : t4 → 4.

(5.34)

This changes the labels of the counts to their correct values.
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Of course, the specification above calls for a specific order in which the processes
should occur. This means that these processes should all be immediate processes
with a certain priority. Processes (5.32) should have the highest priority, process
(5.33) should have a lower priority, and processes (5.34) should have the lowest
priority.

In a similar way we can model desorption. The site from which an adsorbate has
just desorbed gets a label “gone”. Then there is a set of processes with the same
priority as processes (5.32), which are giving by

(0,0/0), (1,0/1) : gone 1 → gone t0,

(0,0/0), (1,0/1) : gone 2 → gone t1,

(0,0/0), (1,0/1) : gone 3 → gone t2,

(0,0/0), (1,0/1) : gone 4 → gone t3.

(5.35)

Then there is

(0,0/0) : gone → ∗, (5.36)

with ∗ standing for a vacant site, which has the same priority as process (5.33).
Finally, processes (5.34) occur which change the labels of the counts to their correct
values.

Diffusion can be implemented using

(0,0/0), (1,0/0) : A ∗ → gone new, (5.37)

but note that this works for a square lattice, but not for an hexagonal lattice. The
reason why this works for a square lattice is that the neighbors of (0,0/0) and
(1,0/0) form disjoint sets, and counts stored at (0,0/1) and (1,0/1) are handled
correctly. If we have a hexagonal lattice, then there are two sites that are neighbors
of both (0,0/0) and (1,0/0). The process above gives incorrect results for these
sites. The simplest way to handle this problem is to have an immediate processes
like

(0,0/0), (1,0/0), (1,1/1) : gone new 1 → gone new t1, (5.38)

et cetera with (1,1/1) a neighboring site of (0,0/0) and (1,0/0). This, and similar
processes, should have a priority that is higher than any of the processes above.

Other processes that create or remove the adsorbate can be handled in the same
way. The approach can also be extended to systems with different types of adsorbate.

5.6.4 Decomposing the Implementation of Processes

When many sites are involved in a process they can be included directly in the
description, but sometimes it is better to split it into a number of processes. Because
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the combination of these processes must have a probability distribution for the time
that the process takes place that is the same of that of the description as a single
process, all but the first of these processes to occur must be immediate processes.
This can be seen as follows. Suppose that we have just two processes with rate
constants W1 and W2. The process with rate constant W2 takes place after the one
with rate constant W1. If we start at time t = 0, then the second process will take
place at a time t with probability distribution

∫ t

0
dt ′W2e

−W2(t−t ′)W1e
−W1t

′ = W1W2

W2 − W1

[
e−W1t − e−W2t

]
. (5.39)

This probability distribution differs from the usual exponential distribution unless
W1 or W2 is infinite. Because we want both processes to take place at the same time,
we need W2 → ∞.

Suppose that we have an adsorbate A with a strong repulsion so that the neighbor-
ing sites can not be occupied. There may be several reasons for this. The adsorbate
may be rather bulky, neighboring sites are very close, there is a strong through-
metal interaction, et cetera [19]. We might try to model this using a description that
involves the adsorption site and its neighbors as is discussed in Sect. 6.2, but there
is another option. The adsorption we model simply with

(0,0) : ∗ → A (5.40)

with ∗ a vacant site. This process has a finite rate constant. The blocking of the
neighboring sites is modeled with

(0,0), (1,0) : A ∗ → A blocked. (5.41)

This process, and the symmetry-related ones, are infinitely fast. This seems quite
straightforward, but things become a bit more tricky when the adsorbate can also
diffuse and desorb. We look at desorption. Just

(0,0) : A → ∗ (5.42)

does not work, because this leaves “blocked” labels for sites that are not blocked
any longer.

(0,0), (1,0) : A blocked → ∗ ∗ (5.43)

doesn’t work either, because this process can occur only once for each adsorbate.
This means only one label “blocked” is changed back to ∗, but the adsorbate may
have been blocking more than one site. What does work is first

(0,0) : A → vacated, (5.44)

The label “vacated” indicates that an adsorbate has just desorbed from the site. It is
used to remove the “blocked” labels by

(0,0), (1,0) : vacated blocked → vacated ∗ (5.45)
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and symmetry-related immediate processes. Note that the label “vacated” stays so
that it can remove all “blocked” labels. To get rid of the “vacated” label we finally
have another immediate process

(0,0) : vacated → ∗. (5.46)

It is clear that this process should only occur after all “blocked” labels have been
removed, so it should have a lower priority than the previous process. The last thing
that we now need to do is to give the original blocking process (5.41) an even lower
priority. If we would not do that we could get the following infinite loop

blocked A blocked A → blocked vacated blocked A
→ blocked vacated ∗ A
→ blocked vacated blocked A
→ blocked vacated ∗ A
→ . . . (5.47)

(We show only the sites along one line for convenience.) With the blocking process
having the lowest priority, sites only become blocked again after the “vacated” label
has been removed.

5.6.5 Implementing Procedures

The real strength of immediate processes becomes apparent when we model large
molecules with many configurations and possibly with different and/or variable
sizes. For such systems it is not possible to list all patterns. Let’s assume we want
to model linear polymer chains on a surface. We assume that we can model such
molecules with a square lattice with the monomers forming the polymer chains ad-
sorbed on neighboring sites horizontally or vertically. Moreover, we assume that
monomers that are not linked to each other can not be at neighboring sites either
horizontally, vertically, or diagonally. We show how immediate processes can be
used to model reptation for such molecules.

We use three labels to model a polymer chain: “head”, “body”, and “tail” (see
Fig. 5.15). The labels “head” and “tail” indicate the monomers at the ends. The
other monomers are labeled “body”. We will show how to implement a reptation
“head”-first, but we will also show how to extend the model to have the polymer
reptate in the opposite direction.

The first process, and the only one that is not an immediate process, moves the
head to a new position.

(0,1) (1,1)

(−1,0) (0,0) (1,0)

(0,−1) (1,−1)
:

∗ ∗
head ∗ ∗

∗ ∗
→

∗ ∗
fh head ∗

∗ ∗
. (5.48)
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Fig. 5.15 Square lattice with
an example of polymer
chains. The labels “head”,
“tail”, and “body” are
depicted by black, white, and
gray circles, respectively

Note all the extra lattice points that need to be vacant for the head to move. This is
to make sure that only linked monomers can occur at neighboring sites. The label
“fh” stands for “follow head”, and indicates the monomers that move after the head.
Note also that we only give one process that moves the head. There are three others
that are symmetry-related and that correspond to reptation in other directions. We
give also just one representative description for all subsequent processes.

This “fh” label initiates a chain of immediate processes. The process above only
changes the monomer that used to be the head. To change the other monomers we
have the immediate process

(0,0), (1,0) : fh body → fh fh. (5.49)

This changes all the “body” labels to “fh”. To retract the tail we need

(0,0), (1,0) : fh tail → ft ∗. (5.50)

We see that the lattice point with the tail becomes vacant, and the new tail is labeled
“ft”. This new label initiates another chain of immediate processes that transform
the monomers again.

(0,0), (1,0) : fh ft → ft ft. (5.51)

Then the new tail is given its proper label using

(0,1)

(−1,0) (0,0) (1,0)

(0,−1)
:

∗
ft ft ∗

∗
→

∗
ft tail ∗

∗
(5.52)
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and the rest of the monomer are changed to “body” using

(0,0) : ft → body. (5.53)

Note that (5.52) needs all the vacant lattice points to detect the proper “ft” label that
is the new tail.

It might seem that the combination of immediate processes is needlessly com-
plicated, but it is not. In fact, these process as they stand are not complete yet. It is
very important to give them the correct priorities. The reason why there are so many
immediate processes is that we want the changes that they make to occur in the same
order that we have described them. What would definitely not work is moving the
head with (5.48) and the tail with

(0,0), (1,0) : body tail → tail ∗. (5.54)

The problem with this is that the processes are not coupled. We would then have one
process that elongates a polymer chain and another that shortens it but they can take
place at different times and for different molecules. This would not be a reptation of
one polymer. The need for (5.49) is that we want to determine the tail of the same
polymer for which we move the head.

To see why we need (5.50) and (5.51) is more subtle. Why not have

(0,0), (1,0) : fh tail → tail ∗ (5.55)

instead of (5.50) and

(0,0) : fb → body ? (5.56)

The problem with this is that we get an infinite loop of immediate processes. As soon
as the last process takes place, process (5.49) becomes possible again and changes
“body” back to “fb”. The reason for changing “fb” to “ft” is to avoid such infinite
loops.

For processes (5.48) to (5.53) to work we need to assign priorities to avoid the
same kind of infinite loop. This means that we should not change “ft” too soon to
“body”. Changing “fh” to “ft”, process (5.51), and making the new tail, process
(5.52), should have a higher priority than the other processes. However, (5.51) and
(5.52) can be given the same priority, and also the other processes can be given the
same, but lower, priority. Note that although some processes need to occur before
others, this does not necessarily imply that they need to have a higher priority. For
example, (5.50) will always occur after (5.49) independent on the priorities.

The implementation above distinguishes between the two ends of the polymer,
and reptation is only possible in one direction. If you want the polymer to reptate
in both directions there are at least two possibilities. The easiest is to add a set of
processes that is identical to the ones above except that the roles of “head” and “tail”
are reversed. (The names “head” and “tail” are then not appropriate anymore, and
should be changed.) It is advisable not to use “fh” and “ft” again, however, but use
other labels. This is to avoid triggering any of the processes above.
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The alternative is to add a set of processes that swap the labels “head” and “tail”.
The drawback of this approach is that reptation in the opposite direction becomes
a combination of two processes. This makes it slower and the distribution function
for the time of occurrence is not an exponential function anymore (see Eq. (5.39)).
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Chapter 6
Modeling Surface Reactions II

Abstract The way to model many processes for kinetic Monte Carlo simulations
is straightforward. There are however also processes that one encounters regularly
and for which there are more modeling options and for which the best is not always
clear. We discuss here several of them. We look at how to handle site blocking by
large adsorbates and other cases with strong repulsion. We show several ways to im-
plement finite lateral interactions. Fast diffusion and other fast processes are shown
to be not necessarily a hindrance for efficient simulations. Some fast processes can
even be combined with slower processes in one effective process. Tagging adsor-
bates is introduced to simulate isotope experiments and to obtain information on
diffusion. Our two-dimensional modeling framework is shown to be capable to deal
with simulating reactions on nanoparticles. Non-physical processes are shown to be
useful to create the initial configuration of a kinetic Monte Carlo simulation.

6.1 Introduction

Chapter 5 has introduced the tools that are available within the theoretical frame-
work of Chap. 2 to model processes on surfaces. In this chapter we discuss how
these tools can be used to model specific chemical and physical aspects that one
meets when one starts implementing such processes. The distinction between the
topics discussed here and those in Chap. 5 are not completely unambiguous. For
example, the discussion on how to implement multiple sites in the unit cell of a sur-
face (Sect. 5.5.2) and the various ways to model steps (Sect. 5.5.3) would also fit
well in this chapter. The difference between the chapters is really a point of view.
In Chap. 5 we discussed modeling tools and showed what could be done with them.
Here we will start with the question of how to model some process and then show
how to do that.

This chapter is also mainly important if you are using a general-purpose code
for your kinetic Monte Carlo (kMC) simulations, but it also gives an impression of
the various ways you can hardcode some model in special-purpose codes. In fact,
because the starting point in this chapter is some chemical or physical problem, it
brings the fact that there are often several ways to implement a model better to the
fore.

A.P.J. Jansen, An Introduction to Kinetic Monte Carlo Simulations of Surface
Reactions, Lecture Notes in Physics 856,
DOI 10.1007/978-3-642-29488-4_6, © Springer-Verlag Berlin Heidelberg 2012
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6.2 Large Adsorbates and Strong Repulsion

Suppose that we have adsorption of a somewhat bulky adsorbate A. The adsorbate
occupies not only a particular site, but also makes it impossible for other adsor-
bates to occupy neighboring sites. We have already seen how this can be done with
infinitely fast processes in Sect. 5.6.4. The adsorption we model simply with

(0,0) : ∗ → A (6.1)

with ∗ a vacant site. This process has a finite rate constant. The blocking of the
neighboring sites is modeled with the immediate process

(0,0), (1,0) : A ∗ → A blocked, (6.2)

and symmetry-related processes. For desorption we have

(0,0) : A → vacated. (6.3)

The label “vacated” indicates that an adsorbate has just desorbed from the site. It is
used to remove the “blocked” labels by

(0,0), (1,0) : vacated blocked → vacated ∗, (6.4)

which is an another immediate process. Note that the label “vacated” stays so that
it can remove all “blocked” labels. To get rid of the “vacated” label we finally have
yet another immediate process

(0,0) : vacated → ∗. (6.5)

These immediate processes should be given the right priorities as discussed in
Sect. 5.6.4: i.e., (6.4) should have the highest priority, (6.5) a lower one, and (6.2)
should have the lowest.

We have to take care if we want to extend this approach to diffusion. We might
try

(0,0), (1,0) : A blocked → vacated A. (6.6)

The “vacated” label removes the “blocked” labels for the neighbors of the old ad-
sorption site of A. However, this is not always correct, because site (1,0) might
have other A’s at neighboring sites besides the one originally at (0,0). The process
would then put two, or more, A’s at neighboring sites.

One way to deal with this is to check the neighboring sites of (1,0). If we have a
square lattice this might look as follows. Instead of the process above, we have

(1,1)

(0,0) (1,0) (2,0)

(1,−1)
:

notA
A blocked notA

notA
→

notA
vacated A notA

notA
. (6.7)



6.2 Large Adsorbates and Strong Repulsion 157

Here “notA” stands for either “blocked” or “∗”. So there are really eight different
processes, plus symmetry-related ones, that we have to include to model the diffu-
sion in this way. An alternative approach would be to undo a diffusion process that
should not have occurred. We do use (6.6), but also add the immediate process

(0,0), (1,0), (2,0) : vacated A A → A blocked A (6.8)

with a priority higher than any of the other immediate processes. This process puts
the A that has just jumped back on its original site when it gets another A as its
neighbor. We also need to add two more processes to test for A’s at sites (1,1) and
(1,−1) instead of (2,0).

Of course, undoing a process is inefficient. There may also be an inefficiency
related to the “vacated” label. The “blocked” labels on neighbors of “vacated” are
changed to “∗”, but this is not always what we want, because these sites may be
neighbors of other adsorbates. These adsorbates will change the appropriate “∗”
labels back to “blocked”, but only after “vacated” has been changed to “∗”. For this
reason another way to model these processes might be considered.

The advantage of using immediate processes is that the number of sites involved
in the description of a process can be kept low. Pattern matching will be efficient.
Another way to model the same processes above is to check always the neighbors
of a site that becomes occupied. If we have a square lattice the adsorption becomes

(0,1)

(−1,0) (0,0) (1,0)

(0,−1)
:

∗
∗ ∗ ∗

∗
→

∗
∗ A ∗

∗
. (6.9)

The desorption is very simple, because it involves no changes in labels except to
one of the adsorption site.

(0,0) : A → ∗. (6.10)

Diffusion is very similar to adsorption. We get

(0,1)

(−1,0) (0,0) (1,0)

(0,−1)
:

∗
A ∗ ∗

∗
→

∗
∗ A ∗

∗
(6.11)

for a square lattice. For diffusion there are three other symmetry-related processes.
We see that with this approach we do not have immediate processes, but adsorption
and diffusion involve more than two sites. Note also that we need to specify explic-
itly all neighbors of a site. The description of adsorption and diffusion would be
different for a hexagonal lattice.

Although we have started this section with stating that the adsorbate A is bulky,
the descriptions above are also valid for other adsorbates that prevent neighbor-
ing sites from becoming occupied. This is the case for example when an adsorbate
changes the electronic structure of the substrate in such a way that adsorption on
neighboring sites becomes unfavorable. Other mechanisms might be operable as
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well: see [1]. Suppose that the adsorbate is really large and not only prevents other
adsorbates from occupying neighboring sites, but actually occupies not just one site
but also the neighboring sites. The following implementation then seems obvious.
For adsorption we use

(0,1)

(−1,0) (0,0) (1,0)

(0,−1)
:

∗
∗ ∗ ∗

∗
→

A
A A A

A
, (6.12)

for desorption

(0,1)

(−1,0) (0,0) (1,0)

(0,−1)
:

A
A A A

A
→

∗
∗ ∗ ∗

∗
, (6.13)

and for diffusion

(0,1) (1,1)

(−1,0) (0,0) (1,0) (2,0)

(0,−1) (1,−1)
:

A ∗
A A A ∗

A ∗
→

∗ A
∗ A A A

∗ A
. (6.14)

There is one big problem with this implementation, however, and if that problem is
solved then there is still one important difference with the two preceding implemen-
tations.

The big problem is that the implementation is incorrect. When several adsorbates
are located close to each other, it is no longer clear which label “A” belongs to which
adsorbate. This makes it possible that processes take place that involve some A’s
from one adsorbate and some from another. This is obviously not what we want.
We need to distinguish between the different parts of the adsorbate. The adsorption
could for example be modeled by

(0,1)

(−1,0) (0,0) (1,0)

(0,−1)
:

∗
∗ ∗ ∗

∗
→

a
a A a

a
. (6.15)

An adsorbate is now well-defined, because it is an “A” surrounded by “a”’s.
This implementation however is not equivalent to the previous two. Only neigh-

boring sites were blocked for adsorption in the previous two implementations, but
in the last implementation more sites are blocked. This can most easily be seen for
a square lattice. An adsorbate on site (0,0) blocks only sites (1,0), (0,1), (−1,0),
and (0,−1) in the first two implementations. A site like (1,1) is available for ad-
sorption. This is not the case in the last implementation. The reason is that an ad-
sorbate at (1,1) in the last implementation would also occupy the neighboring sites,
among them (1,0) and (0,1). But these are already occupied. In the first two imple-
mentation the maximum coverage for a square lattice is 0.5 ML and the adlayer then
has a translational symmetry given by the primitive vectors a(1,1) and a(1,−1)
with a the distance between neighboring sites. In last implementation the maximum
coverage for a square lattice is 0.2 ML and the adlayer then has a translational sym-
metry given by the primitive vectors a(2,1) and a(1,−2) (see Fig. 6.1).
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Fig. 6.1 A square lattice with an adsorbate that blocks neighboring sites for adsorption (left) and
an adsorbate that occupies a central site and the four neighboring sites (right). In both cases an
adlayer is shown with a maximum coverage. The black circles show the adsorbates (left) or the
central sites occupied by the adsorbates (right). The white circles indicate all other sites

6.3 Lateral Interactions

Lateral interactions are interactions between adsorbates. It has been well-known for
a long time that these interactions lead to structured or ordered adlayers at low tem-
peratures. The realization that the kinetics of surface reactions can be substantially
affected by these interactions even at high temperatures is more recent. Relatively
little is known about the form of these interactions and even less about the strength
of them [1]. In this section we present a number of ways to implement these inter-
actions. In all cases we assume that the lateral interactions are short range.

The most general method to model lateral interactions consists of specifying the
process and the occupation of the sites that may have adsorbates that will affect the
process. For example, if we have a simple desorption of an adsorbate A on a square
lattice with a rate constant that depends on the occupation of the four neighboring
sites, then we have

(0,1)

(−1,0) (0,0) (1,0)

(0,−1)
:

∗
∗ A ∗

∗
→

∗
∗ ∗ ∗

∗
,

(0,1)

(−1,0) (0,0) (1,0)

(0,−1)
:

∗
∗ A A

∗
→

∗
∗ ∗ A

∗
,

(0,1)

(−1,0) (0,0) (1,0)

(0,−1)
:

A
∗ A A

∗
→

A
∗ ∗ A

∗
, (6.16)
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(0,1)

(−1,0) (0,0) (1,0)

(0,−1)
:

∗
A A A

∗
→

∗
A ∗ A

∗
,

(0,1)

(−1,0) (0,0) (1,0)

(0,−1)
:

A
A A A

∗
→

A
A ∗ A

∗
,

(0,1)

(−1,0) (0,0) (1,0)

(0,−1)
:

A
A A A

A
→

A
A ∗ A

A
,

and symmetry-related desorptions. Each of these processes can be given a different
rate constant (or activation energy and prefactor). By specifying all possible occu-
pations of the neighboring sites explicitly any dependence of the lateral interactions
on the occupation of neighboring sites can be modeled. The disadvantage should
also be clear. The list of processes can be quite long. With Z neighboring sites that
may be occupied by an adsorbate affecting a process and A possible occupations of
each of these sites (including no adsorbate) there are AZ processes to specify.

Suppose that the rate constant for the desorption above depends only on the num-
ber of neighbors of the adsorbate that desorbs. This is for example the case if we
have only interactions between pairs of adsorbates that change the activation en-
ergy: i.e., the activation energy can be written as E

(0)
act − nϕ with E

(0)
act the activation

energy in the absence of neighbors, n the number of neighbors, and ϕ the interac-
tion parameter that is negative for attractive and positive for repulsive interactions.
Instead of (6.16) we have

(0,0/0), (0,0/1) : A 0 → gone 0,

(0,0/0), (0,0/1) : A 1 → gone 1,

(0,0/0), (0,0/1) : A 2 → gone 2,

(0,0/0), (0,0/1) : A 3 → gone 3,

(0,0/0), (0,0/1) : A 4 → gone 4

(6.17)

each with a different rate constant. We have introduced a bookkeeping site (0,0/1)

that holds the number of neighbors of the desorbing adsorbate at (0,0/0). How to
count these neighbors was shown in Sect. 5.6.3. The label “gone” was introduced
there also. It is used to update the counts of the neighbors of (0,0/0).

The advantage of this implementation of lateral interactions is that it requires
fewer process descriptions. Instead of 2Z we only need Z + 1. On a hexagonal
lattice (Z = 6) this reduces the number of process descriptions by almost an order
of magnitude. If there are adsorbates with different lateral interaction parameters,
we need a sublattice of bookkeeping sites for each type of adsorbate. The number of
process descriptions changes then from AZ to (Z+1)A−1. We see that this approach
works best if A ≪ Z. It can however also be extended to include more complicated
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interactions by including more bookkeeping sites: e.g., three-particle interactions,
et cetera.

It is clear from these expressions for the number of processes that lateral interac-
tions involve many processes in the formalism that we have used so far. The reason
is fundamental. There can be a very large number of ways that neighboring sites
can be occupied, which may lead to an equally large number of rate constants, and
hence an equally large number of processes. We need to extend our formalism if we
want to avoid this.

One way of doing this is to partition the sites involved in a process in two groups.
The first group has the sites with a changing occupation when the process takes
place. The second group contains the sites that do not change their occupation, but
the adsorbates on these sites affect the rate constant. For the first group we can
use the formalism as before. For the second group we need a description, rule, or
function that yields a rate constant given a particular occupation of its sites. It is not
possible to say more than this for general lateral interactions. A popular form for
the lateral interactions is the cluster expansion [1–12]. The adsorption energy Eads
of an adsorbate in a particular adlayer structure is then written as

Eads =
∑

m

cmVm (6.18)

with Vm the value of the interaction of type m, and cm the number of interactions of
type m per adsorbate. The interactions Vm stand for the interaction of the adsorbate
with the substrate (adsorption energy of an isolated adsorbate), pair interactions be-
tween adsorbates at various distances, all possible three-particle interactions, four-
particle interactions, et cetera. This expansion can be made to reproduce the calcu-
lated adsorption energy as accurately as one wants, and therefore can describe any
form of lateral interaction [2]. It also depends linearly on its parameters cm, which
makes them relatively easy to determine. The number of terms can become very
large however. Moreover, it may lead to overfitting: i.e, the cluster expansion will
not only describe the interactions, but also the errors one makes in the calculations
of the adsorption energies. To avoid this one needs to truncate the cluster expansion
(see Sects. 4.5.3 and 4.5.4) [3, 4, 8–13]. Other functional forms for the lateral inter-
actions that are based on the physical mechanism that causes the lateral interactions
exist as well [1], but, as there are a number of such mechanisms, none of them can
be used universally.

The Carlos/Kinetix code uses such a partitioning of the sites to describe the lat-
eral interactions, but implements only pair interactions [14]. This may seem rather
limited, but by using immediate processes and bookkeeping sites more complicated
interactions can be modeled as well. An example of this is the model to implement
the effect of stress in the top layer of a Cu(110) surface caused by adsorption of
(R,R)-bitartrate [15]. This adsorbate forms diagonal rows in the ⟨11̄4⟩ direction at
maximum coverage. Three of these rows are close together and form a bundle, but
there is a trough separating these bundles. The reason is that the rows of Cu atoms
in the ⟨11̄0⟩ direction are stressed. This needs to be relieved by interspersing the Cu
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atoms with an adsorbate attached by Cu atoms without adsorbate. The effect can be
regarded as an elastic lateral interaction, but it is clearly not a pair interaction [1].

6.4 Diffusion and Fast Reversible Reactions

Diffusion is often mentioned when shortcomings of kMC are discussed. This is
not quite appropriate. It is even less appropriate to say that kMC has problems when
there are processes with very different rate constants. This is indeed a problem when
an algorithm with a fixed step size is used, because the step size should be small
enough so that the fastest process is simulated correctly. For the slower processes a
small step size is, however, inefficient. But there is no problem with algorithms with
variable step sizes. Diffusion is often much faster than the other processes. kMC
will happily simulate this fast diffusion, but most computer time is then spent on
diffusion and only a very small fraction on the other process, which are often the
ones one is really interested in. This is not really a shortcoming of kMC, however,
but reflects an intrinsic property of the system one is studying. Any method that
simulates all processes that take place will have to spend most time on the diffusion
simply because most events are adsorbates moving from site to site. A similar situ-
ation arises also when one has a very fast adsorption-desorption equilibrium: most
events are then adsorption and desorption processes. Nevertheless, there are some
ways to reduce the fraction of computer time that one has to spend on such fast
processes.

