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ABSTRACT: First-principles-based force fields prepared from large
quantum mechanical data sets are now the norm in predictive molecular
dynamics simulations for complex chemical processes, as opposed to force
fields fitted solely from phenomenological data. In principle, the former
allow improved accuracy and transferability over a wider range of molecular
compositions, interactions, and environmental conditions unexplored by
experiments. That is, assuming they have been optimally prepared from a
diverse training set. The trade-off has been force field engines that are
functionally complex, with a large number of nonbonded and bonded
analytical forms that give rise to rather large parameter search spaces. To
address this problem, we have developed GARFfield (genetic algorithm-
based reactive force field optimizer method), a hybrid multiobjective Pareto-
optimal parameter development scheme based on genetic algorithms, hill-
climbing routines and conjugate-gradient minimization. To demonstrate the
capabilities of GARFfield we use it to develop two very different force fields: (1) the ReaxFF reactive force field for modeling the
adiabatic reactive dynamics of silicon carbide growth from an methyltrichlorosilane precursor and (2) the SiC electron force field
with effective core pseudopotentials for modeling nonadiabatic dynamic phenomena with highly excited electronic states. The
flexible and open architecture of GARFfield enables efficient and fast parallel optimization of parameters from quantum
mechanical data sets for demanding applications like ReaxFF, electronic fast forward (or electron force field), and others
including atomistic reactive charge-optimized many-body interatomic potentials, Morse, and coarse-grain force fields.

I. INTRODUCTION
The use of evolutionary algorithms (EA) in computational
optimization of chemistry and biochemistry related problems has
seen applications to ligand−protein docking,1,2 molecular struc-
ture predictions,3−5 and force field development,6−10 among
other applications.11 In particular, genetic algorithms (GAs)
enable searching of different regions of a solution space for prob-
lems involving nonconvex, discontinuous, and multimodal solu-
tions. However, force field parameter solvers give the developer
responsibility for establishing parameter search boundaries to
avoid physically unreasonable or discontinuous potential energy
surfaces (PES), while providing robust solutions suitable outside
the training set.
Prior attempts to systematize this problem have been limited

in scope and flexibility. Hunger and Huttner6 combined neural
networks and genetic algorithms to optimize specific force field
parameters for tripod metal templates, tripodMO(CO)3, using
the root mean square deviation between the observed and force
field predicted structures as the sole fitness function. Wang and
Kollman7 reported on an automatic engine for empirical force-
field parametrization called Parmscan and applied it to reproduce
the relative energies and conformations of small hydrocarbons by
optimizing valence parameters in a conventional harmonic force
field using systematic searches and a genetic algorithm. Angibaud

et al.8 reported on a hard-wired genetic algorithm (GA) for the
parametrization of a reactive force field that included directional
covalent bonds, dispersion terms, a charge transfer term, and
atom coordinations; and used it to optimize a silicon−silicon
force field. Handley and Deeth9 describe the use and application
of multiobjective evolutionary algorithms (MOEAs) by repar-
ameterizing the ligand field molecular mechanics (LFMM) force
field for modeling spin crossover in iron(II)−amine complexes.
Recently, Larsson et al.10 also reported on the use of an in-house
code for unbiased global optimization using genetic algorithms
to fit a ReaxFF12 reactive force field for SiOH. For the most
part, these efforts focus on applying evolutionary algorithms to
optimizing parameters for specific (hard-wired) atomistic force
field engines, do not enable Pareto-optimal solutions, rely on
single or a limited number of objective fitness functions, and on
energy minimization as means to establish an error norm with
reference values.
Here, we introduce GARFfield, a genetic algorithm-based

reactive force field optimizer framework. GARFfield is a hybrid
evolutionary, gradient-based parameter optimization frame-
work that allows multiobjective fitness function specification,
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user-defined training sets and constraints, general parameter
optimization for different force field engines, including conven-
tional, complex reactive adiabatic12,13 and nonadiabatic14,15 force
fields, and different optimization criteria (such as 2-norm force
vector for all atoms, as opposed to just energy minimization on
geometries). Furthermore, GARFfield provides unique capa-
bilities to enable exploration of multiple (nondeterministic)
Pareto-optimal solutions, via hill-climbing and weight random-
ization of objective functions.
The general multiobjective decision problem addressed by

GARFfield is defined as the following: given an n-dimensional
force field parameters decision vector x = x + 1, x2,..., xn in the
solution hyperspace space x, find a vector instance, x′, that
minimizes the k objective functions z(x′) = z1(x′), z2(x′),...,
zk(x′) for a given set of molecular structure properties predicted
from first-principles quantum mechanics, where x is constrained
by the parameters bounds and not dominated by any particular
objective zi (i = 1,..., k). A solution x is said to dominate another
feasible solution y (x < y) if and only if zi(x) ≤ zi(y) and zj(x) <
zj(y) for at least one objective function j.
This paper describes in section II the GARFfield architecture,

program flow, and the different objective functions currently
supported for force field development; then in section III, we
illustrate the application of GARFfield to the development of the
ReaxFF reactive force field12 for studying adiabatic reactions and
dynamics of silicon carbide (SiC) growth from trichlorosilane.
We also apply GARFfield to the development of effective
core pseudopotentials (ECP)16 for the electron fast forward (or
electron force field, eFF14,15), a mixed quantum-classical me-
chanics method for describing nonadiabatic electron dynamics
phenomena for highly electronically excited systems. These
individual applications produce optimized parameter sets, but
here we focus only on the validation against quantum mechanics
(QM), eschewing detailed analysis of the applications to other
publications. Because the focus here is on force field development
using the GARFfield framework, we provide implementation

details, a User’s Manual (as part of the Supporting Information),
and performance metrics in section IV, along with a final set of
observations and recommendations for the development of force
fields using GARFfield in section V.