It is important to understand what the problem really is. A fast process in itself
is not a problem. Suppose we have NO at high coverage on a Rh(111) surface [16].
On this surface NO readily dissociates, provided that the coverage is low enough so
that there are vacant sites for the oxygen that is formed. At high coverage these sites
may not be available, and then the dissociation is suppressed. Increasing the temper-
ature causes some NO to desorb. This creates vacant sites for oxygen, and the NO
remaining on the surface will then dissociate. The rate constant for he dissociation
at these elevated temperatures is many orders of magnitude larger than those of all
other processes. This is however no problem at all for kMC, because the process is
irreversible. It would not even be a problem if the reverse process would not be fast.
There is only a problem if we have processes that lead to an infinite chain of events
taking place on a very short time scale. This occurs if both a process and its reverse
have a high rate constant, or if there is a whole set of fast consecutive processes as
for diffusion.

Mason et al. have discussed a method in which a number of subsequent process
are treated analytically and then have modeled them as one single effective process
taking place on a longer time scale [17]. We discuss this method in Sect. 8.1.4. It
is often possible to use a much simpler approach, which we first discuss here for
diffusion and then for other processes.

The idea is based on the fact that the main effect of diffusion is to bring the
adlayer to steady state or equilibrium, and that realistic rate constants do this at a
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much shorter time scale than the time scale of all other processes. This means that
if we reduce the rate constant for diffusion, but not too much, the adlayer is still
brought to steady state or equilibrium on a time scale short compared to that of
other processes. As a consequence the kinetics does not change, but the number of
diffusional hops in a kMC simulation can be reduced: in practice often by orders of
magnitude.

Finding by how much the rate constants can be reduced requires doing several
simulations, which can be short however. The simulations need to be done with dif-
ferent values for the rate constant. The times the simulations take can be minimized
by starting with low values of the rate constants, increase them, and look when the
results converge. This yields minimal values for the rate constants and fastest simu-
lations with good results for the kinetics. The same approach can not only be used
for diffusion, but also for other fast processes with a fast reverse process that rapidly
reach equilibrium.

The precise value that can be used for the rate constant for diffusion depends on
the system size. The displacement of a particle through diffusion increases with the
square of time. If the system is small, then it will rapidly have moved through the
whole system. If the system is large, then this will take longer. This means that for
small systems the diffusion rate can be reduced more than for large systems.

Sometimes it also suffices if there is a possibility for the chain of fast processes
to break off. Figure 5.14 shows the results of fast CO diffusion followed by an even
faster CO2 formation. Because the latter is irreversible, the chain of diffusional hops
will end when a CO meets an oxygen atom with which it can react. Section 8.1 has
more on advanced methods to deal with fast processes.

6.5 Combining Processes

Infinitely fast processes can sometimes be removed altogether. Suppose we have
the Ziff–Gulari–Barshad (ZGB) model of Sects. 5.6.1 and 7.4.3. Straightforward
modeling as in that section yields

(0,0) : ∗ → A (6.19)

for the adsorption, and

(0,0), (1,0) : A B → ∗ ∗ (6.20)

plus symmetry-related expressions for the infinitely fast formation of AB. We can
now combine these two processes. For example an adsorption on a site with vacant
neighboring sites can be modeled as

(0,1)

(−1,0) (0,0) (1,0)

(0,−1)
:

∗
∗ ∗ ∗

∗
→

∗
∗ A ∗

∗
. (6.21)
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(For simplicity we have assumed that we have a square lattice.) The rate constant
for this process equals the rate constant for adsorption. More interesting is the ad-
sorption on a site with one B neighbor. We then have

(0,1)

(−1,0) (0,0) (1,0)

(0,−1)
:

∗
∗ ∗ B

∗
→

∗
∗ ∗ ∗

∗
. (6.22)

The adsorption takes place at (0,0), but there is an immediate process with the B so
that the sites at (0,0) and (1,0) become vacant again. On a square lattice there are
three other symmetry-related processes. The rate constant for each of them is again
the rate constant for adsorption. If there are two B neighbors we get

(0,1)

(−1,0) (0,0) (1,0)

(0,−1)
:

B
∗ ∗ B

∗
→

B
∗ ∗ ∗

∗
(6.23)

and symmetry-related processes or

(0,1)

(−1,0) (0,0) (1,0)

(0,−1)
:

∗
B ∗ B

∗
→

∗
B ∗ ∗

∗
(6.24)

and symmetry-related processes. In both processes there are two possibilities for A
to react. This affects the rate constant. Suppose we have at time t the situation

∗
B ∗ B

∗
(6.25)

and an A adsorbs in the middle. This adsorption takes on average a time W−1
ads , where

Wads is the rate constant for adsorption. So after adsorption we are on average at time
t + W−1

ads and have the situation

∗
B A B

∗
. (6.26)

Next the A reacts with one of the B’s to give

∗
∗ ∗ B

∗
, or

∗
B ∗ ∗

∗
(6.27)

with equal probability, and we are still at time t + W−1
ads . If we use process (6.24) to

model the adsorption of A followed by the immediate formation and desorption of
AB, we need to be careful in defining the rate constant for (6.24). If the rate constant
is W2B, then on average the process leading to one of the two possibilities of (6.27)
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takes place at time t + (2W2B)−1. We get a factor 2, because in the initial situation
there are two processes possible. The total rate constant for that situation is the sum
of the rate constants of all possible processes: i.e., 2W2B. To get the same result as
before we therefore must have W2B = Wads/2. In general, if we have N B neighbors
in the initial situation then the direct processes should have a rate constant that is
equal to the rate constant for adsorption divided by N .

Such a combination of processes as above may seem artificial, but it is actually
quite common for dissociative adsorption and associative desorption. In the ZGB
model we have A’s and B’s reacting with each other immediately when they become
neighbors. The A’s stand for CO molecules and the B’s for oxygen atoms. They form
CO2 which subsequently desorbs from the surface. Neither process is always fast.
Often the desorption is fast, but the CO2 formation is not. In that case we can model
the combined process as a slow reaction between CO and O that leads to two vacant
sites.

Another example is methane adsorption, which is often a difficult process [18].
The molecule is either scattered or it dissociates upon adsorption. So instead of
having adsorption of CH4 and then a dissociation of the adsorbed CH4, we can
describe this as a single process that leads directly to adsorbed CH3 and H [19, 20].
The remarks concerning the rate constants made above apply to such description
and also the description for the CO2 formation.

6.6 Isotope Experiments and Diffusion

Isotope experiments are often done to resolve questions on reaction mechanisms
[21]. By using different isotopes of an element for different reactants or in different
positions in a reactant it is often possible to determine which atoms in reactants
end up at which places in the products. The isotopes can also be used to study
kinetics. By switching in an experiment to another isotope it might be possible to
make statements on the rate of certain processes.

It is very easy to simulate isotope experiments. The only thing that needs to be
done is to copy each process that involves isotopes. For example, suppose we have
CO oxidation with 12CO and 13CO. For the adsorption of CO we then might have

(0,0) : ∗ → 12CO (6.28)

and

(0,0) : ∗ → 13CO. (6.29)

If we would neglect the isotope effect, we would not even have to give the processes
different rate constants.

Figure 6.2 shows how the coverage of 12CO and 13CO varies in a simulated
isotope experiment based on the ZGB model (see Sects. 5.6.1 and 7.4.3). CO is
switched every ∆t = 40 unit of time from one isotope to another. This is about the
time to replace all CO on the surface. The coverage of vacancies is θ∗ = 0.50 ML,
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Fig. 6.2 Variations in the coverage of the 12CO and 13CO isotopes during CO oxidation simulated
using the ZGB-model. Isotopes were switched every 40 units of time. The parameter of the model
was chosen to be y = 0.5255 which is about the value with maximum reactivity. This parameter
stands for the fraction of molecules in the gas phase that are CO molecules and it also defines
the unit of time as explained in Sect. 7.4.3. The simulation was done with a square lattice with
1024 × 1024 lattice points and periodic boundary conditions. The inset shows a snapshot of one
isotope (gray circles) being replaced by another (black circles). The white circles depict oxygen
atoms

so the number of CO molecules that adsorb per site during these 40 units of time
is yθ∗∆t = 10.5. The CO coverage is θCO = 0.075 ML, which means that there are
about yθ∗∆t/θCO = 140 adsorptions of CO necessary per adsorbed CO to replace
all CO on the surface. Figure 6.2 also shows why so many are needed. The CO
molecules form islands, and only those at the edge can react with oxygen and are
removed from the surface. To get to the center of the islands the CO2 formations
that break down the islands should be faster locally than adsorption of CO which
makes the islands grow.

The same technique that is used to simulate isotope experiments can also be used
to get information on diffusion of adsorbates. Suppose we have an adlayer with just
one type of adsorbate, the only process is hopping from one site to a neighboring
one, and we want to know how the diffusion constant depends on coverage. The
hopping can be modeled as

(0,0), (1,0) : A ∗ → ∗ A (6.30)

and symmetry-related processes for a simple lattice with A an adsorbate and ∗ a
vacant site. We now tag one adsorbate: i.e., we have

(0,0), (1,0) : T ∗ → ∗ T (6.31)

and symmetry-related processes with T being a single tagged adsorbate. Figure 6.3
shows the square of the difference of the number of hops to the right and the number
of hops to the left plus the square of the difference of the number of hops upward
and the number of hops downward as a function of time. If we multiply this by the
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Fig. 6.3 Diffusion on a square lattice of size 128 × 128 modeled as hops for various coverages.
Shown is the squared displacement (in Å2) as a function of time (in s) averaged over 1000 simu-
lations. Distance between lattice points 2.72 Å and rate constant for hopping is 0.1352 s−1. The
line shows the analytical result in the limit of zero coverage (see Sect. 4.6.5). The curves are for
the coverages indicated next to each curve

square of the distance between the sites (which is actually done for the results in the
figure) we get the displacement squared of the tagged particle as a function of time.
Averaged over many adsorbates this should give a straight line through the origin
with slope 4D with D the diffusion coefficient. As we follow only one adsorbate in
a simulation, we would get quite bad statistics. The determination of the diffusion
coefficient from a single simulation would not be very reliable.

It is possible to improve the statistics by using more tagged particles, but one
should make sure that they are distinguishable, because otherwise it is not possible
to determine the displacements of the individual adsorbates. This is the reason why
we need to tag an adsorbate in the first place. It is also possible to average over
many simulations as was done in the figure, or take different moments during a
single simulation to start looking at the displacement of the tagged adsorbate from
the position it is at these moments.

Another way such tagged adsorbate can be used is to have it adsorb and then
monitor its diffusion until it reacts in some way. Figure 6.4 for example shows the
sites that an adsorbate visits during a simulation of precursor-mediated adsorption.
The most straightforward way to model this is to have two lattice points in the unit
cell. The first stands for the adsorption site and the adsorbates in the first layer. The
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Fig. 6.4 The track of a
particle during
precursor-mediated
adsorption. The gray circles
are adsorbates in the first
layer. The black circles are
the sites that have been
visited by an adsorbate that
initially adsorbed on top of an
adsorbate in the first layer.
The gray circle with the black
border indicates where that
adsorption took place. The
adsorbate hopped to
neighboring sites in the
second layer until it found the
vacancy in the first layer
indicated by the white circle
with black border

second stands for the adsorbates in the second layer. An adsorption on top of an
adsorbate in the first layer can then be model by

(0,0/0), (0,0/1) : A ∗ → A T (6.32)

with A the adsorbate in the first layer, ∗ a vacant site in the second layer, and T the
particle adsorbing in the second layer: i.e., as a precursor.

The particle will then start moving around in the second layer as follows.

(0,0/0), (0,0/1), (1,0/0), (1,0/1) : A T A ∗ → At ∗ A T. (6.33)

At is an adsorbate in the first layer on a site that has been visited by the diffusing T.
We introduce this label so that we can see how T has moved. If this is of no interest,
then the process might be simplified to

(0,0/1), (1,0/0), (1,0/1) : T A ∗ → ∗ A T. (6.34)

If we decide however to keep track of where T has been, then we have to take care
of the possibility that T revisits sites. This means we need

(0,0/0), (0,0/1), (1,0/0), (1,0/1) : A T A ∗ → At ∗ A T,

(0,0/0), (0,0/1), (1,0/0), (1,0/1) : At T A ∗ → At ∗ A T,

(0,0/0), (0,0/1), (1,0/0), (1,0/1) : A T At ∗ → At ∗ At T,

(6.35)

and

(0,0/0), (0,0/1), (1,0/0), (1,0/1) : At T At ∗ → At ∗ At T (6.36)
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to deal with all combinations of A’s and At’s and the two sites involved.
A desorption of T before it adsorbs in the first layer can be modeled by

(0,0/0), (0,0/1) : A T → At ∗ (6.37)

and

(0,0/0), (0,0/1) : At T → At ∗. (6.38)

If we want to remember where the desorption took place, then the At on the right
should be replaced by another label.

A final adsorption in the first layer can be modeled by

(0,0/0), (0,0/1), (1,0/0) : A T ∗ → At ∗ T (6.39)

and

(0,0/0), (0,0/1), (1,0/0) : At T ∗ → At ∗ T. (6.40)

The T on the right is not changed to A or At, so we can see where the final adsorption
has taken place.

Note that we have not shown the symmetry-related processes above. We have
also assumed above that the diffusion in the second layer is much faster than diffu-
sion in the first layer so that we can neglect the latter. If we want to include diffusion
in the first layer, we need to make sure that the “t” in “At” is transferred to the va-
cancy that is formed when the At hops to another site. We have also assumed that
there is only one particle in the second layer. If that is not the case, then the pro-
cesses above do not distinguish between the tracks formed by the different particles
in that layer. The processes also model only an extrinsic precursor: i.e., there is al-
ways an adsorbate in the first layer below an adsorbate in the second layer. A hop
of T to a position with a vacancy in the first layer always results in an adsorption
in the first layer. It would of course be possible to extend the model to allow for an
intrinsic precursor. The number of hops of T in the second layer is useful to know
as it tells us how difficult it was to find a vacancy in the first layer.

It is also possible to model the precursor-mediated adsorption with a single site
in the unit cell. This is very easy, because we did not include an intrinsic precursor.
For adsorption on top of an adsorbate in the first layer we have

(0,0) : A → T (6.41)

with A the adsorbate in the first layer and T now two adsorbates on top of each other.
The hops in the second layer become

(0,0), (1,0) : T A → At T (6.42)

and

(0,0), (1,0) : T At → At T. (6.43)
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A desorption of T before it adsorbs in the first layer can be modeled by

(0,0) : T → At, (6.44)

and a final adsorption in the first layer can be modeled by

(0,0), (1,0) : T ∗ → At Tt. (6.45)

The Tt on the right is used so we can see where the final adsorption has taken place.
We see that this way to model the process is conceptually a little bit more difficult,
but the processes are simpler.

6.7 Simulating Nanoparticles and Facets

We have already seen in Sect. 5.5.3 that the surface need not be flat. Our modeling
framework allows steps, but, as we will see here, also the simulation of reactions
and other processes on nanoparticles. In fact, there are several ways to do this.

If the nanoparticles are very small so that the number of adsorption sites is also
very small, then we can simply model these sites by using a unit cell with the same
number of sites. A single unit cell then models the whole nanoparticle. For example,
suppose that we have a tetrahedral metal particle of just four atoms, and suppose that
we have just one adsorption site per atom. We can then model the processes on such
a particle with four sites in a unit cell. Simple adsorption then becomes

(0,0/0) : ∗ → A,

(0,0/1) : ∗ → A,

(0,0/2) : ∗ → A,

(0,0/3) : ∗ → A,

(6.46)

with A an adsorbate and ∗ a vacant site. A dissociation AB → A + B will be

(0,0/0), (0,0/1) : AB ∗ → A B,

(0,0/0), (0,0/2) : AB ∗ → A B,
(6.47)

and possibly other combinations of sites on which the dissociation is possible.
This way of modeling a nanoparticle does not use the translational symmetry that

is built in our modeling framework. Each unit cell corresponds to one nanoparticle,
and by having a large system we simulate simply a large number of nanoparticles.
This has the advantage that we can get good statistics with even just a single simu-
lation. We should note however that it is questionable if kMC simulations are really
the best way to study the kinetics on such small particle. When the number of ways
in which the sites can be occupied is not too large, it might be possible to solve
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Fig. 6.5 A nanobump on a (100) surface of an fcc metal on the left. We can model the top sites
with the lattice on the right. The open circles are not used as adsorption sites. The numbers indicate
coordination numbers of the sites in the enclosed areas. The atoms forming the facets on the sides
of the bump form (111) surfaces and have therefore coordination number 9. The sites on the edges
have all coordination number 7. The sites at the vertices have coordination number 6

the probabilities in the master equation explicitly. This can either be done numeri-
cally by using a method to solve sets of ordinary differential equations [22], or by
diagonalizing the matrix W in Eq. (2.7) and using Eqs. (2.12)–(2.14).

If the nanoparticle becomes too large for the approach above, then the whole
lattice needs to be used to simulate the particle. There are three problems that we
need to address. The first is that a nanoparticle has various facets that might have
different surface structures. The second is that a nanoparticle is a three-dimensional
object, whereas our framework is two-dimensional. The third is that we have to
make sure that periodic boundary conditions of our two-dimensional lattice does
not put sites next to each other that are far apart on the nanoparticle. We start with
looking at the facets.

Figure 6.5 shows a (100) surface of an fcc metal with a nanobump. The bump
has five facets. The top one has also the structure of a (100) surface, but the other
ones have the structure of a (111) surface. Moreover, there are different edges and
corner atoms. The coordination numbers of the exposed metal atoms vary from 6 to
10.

Now suppose that we want to model processes on such a surface with a bump,
that the processes only involve top sites, and that there is one top site per exposed
metal atom. The sites are then the ones depicted by the black circles on the right
of Fig. 6.5. They do not form a lattice, but by adding the white circles we do get
a lattice. This can be regarded as taking the top sites of the original lattice of the
(100) surface and then adding a second site in each unit cell at the hollow position.
Alternatively, we can take the top and hollow positions, disregard their difference,
which gives us a simple square lattice, and use labels to indicate what kind of site
a lattice point corresponds to. This last approach seems simpler, as we will want to
use labels anyway to indicate the coordination number of the metal atom at a site. If
we take the primitive vectors horizontally and vertically in both cases, then the two
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Fig. 6.6 A snapshot of a
simulation of an
adsorption-desorption
equilibrium on a nanobump
on a (100) surface of an fcc
metal. If Wads is the
adsorption rate constant and
W

(z)
des the desorption rate

constant for an atom with
coordination number z, then
we have used Wads/W

(8)
des = 4,

W
(6)
des/W

(8)
des = 0.1,

W
(7)
des/W

(8)
des = 0.2,

W
(9)
des/W

(8)
des = 5, and

W
(10)
des /W

(8)
des = 10 to account

for the variation in adsorption
energy with coordination
number

approaches yield the same system but rotated with respect to each other over 45◦.
This can be seen when comparing Figs. 6.5 and 6.6.

This second approach then looks as follows. We take a simple square lattice. We
have a first sublattice with labels that indicate the occupation of the adsorption sites.
We add a second sublattice that functions as an overlay to indicate the facets. Its
labels have the coordination numbers. So we have (n1, n2/1) : c, which means that
the site at n1[ 1

2 (a1 + a2)] + n2[ 1
2 (a1 − a2)] is on top of an atom with coordination

number c. Here a1 and a2 are the primitive vectors of the (100) surface, and we
use a special value, say c = 0, to indicate a lattice point that does not correspond
to an actual site. These lattice points are the white circles on the right of Fig. 6.5.
Figure 6.6 shows the result of a simple adsorption-desorption equilibrium where the
desorption rate constant depends on the coordination number. The atoms forming
the facets with (111) structure have a higher coordination number than the atoms
forming the surface and the facet with (100) structure. The adsorbate is therefore
weaker bounded, the rate constant for desorption is higher, and the coverage lower
for the (111) facets. The same effect is even more apparent where the (111) facets
meet the (100) surface. There is a row of atoms with coordination number 10. The
probability to have an adsorbate there is very low. There are indeed four lines in the
figure with vacant sites.

The second problem with nanoparticles is that they are really three-dimensional
objects whereas our modeling framework is two-dimensional. This does not make it
impossible to use our framework. The surface of a nanoparticle is after all also two-
dimensional and it is quite possible to model that surface within our framework. As
an example we look at a cubic particle and we assume that we can model the sites
on each of its six facets with a simple square lattice. We take the processes from
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Fig. 6.7 A snapshot of a simulation of the ZGB model on a cube that is modeled with a simple
square lattice. The squares on the left with the big spots indicate the facets. If we imagine the cube
to be a regular die, then the number of the spots indicate the six facets. Neighboring circles on the
left with the same color indicate lattice points on the right that are forced to have the same label.
Black circles on the right depict CO molecules and white circles oxygen atoms

the ZGB model. We assume for simplicity that the oxygen adsorption and CO2
formation can also occur at on two neighboring sites that straddle the edge of two
adjacent facets.

We start with mapping the facets onto a simple square lattice. We do this as is
shown on the left of Fig. 6.7. We imagine the nanoparticle to be a normal six-sided
die with opposite sides having a total number of spots equal to seven. The problem
with this mapping is that sites on different facets that are neighbors are no longer
neighbors with this mapping. The mapping retains the neighborhood relations be-
tween the sites on sides “2” and “6”, “4” and “6”, “3” and “6”, “5” and “6” and “5”
and “1”. (We mean with side “X” the side with X spots in the figure.) The neighbor-
hood relation between sides “1” and “2” is also retained because we can use periodic
boundary conditions in horizontal direction. The neighborhood relation is lost how-
ever for the other six pairs of neighboring sides. The size of the two-dimensional
lattice in vertical direction is made large enough so that periodic boundary condi-
tions in that direction do not accidentally cause sites to become neighbors that are
really not.

The sites on the right edge of side “4” and those on the top edge of side “5” are
neighbors on the nanoparticle, but not on the two-dimensional map in Fig. 6.7. To
allow reactions on one site of side “4” and a neighboring one on side “5” we copy
the labels of the sites on the right edge of side “4” to the lattice points above the
top edge of side “5”. As a consequence the reactions now become possible on sites
on opposite sides of the top edge of side “5”. This will change labels of the lattice
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points above the top edge of side “5”, and we need to copy such a change back to
the sites on the right edge of side “4”. We do this with processes that make sure that
the labels on neighboring lattice points that are depicted with the same kind of circle
(black or white) on the left of Fig. 6.7 are always the same. The figure also shows
how labels for neighboring sites on “5” and “2”, “3” and “5”, “3” and “2”, “1” and
“5”, and “1” and “2” are copied.

We use three sublattices to accomplish this. Each adsorption site on the nanopar-
ticle is represented by a three lattice points: one from each sublattice. The first sub-
lattice holds the labels that indicate the occupation of the sites and copies of these
labels on the lattice points depicted by the circles on the left of Fig. 6.7. The sec-
ond sublattice has labels that indicate the color of these circles. The third sublattice
has labels that indicate whether a lattice point corresponds to a real site or not. The
labels of the second and third sublattice do not change during a simulation.

The reactions of the ZGB model are now implemented as follows. For the ad-
sorption of CO we have

(0,0/0), (0,0/2) : V S → COt S. (6.48)

The label S for the lattice point of the sublattice 2 indicates that the lattice point is a
real site on the nanoparticle. Labels V and COt of sublattice 0 indicate that a vacant
site becomes a site that is occupied by CO. The reason for the “t” in COt is that COt
is a temporary label. The site where the adsorption takes place may be one of the
sites for which we need to copy the label.

For the oxygen adsorption we have

(0,0/0), (1,0/0), (0,0/2), (1,0/2) : V V S S → Ot Ot S S (6.49)

and symmetry-related descriptions. The “t” in Ot again indicates that we have a
temporary label that may need to be copied. The lattice points in this description are
both actual sites, but that need not always be the case. The adsorption of oxygen can
also occur on two sites that are neighbors but on different facets of the nanoparticle,
but that are not neighbors on the two-dimensional lattice. We therefore also have

(0,0/0), (1,0/0), (0,0/2), (1,0/2) : V V S X → Ot Ot S X (6.50)

and

(0,0/0), (1,0/0), (0,0/2), (1,0/2) : V V X S → Ot Ot X S, (6.51)

and symmetry-related descriptions, with X indicating a lattice point that does not
correspond to an actual site. This allows for example adsorption on oxygen on a
lattice point below the top edge of side “5” and on a lattice point above that edge.
The latter corresponds to a site at the right edge of side “4”. Note that we do not
have

(0,0/0), (1,0/0), (0,0/2), (1,0/2) : V V X X → Ot Ot X X. (6.52)
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For the CO2 formation we have

(0,0/0), (1,0/0), (0,0/2), (1,0/2) : CO O S S → Vt Vt S S,

(0,0/0), (1,0/0), (0,0/2), (1,0/2) : CO O S X → Vt Vt S X,

(0,0/0), (1,0/0), (0,0/2), (1,0/2) : CO O X S → Vt Vt X S

(6.53)

and symmetry-related descriptions. This is very similar to oxygen adsorption. The
“t” in Vt is again to indicate that the label is temporary.

To copy labels we need some immediate processes. The actual copying is done
with

(0,0/0), (1,0/0), (0,0/1), (1,0/1) : COt CO B B → COt COt B B,

(0,0/0), (1,0/0), (0,0/1), (1,0/1) : COt O B B → COt COt B B,

(0,0/0), (1,0/0), (0,0/1), (1,0/1) : COt V B B → COt COt B B,

(6.54)

and symmetry-related descriptions. These processes take care of copying COt along
the black circles, hence the label B, on the left of Fig. 6.7. If we replace all B’s by
W’s we take care of copying along the white circles. Copying Ot and Vt is accom-
plished with the same processes but with COt replaced by Ot and Vt, respectively.
These processes make clear why we need the “t” at the end of COt, Ot, and Vt. It
makes clear what needs to be copied.

At the end of the copying process the labels COt, Ot, and Vt have to be changed
to the normal form CO, O, and V. Having immediate processes that simply do that
does not work. The reason is that either the normal forms are immediately changed
back to one of the forms with a “t” at the end, or the copying above does not work. It
depends on the priority which of these possibilities actually occurs. Instead we use
the immediate processes

(0,0/0) : COt → COtt,

(0,0/0) : Ot → Ott,

(0,0/0) : Vt → Vtt,

(6.55)

and

(0,0/0) : COtt → CO,

(0,0/0) : Ott → O,

(0,0/0) : Vtt → V,

(6.56)

with processes (6.54) having a higher priority than (6.55), and (6.56) having the
lowest priority. The reason for the labels ending in “tt” is that this prevents (6.54)
to occur when the normal forms of the labels are restored. The formation of CO2 is
also an immediate process, but it should have a priority that is even lower than the
one of (6.56).
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Fig. 6.8 A snapshot of a simulation of an adsorption-desorption equilibrium for the top sites on a
nanocluster of about 10 000 platinum atoms

The result of a simulation with these processes is shown on the right of Fig. 6.7.
The facets show distribution of the adsorbates that is characteristic for the ZGB
model, but also see how the labels are copied from the edge from one facet to an-
other.

A much more flexible and simpler approach is to extend our modeling frame-
work to three spatial dimensions. Figure 6.8 shows an example. The nanoparticle
and the adsorbates shown in that figure were modeled as follows. We used a three-
dimensional lattice with a cubic unit cell. We defined four sublattices by taking
four lattice points in the unit cell at positions (0,0,0), ( 1

2 a1,
1
2 a2,0), ( 1

2 a1,0, 1
2 a3),

and (0, 1
2 a2,

1
2 a3). This gave us an fcc lattice. The four sublattices were used to con-

struct the nanoparticle. About 10 000 Pt atoms were put together on lattice positions.
(We used only pair interactions between neighboring atoms with a value that gave
the proper formation energy for bulk platinum.) The atoms were allowed to hop to
neighboring lattice points at 2200 K to equilibrate. The particle was then slowly
cooled down to room temperature. This yielded the particle in Fig. 6.8 with (111)
and (100) facets, but also with steps and kinks on these facets.

After the nanoparticle was created, we added 12 more sublattices correspond-
ing the tetrahedral and octahedral interstitial positions of the fcc lattice. Tetrahedral
position with only one neighboring Pt atom were used to define top sites on (111)
facets. Octahedral positions with only one neighboring Pt atom were used to de-
fine top sites on (100) facets. These positions were then used to simulate a simple
adsorption-desorption equilibrium. The desorption from tetrahedral positions was
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treated as the desorption from a (111) facets of the nanobump shown in Fig. 6.6.
The desorption from octahedral positions was treated as the desorption from the
(100) facets. The adsorption rate constant was the same for all sites.

6.8 Making the Initial Configuration

We have focused in this chapter, and also in the preceding ones, almost exclusively
on the processes. We need however also some initial configuration to do a kMC
simulation. Creating such an initial configuration is often fairly straightforward, but
not always. It is possible to make it by hand or to use a special-purpose tool or code.
We will look here however how to use our modeling framework to create various
types of initial configurations.

Kinetic experiments often start with the preparation of the system. One might try
to simulate this preparation to get the initial configuration for the simulation of the
kinetic experiment itself. That is indeed an option, but it may be not a convenient
one. The preparation often consists of processes that may be hard to simulate or
it may not be completely clear what the mechanisms of the processes are that take
place during the preparation. For example, there often is adsorption involved. Simple
adsorption causes no problems for a simulation, but if there is an precursor involved,
then it might be difficult to find out which processes take place and what the rate
constants are of all these processes. As the desired end result is just an adlayer with
a specific coverage, there are much easier ways to get the initial configuration.

We will assume that it is a trivial matter to create a configuration in which all
lattice points have the same label. This already takes care of many situations. For
example, kinetic experiments in catalysis often start with an empty surface of the
catalyst. Suppose however that we want to create an adlayer with some fractional
coverage. The easiest way to get this would be to implement a simple adsorption-
desorption equilibrium. Assuming for simplicity that we have just one site per unit
cell, then

(0,0) : ∗ → A (6.57)

with rate constant Wads and

(0,0) : A → ∗ (6.58)

with rate constant Wdes, and A an adsorbate and ∗ a vacant site give a coverage of
θ = λ with

λ = Wads

Wads + Wdes
. (6.59)

Because a kMC simulation is a stochastic simulation, the coverage is not exactly λ.
It will fluctuate around that value. The standard deviation of the occupation of a
single site equals

√
λ(1 − λ). The adsorptions and desorptions at different sites are

independent of each other. The standard deviation of the coverage over the whole
surface is then

√
λ(1 − λ)/S with S the number of sites. It is important to realize
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that the adsorption and desorption need not correspond to processes that actually
take place or are even actually possible. If the adsorbates would be oxygen atoms,
then the species in the gas phase would be dioxygen. Using O2(gas) ! 2O(ads) to
get a certain coverage is possible, but the relation between the rate constants and the
coverage will not be as simple as the one above.

We use simple adsorption and desorption also to make adlayers of more than one
adsorbate. We must have for each adsorbate X

W
(X)
ads θ∗ = W

(X)
des θX (6.60)

with θ∗ the fraction of vacant sites. This expression gives us rate constants to get
given coverages. The use of processes that are not actually possible also opens up
other possibilities. Suppose we want to create an adlayer with adsorbates A and B
with coverage θA and θB, respectively. We can then also use a two-step approach as
follows. We first create an adlayer with only A’s and coverage θA + θB as described
above. The second step consists of the conversions A → B and B → A with rate
constants WA→B = WθB/(θA + θB) and WB→A = WθA/(θA + θB) with W some
arbitrary rate constant.

The processes mentioned so far yield adlayer structures that consist of adsor-
bates that are randomly distributed over the surface. Often the adsorbates form a
superstructure or islands. Such structures can be created simply as follows. After
an adlayer is made with a given coverage, a second simulation is done in which
the adsorbates are allowed to diffuse. The desired structure is obtained by includ-
ing the proper lateral interactions in the second simulation. The same approach can
also be used to construct bimetallic surfaces. Instead of labels standing for occupied
and vacant sites, we need to use labels denoting the two different metals. Instead of
diffusion, we have exchange of substrate atoms.

The drawback of the approach with diffusion or exchange is that the resulting
structure will show defects. Instead of an adlayer showing a perfect superstructure,
we will get domains each showing the same superstructure but displaced or rotated
with respect to the superstructures in neighboring domains. To obtain a perfect ad-
layer immediate processes form a better approach.

Suppose we have a square lattice and an adsorbate that blocks neighboring sites.
We want to construct an adlayer with a perfect checkerboard structure. We start
with a lattice with all labels equal to “T” that stands for “temporary”. We then have
a simple adsorption

(0,0) : T → A (6.61)

with A the adsorbate. This is a normal process with a finite rate constant. The
checkerboard structure is then made by the immediate processes

(0,0), (1,0) : A T → A ∗,

(0,0), (1,0) : ∗ T → ∗ A,
(6.62)
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and symmetry-related processes. These processes start after a single occurrence of
T → A and change the whole system to a checkerboard structure. There will not be
a second adsorption.

The reason for the label “T” is the following. Suppose we start with all labels
equal to “∗” and adsorption

(0,0) : ∗ → A. (6.63)

We might try to construct the checkerboard structure using

(0,0), (1,1) : A ∗ → A A (6.64)

and symmetry-related processes as immediate processes. This will create indeed the
checkerboard structure initially, but then there will be a second adsorption followed
by more immediate processes and we will end up with a surface with all sites oc-
cupied by A’s. The label “T” is used to prevent this. It allows for adsorption, but it
is removed when the checkerboard structure is created which prevents new adsorp-
tions. This is however not the only way to prevent a second adsorption. It is possible
to use (6.64) and only “A” and “∗” as labels by using

(0,0), (1,0) : ∗ ∗ → A ∗ (6.65)

as adsorption. Here a second adsorption is prevented because after the checkerboard
structure is formed there is no vacant site anymore with a neighboring site that is
also vacant.

Immediate processes can also be used to create other adlayers with a defect-free
structure or substrates with a perfect structure: e.g., a substrate with parallel steps
separated by terraces with a given width. Note also that this approach also enables us
to create adlayers and substrate structures without long-range order but with a well-
defined ratio of different labels. For example, in the A + B model (see Sect. 8.2)
we want to start with an adlayer that is a random mixture of A’s and B’s except
that their numbers should be exactly the same. To get such a structure we can start
with constructing a checkerboard structure of A’s and B’s and then use exchange
processes A B ! B A to randomize the adlayer.

References

1. C.G.M. Hermse, A.P.J. Jansen, in Catalysis, vol. 19, ed. by J.J. Spivey, K.M. Dooley (Royal
Society of Chemistry, London, 2006)

2. J.N. Murrell, S. Carter, P. Huxley, S.C. Farantos, A.J.C. Varandas, Molecular Potential Energy
Functions (Wiley-Interscience, Chichester, 1984)

3. A. van der Walle, G. Ceder, J. Phase Equilibria, 23, 348 (2002)
4. V. Blum, A. Zunger, Phys. Rev. B 69, 020103(R) (2004)
5. A.P.J. Jansen, W.K. Offermans, in Computational Science and Its Applications—ICCSA-2005.

LNCS, vol. 3480, ed. by O. Gervasi (Springer, Berlin, 2005)
6. Y. Zhang, V. Blum, K. Reuter, Phys. Rev. B 75, 235406 (2007)
7. D.M. Hawkins, J. Chem. Inf. Comput. Sci. 44, 1 (2004)



180 6 Modeling Surface Reactions II

8. A.P.J. Jansen, C. Popa, Phys. Rev. B 78, 085404 (2008)
9. N.A. Zarkevich, D.D. Johnson, Phys. Rev. Lett. 92, 255702 (2004)

10. R. Drautz, A. Díaz-Ortiz, Phys. Rev. B 73, 224207 (2006)
11. D.E. Nanu, Y. Deng, A.J. Böttger, Phys. Rev. B 74, 014113 (2006)
12. T. Mueller, G. Ceder, Phys. Rev. B 80, 024103 (2009)
13. T. Mueller, G. Ceder, Phys. Rev. B 82, 184107 (2010)
14. Carlos is a general-purpose program, written in C by J.J. Lukkien, for simulating reac-

tions on surfaces that can be represented by regular lattices: an implementation of the
First Reaction Method, the Variable Step Size Method, and the Random Selection Method.
http://www.win.tue.nl/~johanl/projects/Carlos/

15. C.G.M. Hermse, A.P. van Bavel, A.P.J. Jansen, L.A.M.M. Barbosa, P. Sautet, R.A. van Santen,
J. Phys. Chem. B 108, 11035 (2004)

16. C.G.M. Hermse, F. Frechard, A.P. van Bavel, J.J. Lukkien, J.W. Niemantsverdriet, R.A. van
Santen, A.P.J. Jansen, J. Chem. Phys. 118, 7081 (2003)

17. D.R. Mason, R.E. Rudd, A.P. Sutton, Comput. Phys. Commun. 160, 140 (2004)
18. J.H. Larsen, I. Chorkendorff, Surf. Sci. Rep. 35, 163 (2000)
19. I.M. Ciobîcã, F. Frechard, A.P.J. Jansen, R.A. van Santen, in Studies in Surfaces Science and

Catalysis, vol. 133, ed. by G.F. Froment, K.C. Waugh (Elsevier, Amsterdam, 2001), pp. 221–
228

20. I.M. Ciobîcã, F. Frechard, C.G.M. Hermse, A.P.J. Jansen, R.A. van Santen, in Surface Chem-
istry and Catalysis, ed. by A.F. Carley, P.R. Davies, G.J. Hutchings, M.S. Spencer (Kluwer
Academic/Plenum, New York, 2001)

21. J.M. Thomas, W.J. Thomas, Principles and Practice of Heterogeneous Catalysis (VCH, Wein-
heim, 1997)

22. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes. The Art of
Scientific Computing (Cambridge University Press, Cambridge, 1989)

http://www.win.tue.nl/~johanl/projects/Carlos/


Chapter 7
Examples

Abstract We discuss a number of complete surface reaction systems and show the
benefits of using kinetic Monte Carlo simulations for modeling them. The following
topics will be discussed: lateral interactions and the link with the occupation of
unfavorable sites and the suppression of processes, the effect of the structure of the
substrate on kinetics, the role of equilibrium and non-equilibrium phase transitions
and symmetry breaking, and non-linear kinetics.

7.1 Introduction

This chapter is somewhat similar to Chaps. 5 and 6. It also discusses how to model
reactions. However, the emphasis here is more on the information one can get from
kinetic Monte Carlo (kMC) simulations: i.e., the reason why one wants to do kMC
simulations instead of using conventional macroscopic rate equations. The discus-
sions in this chapter focus more on aspects of kinetics than on technical details on
how to implement processes. Also whole reactions systems are discussed instead
of individual processes. The discussion on the derivation of macroscopic rate equa-
tions in Sect. 4.6 has shown that rate equations are approximate equations except
for very simple systems. This means that there always will be a quantitative differ-
ence between the results from rate equations and those from kMC simulations. The
examples in this chapter are chosen because these differences are very large or the
behavior predicted by rate equations and by kMC simulations is even qualitatively
different. This is not to say that it is hard to find such systems. On the contrary, espe-
cially for systems for which lateral interactions are important (and those include all
systems with high coverages) rate equations can at best be regarded as descriptive.
Their drawback is then that the rate constants have no physical meaning as has been
pointed out in Chap. 1.

7.2 NO Reduction on Rh(111)

One of the most important reasons for doing kMC simulations is to include the
effect of lateral interactions on the kinetics. It is still not widely appreciated how

A.P.J. Jansen, An Introduction to Kinetic Monte Carlo Simulations of Surface
Reactions, Lecture Notes in Physics 856,
DOI 10.1007/978-3-642-29488-4_7, © Springer-Verlag Berlin Heidelberg 2012
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important these interactions can be. It has been argued that much of catalysis takes
place at high temperatures where the adsorbates are randomly distributed over the
sites, and that lateral interactions, if present at all, can be incorporated in an effective
rate constant. This however underestimates how strong lateral interactions can be,
and that adsorbates are rarely, if at all, randomly distributed. Moreover, even if they
are so distributed, the lateral interactions lead to a very complicated dependence on
the coverage that can not just be represented by an effective rate constant.

Lateral interactions can easily be just as large as the interactions between ad-
sorbate and substrate [1]. This holds in particular when they are repulsive. Kinetic
experiments however do not always show these large interactions. Let’s look at CO
on Rh(100) as an example [2]. Temperature-Programmed Desorption (TPD) ex-
periments for initial coverages of up to 0.5 ML show hardly any effect of lateral
interactions. This is because two CO molecules that prefer top sites never need to
occupy neighboring sites and thus strong repulsion is avoided. The TPD spectra
show only variation in the energetics comparable to the thermal energy kBT . The
fact that the system avoids two CO molecules at neighboring sites indicates that
the interactions between such molecules must be well above the thermal energy.
A Density-Functional Theory (DFT) calculation of NO molecules on Rh(111) at
the same distance gives lateral interactions between 15 and 20 kJ/mol depending
on the adsorption site [3]. However, the distance between a preferred fcc site of
Rh(111) and the nearest hcp site is much smaller, and a substantial higher repulsion
is expected if both of these sites were to be occupied. CO/Rh(100) with coverage
above 0.5 ML still doesn’t show the high lateral interaction of CO’s on neighbor-
ing top sites. Instead, a smaller increase of energy is seen that results from moving
CO molecules to bridge sites. To avoid the large fcc-hcp interaction in NO/Rh(111)
some NO molecules are moved to top sites, which have an adsorption energy that is
55 kJ/mol less than fcc sites, and 64 kJ/mol less than hcp sites. This means that the
lateral interactions that are avoided are larger than these numbers.

Even if a system avoids large repulsive interactions, they can still have an ef-
fect on the kinetics although that effect will be subtle. Let’s look a bit closer at
CO/Rh(100). At very low coverage the top sites already occupied and the four neigh-
boring top sites are not available for adsorption. This means that the macroscopic
rate equation for adsorption

dθCO

dt
= Wads(1 − 5θCO) (7.1)

is a good approximation for small θCO. At coverages just below 0.5 ML when we
assume that the CO’s can not become neighbors, each CO that is removed leads to
just one new possibility for adsorption. We therefore get

dθCO

dt
= Wads

(
1
2

− θCO

)
(7.2)

(see Fig. 7.1). We see that the lateral interactions do not seem to affect the kinetics,
but the rate at intermediate coverages has a complicated dependence on the cover-
age. The structure of the adlayers is determined by the configurational entropy. For
θCO < 0.369 ML this results in a disordered structure. At θCO = 0.369 ML there is
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Fig. 7.1 The rate for adsorption divided by the rate constant (i.e., only the coverage dependence)
as a function of coverage for the situation of a square lattice and repulsion between adsorbates
at neighboring sites that is so strong that the system avoids it (e.g., CO/Rh(100)). This leads to
a order-disorder phase transition at 0.369 ML. The tangents show that at low coverage the rate
is proportional to 1 − 5θ and at high coverage to 1/2 − θ . Each cross is the results of a kMC
simulation with a 512 × 512 lattice, a fixed adsorption rate constant and a desorption rate constant
between 0.001 and 1000 times the adsorption rate constant

a phase transition to a c(2 × 2) structure [4]. Even below that coverage some CO
molecules form that structure so that the others have more room to move. This gives
a high entropy.

The effects of lateral interactions at low temperatures have at least been known
for as long as diffraction techniques have revealed that adlayers can form well-
defined structures. Island formation and adsorbate segregation are phenomena that
are often mainly determined by the energetics of a system. At higher temperatures
entropy effects become important, but the energetics certainly remain essential for
the kinetics. When we increase the temperature there is often an order-disorder
phase transition. This can have a dominant effect on the experimental results as
we will see in Sect. 7.4 where we discuss TPD with repulsive interactions and the
butterfly in voltammetry.

Above the order-disorder phase transition temperature there is no long-range or-
der. (For simplicity we are assuming here a system with just interactions between
adsorbates at neighboring sites. The situation can become very complicated if there
are also interactions at longer ranges, three-particle interactions, frustrated interac-
tions, et cetera.) It is important to realize however that for kinetics it is not this
long-range order that is most important but the short-range order, or the correlation
in the occupation of neighboring sites. This has to do with the fact that there are
generally reactions that involve different adsorbates at such neighboring sites, and
the rate depends on both sites being occupied. One should realize that such short-
range order or correlation does not vanish at the order-disorder transition. When the
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temperature increases the short-range order decreases, but only gradually converges
to zero. This is the reason why rate equations are also not correct for catalysis at
high temperatures.

And even if the temperature is so high that also the short-range order is negli-
gible, the lateral interactions still can not be treated in the form of an effective rate
constant. To see this we need a short derivation of the type we did in Sect. 4.6.
Suppose we have an adsorbate A that desorbs and that has interactions with adsor-
bates with neighboring sites. Suppose for simplicity that the adsorption sites form a
square lattice. The phenomenological equation (4.73) then says that the probability
⟨A⟩ that a site is occupied changes according to the following equation.

−d⟨A⟩
dt

= W
(0)
des

〈 ∗
∗ A ∗

∗

〉

+ 4W
(1)
des

〈 ∗
A A ∗

∗

〉

+ 4W
(2,1)
des

〈 A
A A ∗

∗

〉

+ 2W
(2,2)
des

〈 ∗
A A A

∗

〉

+ 4W
(3)
des

〈 A
A A A

∗

〉

+ W
(4)
des

〈 A
A A A

A

〉

. (7.3)

The probabilities on the right-hand-side specify a particular occupation of a central
site and its four neighbors. There are different rate constants for these occupations.
The coefficients before the rate constants indicate the number of symmetry-related
ways the sites can be occupied.

If we assume that the adsorbates are randomly distributed over the sites, then we
can simplify this expression to

−dθA

dt
= W

(0)
desθA(1 − θA)4 + 4W

(1)
desθ

2
A(1 − θA)3

+
[
4W

(2,1)
des + 2W

(2,2)
des

]
θ3

A(1 − θA)2

+ 4W
(3)
desθ

4
A(1 − θA) + W

(4)
desθ

5
A, (7.4)

where we have used ⟨A⟩ = θA and
〈 X2

X1 X0 X3
X4

〉

= ⟨X0⟩⟨X1⟩⟨X2⟩⟨X3⟩⟨X4⟩ = θX0θX1θX2θX3θX4 . (7.5)

This is as far as we can go without making any assumption besides the one about
the random distribution of the adsorbates. To get a further simplification we need
to make assumptions about the rate constants. If we assume that they are all equal,
then the equation reduces to

−dθA

dt
= W

(0)
desθA

[
θA + (1 − θA)

]4 = W
(0)
desθA, (7.6)

but this assumption means that there are no lateral interactions.
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For pair interactions we have

W
(n,...)
des = W

(0)
dese

nϕ/kBT (7.7)

with ϕ the interaction parameter. This simplifies the expression to

−dθA

dt
= W

(0)
desθA

[
θAeϕ/kBT + (1 − θA)

]4
. (7.8)

We see that we retain a strongly non-linear dependence of the rate on the coverage.
The system NO/Rh(111) that we will discuss here shows most of the effects caused
by lateral interactions that we have mentioned above.1 In addition it shows how
lateral interactions can change the preferred adsorption site. NO on Rh(111) prefers
hollow sites, but at high coverages part of the NO moves to top sites. The adsorption
energy of the top site is much lower than that of the hollow sites, but by moving to
top sites a strong repulsion between the adsorbates is avoided.

At temperatures below 275 K NO adsorbs molecularly [5, 6]. It prefers the three-
fold hcp site slightly over the threefold fcc site. The difference of the adsorption
energy depends on the coverage, but it is only in the range of 3 to 8 kJ/mol [7–9].
The bridge site and certainly the top site have much smaller adsorption energies.
The difference is between 20 to 24 and 61 to 64 kJ/mol, respectively.

NO starts dissociating above 275 K and forms nitrogen and oxygen atoms. Ni-
trogen prefers the threefold hcp site just as NO, but oxygen prefers the threefold
fcc site. The difference with the other threefold site is again small: between 9 and
14 kJ/mol for nitrogen, and between 6 and 10 kJ/mol for oxygen. At low coverage
all of the NO dissociates, but as the coverage increases less and less NO dissociates
and the temperature at which dissociation starts increases.

An explanation why less NO dissociates at higher coverages is that there are sim-
ply no sites available. If the system is modeled with one (threefold) site per unit cell
[9, 10], then the suppression of the NO dissociation can simply be explained because
at high coverage there are not enough sites available for the atoms that are formed
when NO dissociates. NO occupies only one site, but the atoms after dissociation
occupy two. When all NO dissociates the number of occupied sites doubles. When
the initial coverage of NO is higher than 0.5 ML, all sites are occupied before all
NO has dissociated.

The 1-site model above has three shortcomings. First, it does not show that the
dissociation of NO becomes already suppressed below 0.5 ML, and the maximum
coverage of NO is only 0.75 ML. Second, it does not explain the temperature de-
pendence. In fact, it does not have any temperature dependence related to the initial
coverage of NO. Third, DFT results indicate that at least the other threefold sites
should also play a role [7–9]. In fact, LEED shows that the NO adlayer with a cov-

1Parts of Sect. 7.2 have been reprinted with permission from C.G.M. Hermse, F. Frechard, A.P. van
Bavel, J.J. Lukkien, J.W. Niemantsverdriet, R.A. van Santen, A.P.J. Jansen, Combining density-
functional calculations with kinetic models: NO/Rh(111), J. Chem. Phys. 118, 7081 (2003). Copy-
right 2003, American Institute of Physics.
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erage of 0.75 ML has on equal distribution of the NO molecules over both threefold
sits and the top site [11, 12].

It is clear from this that lateral interactions play an important role in the system.
So the 1-site model should be extended with lateral interactions. This can reproduce
the dissociation behavior as far as initial coverage and temperature dependence is
concerned, but not the maximum NO coverage. Moreover, the lateral interactions
that are needed for the 1-site model to reproduce the experimental Temperature-
Programmed Reaction (TPR) spectra are an order of magnitude lower than those
obtained from DFT calculations [7–9].