II. GARFFIELD FORCE FIELD DEVELOPMENT
FRAMEWORK

GARFfield uses an evolutionary algorithm to produce a random
population of force field parameter sets (strings, or chromo-
somes in natural evolution terminology). The user has the option
of selecting a subset of force field parameters for training (i.e.,
selecting particular string positions, or genes in the natural evo-
lution terminology), or using the parameter entire set (Param-
eter Selection block in Figure 1). Each parameter value within a
string (allele, in the natural evolution terminology) needs to be
specified within a real space range that prevents discontinuities or
nonphysical behavior in the potential energy landscape of the
force field being optimized. Every string (force field) is then used
by a compliant molecular mechanics/dynamics engine to evalu-
ate a full set of user-defined training motifs (Training Set block
in Figure 1). The result of evaluating each training motif using a
particular string is compared against a corresponding reference
value obtained from first-principles QM calculations. The
training set prepared by the user may contain different objective
functions, and multiple entries per objective function, both of
which can be weighted. Reference labels are used to uniquely
identify training set entries and serve as index keys to the corre-
sponding atomic or coarse-grain structure definition files, which
should also be provided by the user. A total fitness value,
calculated using an error function selected by the user (Fitness
Function Calc. block in Figure 1), is produced for every string
(force field) in the random population evaluated over the entire
training set. This fitness value is used to rank each string and to
decide if it should be replaced (i.e., discarded) or used to evolve
new and better fit offsprings. Evolution of new siblings is
achieved via mutation (reproduction from a single fit string)

Figure 1. Software architecture of GARFfield. Circled numbers indicate connections 1−1, 2−2, 3−3, and 4−4 between functional blocks. Dotted block
indicates all calculations performed in parallel, over the population size as pop/procs.
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and/or crossover (reproduction from two different and fit
strings) operations. The iterated population improves toward a
higher-quality set of force fields, and upon convergence, the best
force field performer is selected and written to an output file. The
overall computational flow diagram for GARFfield is depicted in
Figure 2.

GARFfield provides many unique features for training com-
plex force fields, including improved convergence via hybrid
global and local gradient-based optimization, local minima avoid-
ance via hill-climbing, application of relative restraints (harmonic
with variable start/end restraint coefficients) for handling non-
equilibrium definitions, and support for multiobjective opti-
mization, among others.
To improve convergence and speed of convergence, GARF-

field includes an option to automatically switch from the evolu-
tionary GA scheme to a conjugate gradient (Polak−Ribiere
version) (CG) optimizer, when the GA is within the quadratic
basin of a local minima in the PES. TheCG operates on the single
best accumulated force field string at the time of the GA−CG
switch and proceeds by calculating the directional gradients from
central finite differences of the force field parameters applied on
the fitness function over the full training set. The CG option may
be activated when the error change between iterations is within a
threshold tolerance. GARFfield also provides a hill-climbing
option that may be used to periodically test the existence of other
minima (i.e., to climb out of local minima).
For training nonequilibrium cases in reactive systems, such as

transitions states along reaction coordinates, cold-compression
curves in periodic systems, or bond breaking or rotational
barriers, among others, GARFfield enables the definition and
application of relative structural restraints between interparticle
lengths, angles, and torsions (Restraints block in Figure 1).
A critical step in preparing a force field from first-principles

QM is defining an appropriate objective function or set of func-
tions. GARFfield allows the force field developer to systemati-
cally define multiple objective functions in a training set, and to
combine them into a single weighted sum composite function.

Furthermore, it enables randomization of individual objective
function weights that allow the force field developer to produce
nondeterministic, multiobjective and Pareto-optimal solutions.
The force field developer is at liberty to choose which objective
functions to use for a particular force field development case (i.e.,
any combination from k = 1,..., Nof).
The following objective functions are currently supported: qe,

atomic charges; se, structural/geometric properties including
2-body bond lengths (sb), 3-body angles (sa), 4-body torsions or
inversions (st, si), cell parameters (sl) (for periodic systems only),
or pairwise radial distributions (sRDF). Equilibrium definitions are
the following: fe: zero atomic forces, from 2-norm (length) force
vector for all atoms (to specify a minimum or transition state
geometry) and σe: zero cell stresses (to specify an optimum
periodic cell). Ee is the differential energies (and off-equilibrium
definitions).
The charges (sb) are computed from atomic coordinates

using the Charge Equilibration (QEq) method from Rappe and
Goddard.17 This allows QEq parameters (electronegativity,
hardness, and atomic radius) to be optimized, if required in the
particular force being trained (e.g., ReaxFF).
2-body bond lengths are computed from the two particle

coordinates

∑= −
=

s p p( )
p x y z

b
, ,

1 2
2

(1)

3-body angles from two bond vectors (or the cosine of the angle),
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4-body torsions from the dihedral angle defined by three bond
vectors (or the cosine of the angle) as

= | | ⃗· ⃗ × ⃗ ⃗ × ⃗ · ⃗ × ⃗s a b a b c a b b ctan 2( [ ], [ ] [ ])t (3)

the cell lattice parameters directly from a energy minimized
structure and the unit cell type definition (cell angles from the
cosine of the angle), the radial distribution function for any
particular pair of particles, from the number density (ρ)
multiplied by the spherical shell, as

π ρ= =s g r r dr( ) 4RDF
2

(4)

The cell stress trace is computed from the sum of the i = j virial
components of the pressure tensor, given by

∑σ = ·r fij
k

N

k ki j (5)

and the 2-norm (length) of the global force vector for all atoms is
used as an alternative to full structure energy minimization (finite
and periodic)

| | = + + ··· +f f f fn1
2

2
2 2

(6)

Differential energy entries may be any combination of relative
energies with respect to some reference state. For example,
discretized energies in an equation of state or a bond-energy
bond-distance relationship (single or multiple bonds) with
respect to the corresponding equilibrium values; or relative
reactant, transition state, and product energies; binding energy
versus unbound energy; relative energies between different
material phases at equilibrium; relative energies between clusters