A correct model is obtained by including lateral interactions and the two three-
fold and the top sites. NO can occupy all three sites, but is has a clear preference for
the threefold sites. The atoms are only allowed to occupy threefold sites. DFT cal-
culations give lateral interactions for sites at a distance of 1

3

√
3dRh−Rh, dRh−Rh, and

2
3

√
3dRh−Rh with dRh−Rh the distance between neighboring substrate atoms. At the

shortest distance of 1
3

√
3dRh−Rh the interactions are so strongly repulsive that they

can be modeled as site blocking. At a distance of dRh−Rh there is still a strong re-
pulsion of at least 24 kJ/mol. This repulsion is still so strong that the system avoids
it, and it does not show up in the results of kinetic experiments. It does however
strongly determine the structure of the adlayer (it can be regarded as site blocking
for the structures as well), and only when the structure of the adlayer changes the
adsorbates occasionally get as close as a distance dRh−Rh of each other. To avoid
this repulsion at coverages above 0.5 ML NO moves to top sites. There is also such
strong repulsion at 2

3

√
3dRh−Rh between atoms, between atoms and NO, and be-

tween NO molecules.
The system and the model of it shows many of the phenomena that result from

lateral interactions that were discussed before. At low temperatures NO forms vari-
ous superstructures depending on coverage. At 0.5 ML a c(4 × 2)-2NO structure is
formed and at 0.75 ML a (2 × 2)-3NO structure (see Fig. 7.2) [11–13]. The maxi-
mum coverage of 0.75 ML is a consequence of the fact that it is the maximum cov-
erage that has no NO molecules at distance dRh−Rh. The phase transitions between
the structures are here not caused by temperature, but by a change in coverage. The
ordered structures also show an order-disorder phase transition in the kMC simula-
tions when the temperature increased and if we leave out the NO dissociation.

When NO starts dissociating we get an adlayer with NO, N, and O atoms that
segregate (see Fig. 7.3). There is little difference in N–N, O–O, and N–O interac-
tions. This means that the nitrogen and oxygen atoms mix. The interactions with
NO are however different. In particular, the repulsion between NO and the atoms is
larger than the average between the atom-atom and the NO–NO interactions, mainly
because the NO–NO repulsion is much weaker. As a consequence we have the seg-
regation as in the figure. There is a strong similarity with island formation, because
the interactions are formally equivalent to one with attractive interactions between
the atoms and between the NO molecules.

That lateral interactions affect the kinetics is clear, but the effects are not so
clear-cut as those for the structures. The suppression of the NO dissociation when
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Fig. 7.2 Ordered structures of NO/Rh(111). The coverage on the left is 0.5 ML and on the right
0.75 ML. Large circles depict NO molecules, small circles vacant sites. Top sites are gray and
hollow sites are black. The structure of 0.5 ML has zigzag chains of molecules at alternating fcc
and hcp sites with a vacant top site in between. The structure of 0.75 ML has a honeycomb structure
of molecules at hollow sites with molecules at top sites in the centers of the hexagons [9]

the initial coverage increases is clearly due to the increase in repulsive lateral inter-
actions. This effect becomes even noticeable at quite low coverage (see Fig. 7.4).
The same thing explains the higher temperature at which the dissociation starts. At
high initial coverage the dissociation is partial or even suppressed completely. In the
spectra there is a second peak for dissociation at high temperature. This results from
desorption of NO that frees sites and makes new dissociation reactions possible.

One consequence of the lateral interactions that is easier to explain is the tem-
perature at which NO desorbs that does not dissociate. The adsorption energy of
isolated NO has a value that suggests a much higher desorption temperature. For
top sites there is a repulsion of six neighboring NO molecules at hollow sites. This
is always the same, so the desorption from top sites is always at the same temper-
ature but at a lower temperature than might be inferred from the adsorption energy
for an isolated NO molecule. The desorbing NO from hollow sites that is observed
in TPR spectra is surrounded by nitrogen and oxygen atoms. These NO molecules
feel a strong repulsion from these atoms, and also desorb at a lower temperature.
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Fig. 7.3 Snapshot of part of
the adlayer during a
simulated TPR experiment of
NO/Rh(111). The initial
coverage of NO was 0.75 ML
(see Fig. 7.2). The initial
temperature was 250 K and
the heating rate was 10 K/s.
The snapshot was taken at
490 K. Black circles depict
oxygen atoms, gray circles
nitrogen atoms, and white
circles NO molecules. The
simulated system consisted of
264 × 264 sites forming a
simple hexagonal lattice.
A third of the sites was fcc, a
third hcp, and a third top.
Labels were used to
distinguish the type of site [9]

There are two peaks for N2 desorption. There is a narrow peak at a relatively low
temperature and a broad peak at high temperature. The narrow peak is associated
with the desorption of NO that makes new dissociation reactions possible. This cre-
ates nitrogen atoms in the adlayer with a very high coverage and a fraction of them

Fig. 7.4 Temperature-Programmed Reaction spectra (rates in arbitrary units versus temperature
in Kelvin) of NO/Rh(111). The heating rate is 10 K/s. There are no spectra for oxygen desorption
because this takes place at higher temperatures and has not been included in the simulations. The
numbers next to the curves are the initial coverages of NO. The spectra have been obtained by
averaging over 100 kMC simulations with a simple hexagonal 264 × 264 lattice representing the
top, fcc, and hcp sites [9]
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is pushed of the surface. The broad peak is formed after all NO molecules have ei-
ther dissociated or desorbed. It results from nitrogen surrounded by oxygen atoms.

7.3 NH3 Induced Reconstruction of (111) Steps on Pt(111)

Another reason why macroscopic rate equations may fail is that the substrate is
never homogeneous. We may have a bimetallic catalyst, but more common is that the
surface has defects. As a consequence different parts of the surface have sites with
different adsorption energies and reactivities. Using a model with a single coverage
is then bound to fail, but even if we use different coverages for the different parts of
the substrate we make an approximation that may not be justifiable.

Suppose that we have a simple adsorption-desorption equilibrium on a square
lattice, but that there is a step. Suppose for simplicity that we can model this with a
single row of sites that have a desorption rate constant that differs from that of other
sites. The macroscopic rate equations are then

dθn

dt
= kads(1 − θn) − k

(terrace)
des θn + D

a2 [θn+1 + θn−1 − 2θn] (7.9)

for n ≠ 0 and

dθ0

dt
= kads(1 − θ0) − k

(step)
des θ0 + D

a2 [θ1 + θ−1 − 2θ0]. (7.10)

Here θn is the probability that a site a distance |n|a from the step is occupied. Sites
with n > 0 are on one side of the step and those with n < 0 on the other. The
parameter a is the distance between the sites, kads is the adsorption rate constant
kdes is the desorption rate constant, and D/a2 the hopping rate constant (D is the
diffusion coefficient). The derivation of these rate constants is very similar to the
ones in Sect. 4.6.

If the adsorbates do not hop to neighboring sites (D = 0), then we find

θ0 = kads

kads + k
(step)
des

and θn = kads

kads + k
(terrace)
des

(7.11)

for n ≠ 0. In this case using two coverages, one for the step and one for the terraces,
is justified. If the adsorbates are allowed to hop (D ≠ 0), then this is no longer the
case. We will see that we get a gradient in the coverage away from the step.

The general solution of the rate equations can be written as

θn = kads

kads + k
(terrace)
des

+ Bλ−|n|. (7.12)

Substitution of this expression in the rate equations for the terrace sites yields

λ + 1
λ

= 2D/a2 + kads + k
(terrace)
des

D/a2 (7.13)
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Fig. 7.5 Snapshot of part of a Pt-Ru electrode during a simulation of a linear sweep voltammetry
experiment in which CO is replaced by OH. The Ru part of the electrode is completely covered
by CO (gray circles) or OH (white circles). The Pt part is partially covered by CO (black circles)
but a lot of it is vacant. The formation of OH on the electrode takes place initially on the Ru side
of the Pt-Ru interface. That OH reacts with CO on the Pt side of the interface which leads to the
vacancies on Pt. The vacancies on Ru are filled by new OH being formed [14]

for the parameter λ. There are two solutions, but only the one with λ > 1 is physi-
cally acceptable, because the second term of the right-hand-side of equations (7.12)
should go to zero for large |n|. The appropriate value for λ is given by

λ = 1
2

[
µ +

√
µ2 − 4

]
(7.14)

with µ equal to the right-hand-side of Eq. (7.13). Substitution of expression (7.12)
in the rate equation for the step gives a linear equation for B . The solution of it is

B = kads(k
(step)
des + k

(terrace)
des )

[k(step)
des − kads + 2D(λ − 1)/a2][kads + k

(terrace)
des ]

. (7.15)

The important point however is that, although all terrace sites have the same prop-
erties, their coverage is not the same because of the presence of the step.

Another example is shown in Fig. 7.5. It shows a snapshot of a model of a Pt-
Ru electrode during a voltammetry experiment [14]. Initially the whole electrode
is covered by CO except for a few vacancies. The initial potential is low and no
reactions take place. The potential is then increased which causes water to adsorb
dissociatively forming OH on the electrode. The OH reacts with CO to form CO2
and a proton, which both desorb immediately. These reactions take place first at the
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Pt-Ru interface. The OH forms on Ru and the CO is taken from Pt. The resulting
vacancy on Ru is rapidly filled by another OH, but on Pt we get a gradient of CO
molecules diffusing to the Pt-Ru interface.

When we cut a crystal we get a surface that is not necessarily stable. That surface
will then change its structure. Such a change is called a reconstruction. This often
leads to another form of heterogeneity of the substrate than the ones mentioned
above. The structure of surfaces is also often changed by catalytic reactions [15,
16]. An example is discussed in Sect. 7.5. As a simpler model system for such
a restructuring process we consider here a stepped metal surface and look at the
reconstruction of a step. Due to their reduced coordination number atoms at steps
often exhibit an enhanced catalytic activity [17]. We discuss here the restructuring
of a stepped Pt(111) surface in the presence of adsorbed ammonia. We look at a
single step and on the details of the meandering of such step [18].2

A Pt(443) surface in its clean state consists of monatomic (111) steps separated
by seven lattice units wide (111) terrace (Fig. 7.6a and b). When this surface is ex-
posed to ammonia at 300 K with pNH3 = 10−6 mbar first individual Pt atoms move
along the step edge as shown by Figs. 7.6c and d. These atoms migrate and become
again attached rigidly to the step edge. Thus holes and protrusions are formed along
the step edges generating a meandering of the step edges as shown in Fig. 7.6e.
This meandering takes place in about 10–15 minutes. The dynamics of the substrate
changes are frozen in when after approximately 30 minutes an ordered (2 × 2) am-
monia overlayer forms on the (111) terraces visible in the STM image in Fig. 7.6f.

Several aspects of the energetics of meandering are obvious. The number of Pt-Pt
bonds of the step atoms decreases when the step starts to meander thus increasing
the step energy of the step. Simultaneously, due to bond-order conservation the re-
maining bonds of the Pt step atoms will become stronger, and the NH3 adsorption
energy is expected to be highest on Pt step and kink atoms [19]. A first guess would
therefore be that the meandering is driven by the gain in ammonia adsorption energy
caused by creation of low coordinated sites. To check this explanation plane-wave
DFT calculations were performed of steps with various structures with and with-
out ammonia [20]. Ammonia adsorbs on top sites of the Pt surface. The adsorption
energy at a kink site is 17 kJ/mol larger than at a straight (111) step, but it costs
41 kJ/mol to form the kink.

Ammonia adsorption on a surface with a single step was modeled allowing Pt
atoms and ammonia molecules to diffuse on the upper and lower terrace but not
across the step [18]. To account for the formation a (2 × 2)-structure of ammonia at
a 1/4 ML coverage molecules were not allowed to become nearest- or next-nearest
neighbors. Adsorption of ammonia was assumed to be a simple direct adsorption.

kMC simulations without ammonia do not show any meandering at 300 K. This
is not surprising as the energy changes are much higher than the thermal energy.

2Parts of Sect. 7.3 have been reprinted with permission from X.Q. Zhang, W.K. Offermans, R.A.
van Santen, A.P.J. Jansen, A. Scheibe, U. Lins, R. Imbihl, Frozen thermal fluctuations in adsorbate-
induced step restructuring, Phys. Rev. B 82, 113401 (2010). Copyright 2010, American Physical
Society.
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Fig. 7.6 STM images showing the meandering of the step edges on a Pt(443) surface during
exposure to ammonia at 300 K with pNH3 = 10−6 mbar. t = 0 refers to at the beginning of adsorp-
tion when the coverage is zero. (a) Structural model of Pt(443); (b) clean surface; (c) t = 3 min.;
(d) t = 15 min.; (e) t = 15 min. The image in (f) at t = 35 min. at maximum coverage displays for-
mations of a 2 × 2-NH3 structure. Sizes of the imaged areas are (b)–(d) 50 Å × 30 Å, (e) 150 Å ×
95 Å, and (f) 45 Å × 30 Å [18]. (Color figure online)

Only when the temperature is increased to around 600 K or higher there are devi-
ations from the straight (111) step. Starting with a bare surface it is observed that
during ammonia adsorption the initially straight (111) step starts meandering as the
coverage of ammonia builds up. This is because part of the energy costs to form
kinks is offset by the higher adsorption energy of ammonia at kink atoms. As a
consequence there is a decrease of the stiffness of the step.

As long as there are kinks and lone Pt atoms without ammonia the shape of the
step keeps changing. The meandering stops however almost completely when no
more ammonia can be added to the step edge. At that point some Pt atoms at the
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Fig. 7.7 Snapshot of a kMC simulation showing part of a step formed with NH3. Open circles
are Pt atoms without NH3, closed circles are Pt atoms with NH3. The lower terrace is in a lighter
shade [18]

step edge can still move, but each Pt hop is immediately followed by its reverse
hop. The shape of the step is then fixed. More extensive changes to the step do not
occur because they would now drive ammonia to less favorable adsorption sites, and
would involve structures with energies that are substantially higher than the thermal
energy. If the coverage of ammonia is increased further, then also the remaining Pt
hops at the step edge become suppressed. This is because the Pt atoms at the step
become blocked by ammonia at the lower terrace. It takes about 20 minutes to freeze
the step, which is in good agreement with the experimental results. Also the shape
of the final step is in good agreement with the STM images (see Fig. 7.7).

So the behavior of the step based on the STM experiments and the kMC simula-
tions can be summarized as follows. Without ammonia the straight (111) step is en-
ergetically the most favorable structure, and hence the equilibrium structure. There
are no fluctuations in the structure at T = 300 K, because structural deviations from
a straight edge have energies that are substantially higher than the thermal energy.
Adding ammonia still leaves the structural deviations energetically unfavorable, but
the energy difference is now reduced strongly enough to allow for thermal fluctu-
ations. This leads to meandering. When the density of ammonia at the step edge
becomes high, the diffusion of Pt atoms is suppressed because any jump generates
locally energetically unfavorable configurations, because ammonia would be forced
to unfavorable sites. The final structure of the step can therefore be regarded as a
frozen thermal fluctuation.

7.4 Phase Transitions and Symmetry Breaking

Phase transitions are notoriously difficult to predict accurately. The Ising model on
a square lattice is a prototype model to study phase transitions. It shows an order-
disorder phase transition that can be solved analytically [4]. The exact temperature
of the phase transition is a factor 2 ln(1 +

√
2) ≈ 1.763 lower than the temperature

that is obtained from a Mean-Field Approximation similar to the one on which the
macroscopic rate constants of chemical kinetics are based. Such a large discrepancy
is typical, and forms a good reason for doing simulations.



194 7 Examples

The Ising model shows an example of an equilibrium phase transition that is
caused by the interactions between spins. Such phase transition can also be ob-
served in adlayers, although there it originates from the interactions between adsor-
bates. In fact, adlayers can show quite complicated phase diagrams as a function of
temperature, coverages, and possibly composition, because of multiple interactions
of various strengths between the adsorbates and different adsorption sites that may
play a role. Equilibrium phase transitions may show up in kinetic experiments: in
particular, experiments in which reaction conditions are changed. The conditions at
which the transition occurs will then also depend on the rate with which the change
of the conditions takes place.

There are also other phase transitions possible that are typical for systems with
irreversible reactions. They originate from the fact that for some reaction conditions
there may be more than one stable steady state, and changing reaction conditions
may make the one that a system is unstable. This results then in non-equilibrium or
kinetic phase transitions. When macroscopic rate equations are used they are also
called bifurcations [21, 22]. In fact, much more complicated situations may arise
showing oscillations, pattern formation, and chaotic behavior [23, 24].

In this section we show two examples of equilibrium phase transitions showing
up in kinetic experiments. In one lateral interactions cause a phase transition, in
the other the configurational entropy is responsible. We also show an example with
kinetic phase transitions. All examples are kept simple so as to illustrate the phase
transitions most clearly.

7.4.1 TPD with Strong Repulsive Interactions

One of the clearest examples of the advantage of kMC simulations over macroscopic
rate equations is formed by simple desorption with strong lateral interactions. If
we take for example a square lattice, an initial situation with all sites occupied,
and repulsive interactions between nearest neighbors, then the following happens.
Initially, each adsorbate has the same tendency to desorb. However, if one adsorbate
desorbs then its former neighbors suddenly feel less repulsion and become adsorbed
more strongly. This means that desorption takes place in two stages. First about half
the adsorbates desorb, because they have many neighbors. After these adsorbates
have desorbed the structure of the adlayer is that of a checkerboard, with almost all
adsorbates having no neighbors. Because these adsorbates feel little or no repulsion
from other adsorbates they desorb at a later stages.

So we have a phase transition at half a monolayer coverage. At higher cover-
ages the adlayer consists of patches with a checkerboard and patches with a 1 × 1
structure (θ = 1). At lower coverages the adlayer consists again of patches with a
checkerboard but with vacant areas in between. Also note that there is a symmetry
breaking. Initially all sites are equivalent, but after half the adsorbates have des-
orbed alternate sites are occupied and vacant. Ordinary macroscopic rate equations
are not able to describe this symmetry breaking, because they assume that all sites
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Fig. 7.8 Domain formation during desorption with strong repulsive interactions. This is a snapshot
from a simulation of a Temperature-Programmed Desorption experiment with adsorbates with a
repulsion of 6.65 kJ/mol (see Fig. 7.9). The coverage is 0.29 ML. All adsorbates are equivalent but
black and gray adsorbates are from different domains

are equivalent during the whole process. We can split the macroscopic rate equations
in two: one for the sites with the adsorbates that desorb first, and one for the sites
with adsorbates that desorb later. However, the equations for both sites are equiva-
lent and the symmetry breaking only occurs if the initial state already has a small
difference in the occupations between the sites with the early desorbers and the sites
with the late desorbers. For kMC simulations such an unrealistic initial condition
is not necessary. In kMC fluctuations in the times when reactions occur cause the
symmetry breaking as they do in real systems. Such fluctuations are not included in
macroscopic rate equations.

The fluctuations determine which adsorbates desorb first, and also affect the
structure of the adlayer when the coverage has been more of less halved. A per-
fect checkerboard structure is only found when the adsorbates also diffuse fast and
when the temperature is well below the order-disorder phase transition temperature.
For small system sizes the diffusion need not be so fast as for large system sizes.
Diffusion has to make sure that no domains are formed. Simulations show that even
at relatively small systems with say a 128 × 128 lattice it is almost impossible to
avoid domain formation (see Fig. 7.8).

Figure 7.9 shows a TPD spectrum for a system with repulsive interactions. We
show TPD instead of isothermal desorption, because the latter shows the two stages
in the desorption only in how fast the coverage and the desorption rate decreases.
If the coverage is plotted logarithmically, then we get first a straight line with a
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Fig. 7.9 Temperature-Programmed Desorption spectrum (desorption rate vs. temperature in
Kelvin) of adsorbates repelling each other. The fat line is the total desorption rate. The thin lines
are separate contributions of adsorbates desorbing with a number of nearest neighbors given by the
number next to the curve. Activation energy for desorption is Eact = 121.3 kJ/mol and the prefac-
tor is ν = 1.435 · 1012 s−1. These numbers were taken from CO desorption from Rh(100) at low
coverage. The repulsion between two adsorbates is 6.65 kJ/mol. The heating rate is 5 K/s and the
initial coverage 1.0 ML

large negative slope, followed by a straight line with a smaller, in absolute sense,
negative slope. In TPD the two stages are much clearer, because the desorption rate
has two peaks. The figure shows that the second stage (i.e., the second peak) has
also contributions from adsorbates with one, two, and even three neighbors, which
is due to the fact that the first stage never forms a perfect checkerboard structure and
the fact that many adsorbates first diffuse to a site with neighbors and desorb from
that site. If the repulsion becomes very strong, then even more than two peaks can
form.

In real systems the effects of lateral interactions are generally not so unambigu-
ous. The lateral interactions have to be strong enough so that a well-defined struc-
ture is formed when half the adsorbates have desorbed. If this is not the case then
the lateral interactions only show up by shifting or broadening a single peak when
the initial coverage is increased. When lateral interactions are strong enough, then
they may also push adsorbates to other adsorption sites. These sites have a lower
adsorption energy, but overall the energy is lowered because it lessens the repul-
sion between the adsorbates. The result may even be an adlayer structure that is
incommensurate with the substrate. Finally, lateral interactions need not just be be-
tween nearest neighbors. Interactions between next- and next-next-nearest neigh-
bors are not uncommon. Longer range interactions can sometimes be excluded [25],
but charged adsorbates might have long-range interactions, which may explain very
broad desorption peaks [26, 27].
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Fig. 7.10 Lateral interaction
model on a fcc(111) lattice.
The adsorbed anion binds to
two surface atoms in a
bridged fashion (black
atoms), making bonding to
the first shell of neighboring
sites (gray) impossible

7.4.2 Voltammetry and the Butterfly

The adsorption of anions on single-crystal electrode surfaces usually gives rise to
the appearance of ordered adsorbate adlayers. The formation of these ordered adlay-
ers is often accompanied by a characteristic sharply peaked current response in the
cyclic voltammetry, commonly referred to as “butterfly” in the electrochemical com-
munity [28–30]. We discuss this butterfly for a model of adsorption of (bi)sulfate
on fcc(111) surfaces [31].3 The simulated voltammogram shows a broad peak as-
sociated with adsorption in a disordered phase, and a sharp one associated with a
disorder-order transition in the adlayer. The disorder-order transition converts the
adlayer with a coverage of 0.18 ML into a (

√
3 ×

√
7) ordered structure with a cov-

erage of 0.20 ML. The (
√

3 ×
√

7) structure with 0.20 ML saturation coverage is
experimentally known for the adsorption of anions from sulfuric acid solution on
many fcc(111) surfaces. The anion involved is either bisulfate (HSO−

4 ) or sulfate
(SO2−

4 ). The reactions are

A2− + ∗∗ ! Aads + 2e−, (7.16)

where ∗∗ denotes an vacant bridge site (formed by two vacant surface atoms): each
∗ corresponds to a surface atom. Figure 7.10 shows the (111) substrate and the
neighboring sites around a bridge-bonded adsorbate. There is a shell of purely hard
interactions, in which the simultaneous bonding of two anions to neighboring sites
is simply excluded. This model is equivalent to the elongated hard hexagon model
considered by Orts et al. [32].

Because of the hard interactions the phase transition here is different from the
one observed in TPD with finite repulsive interactions (see Sect. 7.4.1). The phase
transition there involves a change in the energetics. This is not the case here. The
system avoids the hard interactions, and the energy of the adlayer is always zero. The
structure of the adlayer is only determined by the configurational entropy. (We are

3Parts of Sect. 7.4.2 have been reprinted with permission from C.G.M. Hermse, A.P. van Bavel,
M.T.M. Koper, J.J. Lukkien, R.A. van Santen, A.P.J. Jansen, Modelling the butterfly: (

√
3 ×

√
7)

ordering on fcc(111) surfaces, Surf. Sci. 572, 247 (2004). Copyright 2004, Elsevier.
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ignoring here the interactions of the adsorbates with the substrate. These interactions
only determine the coverage. Their contribution is constant for a give coverage, and
hence they do not affect the structure of the adlayer.)

In a voltammetry experiment the electrode potential E is varied: here we start
with a low value without adsorbates on the electrode surface, then increase the po-
tential and monitor the coverage θ . The rate constants for adsorption and desorption
are

kads = k0 exp
(−αadsγ eE

kBT

)
(7.17)

kdes = k0 exp
(

αdesγ eE

kBT

)
(7.18)

where αads = 1/2 is the transfer coefficient for adsorption, γ is the electrosorp-
tion valency (taken −2), and e is the elementary charge. The exponent describes
the potential-dependent adsorption of the anion. The definitions in Eqs. (7.17)
and (7.18) imply that in our model at zero potential the adsorption rate constant
is equal to the desorption rate constant: kads = kdes = k0. The transfer coefficients
are related as follows.

αdes = 1 − αads. (7.19)

The diffusion steps were defined as hopping between neighboring bridge sites.
Apart from the dependence of θ on E, we are particularly interested in the com-

pressibility dθ/dE of the adlayer, as this quantity is proportional to the Faradaic
current measured in an electrochemical voltammetry experiment

j = −eγΓmν
dθ

dE
, (7.20)

where j is the Faradaic current in A/cm2, Γm is the number of surface sites per unit
surface area (taken to be 1.5 × 1015 sites/cm2), and ν is the sweep rate (typically
50 mV/s).

Figure 7.11 shows the voltammogram obtained from kMC simulations. The
disorder-order transition at 0.11 V is particularly sensitive to the level of equili-
bration: an insensitivity of this peak to reducing the sweep rate indicates that the
surface is well equilibrated. The simulations were therefore done by choosing the
rates of adsorption, desorption and diffusion such that upon reducing the sweep rate
from 50 to 5 mV/s the disorder-order transition peak is shifted by less than 5 mV.
This is also what is expected experimentally. The values fulfilling this requirement
are k0 = 103 s−1 and k0

diff = 105 s−1. The sweep rate used was 50 mV/s.
Going from more negative to more positive potential, the anion adsorbs between

−0.1 and 0.1 V in a disordered phase (see snapshots in Fig. 7.12a, b). This results in
a broad adsorption peak in the voltammogram. There is a disorder-order transition at
0.11 V, indicated by the sharp peak in the voltammogram. At this voltage the anion
coverage rapidly increases from 0.18 to 0.20 ML, which is the saturation coverage.
This result was previously obtained by Orts et al. using an elongated hard hexagon
type model [32]. The onset of the disorder-order transition is shown in Fig. 7.12c.
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Fig. 7.11 Voltammograms (current in arbitrary units versus electrode potential in V) averaged
over 500 kMC simulations with a hexagonal 128 × 128 lattice, temperature T = 300 K, and sweep
rate of 50 mV/s. The width of the terraces in the surface with the steps is 16 rows

(
√

3 ×
√

7) Islands are forming, and, as indicated in the figure, these can have three
different orientations. After the disorder-order transition (at potentials of 0.12 V and
above) only large (

√
3 ×

√
7) domains are present on the surface. These typically

consist of more than one thousand adsorbates. At 0.10 V, the surface is occupied by
anions which have three different orientations. Packing of equal amounts of these
anions of different orientations is only possible up to about 0.18 ML. This causes a
decrease in the adsorption current close to 0.10 V. It is only with the alignment of
the adsorbates in the same direction that more anions can adsorb, since the ordered
(
√

3 ×
√

7) structure allows for a tighter packing of anions.
The presence of defects in the surface prevents long-range ordering of adsor-

bates. The voltammogram is therefore expected to change when steps are intro-
duced. We have investigated this effect by introducing step sites at regular intervals
in our model. Bonding to these step sites is excluded, and the adsorbates are also
not allowed to diffuse across the steps. Our results indicate that for different terrace
sizes only the disorder-order transition peak changes: the broad peak associated
with adsorption in a disordered phase hardly changes. The disorder-order transition
peak decreases in intensity with decreasing terrace size (Fig. 7.11). The saturation
coverage decreases as well. For terrace sizes of 64 and larger, the orientation of
the (

√
3 ×

√
7) domains is independent of the step orientation: i.e., islands of all

the three different orientations of the (
√

3 ×
√

7) structure are found. The intensity
of the disorder-order transition peak is comparable to the one for the case without
steps. For terrace sizes of 16 and 32, the (

√
3 ×

√
7) domains align to the steps, as

shown in Fig. 7.13. For an even smaller terrace size of 8, no ordering is observed,
even if the sweep rate is reduced to 5 mV/s.
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Fig. 7.12 Snapshots of the surface during anion adsorption. Before the disorder-order transition
(panel (a) and (b)) there is no ordering; during the disorder-order transition (

√
3 ×

√
7) islands

grow ((c); the three different domain orientations are indicated by the small arrows); after the
disorder-order transition large islands dominate (d). The (

√
3 ×

√
7) unit cell is indicated in (d)

7.4.3 The Ziff–Gulari–Barshad Model

Although the work by Ziff, Gulari, and Barshad does not represent the first appli-
cation of Monte Carlo to model surface reactions it is probably the most influential
work of its type [33]. There are several reasons for that. It deals with CO oxidation
which was and still is a very important process in catalysis and surface science. It is
a very simple model, which makes it generic. Its simplicity also makes it possible
to analyze in detail the relation between the microscopic reactions and the macro-
scopic properties. It has shown the shortcomings of the macroscopic rate equations
and what the origin of these shortcomings were. It has shown that kMC simula-
tions can describe kinetic or non-equilibrium phase transitions. In fact, apart from
the first-order phase transition also known from macroscopic rate equations, it has
shown that there is a continuous phase transition as well.

We present here the model, which we will call the Ziff–Gulari–Barshad (ZGB)
model, in its generic form. There are two adsorbates: A and B. If one wants to use
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Fig. 7.13 Snapshot of the surface at 0.25 V after anion adsorption for the model with first neighbor
shell exclusion and a terrace width of 16. Bonding to the steps (shaded circles) is forbidden. The
arrows show the alignment of the adsorbate islands (in black) to the steps (shaded), the coverage
equals 0.19 ML

the ZGB-model for CO oxidation, then A stands for CO and B for atomic oxygen.
There are three reactions in the model. Adsorbate A can adsorb at single vacant
sites. Adsorbate B can adsorb, but as it forms diatomic molecules in the gas phase,
two neighboring vacant sites are needed. An A will react with a B if they are nearest
neighbors. This reactions is infinitely fast, so this takes place immediately after an
adsorption. We can write the reaction as

A(gas) + ∗ → A(ads)

B2(gas) + 2∗ → 2B(ads) (7.21)

A(ads) + B(ads) → AB(gas) + 2∗
where ∗ is a vacant site, “ads” stands for an adsorbed species, and “gas” for a species
in the gas phase. The reactions involving two sites can only take place on neighbor-
ing sites. Focusing on the sites only we have

∗ → A

2∗ → 2B (7.22)

A + B → 2∗
The adsorbates do not diffuse in the original model, and the lattice is a square one.
There are many extensions to this model dealing, among others, with desorption of
CO and oxygen [34], diffusion of the adsorbates [34], an Eley–Rideal mechanism
for the oxidation step, physisorption of the reactants, lateral interactions between the



202 7 Examples

adsorbates [34], blocking of the sites due to poisoning with lead or alloying [35, 36],
reconstruction of the surface (see Sect. 7.5.2) [37–44], and an inert adsorbate that
causes oscillations [45, 46].

The rate constant for adsorption of A can be derived as in Sect. 4.6.3, and for
adsorption of B as in Sect. 4.6.7. The results are

WA,ads = yPAsiteσA√
2πmkBT

(7.23)

WB,ads = 2(1 − y)PAsiteσB

4
√

2πmkBT
. (7.24)

The σ ’s are sticking coefficients. The quantity y is the fraction of the molecules in
the gas phase that are A’s. If we assume that the sticking coefficients are equal to
each other, then we can simplify the rate constants to y and (1 − y)/2, respectively,
by replacing time t by τ = tPAsiteσA/

√
2πmkBT . We see that then the model de-

pends only on one parameter: i.e., only on y.
Simulations show that there are three states for the system. One possibility is that

the surface is completely covered by A’s. There are no reactions that can take the
system out of this state. Such a state is called on absorbing state (see Sect. 2.2.1). In
catalysis one talks in such a case of A poisoning, because it leads to the undesirable
situation that the reactivity is zero. There is another absorbing state, but then with
B poisoning. If the parameter y is below a critical value y1, then the system will
always evolve into the B poisoning state. If the parameter y is above another critical
value y2, then the system will always evolve into the A poisoning state. For y < y1
there are so many B2 molecules in the gas phase that B adsorption will outcompete
the A’s for the vacant sites that are formed by the reaction between the A’s and B’s.
To same thing happens for y > y2 except in this situations the A adsorption wins.
At y1 and at y2 there is a kinetic or non-equilibrium phase transition.

For y1 < y < y2 there is a third state with A’s and B’s on the surface and a non-
zero reactivity. Figure 7.14 shows how the reactivity and the coverage dependence
on y. Note that all quantities change discontinuously at y2. The phase transition at
that value of y is therefore called a first-order transition. At y1 the quantities change
continuously, so we have a continuous (or second-order) phase transition. Macro-
scopic rate equations also predict the first-order phase transition, but not the contin-
uous one. Moreover, the first-order phase transition is predicted by the macroscopic
rate equations to be at y1 = 2/3, whereas the best estimates from kMC simulations
are y2 = 0.52560 ± 0.00001 [47, 48]. The continuous phase transition is estimated
to be at y1 = 0.39065 ± 0.00010 [49].

Figure 7.15 shows the reason for the discrepancy between the kMC results and
those of macroscopic rate equations. The adlayer is definitely not a random mixture
of adsorbates. The reason is the fast reaction between the A’s and B’s. This reaction
causes segregation of the adsorbates. Isolated A’s will not last long on the surface,
because a B may adsorb on one of the vacant neighboring sites that will immediately
react with the A which will remove the A from the surface. For a similar reason
isolated B’s will be rare. Only islands of the same kind of adsorbate can last, because
the particles in the center of an island have no neighboring sites onto which other
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Fig. 7.14 Phase diagram of
the Ziff–Gulari–Barshad
model. The coverages and the
AB formation per unit time
per site are shown as a
function of the y parameter

particles can adsorb with which they will react. These islands are formed randomly.
Islands of B are larger. They need be because A’s need only one vacant site for
adsorption and can relatively easily break them up. Islands of A can be smaller, B’s
need two neighboring vacant sites for adsorption and have more difficulty to remove
A’s.

7.5 Non-linear Kinetics

The ZGB-model of Sect. 7.4.3 has shown that also the reactions themselves can
result in a structured adlayer. There have been some claims that this was because
there was no diffusion in the ZGB-model but, as the A + B model has shown, also
with diffusion the adlayer is not necessarily homogeneous.

Here we will look at other systems for which reactions and other processes can
lead to interesting structured adlayers but also to oscillations and other forms of
non-linear kinetics. These systems showing non-linear kinetics have mainly been
studied with rate equations or with reaction-diffusion equations [23, 24, 50]. Such
systems are difficult for kMC simulations. If one does a kMC simulation with a

Fig. 7.15 Snapshots of the adlayer in the Ziff–Gulari–Barshad model for y = 0.5255 a value just
below the first-order transition point. The black islands are formed by B’s. The A’s form the white
islands. Vacant sites are gray
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small system size then fluctuations can be present that can easily be mistaken for
oscillations. Even if the oscillations are real, their amplitude often decreases when
the system size is increased. This is because local oscillations at different parts on
a substrate may be out-of-phase. The variations in the local reactivities will then
average out and there will not be a global oscillation. There needs to be a so-called
synchronization mechanism that couples the local oscillations. It is much easier
to get global oscillations with rate equations, because they assume a priori that the
coverages are the same everywhere. It is a bit harder to get oscillations with reaction-
diffusion equations [50]. They do allow variations in the coverages as a function of
position, but they ignore fluctuations that tend to dephase local oscillations. Such
fluctuations are of course present in kMC simulations, which means that they form
the hardest test to see if oscillations can really exist in a given system.

Non-linear kinetics is generally only found in systems that are quite complicated.
The best studied system is probably that of CO oxidation on Pt surfaces [23, 24, 37,
51]. Apart from the processes found in the ZGB-model one needs also diffusion,
but most importantly a reconstruction of the substrate. There are only a few simple
models that show oscillations [23, 45, 52]. The models that are therefore used to
study non-linear kinetics are not nearly as realistic as the others discussed in this
chapter.

7.5.1 The Lotka Model

We first discuss what is probably the simplest model that shows oscillations: the
Lotka model [52–54].4 This model is not only interesting because of the oscilla-
tions, but also because it shows behavior that is qualitatively different from what is
predicted by macroscopic rate equations. The model has been studied in by Mai et
al. [53, 54], who used it in testing the applicability of different approximations. They
showed that even quite complicated approximations seem to fail in the description
of this reaction system. They concluded that there exists a critical value ζ̄ ≈ 0.11
for the only parameter in the model below which the coverages oscillate in time.

The model consists of two kinds of particles, denoted A and B, with the following
reactions. A’s adsorb with rate constant ζ , B’s desorb with rate constant 1 − ζ and
when there is an A adsorbed next to a B it is immediately converted into a B. The
sites form a simple square lattice. We note that the whole system depends only on a
single parameter ζ . In effect this means that we have scaled time so that the sum of
the rate constants for A adsorption and B desorption equals one.

This model has several potential experimental realizations, simulating a class of
possible realistic feedback mechanisms. For example, A and B could be the same

4Parts of Sect. 7.5.1 have been reprinted with permission from J.P. Hovi, A.P.J. Jansen, R.M. Niem-
inen, Oscillating temporal behavior in an autocatalytic surface reaction model, Phys. Rev. E 55,
4170 (1997). Copyright 1997, American Physical Society.
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Fig. 7.16 Oscillation in the
coverage of A and B of the
Lotka model for ζ = 0.05 and
a lattice size of 2048 × 2048
[52]

molecule, but adsorbed differently. Then A may denote a chemisorbed and B a ph-
ysisorbed molecule, as neighboring B weakens the bonding of A and turns it to B.
Alternatively, B may be adsorbed on a reconstructed site, and such a molecule in-
duces the same reconstruction on a neighboring unreconstructed occupied site. On
the other hand, A could be B plus an additional ligand. Such a ligand could desorb
immediately if A and B come into contact, leaving two B’s on the surface.

Because each site must be either vacant or occupied by an A or a B, and from the
fact that averaged over time the number of adsorbing A’s must equal the number of
desorbing B’s, we have [52]

θ̄B = ζ(1 − θ̄A) (7.25)

with θ̄X the coverage of X averaged over time. The macroscopic rate equations do
not predict any oscillations. Instead they predict a steady state with θA = 0 and
θB = ζ . To obtain this result one must use a finite rate constant of the conversion
A + B → 2B and then take the limit to infinity.

Figure 7.16 shows the temporal evolution of the coverages for ζ = 0.05. It can be
seen that there are very well-defined oscillations with a large amplitude. An anal-
ysis of these oscillations showed that near ζ = 0 they are related to synchronized
avalanches, which occur with a well defined frequency and come in all possible
sizes: i.e., they exhibit power-law scaling [52]. Although no complete theory could
be presented for the emergence of the oscillations, possibly the simplest heuristic
explanation for this synchronization of the avalanches is the following. The typical
cycle consists of a sudden increase of coverage of B followed by a slower decrease.
In the end of this decrease period, as most B’s have desorbed and the coverage is
very small. A clusters are then free to grow. As there are very few conversions of A’s
to B’s, A clusters grow until there is a nonzero probability that an arbitrary cluster
is separated from a B molecule only by a single vacant perimeter site. This happens
when θA is close to the critical value. Figure 7.17 shows a snapshot taken just after
an increase in the coverage of B. The avalanches are recognizable in the form of
large connected clusters of B’s.
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Fig. 7.17 Snapshot of part of the adlayer in the Lotka model for ζ = 0.05 and a lattice size of
2048 × 2048. The A’s are depicted by white circles. They form large clusters. The B’s are depicted
by black circles. They form the same kind of clusters but with many B’s removed because of the fast
desorption. The lower left shows an open area where such a cluster of B’s has almost completely
been removed

7.5.2 Oscillations of CO Oxidation on Pt Surfaces

One problem for which extensive kMC simulations have been done by various
groups is the problem of CO oscillations on Pt(100) and Pt(110). A crucial role
in these oscillations is played by the reconstruction of the surface, and the effect of
this reconstruction on the adsorption of oxygen. The explanation of the oscillations
is as follows. A bare Pt surface reconstructs into a structure with a low sticking coef-
ficient for oxygen. This means that predominantly CO adsorbs on bare Pt. However,
CO lifts the reconstruction. The normal structure has a high sticking coefficient for
oxygen. So after CO has adsorbed in a sufficient amount to lift the reconstruction
oxygen can also adsorb. The CO and the oxygen react, and form CO2. This CO2

rapidly desorbs leaving bare Pt which reconstructs again. An important aspect of
this process, and also other oscillatory reactions on surfaces, is the problem of syn-
chronization. The cycle described above can easily take place on the whole surface,
but oscillations on different parts on the surface are not necessarily in phase, and the
overall reactivity of a surface is then constant. To get the whole surface oscillating
in phase there has to be a synchronization mechanism.
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Fig. 7.18 Global oscillations and pattern formation with D = 250. The top shows temporal varia-
tions of the coverages, the fraction of the substrate in the α phase, and the CO2 production R. Each
picture has two parts. In the left part we plot the chemical species: CO particles are gray and O
particles are white, and vacant sites are black. The right part shows the structure of the surface: α
phase sites are black, and β phase sites are white. Sections of the upper-left corner with L = 8192,
4096, 1024, and 256 are shown on the left half of the figure. The sections correspond to the dot in
the temporal plot at the top. On the right half of the figure we have a wave front, a target, a spiral,
and turbulence (L = 2048), which can be obtained with different initial conditions [51]
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The most successful model to describe oscillations on Pt surfaces is the one by
Kortlüke, Kuzovkov, and von Niessen [38–40, 42–44].5 This model has CO adsorp-
tion and desorption, oxygen adsorption, CO2 formation, CO diffusion, and surface
reconstruction. The surface is modeled by a square lattice. Each site in the model is
either in state α or in state β . The α state is the reconstructed state which has a re-
duced sticking coefficient for oxygen. The β state is the unreconstructed state with
a high sticking coefficient for oxygen. An α site will convert a neighboring β site
into an α state if neither sites is occupied by CO. A β site will convert a neighboring
α site into β if at least one of them is occupied by CO.

The model shows a large number of phenomena depending on the rate constants.
We will only look at oscillations that occur for reduced rate constants y = 0.494,
k = 0.1, and V = 1 [51]. The first rate constant, y, is the one for CO adsorption and
has the same meaning as in the ZGB-model (see Sect. 7.4.3). The second, k, is the
rate constant for CO desorption. The last, V , is the rate constant for the reconstruc-
tion and the lifting of the reconstruction. The rate constant for oxygen adsorption is
as for the ZGB-model (1 − y)/2 on the β phase, and sα(1 − y)/2 on the α phase.
We will look at the Pt(110) surface which has sα = 0.5. The diffusion rate constant
has been varied.

Figure 7.18 shows snapshots obtained from some large simulations in which the
diffusion is just about fast enough to lead to global oscillations provided the initial
conditions are favorable. However, it is also possible to choose the initial conditions
so that the oscillations are not synchronized properly. In that case one can see the
formation of patterns as the right half of the figure shows.

Synchronization is obtained when the diffusion rate is fast enough. The minimal
value is related to the so-called Turing-like structures that are formed in the sub-
strate. These structure can best be seen in the lower two pictures on the left and all
pictures on the right of Fig. 7.18. If diffusion is so fast that within one oscillatory
period CO can move from one phase (α or β) to a neighboring island of the other
phase, then the oscillation are well synchronized. If the diffusion rate is slower, then
we get pattern formation. Note that the system has two length scales. The character-
istic length scale of the adlayer is much larger than the characteristic length scale of
the Turing-like structures as can be seen in the right half of the figure.
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Chapter 8
New Developments

Abstract Kinetic Monte Carlo (kMC) is a very versatile and powerful method
to study the kinetics of surface reactions, but there are nevertheless some systems
and phenomena for which one would like it to be more efficient or one would
like to extend it. We discuss what kind of fast processes may pose a problem,
when they become problematic, and what can be done about it so that kMC sim-
ulations can be done with longer time scales. Coarse-graining is presented as a
method to do simulations with larger length scales. Mass transport and heat transfer
are discussed in the context of continuum models that are coupled to kMC sim-
ulations. Finally, off-lattice kMC simulations are introduced to show that one can
also do kMC simulations of systems that can not be described with a lattice-gas
model.

8.1 Longer Time Scales and Fast Processes

In many simulations the period that one has to simulate a system is determined by
how long it takes the system to reach the state of interest (e.g., a steady state), and
the time one needs to simulate the system to get good statistics for the results. Nei-
ther times are generally very long. There are exceptions however. Relaxation times
sometimes are long, or one is interested in processes with intrinsically long time
scales: e.g., time-dependent experiments like Temperature-Programmed Desorption
or oscillations. It is not always possible to get to the time scale of interest with a
conventional kinetic Monte Carlo (kMC) simulation.

Even if the real time that one wants to simulate a system is not long, a simulation
may still take a lot of computer time because some of the processes are very fast. The
computer time is determined by the number of processes that actually take place. As
this number also determines if one has good statistics, one might assume that with
faster processes one need not simulate a system so long. That is correct, except
when there are both fast and slow processes in the system. To get good statistics on
the slow processes one then needs to simulate an inordinate large number of fast
processes.

A.P.J. Jansen, An Introduction to Kinetic Monte Carlo Simulations of Surface
Reactions, Lecture Notes in Physics 856,
DOI 10.1007/978-3-642-29488-4_8, © Springer-Verlag Berlin Heidelberg 2012
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8.1.1 When Are Fast Processes a Problem?

The theory of kMC does not pose any restrictions on the rate constants of the pro-
cesses being simulated. So there is no fundamental problem when there are pro-
cesses in a reaction system with very dissimilar rate constants. However, fast pro-
cesses can make a simulations slow and inefficient.

First, there is the question of which algorithm to use. This is discussed in Chap. 3.
The problem is oversampling, which can become very inefficient with rate constants
that differ a lot. The First Reaction Method (FRM) has no problems at all with fast
processes because there is no oversampling, but the Random Selection Method will
only rarely work well. The Variable Step Size Method (VSSM) works well if no
oversampling is used, but otherwise may be inefficient. The procedure in Sect. 3.9
can be used to show rapidly which algorithm works best.

A different problem, one not so easily solved, is when almost all processes that
actual take place in a system are fast processes but one is really interested in the
few slow ones. This is for example quite common when one is interested in the
chemical reactions on a catalyst’s surface, but most processes are diffusional hops
of the adsorbates. A kMC simulation will then spend almost all time on diffusion
whatever the algorithm one uses.

It is important to understand the precise nature of the problem. A fast process
in itself is not a problem For example, suppose that a molecule has a high rate
constant for adsorption. The consequence of this is that a molecule will adsorb as
soon as there is a vacancy. The number of such adsorption process will remain small,
because adsorption will stop when all vacancies are occupied. It only becomes a
problem if the molecules also have a high rate constant for desorption. In that case
new vacancies will be formed with a high rate, and a simulation ends up in spending
all time simulating an adsorption-desorption equilibrium. There is also no problem
if only the rate constant for desorption is high, because then the number of processes
is limited by the slow adsorption. Of course, there will not be many molecules on
the surface, but that is as it should be, as it is a consequence of the nature of the
adsorption-desorption equilibrium.

So there will only be problems with fast processes if a fast process can be fol-
lowed by infinite many other fast processes. Adsorption-desorption is one example.
Another would be a fast reaction that also has a fast reverse reaction. The most
common case is however fast diffusion.

8.1.2 A Simple Solution

The simplest approach is to reduce the rate constants of all fast processes involved
by some constant factor. This is the same as increasing the energies of the transi-
tion states of these processes by the same amount. The idea is that what all these
processes do is to equilibrate a subset of all configurations. This equilibration can
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however also be accomplished with much smaller rate constants. The pragmatic ap-
proach is then to start with a very large reduction of the rate constants: so large,
that the fast processes no longer dominate the time it takes to do a simulation. Then
one should increase the rate constants and look at how the results of the simulation
change. At a certain point the results will converge as a function of these rate con-
stants. At this point the simulation yields the same results as a simulation with the
real rate constants, but with minimal computer time. We have noticed that in the
case of diffusion this approach can easily speed up a simulation by three or more
orders of magnitude. Note that reducing the rate constants of the fast processes does
not slow down the evolution of the system because this is determined by the slow
processes. The same behavior is seen but with fewer fast processes.

The idea of reducing the rate constants has been worked out and automated by
Chatterjee and Voter in their Accelerated Superbasin kMC [1]. The approach keeps
track of how often configurations are revisited. If this occurs often, then this is in-
dicative of the system being trapped in a set of configurations connected by fast
processes. This is the superbasin of the approach. The energies of the transition
states of these fast processes is then increased. Depending on how much that these
energies are changes, the procedure may have to be repeated a number of times until
the fast processes are slowed down so much that an escape from the superbasin oc-
curs. Chatterjee and Voter give criteria to determine when a revisit is indeed pointing
to the existence of a superbasin.

Changing the rate constants as described here introduces no errors in the prob-
abilities of the configurations if the system is in equilibrium. The energies of tran-
sition states do not determine or affect equilibrium properties in any way. Many
situations exist however for surface reactions where there is an irreversible process:
e.g., the desorption of a molecule that has been created on the surface. In these sit-
uations the system is not in equilibrium, but at steady state. Forward and reverse
reactions have different rates in such a system, and the difference is proportional to
the overall reactivity. Changing the energies of the transition states changes initially
the rates of forward and reverse reactions by the same factor, and that changes their
difference as well. As a consequence the coverages and the reactivity will subse-
quently change as well, and the behavior of the system is no longer the same. In
general, this effect is small if only transition states of fast processes are changed,
and the approach then is a good approximation.

8.1.3 Reduced Master Equations

A more sophisticated approach using the same equilibration idea is to remove the
fast processes completely. Let C(α) be the set of all configurations that can be
reached from configuration α by some fast processes only. We can partition all con-
figurations in such sets. Let PC(α) be the probability that the system is in one of the
configurations of C(α): i.e.,

PC(α) =
∑

α′∈C(α)

Pα′ . (8.1)
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We then have
dPC(α)

dt
=

∑

C(β)

[ΩC(α)C(β)PC(β) − ΩC(β)C(α)PC(α)] (8.2)

with the new rate constants

ΩC(α)C(β) =
∑

α′∈C(α)

∑

β ′∈C(β)

Wα′β ′
Pβ ′

PC(β)
. (8.3)

This equation is again a master equation provided that all Pβ ′/PC(β) are constant,
which they are for infinitely fast processes. The reason is that such fast processes
bring all β ′ ∈ C(β) to equilibrium instantaneously and the ratio is nothing but a
conditional probability that the system is in β ′ given that it is in one of the configu-
rations of C(β). This ratio is determined by the fast processes only.

The applicability of Eq. (8.2) depends a how easily Pβ ′/PC(β) can be deter-
mined. For diffusion in a one-dimensional zeolite this proved to be easy, and instead
of a master equation with configurations a master equations with the numbers of
molecules could be used [2]. For higher dimensional system things might not be so
easy.