Figure 2. Flow diagram for GARFfield. Ovals represent user-provided
input, shaded rectangles represent GARFfield calculations and library
calls (to the evolutionary algorithm, LAMMPS, or the conjugate
gradient solver CG), and dashed boxes represent primary outputs.
Shaded boxes represent decision points or manual input requirements.
The dotted evaluate box depicts parallelized computations over the GA
force field population size.
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of different sizes; surface energy versus bulk energy; interaction
energy between two molecules as the difference between the
complex and the individual molecular energies; relative energies
between under and overcoordinated case; heats of formation at
0 K for molecular reactions; among many other options.
To minimize the k objective functions, GARFfield computes

an error between the force field predicted values (using the
random parameters produced by the evolutionary algorithm)
and the corresponding data from quantum mechanics (or
experiment). Un-normalized weight (MSE = mean square error
and SIWE = squared inverse weighted error) and normalized
weight (RMSE = root mean square error, MPE = mean percent
error, and NRMSE = normalized RMSE) error functions are
available in GARFfield, as defined, respectively, by the following
functional forms
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2
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where, wi is a corresponding entry case weight, pFF is the property
computed by the force field being optimized, and pQM the
corresponding value from a first-principles quantum mechanical
(QM) calculation, and
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where w′ corresponds to the mean normalized weight (over the
total number of entries per section, k, and entries per class, nc)
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where wofi is the corresponding objective function section (z = qe,
Se, Ee, σe, fe, as described below) weight andwci the corresponding
section entry weight.
GARFfield will recognize the number of entries per objective

function in the training set file and normalize depending on the
selected error function (see the Supporting Information for file
format details). By default, every wofi = 1 (hence the first sum
turns into an average over k, unless the user supplies weights per
section).
This hierarchy of weights provides the necessary flexibility to

the user. For example, to capture the correct dissociation barriers
for a reactive force field, one may require higher weighting for
points of a bond-energy bond-distance curve that are near
equilibrium and at and away from the bond dissociation length.
In the same manner, weights can be set to alter the relative
importance of an entire objective function section in the training
set (e.g., relative energies versus structural details).
A default a priori approach is implemented, which expects the

user to provide the weights within the trainset file (otherwise
weighs are set to 1). An alternative, and supported, approach is to

let GARFfield randomly generate (using “-W” option) the
normalized weight vector, w1...Nof. This will enable a search in
multiple directions, requiring the user’s decision a posteriori on
which solution satisfies his goals best.
GARFfield uses by default, explicit energy minimization on

every structure, before calculating and comparing the particular
objective function result to the literal reference value provided in
the training set from QM or experiment. Normally, this requires
multiple energy/force calculations, depending on how far the
result comes to the reference value, and complete minimization
convergence. Two minimization schemes are available, a con-
jugate gradient algorithm (default) and a fast inertial relax-
ation engine or FIRE;18 the latter performs damped dynamics
minimization.
Alternatively, one can compute the single-point energy for a

specified geometry and the 2-norm force (length of the global
force vector for all atoms) to use a geometry relaxation criterion
(i.e., a fully relaxed structure would have zero 2-norm force
vector). This involves a single energy/force calculation step, as
opposed to a finite number of minimization steps, which would
lead to a significant speedup in computing the training set.
Nevertheless, it must be used with caution because the relative
direction of the force is lost in the 2-norm and the reference value
used by GARFfield to compute the error is still the systemssed by
GARFfield to compute the error is still energy, albeit scaled by
(1 + f 2‑norm)

−1. Alternatively, the user can directly use 2-norm
force or cell stress as part of the training set (see the Supporting
Information).

III. SILICON CARBIDE REACTIVE FORCE FIELDS FROM
GARFFIELD

This section covers two different force field development
examples for modeling silicon carbide (SiC) material systems.
The first case is an adiabatic ReaxFF12 reactive potential to study
the dynamic synthesis of SiC from Methyltrichlorosilane and
the second an effective core pseudopotential (ECP) in the non-
adiabatic eFF formulation to study the electronic excitations
during SiC shock loading.
SiC has a wide range of applications due to its many unique

properties, low-density, such as high thermal conductivity,19

thermal shock resistance,20 biocompatibility,21 resistance to
acidic and alkali environments,22 chemical inertness, and high
mechanical strength.23,24 It is also used in the design and synthe-
sis of fuels and chemicals as separation and reactive media, such
as adsorbents, membranes, and catalysts, as well as in various
types of electronic sensors. Silicon carbide is also an important
material in TRISO-coated fuel particles, the type of nuclear fuel
found in high temperature gas cooled reactors (such as the
pebble bed reactor). A layer of silicon carbide gives coated fuel
particles structural support and is themain diffusion barrier to the
release of fission products.25 Silicon carbide composite material
has also been investigated for use as a replacement for Zircaloy
cladding in light water reactors. The composite consists of SiC
fibers wrapped around a SiC inner layer and surrounded by
an SiC outer layer.26 Because SiC rarely happens in nature,
optimizing its fabrication processes (e.g., using sintering or
chemical vapor deposition (CVD) or infiltration (CVI) from
methyltrichlorosilane (MTS) or other precursors) remains an
active research topic.
Therefore, the development of reactive and nonadiabatic force

fields capable of accurately capturing the complex phenomena
found in the ample range of SiC applications, including synthesis,
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is an important contribution and a complementary goal of this
paper.
III.1. ReaxFF Reactive Force Field for SiC Synthesis from