To get Pβ ′/PC(β) in the general case, one has to solve
∑

β ′′∈C(β)

[Wβ ′β ′′Pβ ′′ − Wβ ′′β ′Pβ ′ ] = 0 (8.4)

with β ′ ∈ C(β) and subject to the restriction
∑

β ′∈C(β)

Pβ ′ = PC(β). (8.5)

We can remove the need to know PC(β) by rewriting this as

∑

β ′′∈C(β)

[
Wβ ′β ′′

Pβ ′′

PC(β)
− Wβ ′′β ′

Pβ ′

PC(β)

]
= 0 (8.6)

with the restriction
∑

β ′∈C(β)

Pβ ′

PC(β)
= 1. (8.7)

This does not yield the Pβ ′ ’s, but only the Pβ ′/PC(β)’s, but that is also really all we
need to know.

Equations (8.6) and (8.7) form a set of linear equations that need to be solved. In
the case of the one-dimensional zeolite mentioned above this could be done analyt-
ically [2], but if this is not possible one has to hope that the number of equations,
which equals the number of configurations in C(β), is not too large.

Mastny et al. have used this reduced master equation (8.3) for a simple model
of CO oxidation [3]. They have defined the sets C(α) as all configurations with the
same number of adsorbates of each type just as was done for the one-dimensional
zeolite. They have tried two approaches to solve Eq. (8.6). In the first they used very
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small lattices (5 × 5 or 10 × 10). With these lattices there are only several hundreds
to several thousands equations (8.3) and the rate constants for all of them were
determined by doing normal but short kMC simulations with these small lattices.
Only diffusion of the adsorbates was included in these simulations. The probability
that a certain configuration β was found in such a simulation was then equal to
Pβ/PC(β), and that information was then used to compute ΩC(α)C(β) via Eq. (8.3).

Their second approach consisted of a derivation of the exact rate equations for the
coverages (see Sect. 4.6). The coverage dependence of the rates was then determined
using kMC simulations with large lattices, but again also with only diffusion. Instead
of investigating all possible combinations of the number of adsorbates, which would
not have been possible, they looked at a discrete sampling of coverages and then
interpolated.

Both approaches were shown to give good results. An advantage of both ap-
proaches is that it is much easier to study how the behavior of a system depends on
the rate constants of the processes than with kMC. The reason is that the effect of
the diffusion can be determined independently from that of the other processes: i.e.,
the kMC simulations with only diffusion need to be done only once and the results
can be used in all subsequent simulations or calculations.

8.1.4 Dealing with Slightly Slower Reactions

A more sophisticated approach was introduced by Mason et al. in their work on
flicker processes [4, 5]. It has the advantage that it can also be used when there is
not such a clearcut distinction between fast and slow processes, although the extra
computational costs of the more complicated algorithm may not be worthwhile if
the “fast” processes become too slow. A flicker process is change α → β of config-
urations immediately followed by the reverse change β → α. In their work Mason et
al. grouped all changes α → β → α for a fixed α and all possible β’s, and computed
a time when the chain of flicker processes is broken. They also determined which
configuration the system then goes to. Consequently, the flicker processes need no
longer be simulated explicitly which can speed up a simulation substantially.

8.1.4.1 The General Case

We will first discuss a more general situation. Suppose at time t = 0 we are at con-
figuration α0 and there are a number of processes that we consider fast, that we do
not want to simulate explicitly, and that can bring the system to a set of configu-
rations C(α0). We also define the complement K(α0) of C(α0), which contains all
configurations not in C(α0). The situation is sketched in Fig. 8.1. We want to know
first what the first configuration in K(α0) will be when the system moves outside
C(α0). We want to know second at what time this will occur. And third, we want an
algorithm that can generate this information.
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Fig. 8.1 At time t = 0 the
system is in configuration α0
which is depicted by the black
dot. There are fast processes
between the configurations in
C(α0), which is depicted by
the open dots enclosed by the
dashed curve. Slower
processes bring the system to
configurations not in C(α0):
i.e., in the complement
K(α0). Single-headed arrows
indicate irreversible
processes, double-headed
ones reversible processes.
(Color figure online)

The problem described above is a first-passage problem [6]. We can simplify the
situation by removing from K(α0) all configurations that can not be reached di-
rectly from C(α0): i.e., we include only those configurations γ for which there is a
process β → γ with β ∈ C(α0) and γ ∈ K(α0). Moreover, we remove all processes
from K(α0) to C(α0). The remaining configurations in K(α0) are then absorbing
states (see Sect. 2.2.1). That is the situation that is sketched in Fig. 8.1. We want
an algorithm that combines several processes in one multistep process. This can
be accomplished by separating the processes that take place from the determina-
tion of the times. That this is possible is most easily seen in the VSSM algorithm
(see Sect. 3.2). The time determined by Eq. (3.11) does not depend on the process
that will take place, nor does the time affect the determination of the process. It is
possible to determine first which processes will take place without determining any
times, and to determine times after that [7–9].

Let’s call a series of subsequent processes α0 → α1 → α2 → . . . → αN a path.
A process αn → αn+1 will take place with probability

Pαn+1αn = Wαn+1αn

Rαn

(8.8)

with

Rα =
∑

β∈C(α0)∪K(α0)

Wβα. (8.9)

The path α0 → α1 → α2 → . . . → αN will be taken by the system with probability
N∏

n=1

Pαnαn−1 . (8.10)

If a system starts at configuration α0 then the probability that the system ends up
in the absorbing state β ∈ K(α0) equals the sum of the probabilities of all paths
starting at α0 and ending at β .
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The evaluation of this sum can most easily be computed with a transition matrix
P defined by

Pαj αi = Pαj αi (8.11)

with αj ,αi ∈ C(α0). The matrix elements of P can be interpreted as the probabilities
of paths that consist of only a single process. From

(
P2)

αj αi
=

∑

αk

Pαj αkPαkαi (8.12)

we see that P2 has the probabilities of paths consisting of two processes starting
and ending at configurations of C(α0). Similarly Pn has the probabilities of paths
consisting of n processes starting and ending at configurations of C(α0). Now the
probability that the system starts at α0 and ends up in β ∈ K(α0) after n processes
in C(α0) equals

∑

α∈C(α0)

Pβα(Pn)αα0 . (8.13)

The probabilities that the system exits C(α0) after n processes is obtained by sum-
ming over all β ∈ K(α0). These probabilities allow us to determine the number of
processes that take place in C(α0) before the system exits C(α0), and the probabil-
ities for the configurations in K(α0) the system then goes to.

Now suppose that we are also able to determine the precise path that the system
takes in C(α0), then the time when the system exits C(α0) can be determined as
follows. Let the path be α0 → α1 → α2 → . . . → αn → β . The time it takes for all
processes in this path to occur is then

n∑

m=0

∆tm (8.14)

with ∆tm a random number taken from the probability distribution

Rαm exp[−Rαmt]. (8.15)

The algorithm is then as follows

1. Determine the number of processes in C(α0) before the system exits C(α0) by
summing over the configurations β in Eq. (8.13).

2. Determine the configuration β ∈ K(α0) that the system moves to after exiting
C(α0). Use again Eq. (8.13).

3. Determine the path from α0 to β with the correct number of processes.
4. Determine the time that it takes to follow this path. Use Eq. (8.14).

Steps 1 and 2 are selections that can be done with one of the procedures discussed
in Sect. 3.3.1. See also Sect. 8.1.4.5. Step 3 has not been discussed yet. In general it
is a very complicated problem. So we will discuss only the most common cases but
with all steps in detail.
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Fig. 8.2 The three
configurations involved in
fast adsorption-desorption
with a slower reaction of the
adsorbed species. V stands
for a vacant adsorption site, A
for the adsorbed species, and
∗ for the absorbing state with
the species that has reacted

8.1.4.2 Adsorption-Desorption

Suppose we have a single adsorption site and an adsorbate with high adsorption and
desorption rate constants. Figure 8.2 shows the three configurations involved. We
have an adsorption rate constant Wads changing V to A, a desorption rate constant
Wdes changing A to V, and a reaction rate constant Wrx for the reaction A → ∗. Our
approach is useful if Wads,Wdes ≫ Wrx, but it is also correct if this inequality does
not hold. From the rate constants we can derive the probabilities of the processes

Pads = 1, (8.16)

Pdes = Wdes

Wdes + Wrx
, (8.17)

and

Prx = Wrx

Wdes + Wrx
. (8.18)

The transition matrix P then becomes

P =
(

0 Pdes
1 0

)
(8.19)

with the states ordered V, A. It is easy then to derive

P2n = P n
des

(
1 0
0 1

)
(8.20)

and

P2n+1 = P n
des

(
0 Pdes
1 0

)
. (8.21)

We start in configuration V. The probability that the reaction to ∗ takes place after
adsorption V → A, and n adsorption-desorption cycles A → V → A, is then

(
P2n+1)

AVPrx = P n
desPrx. (8.22)

We note that these probabilities are properly normalized as
∞∑

n=0

P n
desPrx = Prx

1 − Pdes
= 1. (8.23)
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Fig. 8.3 Fast reactions from
A to one of the Vn’s and back
occur repeatedly before the
system converts to ∗. All
processes A → Vn have the
same rate constant WA→V.
All processes Vn → A have
the rate constant WV→A. The
conversion to ∗ has rate
constant WA→∗

We can use these probabilities to generate the number of cycles A → V → A that
take place before the reaction occurs with one the selection methods in Sect. 3.3.1.

To determine when the reaction takes place is easy in this case, because given
the number n of cycles A → V → A it is clear what path the system takes. With n

such cycles there are n+1 adsorptions, n desorptions, and one reaction. So we need
to generate n + 1 intervals ∆t from the probability distribution Wads exp[−Wads∆t]
and also n+ 1 intervals from (Wdes +Wrx) exp[−(Wdes +Wrx)∆t]. If we add up all
these intervals, we get the time when the reaction takes place if we start in V at time
t = 0. Note that the intervals for the desorption and the reaction are taken from the
same distribution, because they occur in the same configuration A.

If we don’t have one adsorption site but many, then we can regard the adsorption,
the desorption-adsorption cycles, and the reaction at each site as one multistep pro-
cess, determine a time for each of them, and use FRM to determine which multistep
process occurs first and to do the simulation (see Sect. 3.5). This avoids a much
larger matrix P describing all possible occupations of the various sites.

The adsorption-desorption process above can easily be extended to the flicker
processes studied by Mason et al. [4]. Figure 8.3 shows multiple configurations to
which the system can convert from and to A. (We use a notation similar to the one
of the adsorption-desorption case, but change the meaning.) This is essentially the
same process as adsorption-desorption except that the rate constant Wads should be
replaced by NWV→A and Wdes by NWA→V.

8.1.4.3 Fast Equilibrium

Suppose we have a fast conversion reaction A → B and a fast reverse B → A on a
single site. Also suppose that there are two slower reactions: A → X and B → Y
(see Fig. 8.4). The important difference with the cases above is that there are two
ways in which the cycles of fast reactions A → B → A can end. The additional
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Fig. 8.4 The four
configurations involved in a
fast equilibrium with slower
reactions of both species in
the equilibrium. A and B are
the species of the equilibrium.
A converts slowly to X, and B
slowly to Y

question then is what the probabilities are for ending at X or Y. The P matrix has
the following form.

P =
(

0 PB→A
PA→B 0

)
(8.24)

with

PA→B = WA→B

WA→B + WA→X
(8.25)

and

PB→A = WB→A

WB→A + WB→Y
. (8.26)

We have

P2n = (PA→BPB→A)n
(

1 0
0 1

)
(8.27)

and

P2n+1 = (PA→BPB→A)n
(

0 PB→A
PA→B 0

)
. (8.28)

If we start at A, then the probability to end at X after n cycles A → B → A equals

(PA→BPB→A)nPA→X (8.29)

with

PA→X = WA→X

WA→B + WA→X
. (8.30)

The probability to end at Y after A → B and n cycles B → A → B equals

PA→B(PB→APA→B)nPB→Y (8.31)

with

PB→Y = WB→Y

WB→A + WB→Y
. (8.32)

We have
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Fig. 8.5 A collection of adsorption sites for a CO molecule. The molecule can hop between neigh-
boring sites. The open dots depict sites at which the molecule can react with an oxygen atom to
form CO2. At time t = 0 the CO molecule is assumed to have adsorbed at the site indicated by the
arrow. The large square centered at this site is an example of a protective domain. (Color figure
online)

∞∑

n=0

(PA→BPB→A)nPA→X +
∞∑

n=0

PA→B(PB→APA→B)nPB→Y

= PA→X

1 − PA→BPB→A
+ PA→BPB→Y

1 − PB→APA→B

= (1 − PA→B) + (1 − PB→A)PA→B

1 − PA→BPB→A
= 1 (8.33)

as it should be. We also see that the probability to end up at X equals PA→X/(1 −
PA→BPB→A) and the probability to end up at Y equals PA→BPB→Y/(1 −
PB→APA→B).

The times it takes to end at X or Y after a number of cycles are sums of
intervals taken from the probability distributions fA(∆t) = (WA→B + WA→X) ×
exp[−(WA→B + WA→X)∆t] and fB(∆t) = (WB→A + WB→Y) exp[−(WB→A +
WB→Y)∆t]. To end up at X after n cycles A → B → A takes n + 1 intervals from
fA and n intervals from fB. To end up at Y after A → B and n cycles B → A → B
takes n + 1 intervals from fA and n + 1 intervals from fB.

8.1.4.4 Fast Diffusion

The analytical approaches for adsorption-desorption and fast equilibria are not al-
ways possible for diffusion. To see the problem let’s look at a simple model. Sup-
pose we have a single CO molecule that can hop between a number of sites. Some
of these sites are next to sites occupied with oxygen atoms. If the CO molecule is at
such a site, it can react with on oxygen atom to form CO2. The situation is sketched
in Fig. 8.5 for a square lattice of adsorption sites.

The problem is that, because of the irregular shape of the set of sites that CO can
hop to, it will be very hard to derive expressions for finding CO at the edge sites
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where it can react with oxygen. Of course, it is possible to set up a transition matrix
P as in Eqs. (8.11) to (8.13), but it is doubtful that explicit use of such a matrix
is really more efficient than a standard kMC simulation. Moreover, the matrices
Pn may give the probabilities of finding the CO molecule at different sites after a
number of steps, but that still leaves the problem of determining the path. Note that
each site has a probability to hop to a particular neighboring site that depends on the
number of neighbors. Also the time between hops depends on that number. Hence
knowing the number of hops/steps in a path alone does not suffice for determining
the time until the reaction.

Oppelstrup et al. have dealt with this problem by splitting the whole path in
pieces, each of which can be treated analytically [10–12]. The idea is to define so-
called protective domains (see Fig. 8.5). Inside such a domain the particle freely
moves and diffusion is the only process possible. The shape of the domain is such
that the diffusion can be treated analytically. This is used to determine the time that
the CO molecule reaches the boundary of the domain for the first time. (Hence the
name for their method: first-passage kMC.) The system is then advanced to that
time. Then it is checked if the CO will react at its new site. If not, a new protective
domain is defined and the procedure is repeated. Otherwise, CO will react and be
removed from the surface.

The example of CO diffusion and CO2 formation is really just a simple applica-
tion of the method of Oppelstrup et al. [10–12]. They have extended their approach
to many diffusing adsorbates that can react with each other. An important aspect
of their approach is that in such situation it is not necessary to update the position
and protective domains of all adsorbates when one of them reaches the boundary
of its protective domain. Only the positions of that adsorbate and neighboring ad-
sorbates need to be updated. This asynchronous algorithm makes the method size-
independent and efficient.

The method works best if the protective domains are large, because then many
diffusional hops can be treated in one fell swoop. This is the case at low coverages.
At high coverages and low reaction rate constants the method is not useful.

8.1.4.5 Algorithmic Aspects

Determining the number of reactions that take place in C(α0) before a configura-
tion in K(α0) is reached is a selection problem (see Sect. 3.3.1). Suppose that the
probability that n steps take place in C(α0) equals Sn. We define the cumulative
probability

Cn =
n∑

m=0

Sm (8.34)

and a uniform deviate r ∈ [0,1). The number of steps n is given by

Cn−1 < r ≤ Cn (8.35)

with C−1 = 0 by definition.
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It may be possible to do this selection easily by using the fact that there is a
simple expression for Cn. For example, for the adsorption-desorption equilibrium
case (Sect. 8.1.4.2) the probability of the number of steps is given by PrxP

n
des with

n the number of A → V → A cycles. So the number of steps is 2n + 1 and S2n+1 =
PrxP

n
des. We also have S2n = 0, because after 2n steps the system is in configuration

V from which no reaction is possible. Consequently

C2n = C2n+1 = Prx
1 − P n+1

des

1 − Pdes
. (8.36)

If we now look for Cn−1 < r ≤ Cn with r ∈ [0,1) a uniform deviate, then we can
easily determine n by solving

Prx
1 − P

µ+1
des

1 − Pdes
= r (8.37)

for µ ∈ R. The number of cycles is simply the largest integer smaller or equal to µ.
A similar solution can be found for the fast equilibrium (Sect. 8.1.4.3). Instead of

one summation, we have two: one for the paths that end up in X and one for those
that end up in Y. We first do a simple selection for whether we end up in X or in Y,
and then use a summation as for the adsorption-desorption case. For the situation
of the fast diffusion the situation is not so easy however, because there is no simple
expression for the probability of the number of processes in C(α0), and we need to
work with Eq. (8.35).

The determination of the time when the system exits C(α0) has been presented
so far as a summation of the time intervals of all the individual processes. When
the number of these processes becomes large, this is a costly procedure. In fact, one
may wonder if treating the problem as a single multistep process is really so much
more efficient than a normal kMC simulation. It is therefore useful to be able to
determine the time when the system exits C(α0) using a (hopefully small) number
of random number generations that does not depend on the number of processes in
the path in C(α0).

The examples above show that many of the time intervals are taken from the same
probability distribution. We therefore will look here at the probability distribution
of the sum

n∑

m=0

∆tm (8.38)

with all ∆tm taken from the same probability distribution

P1(∆t) = We−W∆t . (8.39)

The subscript of P1 indicates that this is a probability distribution for a single pro-
cess. For two subsequent processes we have

P2(∆t) =
∫ ∆t

0
dτP1(∆t − τ )P1(τ ) = W 2

2
∆te−W∆t . (8.40)
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Using

Pn+1(∆t) =
∫ ∆t

0
dτP1(∆t − τ )Pn(τ ) (8.41)

it can be shown that

Pn(∆t) = Wn

n! ∆tn−1e−W∆t . (8.42)

To determine the time tx that the system exits C(α0) after n processes we have to
solve

∫ tx

0
dτPn(τ ) = r (8.43)

with r a uniform deviate on the unit interval.
For large n the integral in Eq. (8.43) does not yield a convenient expression.

Instead it seems better to use tabulation. We write
∫ t

0
dτPn(τ ) = Wn

n!

∫ t

0
dττn−1e−Wτ = 1

n!

∫ Wt

0
dxxn−1e−x = πn(Wt) (8.44)

with

πn(τ ) = 1
n!

∫ τ

0
dxxn−1e−x. (8.45)

So we compute and tabulate πn for many values of n and then use that tabulation to
solve Eq. (8.43).

8.1.5 Two Other Approaches

The time step in all of the algorithms that we have discussed so far, except the one
in Sect. 3.7.1, is not under our control. This is sometimes a disadvantage: e.g., when
one wants to determine the temporal dependence of a probability distribution. In
such a situation one would like to generate data at fixed points in time. Of course,
one can use the fixed time step method of Sect. 3.7.1, but that is very inefficient.
Moreover, the time step of that method is in general much smaller than the difference
in time between two subsequent data sampling moments.

Kantorovich has investigated the possibility of an algorithm with a fixed large
time step [9]. Because the average times between the occurrence of two subsequent
processes is generally smaller than the desired time step, this algorithm simulates
also multistep processes. The difference between the approach in Sect. 8.1.4 is the
way that the path of subsequent processes ends. In Sect. 8.1.4 this was determined
by the occurrence of a particular slow process. Here it is determined by the system
reaching a certain time.

The approach is based on the integral formulation of the master equation.
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P(t) =
[

Q(t,0) +
∫ t

0
dt ′Q
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with
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(
t ′′

)]
, (8.47)

Wαβ = Wαβ , (8.48)

and

Rαβ =
{

0, if α ≠ β,∑
γ Wγβ , if α = β (8.49)

(see Sects. 3.2.1 and 3.6). Note that this is the form for time-dependent rate con-
stants. If the rate constants are time independent, then the argument of the matrix W
can be left out and Q(t, t ′) depends only on the difference t − t ′ (see Sect. 3.2.1).
The different terms on the right-hand-side of Eq. (8.46) stand for no processes tak-
ing place between times 0 and t , one process taking place, two processes taking
place, et cetera.

Kantorovich proceeds by computing all of the contributions to P(t) analytically
up to a preset maximum number of processes. This definitely yields the most de-
tailed information on the evolution of the system, but it is very hard to do in general.
By taking the time step not too large, the maximum number of processes can be
chosen small, and the whole method may become feasible. However, it remains to
be seen how useful the method is from a practical point of view.

The τ -leap method also simulates many processes as one [13–15]. It was devel-
oped for Dynamic Monte Carlo (DMC) simulations of rate equations, where only
information on the total number of chemical species is used. The processes that are
taken together are assumed to be independent of each other: i.e., the occurrence of
one does not affect the others. In general, this is an approximation. It has been shown
however that the errors thus introduced are negligible provided the relative change
in the number of chemical species at each step is small [13]. This is the so-called
leap condition.

In normal lattice-gas kMC it seems impossible to fulfill this leap condition. A site
is either vacant or occupied and relative changes are always as large as they can be.
Vlachos has tried to developed a method that leads to a much less restrictive leap
condition [16]. He groups all processes with the same rate constant together. The
τ -leap method is then applied to the processes in one group. The leap condition
then becomes that the number of processes occurring in one time step must be small
compared to the total number of processes in a group, but this number may still be
large.

The method has so far only been used for one system [16]. There it showed
substantial savings in computer time. It was also noted however that the spatial in-
formation in kMC, but absent in DMC, causes new problems for the τ -leap method.
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Fig. 8.6 Sketch of the coarse-graining of a lattice. The top-left part shows a square lattice with
each lattice point representing an adsorption site. This lattice is partitioned in 2 × 2 blocks, and
each of these blocks is represented by a single lattice point of the new lattice on the bottom-right.
Each lattice point of the original microscopic lattice has a label indicating the occupation of the
adsorption site. Each lattice point of the new coarse-grained lattice has information on the number
and type of adsorbates in the block. (The example here is of CO oxidation with sites being either
vacant ∗, occupied by CO, or occupied by atomic oxygen)

For example, it may occur that during a step two diffusional hops are chosen that
bring two different adsorbates to the same site, which should not be possible. Strong
spatial correlation in general (e.g., when one has pattern formation or an ordered ad-
layer) might pose problems for the approach. In individual causes a solution to these
problems may be found, but it is not clear yet how easy it is to use the method for
an arbitrary system.

8.2 Larger Length Scales

Very often the characteristic length scale of a system is small: e.g., the correlation
length of the occupation of sites is generally only a few times the distance between
neighboring sites. If the substrate has however a long characteristic length scale or
when there is pattern formation one may want to simulate a larger system than is
possible with conventional kMC.

A possible approach is to use coarse-graining. The idea is to replace the lattice of
sites by a lattice with a larger lattice spacing. Instead of a lattice point representing
a single site, points of the new lattice represent a block of sites. Such a point does
not specify an occupation of a single site, but for each type of adsorbate the number
of such adsorbates in the block of sites is given (see Fig. 8.6).
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Fig. 8.7 The arrows show
some diffusional hops and
what happens with them
when we do coarse-graining
with a 4 × 4 block as shown.
The gray arrows do not take
an adsorbate outside the
block and can be ignored,
because they do not change
the number of adsorbates in
the block. The black arrows
do take them to another block
and do need to be simulated

An immediate advantage of blocking the lattice is that much less time needs to
be spent on simulating diffusion. There are two reasons for this. The first, and most
obvious, is that diffusional hops within the blocks need not be simulated. They do
not change the numbers of the adsorbates within a block (i.e., they don’t change the
configuration of the new coarse-grained lattice), and can therefore be ignored. We
can estimate how much time this reduces the amount of time spent on simulating
diffusion. Suppose we have a square lattice of adsorption sites that we partition in
square blocks of B × B lattice points. We only need to simulate diffusion that takes
an adsorbate from one block to another. So hops originating from the (B −2)2 lattice
points in the interior of the block can be ignored. Only hops from the 4(B − 1) sites
on the edges are important. However, also hops from these sites that remain in the
same block can be ignored. This means that from a site at the corner of a block
hops in two directions need to be taken into account, and from the other sites on the
edges only hops in one direction (see Fig. 8.7). There are four corner sites which
account for 8 hops and 4(B − 2) other sites at the edges accounting for as many
hops. So in total 4B hops need to be simulated. Normally each site has four possible
hops, so that a block has 4B2 hops. We see that we get a reduction of a factor B in
the number of hops that we need to simulate. This number is a consequence of the
different ways in which the number of sites in a block and the number of sites on
the edges scale with the size of the block. Different partitions have the same scaling
and yield therefore the same reduction.

There is yet another reduction factor which is equal to B , and which is a con-
sequence of the fact that the lattice points of the coarse-grained lattice are a factor
B farther apart than those in the microscopic lattice. The hops are therefore larger.
An alternative way to see this is that the diffusion constant should be the same for
both lattices. As has been shown in Sect. 4.6.5 we have D = Whopa

2 in the limit of
low coverages with D the diffusion constant, Whop the hopping rate constant, and a

the distance between the sites. Increasing the latter by a factor B means decreasing
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Whop by a factor B2 to get the same D. One factor B originates from the fact that
only a fraction 1/B of the adsorbates leaves a block and the other from the increased
size of the hops.