MTS. SiC can be fabricated through thermal degradation of
various preceramic precursors via a series of tailored reactions
leading to the final ceramic. Understanding the atomistic events
and mechanisms involved in this process is paramount to
optimizing it. Unfortunately, there is nearly no information from
neither experiments on the reaction sequences nor on the local
geometric configurations of this amorphous structure, both of
which control the overall material performance properties. To
provide input into how the chemical reaction processes can affect
the final structural and physical properties, we use reactive
molecular dynamics with ReaxFF force fields to model the
thermal decomposition of the precursors and growth of the final
SiC, under realistic experimental conditions. In refs 27 and 28,
we studied the production of SiC nanoporous membranes via
pyrolysis of hydridopolycarbosilane (HPCS) [−SiH2CH2−]n,
used for H2 gas separation at high temperatures.29,30 We
developed the HPCS ReaxFF force field to study the ceramic
formation using HPCS as a precursor and for modeling the

process-based dynamics of growth. This led to a material product
model characterization in close agreement with the experimental
results.27,28

SiC growth using the CVI technique via microwave-enhanced
heating of methyltrichlorosilane (MTS), CH3SiCl3, has recently
received significant attention. Mainly, because the microwave-
assisted heating makes it possible to heat the substrate internally
to enable the deposition of SiC in an inside-out fashion. As a
result, a spatially uniform composite with higher density is gener-
ated and formation of pores is avoided. Furthermore, the manu-
facturing time is reduced considerably.31−33

Here, we describe the use of GARFfield to develop an accurate
ReaxFF force field capable of modeling the thermal decom-
position of MTS, as a precursor for SiC formation. To facilitate
the development process, we start from the ReaxFF force
field parameters for HPCS27 and extend it to include Cl self-
interactions and its 2-, 3-, and 4-body interactions with the other
elements involved (i.e., Si, C, and H). 37 parameters were chosen
for optimization; from the bond, off-diagonal, and angle terms
in the ReaxFF energy expression (see ref 34), as listed in Table 1.
A corresponding parameter selection file was prepared, as

Table 1. ReaxFF Parameters Optimized for SiC−MTSa

parameter section atompair/angle initial value final value % |difference|

De
σ bond C−Cl 131.9833 135.7409 2.85

pbe1 bond C−Cl −1.0000 −0.8229 17.71
pbe2 bond C−Cl 1.2060 1.8090 50.00
pbo1 bond C−Cl −0.0824 −0.0884 7.28
pbo1 bond C−Cl 5.7013 5.1701 9.32

De
σ bond H−Cl 96.3886 112.8570 17.09

pbe1 bond H−Cl −0.0572 0.0944 265.03
pbe2 bond H−Cl 2.2822 1.5000 34.27
pbo1 bond H−Cl −0.1093 −0.1027 6.04
pbo2 bond H−Cl 5.1686 5.7987 12.19
De

σ bond Si−Cl 117.3136 126.4334 7.77
pbe1 bond Si−Cl 0.0148 0.0074 50.00
pbe2 bond Si−Cl 0.9459 0.4729 50.01
pbo1 bond Si−Cl −0.1181 −0.0590 50.04
pbo2 bond Si−Cl 5.4270 5.9410 9.47
Dij off-diagonal C−Cl 0.2535 0.2651 4.58
αij off-diagonal C−Cl 12.0000 11.4529 4.56
Dij off-diagonal H−Cl 0.0129 0.0628 386.82
αij off-diagonal H−Cl 12.0000 9.6285 19.76
Dij off-diagonal Si−Cl 0.1014 0.1840 81.46
αij off-diagonal Si−Cl 12.0000 10.8573 9.52
pval1 angle C−C−Cl 75.9138 89.0053 17.25
pval2 angle C−C−Cl 21.2437 28.5172 34.24
pval1 angle C−Si−Cl 76.1248 76.2780 0.20
pval2 angle C−Si−Cl 29.9800 26.1530 12.77
pval1 angle H−C−Cl 78.3243 85.1985 8.78
pval2 angle H−C−Cl 30.0000 30.0000 0.00
pval1 angle H−Si−Cl 81.6322 77.2718 5.34
pval2 angle H−Si−Cl 30.0000 29.5037 1.65
pval1 angle Si−C−Cl 69.7801 69.5117 0.38
pval2 angle Si−C−Cl 12.4545 11.0362 11.39
pval1 angle Si−Si−Cl 73.4201 71.7728 2.24
pval2 angle Si−Si−Cl 16.9804 14.2543 16.05
pval1 angle Cl−C−Cl 74.2883 77.1943 3.91
pval2 angle Cl−C−Cl 30.0000 30.0000 0.00
pval1 angle Cl−Si−Cl 75.5382 75.1218 0.55
pval2 angle Cl−Si−Cl 29.9993 30.0000 0.00

aSee ReaxFF file format for the location of these parameters in the Supporting Information.
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described in GARFfield’s User Manual (see the Supporting
Information), using the values from ref 27 as mean values for the
subsequent training. A training set file was prepared from 235
unweighted QM cases that include atomic charges, bond lengths,
angles, transition state geometries, reactions and dissociation
energies for bonds and angles (relevant to MTS), and energies
from all thermal decomposition products (see the Supporting
Information for details on the training set).
The reference geometrical (bond, angle, etc.) and charge data

in the training set were obtained by carrying out quantum
mechanical (QM) calculations on every given molecule in the
training set file. The QM data for nonperiodic systems was
obtained from the density functional theory calculations and
carried out using Jaguar (version 5.5),35 the B3LYP func-
tional,36,37 and Pople’s 6-31G** basis set.38,39 The Mulliken
charges were also computed using the 6-31G** basis set. Molec-
ular geometry files for all the cases referenced in the training set
were prepared in MSI BioGraf (.bgf) format. GARFfield was set
to single-point mutations at a rate of 1/235, no crossover, and a
mean percent error (MPE) fitness function.
The optimal strategy for optimizing this ReaxFF force field