By coarse-graining we reduce the amount of computer time that we have to spend
on the diffusion by a factor B2. This is a very substantial reduction. Even with small
blocks of size B = 10 we get a reduction of two orders of magnitude. In simulations
of the A + B model (see below) with a block size of B = 32 a speed up of 1000 was
observed.

This coarse-graining approach was developed most extensively by the Vlachos
group [17–27]. One has to be careful with the definition and values of the rate con-
stants for the coarse-grained lattice to get proper simulations. It would be possible
to use reduced master equations (Sect. 8.1.3), but an alternative and probably easier
way is to make sure that the macroscopic rate equations that can be derived from
the microscopic and the coarse-grained lattice are the same [25]. We already gave
a small example above for diffusion using the diffusion constant. The assumption
there was made that the coverage was low. In general the coverage can have an effect
on the rate constants for the coarse-grained lattice however.

Let’s look at simple desorption. We assume that there is only one type of adsor-
bate and that desorption involves only one site, no lateral interactions, and that there
is only one site in the unit cell. We can show that

dN

dt
= −WdesN (8.50)

with N the number of adsorbates in a block of sites, and Wdes the rate constant
for desorption for the microscopic lattice (see Sect. 4.6.2). It looks as if the rate
constant for the coarse-grained lattice is the same as the one for the microscopic lat-
tice. Indeed, we reached a similar conclusion in Sect. 4.6.2 with respect to the rate
constant for macroscopic rate equations. However, we want to do here kMC simula-
tions with the coarse-grained lattice, and in these simulations elementary desorption
events reduce the number of adsorbates by one, although the rate of desorption is
proportional to the number of adsorbates as the expression above shows. This means
that the rate constant to be used in a kMC simulation with a coarse-grained lattice
should be WdesN . Similar changes to the rate constants can be derived for other
processes. For an extensive discussion see reference [25].

For processes that involve only one site (simple desorption, simple adsorption,
isomerization) the macroscopic rate equations have a closed form. For processes that
involve two or more sites that is no longer the case. This is related to an important
weakness of the approach. The problem is that the kinetics within the blocks is
not completely determined only by the number of adsorbates. The way adsorbates
are distributed within blocks is important as well. The problem is the same as the
one we encountered for the derivation of the macroscopic equations for bimolecular
reactions (Sect. 4.6.6). One therefore has to introduce an approximation. The most
widely used approximation is Mean Field (MF): i.e., one assumes that the adsorbates
are randomly distributed over the sites in a block. It is not clear if this is good
enough, as can be shown for the simple A + B model [28]. In this model there
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Fig. 8.8 Snapshots taken at different times for the A + B model. The snapshots show A- and
B-areas. A site belongs to an A-area when it is occupied by an A or when the nearest adsorbate is
an A. A similar definition holds for B-areas. It can be seen that the adsorbates segregate in spite
of diffusion. As a consequence reactions takes place only where an A-area meets a B-area. Time
is in seconds, and the snapshots are from a simulation in which all rate constants are set to 1 s−1.
(Color figure online)

is only one reaction: an A and a B next to each other can react to form an AB
that immediately desorbs. The A’s and B’s also diffuse by hopping to neighboring
sites. The model shows anomalous kinetics. Because the adsorbates can only react
to form a product that desorbs, the coverages decrease in time. If we start with
equal numbers of A and B, macroscopic rate equations predict that at large times
t the coverage decreases as t−1. Scaling arguments show however that it should
be as t−1/2 [28]. The reason is that the adsorbates segregate and the reaction only
occurs where areas with only A’s and those with only B’s meet (see Fig. 8.8). kMC
simulations confirm this behavior.

One needs large lattices to study the low coverages in the A+B model, and there-
fore one might want to do coarse-graining. If one uses a Mean Field Approximation
(MFA) for the blocks, then one gets the following results (see Fig. 8.9). Initially,
the A’s and B’s are randomly distributed and the rate equations and both simula-
tions (normal and coarse-grained kMC) give identical results. When the areas with
only A’s or only B’s are larger than the size of the blocks, then the coarse-grained
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Fig. 8.9 The coverage as a function of time in the A+B model. The solid line is the result obtained
with a macroscopic rate equation. The dots marked (2048 × 2048) × (1 × 1) are from a normal
kMC simulation with a 2048 × 2048 lattice. The dots marked (64 × 64) × (32 × 32) are from a
coarse-grained kMC simulation with a 64 × 64 lattice with each lattice point representing a block
of 32 × 32 sites. The kinetics in a block was approximated with MF. Time is in seconds, and the
results are from a simulation in which all rate constants are set to 1 s−1

simulation also gives the same results as the normal kMC simulations, because the
kinetics is determined by the boundaries of the areas, which are well approximated
by the blocks. Between these limits (very early or very late in the simulations) nor-
mal and coarse-grained kMC give different results. After the segregation has started,
but when the areas are still smaller than the blocks, the coarse-grained simulation
follows the results of the macroscopic rate equation instead of the normal kMC how-
ever. The reason is that the adsorbates in a block are not randomly distributed and
MF does not hold.

A possible solution to this problem is to use a two-step procedure. First, nor-
mal kMC simulations are done for the blocks. These simulations are small, so this
does not add too much computational effort to the coarse-grained simulation. These
kMC simulations are used to determine the kinetics within the blocks. Second, the
kinetics thus obtained are used in the coarse-grained simulations. This two-step pro-
cedure works well for the A + B model: the result is the same as for a normal kMC
simulations with the full lattice. This approach is very similar to the one Mastny et
al. used in their approach with reduced master equations (see Sect. 8.1.3) [3], and
Chatterjee et al. for kMC simulations of adsorption and desorption [22]. For more
complex reaction systems this has not been used yet.

Figure 8.10 shows the result of a large number of kMC simulations have been
done for the A + B model with different initial numbers of A’s and B’s. The lattice
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Fig. 8.10 Correlation FAB in the occupation of neighboring sites for the A + B model. The figure
shows the probability that one site of a pair of neighboring sites is occupied by an A and the other
by a B. This correlation is related via WrxθAθBFAB to the rate of the reaction, where θX is the
coverage of X and Wrx is the rate constant of the reaction. The correlation was determined from
simulations in which all rate constants were set to 1 s−1

size was 128 × 128. These simulations were used to construct a table with the rate
of the A + B reaction for any number of A’s and B’s in a 32 × 32 block. This infor-
mation was then used in the coarse-grained kMC simulation. This approach is not
easy to use for more complicated systems. The A + B model has only two reacting
species, so the table is only two-dimensional and therefore small. Moreover, it was
also possible to do kMC simulations for the blocks with any possible combination
of numbers of A’s and B’s.

For more complicated systems it may well be necessary to only study those cov-
erages that are really relevant. It is also necessary to have another representation of
the rates as a function of the coverages. Such a representation must be flexible so
that it can incorporate incomplete and noisy data of kMC simulations. It must also
be able to inter- and extrapolate this data to be used in coarse-graining kMC simu-
lations. Neural networks might be useful, but this is very much unexplored territory
[29, 30].

8.3 Embedding kMC in Larger Simulations

The kMC simulations that we have discussed focus on the processes taking place
on the surface of a catalyst. In a real catalytic system there are also other processes:
in particular, processes dealing with transfer of matter and heat. It is quite possible
that they affect the performance of a catalyst as much as the surface processes.
Some studies have been done to extend the kMC simulations to include these other
processes.
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Fig. 8.11 A lattice-gas model of the surface of a growing copper crystal coupled to a continuum
model representing the liquid [31–35]. The bottom part shows a two-dimensional cross section of a
three-dimensional lattice. The black squares represent the copper atoms. The isolated copper atoms
depict atoms still in solution. The arrows indicate hops that model the diffusion of these atoms.
The flux of the atoms through the interface between the lattice gas and the continuum model can
be computed from the difference in frequency of upward and downward hops. The top part shows
the continuum model that specifies the concentration of the copper atoms in solution as a function
of distance to the surface. The flux through the interface can be computed in this model from the
gradient of the concentration. Both fluxes should be equal

The main focus has been on the mass transport from the liquid or gas phase to the
surface. This has received most attention not in catalysis, but in crystal growth. In a
series of papers from the University of Illinois the electrodeposition of copper was
investigated [31–35]. The diffusion of the copper in the liquid was modeled with
a continuum diffusion equation. This is a typical approach in modeling the system
except for the surface processes. The diffusion model was one-dimensional: only the
direction perpendicular to the surface was modeled and the concentration of copper
was assumed to be independent on the other directions. The diffusion equation was
coupled to a three-dimensional kMC simulation. The third dimension was used in
the kMC simulation to allow for the growth of the crystal.

A major concern in simulations where kMC is combined with a continuum model
is the coupling between the methods. For the copper deposition this was done as
follows (see Fig. 8.11). The bottom part of the third dimension of the lattice in the
kMC simulation was used for the growing copper crystal, but the top part was used
to model the part of the liquid in contact with the surface. The diffusion of the copper
in that part of the liquid was modeled as hops on the three-dimensional lattice. The
coupling was accomplished by equating the flux of the copper in the liquid through
the interface between the continuum part and the kMC lattice. In the continuum part
this flux can be derived from the gradient of the concentration perpendicular to the
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surface. In the lattice part this flux can be computed by averaging over the number
of hops perpendicular to the surface.

Besides mass transport, heat transfer can also be an issue. This was investigated
for pure heat transfer and a model of desorption by Castonguay and Wang [36]. Two
approaches were tested. The first incorporated heat into the kMC simulations by
modeling it as so-called thermal bits that could be exchanged between lattice points.
The second used a Poisson heat equation that was solved between occurrences of
regular processes. Both approaches were shown to give the same accurate results,
but the approach with the Poisson heat equation was faster.

Matera and Reuter took this approach to a new level by including both mass and
heat transport [37, 38]. These were modeled by the transient Navier–Stokes equation
and conservation of energy and atomic species. They applied their method to a ab-
initio model of CO oxidation on RuO2(110). This process had been studied before
and a comparison between the simulations with and without modeling the mass
and heat transfer showed substantial differences [39, 40]. The surface kinetics was
sometimes hidden in the overall reactivity by transport limitations, and the overall
kinetics became more complicated because of various steady states that arose solely
from the coupling between the gas transport and surface processes.

The approaches described above all modeled only a relatively small patch of a
catalyst’s surface compared to what is found in a reactor. A much more ambitious
approach was developed by Majumder and Broadbelt [41]. They modeled a whole
flow reactor. (Actually, they modeled only a pore in the support with the catalyst
deposited on the inner surface of the pore. The model however can just as well be
used for a whole flow reactor. The main difference is the size of the system.) This
reactor was envisioned as a pipe (see Fig. 8.12). The flow was described by

u
∂Ci

∂z
= Di

∂2Ci

∂y2 (8.51)

with Ci the concentration of component i, Di its diffusion constant, u the local
velocity of the fluid phase, z the coordinate along the pipe, and y the coordinate
perpendicular to the surface. Boundary conditions were Ci = C

(0)
i for y > 0 and

z = 0 with C
(0)
i a constant, ∂Ci/∂y = 0 at the center of the pipe, and

Di
∂Ci

∂y
= R

(ads)
i − R

(des)
i (8.52)

with R
(ads)
i the adsorption rate and R

(des)
i the desorption rate of component i. This

last boundary condition couples the kMC simulation to the continuum model for the
liquid.

In a flow reactor the processes on the catalyst change the concentrations in the
liquid. This however takes place on a much larger length scale than can be modeled
by a single kMC simulation. The reactor was therefore spatially discretized in a
grid which was used the solve the continuum model. At the boundary where the
catalyst’s surface was found, the last boundary condition (8.52) was handled in one
of two ways. For some lattice points, periodically spaced, a kMC simulation was
done to determine the adsorption and desorption rates. For the other grid points an
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Fig. 8.12 Modeling a flow reactor [41]. The reactor is modeled as a pipe as shown in the top-left.
The reactants stream in from the left. The black strips depict the catalyst. The middle shows an
enlargement of part of the reactor including same of the catalyst, and the lattice that is used to
solve the continuum equation for the flow. The points at the bottom of the lattice represent the
catalyst. The closed spheres indicate the lattice points that are coupled to a kMC simulations shown
at the bottom. The reactivity of the catalyst at the open spheres are derived from interpolating kMC
results

interpolation scheme was used based on the kMC results of nearest lattice points for
which simulations were done.

The approach was used to study two simple models. The first had adsorption of
A’s on a single site, conversion of the A’s into B’s, and then desorption of B’s. This
model was mainly used to make sure that the whole approach gave correct results,
as it could also be solved analytically. The other model consisted of adsorption of
A’s and B’s, which together reacted to form C’s which immediately desorbed. This
model was used to highlight the difference with the conventional approach with rate
equations.

8.4 Off-lattice kMC

Although lattice-gas models are very versatile, there are situations in which it is
simply too difficult or cumbersome to model a system with a lattice. Sometimes it
is possible to extend the lattice-gas concept while retaining its advantages. For ex-
ample, Bos et al. have used multiple lattices to study massive phase transformations
metals of fcc to bcc [42, 43]. The two lattices (fcc and bcc) cannot be modeled as
one lattice that includes all the fcc and bcc sites. So the atoms are allowed to choose
between the sites of an fcc and of a bcc lattice. In addition some random sites are
included to make the transition from one to another lattice easier. These sites are
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dynamically added and removed at positions where they prove to be most needed
[43]. This approach has still all the advantages of a model with a single lattice, but
it is more flexible. We will look here however at not using a lattice at all.

In the derivation of the master equation

dPα

dt
=

∑

β

[WαβPβ − WβαPα] (8.53)

the subscripts α and β refer to catchment regions or basins of attraction of the
corresponding minimum of the potential-energy surface (PES) of a system (see
Sect. 2.2.2) [44]. This means that it is possible to do kMC simulations in which
the processes are hops on the PES from on basin of attraction of the PES to a neigh-
boring one. This can in principle be done for any PES, which would extend the
applicability of kMC compared to its use in combination with lattice-gas models
enormously. Viewed like this kMC is competitive with a number of methods based
on Molecular Dynamics for simulating atomic systems over long time scales: see
the reviews of Henkelman et al. and Voter et al. [45, 46].

The way kMC works for hopping on a PES is as follows. Suppose that at a certain
time tn the system is near minimum αn of the PES. Then a list of hops αn → β need
to be made, with β a neighboring minimum: i.e., a minimum that can be reached
from the current one along a continuous curve via a single saddle point of the PES.
This means determining all saddle points or transition states of the PES surrounding
the minimum αn. The rate constant Wβαn needs to be computed for each transition
state that is found. The transition to another minimum αn+1 is then made with a
probability proportional to Wαn+1αn and time is advanced to

tn+1 = tn − ln r∑
β Wβαn

(8.54)

with r a uniform deviate on the unit interval. Alternatively, instead of the VSSM
algorithm described here, one of the other algorithms of Chap. 3 can be used just as
well.

The important difference with lattice-gas kMC is that the processes are no longer
known before a kMC simulation is started, but they have to be determined on-the-fly.
This makes this general kMC method much more costly. Determining a transition
state for a process is costly in itself, but the task here is especially daunting because
in principle all transition states around a minimum have to be determined. Never-
theless, this approach has been used, even in combination with Density-Functional
Theory calculations, in the pioneering work by Henkelman and Jónsson [47, 48].
They applied it to diffusion of clusters of Al atoms on an Al surface. This work
showed a very important advantage of the method. Because the processes are not
precomputed, surprising processes may show up and may turn out to be highly rel-
evant. In Henkelman and Jónsson’s work diffusion of the clusters took place with
concerted motions that included the atoms of the surface as well. Early applica-
tion were also done on the formation of defects during crystallization [49], and the
segregation of atoms [50].
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Although there are methods that can insure finding all transition states around a
minimum [51–53], these are extremely costly. Sometimes it is possible, similarly
to lattice-gas kMC, to say in advance what the processes are. For example, in a
study on diffusion in binary alloys a vacancy could move in only twelve possible di-
rections [54]. Consequently, the transition states were at least approximately known
and needed only to be refined. The same approach could be used in a study on H dif-
fusion in iron [55], and in a similar study of vacancy diffusion in crystalline silicon a
list could be made during a simulation with topological characteristics of diffusion
mechanisms to facilitate finding transition states [56]. In general, however, this is
not possible. In their seminal work Henkelman and Jónsson started each search for
a new transition state with a random displacement of all atoms and then did 25 to 50
searches from each minimum [47]. In a later study more selective initial displace-
ments were tested [57]. These studies naturally lead to the question how one knows
that all transition states have been found.

This question was given a statistical answer by Xu and Henkelman [57]. They
argued that if there are T transition states, one has already found F different ones,
and each transition state has the same probability of being found, then the proba-
bility of having found all transition states equals F/T . This equation is not useful
as one does not know T . However, if one finds only one new transition state per S

searches, then F/T = 1 − 1/S. So the latter expression can be used as a criterion to
stop looking for new transition states. One simply requires 1 − 1/S to be larger than
some preset value.

Some Bayesian statistics can put this criterion on a firmer footing. The proba-
bility that the next transition state search, number n, will find a new transition state
(Xn = 1) is given by

P(Xn = 1|Fn−1T ) = T − Fn−1

T
, (8.55)

and the probability of finding one that has been found before (Xn = 0) equals

P(Xn = 0|Fn−1T ) = Fn−1

T
. (8.56)

Here Fn−1 is the number of transition states found after n − 1 searches. From
Bayes’s theorem

P(Xn|Fn−1T )P (T |Fn−1) = P(XnT |Fn−1) = P(T |Fn−1Xn)P (Xn|Fn−1) (8.57)

we get

P(T |Fn−1Xn) ∝ P(Xn|Fn−1T )P (T |Fn−1). (8.58)

So if we have the probabilities P(T |Fn−1) that there are T transition states, then
a new transition state search will change these probabilities. If it leads to a new
transition state, then the probabilities should be multiplied by (T − Fn−1)/T , if not
by Fn−1/T . (The probabilities of course also need to be normalized.) Subsequent
transition state searches will make P(T |Fn) sharper peaked. One should stop if the
maximum P(T |Fn) becomes larger than some preset value.
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Initially we have F0 = 0 and let’s assume P(T |F0) = 1/M with M a number
that is larger than the number of transition states. Suppose we do S searches. We
can then write

P(T |FS) = A(T ,FS)

T S
(8.59)

From Eqs. (8.55) to (8.58) we can see that A(T ,FS) is a product of factors T − Fm,
Fm, and a normalization constant. The Fm’s here are the number of transition states
found so far during the searches. Because we started with F0 = 0 these factors yield
T (T − 1)(T − 2) . . . (T − FS + 1). There is one factor for every time that a new
transition state was found. For searches that did not yield a new transition state we
get some factor Fm. Because such a factor does not affect the T -dependence of
P(T |FS) we can include these factors in the normalization constant. So we have

P(T |FS) =
{

N T !
(T −FS)!T S , if T ≥ FS ,

0, if T < FS ,
(8.60)

with N a normalization constant.
The probability P(T |FS) has a single maximum. If we want to know if we have

found all transition states, then we want that maximum to be at T = FS . From

P(T = FS + 1|FS)

P (T = FS |FS)
= FS

S

(FS + 1)S−1 < 1 (8.61)

we then get

S >
ln(FS + 1)

ln(FS + 1) − lnFS
. (8.62)

This is however only a lower bound for the number of searches that we need to do.
It insures that the number of transition states that we have found is the most likely
number of transition states, but in general we want the probability that we have
found all transition states to be higher: i.e., we will require P(T = FS |FS) > Pfound
with Pfound to be some number close to 1. Figure 8.13 shows how many searches
one needs to do to achieve such higher probabilities. We see that the number of
searches is a factor of two to three higher than the lower bound depending on the
actual number of transition states and how certain one wants to be that one has found
all transition states. We also see that when there are more transition states that we
also need to do more searches per transition state.

An even better criterion can be given if one realizes that one does not really need
to known all transition states. One only needs to know that one that corresponds
to the process that will take place first. Instead of the VSSM expression (8.54) one
can also use FRM and compute a time for each transition state (see Sect. 3.5). Then
the problem becomes finding the transition state with the smallest value for that
time: i.e., the one corresponding the first process to occur. We will not determine
all transition states to compare all times, but we will give a statistical criterion that
gives us a probability that we have found the first process to take place.

We define two new stochasts. Stochast Yn = 1 if at transition state search n we
find a transition state of an earlier process than any we have found so far, and Yn = 0
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Fig. 8.13 The number of transition states searches per transition state that are needed to achieve
a probability of 0.99, 0.95, or 0.9 (markers from top to bottom) that all transition states have been
found as a function of the actual number of transition states. The curve indicates the situation that
the number of transition states that have been found is the most likely number of transition states

if that is not the case. Stochast Rn is the rank number of the transition state that has
been found after n searches corresponding to the earliest process: i.e., the first of
all processes has rank Rn = 1, the second Rn = 2, et cetera. Of course, we do not
know the value of Rn, but we can make some statistical inferences from finding new
transition states corresponding to earlier processes.

We have

P(XnYn|T Fn−1Rn−1) =

⎧
⎪⎨

⎪⎩

Rn−1−1
T , if Xn = Yn = 1,

Fn−1
T , if Xn = Yn = 0,

T −(Rn−1−1)−Fn−1
T , if Xn = 1 and Yn = 0.

(8.63)

Note that Xn = 0 and Yn = 1 is not possible: if we find a transition state of an earlier
process it must also be a new transition state. Bayes’s theorem then gives

P(T Rn−1|Fn−1XnYn) ∝ P(XnYn|T Fn−1Rn−1)P (T Rn−1|Fn−1). (8.64)

This is however not quite what we want. We do not want the probabilities for Rn−1
but for Rn. If Xn = 0 or Yn = 0, then there is no new transition state of an earlier
process, and P(T Rn|Fn−1XnYn) = P(T Rn−1|Fn−1XnYn). If Yn = 1, and hence
Xn = 1, then the new transition state corresponds to an earlier process: i.e., it has
a rank number smaller than Rn−1. Of course, we do not know the value of Rn, but
we can use the same assumption as before that all transition states with Rn < Rn−1
are equally likely. This means that the probabilities P(T Rn−1|Fn−1XnYn) should
be equally divided into the probabilities P(T Rn|Fn−1XnYn) with Rn < Rn−1, or

P(T Rn|Fn−1XnYn) =
T∑

Rn−1=Rn+1

1
Rn−1 − 1

P(T Rn−1|Fn−1XnYn). (8.65)
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Fig. 8.14 The number of transition states searches per transition state that are needed to achieve a
probability of 0.99, 0.95, or 0.9 (markers from top to bottom) that the first process to occur has been
found as a function of the actual number of transition states (see Fig. 8.13). The curve indicates the
situation that the number of transition states that have actually been found is also the most likely
number of transition states

This expression will give a strong concentration of probabilities for lower values of
Rn. This is advantageous, because we really want to know the probability that we
have found the first process of all: i.e., we want P(T ,Rn = 1|Fn−1XnYn).

We start as before with assuming that P(T |F0) = ∑T
R0=1 P(T R0|F0) = c/M

with c a normalization constant. We also assume that all values for R0 are equally
likely, so P(T R0|F0) = c/MT . Figure 8.14 shows the number of transition search
that needs to be done to find the first process with different probabilities. We notice
two differences with respect to trying to find all transition states. First the number of
searches is significant smaller. The curve in Fig. 8.14 is the same one as in Fig. 8.13
and indicates a lower bound for the number of searches to find all transition states.
If there are many transition states we need not even do so many searches if we only
want to find the first process to occur. This makes sense, because it is of course
harder to find all transition states than to find one particular transition state. The
second differences is that the number of searches per transition state does not in-
crease with the actual number of transition states, but seems to be constant for many
transition states and even decreases if there are few transition states. This is a more
favorable behavior than was seen for finding all transition states.

Xu and Henkelman also looked at the case when not all transition states are
equally likely to be found, which is more realistic for the methods that are generally
used in the transition state searches. They have a higher probability of finding low-
energy transition states.

Some other techniques have been used to deal with the problem of finding transi-
tion states. An obvious one is to save transition states that have already been found
[57, 58]. For example, when a process has just occurred, the transition state for the
reverse process is then of course known. By constructing the graph of minima that
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are connected via transition states, no transition state needs to be done for minima
that are visited again. In fact, it might even be possible to use one of the methods
in Sect. 8.1.4 and use multistep processes so that the simulation only goes to new
minima. For example, a superbasin approach was used by Xu and Henkelman to
deal with fast processes with low-energy transition states [57].

A more sophisticated approach attempts to use the fact that different transition
states may resemble each other [57, 59]. Suppose that we are at a certain mini-
mum and that two processes are possible that affect different parts of the system
that are far apart. Suppose that one of these processes takes place. The system then
gets to another minimum with a new set of transition states. However, the process
that did not take place in the original minimum is still possible, but corresponds
strictly speaking to another transition state. It should be relatively easy to determine
this new transition state using the information of the transition states of the origi-
nal minimum. This has been called recycling transition states. It is very similar to
what is done in the algorithms of lattice-gas kMC when lists of processes are not
recomputed but only updated.

There have been few studies yet using off-lattice kMC so far. It remains to be
seen how big the problem is of finding transition states on-the-fly. Increasing the
system size seems to increase the number of transition states exponentially [60].
Recycling may change this unfavorable scaling just as it does for lattice-gas kMC.
Much more work needs definitely to be done.