involved partitioning the GARFfield optimization process in
incremental stages, based on the force field parameter types. A
ReaxFF force field file contains 7 sections: a general parameters
section, an atom specific parameters section, a 2-body (bond)
interaction parameters section, an off-diagonal parameters
section, a 3-body (valence angle) parameters section, a 4-body
(torsion angle) parameters section, and a hydrogen bond param-
eters section. Note that in this case, we started from a known set
of parameters, albeit not optimized for SiC.
If the force field under development involves elements for

which there are no available parameters, the fundamental atom,
bond, angle, and torsion parameters should be populated from
running some of the same training motifs (finite and periodic)
with the universal force field, UFF40 (covers the periodic table of
elements up to Lawrencium), from quantum mechanical calcu-
lations, or, as a last resort, from existing ones for an element with
similar chemical properties. The sequence described in Figure 3
should then change to 1, 5, 2, 3, 4, i.e., optimizing the valence
terms first, followed by the nonbond terms. The automated UFF
step capability will be part of a future GARFfield release.
For the present case, atom, off-diagonal, bond, and angle

parameters were optimized sequentially (see Table 1). No
hydrogen bonds are involved. This builds upon direct knowledge
of the interactions to be trained and parameter sensitivity analysis
performed on the starting point, SiC HPCS ReaxFF force field.
200 GA iterations were performed for each case, and the

training result errors were checked at each step to make sure the
optimization proceeded as expected. The range for each
parameter was selected to be within ±100% of its mean value,
defined from the initial force field. Convergence to an acceptable
minimum was tested by running another instance up to 500
iterations, using the hill-climbing option every 50 iterations. A
larger parameter range (up to ±500%) was also examined to test
the sensitivity of the optimization to the parameter range. The
results were consistently similar to the previous ranges tested.
The bond parameters were then optimized in a two-stage
process, beginning with the first parameter for every bond pair,
De

σ, which corresponds to the pre-exponential factor of the bond-
energy expression in ReaxFF, and finishing with the rest of the
section parameters. De

σ plays a critical role in the value of
equilibrium bond energy. The resulting De

σ was obtained using
±100% offset from the mean reference value, whereas the other

section parameters were obtained from ±5%−10% of their
respective mean values. Finally, the valence angle parameters
were optimized using a range of±100% of the initial mean values.
The best force field obtained after this procedure was used to

reoptimize all the parameters jointly using a small parameter
range (e.g ± 5%). The final set of optimized parameters and
the percent difference with the initial value are shown in Table 1.
The training set and resulting force field for this case, and a
description of parameters in a ReaxFF force field file can be found
in the Supporting Information.
In general, the proposed strategy for optimizing a ReaxFF

force field with GARFfield involves partial and incremental
optimization of parameters in the sequence described in Figure 3.
Alternatively, and assuming the force field developer has

significant experience with the ReaxFF energy expression, lower
and upper range values for each parameter may be specified. An
additional test of convergence is to use the “-s nochange”
command-line option to decide convergence when the total error
does not change over a range of iterations.
A sufficiently general training set should contain a diverse set

of cases to describe elemental, binary. and n-ary interactions
(when needed) through corresponding finite, surface or bulk
models. Nonetheless, keep in mind that the cost of calculating
the training set will be proportional to the size of the models used
(i.e., finite systems are faster to compute than equivalent sized
periodic systems). Also note that charge training cases must be
included in the trainset file when optimizing charge parameters
(i.e., electronegativity, hardness, and radius).
Figure 4 shows the total error as a function of iteration, during

the sequential optimization procedure described above,

Figure 3. General strategy for training ReaxFF force fields. The initial
forcefield should be chosen from an existing set, when available, or else
from parameters for elements with similar properties. The best output
ffield corresponds to the best out of the three runs (at PO = ± 50, 100,
200). White boxes represent force field parameter types, and shaded
boxes correspond to decision points or manual input requirements. The
asterisk implies these parameters should be optimized only when strictly
necessary, vdW = van der Waals, lg = low-gradient vdW dispersion
correction, iw = vdW inner-wall correction, and arrows indicate
sequence/concurrence.
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Figure 5 compares the GARFfield−ReaxFF and QM H−Cl,
C−Cl, and Si−Cl bond dissociation curves in HCl, H3CCl, and
H3SiCl molecules (i.e., bond distance versus bond energy), and
Figure 6 compares the GARFfield−ReaxFF and QM C−C−Cl,
C−Si−Cl, H−Si−Cl, Cl−C−Cl, Cl−C−H, Cl−Si−Cl, and Si−
Si−Cl angle curves (i.e., angle value versus energy).
In general, there is good agreement between the GARFfield−

ReaxFF predicted values and the QM references, except for a
significant discrepancy between the energies computed by
ReaxFF and QM in the compressed regime of H−Cl and in
the expanded regime of Si−Cl. Thus, ReaxFF uses a bond
energy-to-bond order-to-bond distance relation that can capture

double and single bonds, as well as lower-order bonds during
reactions. As a result, the compression and expansion curves
computed by ReaxFF are generally not as accurate as those from
QM. For covalent systems, accurate second-order properties are
best carried out by using ReaxFF to obtain the structure, and then
using a nonreactive force field to analyze the distortions near
equilibrium geometries.
GARFfield provides a variety of options that can be used for

improving optimization results (see the Supporting Informa-
tion). For example, the hill-climbing option enables upward
moves to search for alternative and lower minima. Figure 7 shows
how the total C−Cl bond dissociation curve is improved by using
the hill-climbing option with a frequency of 100 (the hill-climb
frequency depends on the size and complexity of the training
set.)
To test the accuracy of the developed force field, we study

thermal decomposition of the MTS in presence of H2 gas. The
goal is to determine if the reaction products obtained from
reactive molecular dynamics (RMD) simulations using the
prepared ReaxFF force field agrees with what is known
theoretically. To do so, we built an atomistic model of the
MTS with H2 gas. A system of 480 H2 and 40 MTS molecules
(1280 atoms), at the room-temperature density of the mixture,
was prepared in a periodic simulation box with dimensions of
29.5 × 29.5 × 29.5 Å. The system was then minimized using an
energy criterion of 1e-6 and subsequently equilibrated using an
NVT ensemble at a temperature of 300 K using ReaxFF (this
took 8 ps). A cook-off simulation of the system was performed to
study the thermal degradation of MTS, using a linear heating rate

Figure 4. Change in the total error with the number of steps during one
complete optimization.

Figure 5. Comparison of the energies computed by QM and GA for (a) H−Cl, (b) C−Cl, and (c) Si−Cl bond dissociation.
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of 0.1 K/fs, up to a final temperature of 3500 K. The system was
subsequently maintained at 3500 K for 45 ps. The variations of
the temperature and pressure during the simulation are shown
in 8 (upper left and upper right), and the time evolution of the
gaseous compounds is shown in 8 (bottom).

For temperatures less than but close to 2500 K, the Si−Cl
bonds were very mobile (see Cl and MTS production), forming
and breaking before actual MTS decomposition. The simulations
indicate that the degradation of the MTS initiates at about
2500 K with Si−C, Si−Cl, and few C−H bonds breaking.

Figure 6.Comparison of distortion energies computed byGARFfield−ReaxFF andQM for the angles in (a) C−C−Cl, (b) C−Si−Cl, (c) H−Si−Cl, (d)
Cl−C−Cl, (e) Cl−C−H, (f) Cl−Si−Cl, and (g) Si−Si−Cl.
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At higher temperatures and up to 3500 K, the bond breaking
process accelerates and free H, Cl, CHn, and SiCln radicals are
produced. Secondary reactions involving bond formation
between Cl and H radicals and CHn and H radicals at 3500 K
led to the formation of HCl and CH4 gases, respectively.
Fragment analysis of the simulation products reveals a series of

reactions that were found to be the most important and frequent
(see Table 2). These reactions may be used as a guide in
predicting the real mechanism of theMTS pyrolysis. We find that
Si−C and Si−Cl bond breaking in MTS initiate its decom-
position (reactions 1 to 20). In some cases (reactions 1 to 3), the
Si−C bond breaks due to the thermal effect and in others due to
the hydrogen gas and H radicals reacting with the CH3 groups to

Figure 7. Comparison of the energies computed by QM and GA (with
and without hill-climbing routine) for C−Cl bond.

Figure 8. (Upper left) temperature and (upper right) pressure and fragment evolution (bottom) during MTS cook-off simulation.

Table 2. Reactions during MTS Thermal Decomposition with
ReaxFF

reaction no. reaction no. of reactions

1 CH3SiCl3 → CH3 + SiCl3 2
2 CH3SiCl2 → CH3 + SiCl2 2
3 CH3SiCl → CH3 + SiCl 1
4 H + CH3SiCl3 → CH4 + SiCl3 2
5 H + CH3SiCl2 → CH4 + SiCl2 3
6 H + CH3SiCl → CH4 + SiCl2 8
7 H + CH3SiH → CH4 + SiH 2
8 H + CH3Si → CH4 + Si 2
9 H + CH3SiH2 → CH4 + SiH2 4
10 H + CH3SiHCl → CH4 + SiHCl 2
11 H + CH2SiHCl → CH3 + SiHCl 1
12 CH3SiH → CH3 + HSi 2
13 CH3SiH2Cl → CH3 + SiHCl + H 1
14 CH3SiH2 → CH3 + SiH2 1
15 CH3Si → CH3 + SiH 1
16 CH3SiHCl → CH3 + SiHCl 1
17 CH2SiH2 → CH2 + SiH2 1
18 CH3SiCl3 → CH3SiCl2 + Cl 39
19 CH3SiCl2 → CH3SiCl + Cl 18
20 CH3SiCl → CH3Si + Cl 16
21 CH3SiCl2 + Cl → CH3SiCl3 18
22 CH3SiCl + Cl → CH3SiCl2 11
23 CH3Si + Cl → CH3SiCl 14
24 H2 → H+H 92
25 H + Cl → HCl 180
26 HCl → H + Cl 128
27 CH3 + H → CH4 5
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produce CH4 gas (reactions 4 to 10). Some of theH radicals react
with CH3SiHnClm (n, m = 0−2) to form more stable structures,
whereas in subsequent steps, the Si−C bonds in these structures
break and decomposition of MTS proceeds (reactions 11 to 20).
As mentioned earlier, the Si−Cl bonds are very mobile and they
form and break frequently (reactions 21 to 23). Decomposition
of MTS and H2 forms H radicals that react with Cl and CHn
radicals to produce other gases, including HCl and CH4
(reactions 24 and 27). This sequence of reactions and products
agrees very well with published results from other theoretical
studies.41

III.2. Nonadiabatic eFF Effective Core Pseudopotential
(ECP) for SiC. The Born−Oppenheimer (BO) approximation,
which decouples the nuclear and electronic motions, underlies
most of the atomistic modeling applications. However, the BO
approximation breaks down for systems involving highly excited
electronic states. These are common in warm dense and hot
matter regimes, high velocity impact, high energy radiation, and
other extreme material conditions for which the electronic
portion of the wave function contains contributions from many
stationary states.15

The electron fast forward (eFF)14 (also called the electron
force field) was developed to overcome this limitation by en-
abling very fast nonadiabatic dynamics of highly excited elec-
tronic states. eFF with recent improvements15 has confirmed its
scalability and applicability to challenging problems including
explaining emissions of hot electrons during brittle fracture of
silicon,42 describing the dynamics of Auger induced chemical
decomposition,43 characterizing hydrostatic and dynamic shock
Hugoniots for different materials,14,15,44,45 and tracking the dy-
namics of Coulomb explosion in silicon and diamond nano-
particles,46 among others.47