For some systems off-lattice kMC needs not be so much more time consuming
than lattice-gas kMC. For reactions in solvents it is possible to use lattice-gas mod-
els [61–65]. The drawback is that a lot of computer time is spent on diffusion of
particles that need to find each other first before they can react. It has recently been
shown that this need not be necessary [66]. It can be assumed that diffusion in the
solvent is a Brownian motion. This can be treated analytically, which leads to effec-
tive rate constants that depend on the distance between the reacting particles when
they are formed and their diffusion constants. Moreover, there is also a factor that is
an intrinsic rate constant, which can be computed before doing the kMC simulation.
This makes the simulation more efficient than simulations in which rate constants
are computed on-the-fly [67, 68].
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Glossary

absorbing state A state of a master equation from which there is no transition pos-
sible to another state (Sect. 2.2.1). If the master equation describes the evolution
of an adlayer, then a state is a configuration and an absorbing state corresponds to
poisoning.

activation barrier When one or more molecules react the potential energy in-
creases from a minimum value, reaches a maximum, and then decreases to another
minimum value. The activation barrier is the difference between the maximum and
the initial minimum value. It is an energy threshold that needs to be overcome
for a reaction to occur (Sect. 4.2). Sometimes zero-point energy is added to the
initial minimum and the maximum to get a zero-point corrected activation barrier
(Sect. 4.3.2). The concept is closely related to the activation energy.

activation energy A parameter in the Arrhenius expression for rate constants that
describes how a rate constant changes with temperature. The activation energy is
closely related to the activation barrier, as the latter is the dominant contribution to
the activation energy, but they are not quite the same (Sect. 4.2.2).

adlayer The layer on top of the substrate where the adsorbates are found.
adsorption Process in which an atom or a molecule from the gas phase or from a

solution attaches itself to a surface. It is the reverse of a desorption.
adsorption site A preferred position for an atom, a molecule, or a molecular frag-

ment on a surface. This position corresponds to a minimum of the potential-energy
surface (Sect. 2.1).

Arrhenius form An expression that describes the rate constant as depending ex-
ponentially on the reciprocal temperature. It has two parameters: the activation
energy and the prefactor (Sect. 4.2.2).

bookkeeping site A lattice point in a lattice-gas model that does not correspond to
an adsorption site, but that is used to store information that simplifies running a
simulation (Sect. 5.5.4).

cluster expansion A mathematical expression that can be used to express the lat-
eral interactions in an adlayer. It is a sum of terms that correspond to interactions
between adsorbates and substrate, between pairs of adsorbates, between triplets of
adsorbates, between quadruplets of adsorbates, et cetera (Sect. 4.5.1).
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coarse-graining A technique in which an atomic scale description is replaced by
one with a longer length scale. In kinetic Monte Carlo coarse-graining is used
when the (catchment regions of the) minima of a potential-energy surface are
used instead of the precise values of the coordinates and velocities of the atoms
(Sect. 2.2.2), and when lattice is used with each lattice point corresponding to a
block of sites instead of a single site (Sect. 8.2).

configuration The lattice points in lattice-gas models that are used in kinetic Monte
Carlo all have a label. A particular assignment of values to all the labels in a lattice-
gas model is called a configuration. If each lattice point corresponds to an adsorp-
tion site (as is often the case), then a configuration is also a particular way to
distribute adsorbates over the adsorption sites (Sect. 2.1.3).

configuration space If we take all coordinates of all Natom atoms of a molecular
system and put them together to form one vector with 3Natom components, then
the vector space formed by such vectors is the configuration space of the molecular
system. Potential-energy surfaces are defined on the configuration space, and the
space is also important in statistical physics.

coordination number The number of neighbors of a adsorption site or an atom
(Sects. 4.6.6, 4.6.7, and 6.7).

coverage The density of the adsorbates. It is most often defined as the number
of adsorbates per number of unit cell of the substrate, but also as the number of
adsorbates per number of adsorption sites or per unit area.

defect A change in structure that destroys periodicity or translational symmetry
(Sect. 5.5.3).

desorption A process in which an atom or a molecule detaches itself from a surface
and goes into the gas phase or a solution. It is the reverse of an adsorption.

diffusion A random motion of an atom, a molecule, or a molecular fragment that is
a consequence of collisions with other particles or the interaction with the thermal
motion of other particles. It corresponds to random hops from one adsorption site
to a neighboring one in a lattice-gas model.

diffusion coefficient A parameter describing the rate of diffusion. Apart from a
constant is a proportionality factor between the square of a displacement and time
(Sect. 4.6.5).

disabled process A process that is no longer possible because of changes in the
system by other processes (Sects. 3.2.3 and 3.3.2). It is also called a null event.

dissociation A process in which a molecule is split into two or more parts. It is the
reverse of a formation.

dividing surface In the derivation of the master equation phase space is partitioned
into regions that correspond to the minima of the potential-energy surface or con-
figurations of an adlayer. The boundaries separating the regions in phase space are
called dividing surfaces (see Sect. 2.2.2). The term originates from a derivation of
Variational Transition-State Theory in which phase space is split into a part corre-
sponding to reactants and a part corresponding to products separated by a dividing
surface.

dynamic correction factor Sometimes a process occurs but it is immediately fol-
lowed by the reverse of the process. A calculation of the rate constants for the
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processes will give higher values when we regard forward and reverse process
actually having taken place, than when we assume that effectively nothing has
happened. The latter is regarded the correct approach. The factor that corrects for
overestimated rate constants that are obtained from the former approach is called
the dynamic correction factor (Sect. 4.4.3).

Eley–Rideal reaction Chemical reaction with reactants both on a surface and in
the gas phase or in a solution (Sect. 4.4.4).

enabled process A process that is possible (Sect. 3.2.3). The term is mainly used
to distinguish it from a disabled process.

event The actual occurrence of a process (Sects. 2.1 and 3.2.2).
event list A list of all possible processes that can occur at a certain moment in a

simulation (Sect. 3.2.3). This list includes besides the processes that actual will
occur (i.e., the events) also other processes. These other processes never occur,
because, before they can occur, the system changes in such a way that they are no
longer possible. We prefer the term “list of all processes” in this book. This is less
succinct but also less confusing.

First Reaction Method An algorithm of kinetic Monte Carlo in which a time is
computed for each possible process. The process that actually takes place is then
the one with the smallest value for the time (Sect. 3.5).

flicker process A process that is very rapidly followed by its reverse process
(Sect. 8.1.4).

floppy molecule A floppy molecule is a molecule with a potential-energy surface
that has many minima that are separated by barriers that can easily overcome by
thermal excitation or tunneling.

fluctuation Random variations of some property around an average value
(Sect. 5.2).

formation A process in which atoms or molecular fragments get together to form
a molecule. It is the reverse of a dissociation.

immediate process A process with an infinitely large rate constant (Sect. 5.3). The
time in a simulation does not change when an immediate process takes place. Im-
mediate processes are mainly used for changes in the configuration that are too
complicated to be described by a single process. They are often used together with
bookkeeping sites.

interaction model A particular way to describe the lateral interactions between ad-
sorbates (Sect. 4.5.1).

inverted list A list that specifies the processes that are possible for each adsorbate
(Sect. 3.3.2). This list can be regarded as the inverse (hence its name) of the event
list.

label Each lattice point in a lattice-gas model has a label. This label specifies the
status of the lattice point (Sect. 2.1.3). We represent labels in this book by strings
because of their flexibility (Sect. 5.3). The most common use of labels is to indicate
the occupation of adsorption sites, but they have many other uses in particular in
combination with bookkeeping sites and immediate processes (Chaps. 5 and 6).

Langmuir–Hinshelwood reaction Chemical reaction with all reactants on a sur-
face (Sect. 4.4.1).
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lateral interaction Interaction between two or more adsorbates (Sect. 4.5). Lateral
interactions include direct interactions, but also interactions that are a consequence
of adsorbates changing the electronic structure of the substrate or displacing the
atoms of the substrate and thereby inducing stress.

lattice A collection of discrete points that is invariant under certain shifts or trans-
lations (Sect. 2.1). For a simple lattice the vectors connecting the points can be
written as a linear combination of basis vectors with integer coefficients. These
basis vectors are called primitive vectors. A composite lattice is a collection of two
or more interpenetrating simple lattices with the same primitive vectors.

lattice gas A lattice with a label for each lattice point (Sect. 2.1).
long-range order Strong correlation in the structure of a system over a much

longer distance than the range of the interactions in the system (Sects. 7.2
and 7.4.1).

macroscopic equation An equation that describes how a statistical average of
some property changes with time (Sect. 4.6.1). It is also called the phenomeno-
logical equation. It is derived from the master equation. The name indicates that
one generally uses it for macroscopic properties, although it also holds for other
properties. If the property is a coverage, then it is often also called macroscopic
rate equation or just rate equation. Note however that the macroscopic equation is
exact, whereas a rate equation often implies that a Mean Field Approximation has
been used.

Markov chain A sequence of Markov processes.
Markov process A process that depends only on the current state of a system and

not on the system’s history (Sect. 2.2.1).
master equation A linear equation that describes how the probabilities of various

states of a system change in time (Sect. 2.2.1). The equation conserves the total
probability of all states. For kinetic Monte Carlo the states are configurations of a
lattice-gas model.

Mean Field Approximation Name for various similar approximations. For lattice-
gas models it assumes a random distribution of the adsorbates over the adsorption
sites.

noise Random variations of some property around an average value (Sect. 5.2).
Another term for noise is fluctuation.

null event A process that is no longer possible because of changes in the system by
other processes. We prefer the term “disabled process” in this book (Sect. 3.3.2).

occupation A specification of the adsorbate on a site (Sect. 2.1).
overfitting A situation in a fitting process where the fit not only describes the un-

derlying data but also the errors in that data (Sect. 4.5.1).
oversampling A two-step procedure. In the first step numbers are generated or

items chosen with (transition) probabilities that are too high. In the second step
there is a correction for the incorrect (transition) probability (Sects. 3.3.1, 3.3.4,
and 3.4).

partition function A function of the thermodynamic variables that define a statis-
tical ensemble and from which other thermodynamic variables can be calculated
(Sect. 4.3).
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phase space If we take all coordinates and all conjugate momenta of all Natom
atoms of a molecular system and put them together to form one vector with 6Natom
components, then the vector space formed by such vectors is the phase space of
the molecular system.

phase transition Discontinuity in the properties of a system when external condi-
tions are changed (Sect. 7.4).

phenomenological equation An equation that describes how a statistical average
of some property changes with time (Sect. 4.6.1). It is also called the macroscopic
equation. It can be derived from the master equation.

poisoning Situation in which no chemical reactions on a surface are possible any-
more because the presence of some chemical species prevents the adsorption of
one or more reactants (Sect. 7.4.3).

potential-energy surface A function that gives the potential energy of a molecular
system as a function of the position of the atoms. If there are Ndof degrees of
freedom, then the function can be represented as a surface in a space of dimension
Ndof + 1.

pre-exponential factor It is the factor in the Arrhenius form of a rate constant be-
sides the exponential factor that describes the temperature dependence of a rate
constant. The rate constant becomes equal to the prefactor at infinitely high tem-
perature (Sect. 4.2.2).

prefactor Short for pre-exponential factor.
primitive vector A vector of a minimal set of vectors that generate a simple lattice.

The lattice is obtained by taking all linear combination of the primitive vectors
with integer coefficients (Sect. 2.1.1). A primitive vector is also called a primitive
translation.

process A description of how labels of a lattice-gas model can change or the change
itself. The description consists of a list of lattice points, the labels that are to be
changed, and the labels into which they are changed (Sect. 2.1.3). Processes are
often actual physical processes or chemical reactions. We use in this book also
processes that are only defined to facilitate a simulation and that often use book-
keeping sites and labels that do not correspond to adsorbates.

Random Selection Method An algorithm of kinetic Monte Carlo in which it is
assumed that all processes have the same rate constant and that each process can
take place anywhere on the surface. Oversampling is then used to correct for this
obviously erroneous assumption (Sect. 3.4).

rate The magnitude of the change of some property with time. Mathematically it is
the first derivative of that property with respect to time. In kinetics the property is
generally a concentration, a density, or a coverage.

rate constant A proportionality constant between a rate and some other property
of a system. In kinetics this property is generally of the same type as the property
of the rate: i.e., we write the rate with which a coverage changes as a rate constant
times some expression of the same or other coverages. Note that we make a strict
distinction between a rate and a rate constant. There are two kinds of rate constants
in this book. One is found in the master equation and is also called the transition
probability per unit time (Sect. 2.2). The other kind is found in macroscopic rate
equations (Sect. 4.6).
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rate equation An equation that describes how a property changes with time
(Sect. 4.6.1). It is also called the macroscopic rate equation and the property is
usually a concentration or a coverage (Sect. 4.6).

reaction-diffusion equation An extension of the macroscopic rate equation for the
coverage or concentration in which the coverage or concentration is allowed to vary
with position. In addition to the terms in the macroscopic rate equation there is also
a term for describing diffusion.

short-range order Strong correlation in the structure of a system over a distance
comparable to the range of the interactions in the system (Sect. 7.2).

site Short for adsorption site.
sticking coefficient The fraction of the total number of atoms and molecules in the

gas phase or solution that hit a surface and that also adsorb (Sect. 4.4.3).
sublattice A lattice can either be simple or composite. A composite lattice consists

of two or more identical simple lattices that are shifted with respect to each other.
Such a simple lattice is called a sublattice (Sect. 2.1).

superbasin A collection of catchment regions (or basins of attraction) of minima
of a potential-energy surface. The catchment regions should be neighbors and the
superbasin is a connected region (Sect. 8.1.2).

supertype A collection of different types of processes that are given the same rate
constant. A supertype is used together with oversampling to correct for the fact that
some types of processes forming the supertype have a smaller rate constant than is
given to the supertype (Sect. 3.3.4).

surface reconstruction A structure of a surface that is different from the one that is
obtained by cutting a crystal, or the change that leads to that structure (Sects. 5.5.3,
7.3, and 7.5).

symmetry breaking Phenomenon where a system changes in such a way that the
symmetry group of the system is reduced to that of a subgroup (Sect. 7.4).

Temperature-Programmed Desorption Experimental technique in which an ad-
layer is heated up and the desorption of atoms and molecules is monitored. If dur-
ing the experiment there are also reactions on the surface, then one also talks about
Temperature-Programmed Reaction (Sects. 3.6 and 7.2).

transition matrix A matrix that gives the probabilities with which a system
changes from one configuration into another (Sect. 8.1.4). The transition matrix
is closely related to the matrix of transition probabilities of the master equation.

transition probability This is short for transition probability per unit time. It is
a parameter in the master equation (Sect. 2.2.1). Because of the similarity and
because the term is better known, we mostly use the term “rate constant” instead
of transition probability in this book.

transition state When one or more molecules react their potential energy increases
from a minimum value, reaches a maximum, and then decreases to another min-
imum value. The structure of the molecule(s) corresponding to the maximum en-
ergy is called the transition state (Sect. 4.2).

Transition-State Theory An approximation to calculate rate constants. There are
many assumptions that can be made that all lead to the same expression. In rela-
tion to the derivation of the master equation in this book the assumption is that
recrossings of the dividing surface is ignored (Sects. 4.2 and 4.4.3).
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unit cell A representative part of a periodic system or system with translational
symmetry. The whole system can be obtained by making copies the unit cell and
shifting them over all symmetry translations (Sect. 2.1).

Variable Step Size Method An algorithm of kinetic Monte Carlo in which a single
time is computed for each configuration that is encountered during a simulation and
where processes are chosen proportional to their rate constants (Sects. 3.2 and 3.3).
The method is also often called the n-fold way.

voltammetry Experimental technique in which the potential of an electrode is
changed and the current is measured that is caused by reactions on the electrode’s
surface (Sects. 3.6 and 7.4.2).

zero-point energy The difference in energy between the energy of the minimum of
a potential-energy surface and the ground state energy (Sect. 4.3.2).

Ziff–Gulari–Barshad model A simple model for CO oxidation that has only three
processes: adsorption of CO, dissociative adsorption of molecular oxygen, and for-
mation and immediate desorption of CO2 (see Sect. 7.4.3).
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island, 178
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Algorithm
First Reaction Method, 53
parallel, 61–64
Random Selection Method, 52
rejection-free, 48
Variable Step Size Method, 40–50

Arrhenius form, 76, 77

B
Bookkeeping site, 144, 146, 160, 161

label, 141

C
Cluster expansion, 94–96

truncation, 95
Coarse-graining, 226–231
Configuration, 18, 22

initial, 177–179
Continuum model, coupling to, 231–234

D
Defect, 9, 140
Desorption, 86, 87, 89, 92, 122, 156, 169, 170,

212, 218, 219
associative, 130, 131, 165
modeling, 128–131, 156, 165, 169, 170,

176
simple, 106–108, 128, 129, 176
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162, 163, 166–169, 212, 221, 222,
226

modeling, 130–132, 141, 148, 162, 163,
166–169

Diffusion coefficient, 111, 167
Dissociation, 134, 162, 170

modeling, 134, 170
Dividing surface, 30
Dynamic correction factor, 90

E
Event

event list, 42
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F
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time-dependent rate constant, with, 56
Floppy molecule, 84, 85
Fluctuation, 112, 113, 193, 195
Formation, 141, 142, 175

modeling, 141, 175
FRM, see First Reaction Method

H
Heat transfer, 233

I
Immediate process, 128, 142–153

modeling, 142–153, 156, 157, 161, 175,
178

priority, 142, 175
structure

counting, 146–148
flagging, 143–146

superstructure, 178
Interaction model, 95, 98, 99
Inverted list, 48

L
Label, 18–20, 126

adsorption site, 18, 126, 171
bimetallic surface, 140
bookkeeping site, 141
coordination number, 172
defect, 140
lattice point, 18, 126
modeling, 126, 171
occupation, 18, 128–132
process, 18, 127
reconstruction, surface, 140
step, 137–140
sublattice, 133–137

Lateral interaction, 5, 8, 34, 51, 94–104,
181–185, 194–196

Bayesian model selection, 98–102
calculating, 94–104
cluster expansion, 94–96, 161
cross validation, 97, 98
interaction model, 95, 98, 99
linear regression, 96, 97
long-range order, 183, 199
modeling, 159–162
pair interaction, 160
phase transition, 183, 197
rate equation, 184, 185
short-range order, 183
site preference, and, 185
systematic error, 95
transition state, effect on a, 103

Lattice, 13–22, 176

Bravais lattice, 15
coarse-graining, 226–231
composite lattice, 15
lattice vector, 15
primitive vector, 15
simple lattice, 15
sublattice, 15, 176
translational symmetry, 14
unit cell, 15

Lattice gas, 13–22
configuration, 18
label, 18–20
shortcomings, 20, 21

Lattice point, 15, 126
adsorption site, 14, 126
label, 18, 126
number of adsorbates, 226
occupation, 18
sublattice, 135–137

M
Macroscopic equation, 106
Macroscopic rate equation, 1, 106–115

lateral interaction, 6, 7, 184, 185
substrate, 189

Markov chain, 23
Markov process, 24
Mass transport, 232, 233
Master equation, 22–35, 171

absorbing state, 24
class structure, 24
configuration, 22
decomposable, 24
derivation, 26–32
integral form, 38, 55
irreducible, 25
lateral interaction, and, 34
lattice-gas model, for, 32–35
Markov chain, 23
Markov process, 24
rate constant, 23, 31, 75
reduced, 213–215
reducible, 24
splitting, 25
transition matrix, 216
transition probability, 22

Mean Field Approximation, 7, 112, 113, 228
MFA, see Mean Field Approximation
Microkinetics, 1, 8, 9
Modeling

adsorption, 136, 149, 169
dissociative, 165, 174
precursor-mediated, 167–170
simple, 128, 129, 156, 170, 174, 176
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Modeling (cont.)
adsorption site, 133–141, 171
averaging over simulations, 122
averaging over system size, 123
averaging over time, 124
bimetallic surface, 140, 178, 190
bimolecular reaction, 130–132
bookkeeping site, 141, 144, 146, 160, 161
defect, 140
desorption, 156, 169, 170

associative, 130, 131, 165
simple, 128, 129, 176

diffusion, 130–132, 141, 148, 162, 163,
166–169

dissociation, 134, 170
Eley–Rideal reaction, 128
flow reactor, 233
formation, 141, 142, 175
immediate process, 142–153, 156, 157,

161, 175, 178
island, 178
isotope experiment, 165, 166
label, 126, 171
lateral interaction, 159–162
nanoparticle, 170–177
noise reduction, 122–125
occupation, 128–132
process, very fast, 142
reconstruction, surface, 140, 191–193
site blocking, 149, 150, 156–158, 191, 197
step, 137–140, 191, 199
sublattice, 133–137, 168, 170, 172, 174
superstructure, 178
unimolecular reaction, 128, 129

N
n-fold way, see Variable Step Size Method
Net, see lattice
Noise reduction, 122–125
Normal mode, 80
Null event, 48

O
Occupation

adsorption site, 14, 18
label, 18, 128–132
lattice point, 18
modeling, 128–132

Order
long-range, 183, 199
short-range, 183

Overfitting, 95, 98
Oversampling, 45, 49, 50, 52

P
Parallel algorithm, 61–64

approximate algorithm, 64
causality error, 62–64
control parallelism, 62
data parallelism, 62–64

conservative algorithm, 63
deadlock, 63
optimistic algorithm, 63
safe process, 63

noise reduction, 62
Partition function, 78–85

classical, 78
hindered rotation, 83, 84
normal mode, 80
quantum, 78
rotation, 81–83
translation, 84, 87
vibration, 80, 81

PES, see potential-energy surface
Phase transition, 5, 183, 193–203

equilibrium, 194
kinetic, 4, 194, 200
non-equilibrium, 194, 200

Phenomenological equation, 106
Poisoning, 5, 24, 202
Potential-energy surface, 11, 14, 27, 31, 32,

75, 79, 80, 83, 85, 87, 88, 235
Pre-exponential factor, see prefactor
Prefactor, 76, 86
Primitive vector, 15
Process

adsorption, 87–92, 136, 147, 149, 167–170,
212, 218, 219

dissociative, 114, 115, 165, 174
precursor-mediated, 167–170
simple, 108–110, 128, 129, 156, 170,

174, 176
sticking coefficient, 89–91

decomposition, 148
desorption, 86, 87, 89, 92, 122, 156, 169,

170, 212, 218, 219
associative, 130, 131, 165
simple, 106–108, 128, 129, 176

diffusion, 5, 91, 109–111, 130–132, 141,
148, 162, 163, 166–169, 212, 221,
222, 226

disabled, 42, 46–49, 65
dissociation, 134, 162, 170
Eley–Rideal reaction, 91
enabled, 41
flicker, 215
formation, 141, 175
immediate, see immediate process
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Process (cont.)
label, 18, 127
Langmuir–Hinshelwood reaction, 85, 86
multistep, 216, 224

R
Random Selection Method, 51–53

algorithm, 52
oversampling, 52
scaling with system size, 66

Rate constant, 23, 79
activation barrier, 75, 78
activation energy, 76, 78
adsorption, 87–91, 108–110

dissociative, 114, 115
sticking coefficient, 89–91, 109, 115

Arrhenius form, 76, 77
bimolecular reactions, 111–114
calculating, 85–94
desorption, 86, 87, 89, 106–108
diffusion, 91, 110, 111
dynamic correction factor, 90
Eley–Rideal reaction, 91
experiment, from, 104–115
general expression, 31, 75
Langmuir–Hinshelwood reaction, 85, 86
partition function, 78–85
prefactor, 76, 86
time-dependent, 55–58
transition state, 31, 32, 75
Transition-State Theory, 75
tunneling, 78
unimolecular reactions, 110

Rate equation, 1, 106–115
lateral interaction, 6, 7, 184, 185
substrate, 189

Reaction, see process
Reaction-diffusion equation, 11, 203
Rejection-free algorithm, 48
RSM, see Random Selection Method

S
Selection, 43–46, 217, 222

hierarchical, 44
oversampling, 45, 49
Schulze’s method, 46
uniform, 44
weighted, 43

Site, see adsorption site
Step, 9, 137–140
Sticking coefficient, 89–91, 109, 115

Sublattice, 15
label, 133–137
lattice point, 135–137
layer, 168
modeling, 133–137, 168, 170, 172, 174

Superbasin, 213
Supertype, 50, 51
Symmetry breaking, 5, 193–203

T
Temperature-Programmed Desorption, 5,

194–196
time that a process occurs, 57

Temperature-Programmed Reaction, 186–189
TPD, see Temperature-Programmed

Desorption
TPR, see Temperature-Programmed Reaction
Transition matrix, 216
Transition probability, 22

rate constant, 23
Transition state, 31, 32, 75

early barrier, 103
late barrier, 103

Translational symmetry, 14
Tunneling, 78

U
Unit cell, 15

V
Variable Step Size Method, 38–51, 235, 237

algorithm, concept, 40
algorithm, improved version of the

concept, 42
algorithm with approximate list of

processes, 47
algorithm with random search, 49
lateral interactions, and, 51
scaling with system size, 41, 43–46, 49, 66
supertype, 50, 51

time-dependent rate constant, with, 55
Voltammetry, 190, 197–199

time that a process occurs, 57
VSSM, see Variable Step Size Method

Z
Zero-point energy, 78–80
ZGB, see Ziff–Gulari–Barshad model
Ziff–Gulari–Barshad model, 4, 24, 67, 122,

142, 163, 165, 172–176, 200–203
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