In the framework of eFF, nuclei are classical point charges and
the total electronic wave function is represented by a Hartree
product of one-electron floating spherical Gaussian (FSG) wave
packets, eq 13, whose positions, xi⃗, and sizes, si, are both dynamic
variables.
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where RNN, RNe, and ree correspond to the internucleus, nucleus-
electron and interelectron distances, respectively, s to the
electron radius, and σ to the electron spin.
This representation leads to a rather simple electronic energy

expression shown in eq 14, ⟨Ψ|Ĥ|Ψ⟩, constituted from the sum of
single-particle QM-based kinetic energy (EKE), pairwise
Coulomb energies (for nucleus−nucleus, ENN, electron−
electron, Eee, and nucleus-electron, ENe), and the Pauli pairwise
spin-dependent (EPR) Hamiltonian that provides the forces that
would otherwise arise from antisymmetrization of the wave
function product to account for the Pauli Principle. With eFF, we
do not solve the Schrödinger equation to describe the ground or
low-lying excited states. Rather, we propagate the wave function
using the Hamiltonian to describe nonadiabatic dynamics. This
leads to a trajectory describing both nuclear and electron mo-
tions. To obtain proper statics, we obtain 100−1000s of trajec-
tories starting with various initial conditions and collect statistics

on the product distributions. The total eFF energy expression
shown in eq 14, has a standard description for electrostatic interac-
tions between a set of zero-dimensional point and Gaussian
charges which include nucleus−nucleus (ENN), electron−electron
(Eee), and nucleus-electron (ENe). In addition to the electrostatics,
eFF introduces quantum effects through an electron kinetic energy
from the Gaussian (EKE) and a spin-dependent Pauli repulsion
potential term (EPR) between Gaussians (further details can be
found in previous work14,15).
An intrinsic limitation of the all-electron FSG-based eFF

emanates from the spherical symmetry of the underlying basis
functions. For atoms with valence electrons of higher angular
momenta, such as p-block elements, the FSG representation
misses part of the interaction between the core and valence
electrons, due to the absence of nodal structures.
The the SiC electron force field with effective core pseudo-

potentials (eFF−ECP) scheme requires reformulating and
parametrizing the Pauli energy term, EPR in eq 14, for pseudo-
particles with Gaussian charge replacing the core electrons and
the nucleus, and adjusting the classical electrostatic energies
between the pseudocore and valence electrons (core−elec),
nuclei (core−nuc), and other pseudocore (core−core) particles
as described in.16

Various Pauli potentials in the eFF−ECP representation have
been tested, although the form of EPR is based on the effect on
the kinetic energy of orthogonalizing spherical Gaussians, we
have tested formulations based instead on the relation EPR ∝ S2,
where S is the overlap between two Gaussians: one representing
the core and the other an interacting valence electron. In this
model representation, we developed the following two different
types of ECP: (1) an s−s overlap, for an s-type valence electron
and (2) an s−p overlap, for an p-type valence electron.
The corresponding functional forms are given (see refs 16 and

42 for additional details on their derivation) as the following:
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where r in eq 15 is the distance between the s-type pseudocore
and an interacting s-type valence electron and, in eq 16, it
corresponds to the distance between the s-type pseudocore and
the s-type Gaussian representing one of the lobes of a p-type
valence electron (see Figure 9). s is the size of the corresponding
valence electron, a corresponds to the pseudocore wave function
amplitude, b in eq 15 and d in eq 16 to the pseudocore wave
function decay factor, c in eq 15 and e eq 16 to the square of effec-
tive pseudocore particle size). For the s−p case c corresponds to
an off-center measure and b to a second effective size that adjusts
the overlap amplitude.
We used GARFfield to develop the eFF−ECP force field for

SiC tabulated in Table 3. These were obtained by optimizing the
parameters for a p-type carbon ECP expression (eq 16) along
with our previously published s-type silicon parameters.42 In this
eFF−ECP scheme, both silicon and carbon atoms are repre-
sented by a core effective potential and four valence electrons.
Because the electrons are represented by spherical Gaussians
with a position, size and spin, the parameter optimization for
geometries with complex bonding structures is more challenging
than that of a conventional force field. We used lower and upper
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parameter range values between 0.5 and 3 for the ECP radius and
0−100.0 for a, b, c, d, and e.
We find that the eFF−ECP force field obtained with

GARFfield accurately captures the proper lattice constant for
the 3C−SiC Zinc blend, 4.3496 at 0 K and 4.3551 at 297 K. The
latter was computed from the radial distribution function (RDF)
between nuclear pairs and the corresponding coordination
number. A 5000 atom 3C−SiC fully periodic cubic unit cell (see
Figure 10) was minimized to a 1e-8 energy difference using
conjugate gradient minimization. Then 100 fs of equilibrated
NVT molecular dynamics at 297 K (controlled with a Nose−́
Hoover thermostat) was run in LAMMPS with the eff/cut pair
style15 to determine the average RDF and coordination number.
Experimental results report a value of 4.3596 at 297 K48).
The results for the Si−C bond, and Si−Si−C, Si−C−C, H−

C−H, H−Si−H, C−C−Si, C−Si−C, C−Si−Si, Si−C−Si, Si−
C−H, and C−Si−H angles from the different conformers in the
training set are tabulated in Table 4.
For this case, we ran 80 GARFfield iterations without hill-

climbing and a single restart step after 40 iterations. No restraints
were applied.
The ECP functional forms used in the reported SiC case, and

our previously published applications, are based on the potential
interpretation that captures the orbital overlap between the core
electrons and a single valence electron. For atoms beyond He,
where p, d, or f, angular momentum states play an important role,
the absence of nodal structures in the FSG representation misses
part of the interaction between the core and valence electrons.
Moreover, for elements beyond Neon (Ne), the multiple
spatial scales for the core and valence electrons, complicate
the form of the EPR based on orbital overlaps. Consequently,
we have recently introduced a new formalism into the eFF
methodology to treat the core electrons with an effective core
potential that replaces the core electrons for norm conserving
pseudopotentials.49 Further details on the functional form
of the newer ECP, using angular momentum projections, can
be found in ref 16. This new ECP form is also supported in
GARFfield.
As mentioned, training of eFF force fields with effective core

pseudopotentials (ECPs) involves parametrizing the spin-
dependent Pauli repulsion interaction energies between a core
pseudoparticle, with other cores and valence electrons, as a

function of interparticle distance, electronic spin, and size. For
this reason, the eFF−ECP forms involve optimization of the
pseudocore size (as a parameter), while electronic wave function
centers and sizes are allowed to change (as variables) during
bond formation, bond braking, or ionization events. Due to the
explicit electrons (and electron cores) in the eFF−ECP
description, parameter optimization requires a larger number
of geometry optimization iterations to minimize the energy for
every core size, while valence electron positions and sizes vary.
As opposed to an adiabatic approximation, the nuclear and
electronic motions in eFF are coupled through the energy
expression, except when the electrons become fully delocalized
from nuclei (e.g., plasma state), in which case electrons become
noninteracting particles. Excited states are captured from the
kinetic energy of the electronic wave function term in the eFF
energy expression (eq 14), which, in turn, is related to the
electron size. During the dynamic interactions of electrons with
other particles in a system, a high wave function kinetic energy is
associated with localized electrons (small radius) and a low wave
function kinetic energy with diffuse electrons (large radius).
Because eFF formally derives the kinetic energy of the electronic
wave function from first-principles quantum mechanics and this
is not affected during the training of the Pauli repulsion energies
(i.e., establishes ground state configuration), electronic ex-
citations remain first-principles based.

IV. FRAMEWORK IMPLEMENTATION AND
PERFORMANCE

The core source of GARFfield is written in ANSI C with a
message passing interface for parallel computation support.
GARFfield uses a modified PGAPack50 library to perform the
evolutionary functions described in a master−slave configuration
and a modified interface to the LAMMPS parallel molecular dy-
namics simulation code51 to perform the molecular mechanics/
dynamics operations needed to rank strings (force fields) resid-
ing on each processor. The LAMMPS library used by GARFfield
is compiled to include the Reax/c52 and eFF15 user packages,
both required for training adiabatic ReaxFF and nonadiabatic
eFF reactive force fields. The code is written in a modular fashion

Figure 9. Illustration of distances used in the two functional types of
eFF−ECP, where blue circles represent core electrons and red valence
electrons. Note that the center of real p-type Gaussian is the nodal point.
Figure courtesy of Hai Xiao (Caltech).

Table 3. Carbon s−p Functional Form Parameters in the SiC−ECP Force Field and Silicon s−s Parameters from ref 42

atom ECP radius a b c d e

Si 1.691 0.320852 2.283269 0.814857
C 0.630348 21.344508 0.715963 0.954384 14.261287 5.314525

Figure 10. 3C−SiC molecular structure. 5000 atoms, with Si shown in
yellow, C in green, and electrons as small circles (not to scale).
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to enable incorporation of other force fields (code components
are shown in Figure 1).
The speedup from using multiple processors will vary as a

function of the GA population size (controlled using the p option
in the command line) and the number of population strings re-
placed at each GA generation (i.e., evolution strategy). Of course,
speedup also depend on the number of processors available for
the computation and the communication/synchronization
overheads associated with distributing and collecting information
to and from processors. For example, for a population size of 100
one could use 101 processors effectively to run the (1) master
and (100) slaves processes with a full population replacement
strategy and a theoretical ×100 speedup (assuming no over-
heads). However, the default population replacement strategy
(steady-state or SSGA) only replaces 10% of the population each
GA iteration, hence only 10 processors can be effectively used
under parallelism. The percent replacement can be modified
using the option (-z, see the Supporting Information). De-
pending on the computer architecture used to run GARFfield,
significant nonlinear speedup can also be achieved from the use
of deep cache hierarchies (see ref 11).

V. CONCLUDING REMARKS
The multiobjective randomized weighted sum approach used by
GARFfield can, in principle, guarantee solutions uniformly

distributed over a nonconvex trade-off surface. It is up to the
force field developer to choose an optimal force field set among a
set of nondeterministic solutions. On the other hand, GARFfield
can produce relatively accurate force fields without the use of
nondeterminism.
One of the single most critical factors in obtaining fast and

reliable force fields from GARFfield is having precise under-
standing of the underlying energy expressions, and their sensi-
tivity to the individual parameters. Other equally important
factors are having a complete, accurate, and diverse (i.e., not
exhaustive) training set, having a reasonable starting force field
(i.e., complete set of parameters with no singularities), a well-
bracketed range for each of the parameters being trained, and
proper physical and chemical insight to narrow down the
parameter search space.
In general, for preparing ReaxFF force fields, we suggest

starting from existing parameters. If these are unavailable, start
from parameters available for atoms of similar properties; there is
an extensive database of existing ReaxFF parameters for variety
of materials and interactions. We find that the use of damped
dynamics-based minimization (e.g., the FIRE algorithm18)
avoids incorrect PES traps that were otherwise common when
using local gradient-based minimization (e.g., CG). The latter
failed to converge to adequate minima, correct energetics, and
geometries.
On the other hand, eFF−ECP parameter optimization

requires sampling an increased geometrical and radial search
space, given the need to describe explicit electrons and their
interaction with the effective core electrons representations.
This was solved by increasing the number of minimization steps
(-m option in GARFfield’s command line, see the Supporting
Information) to guarantee geometry convergence and appro-
priate energetics in the eFF−ECP framework.
Thus, our experience using GARFfield has led us to suggest a

general strategy that requires a stepwise parameter optimization
process based on incremental training of general, nonbond,
valence, and H-bond parameter parameters (or a subset of these,
depending on the nature of the force field), followed by an all-
inclusive training with small percent offsets from the mean
parameter values found at the end of the incremental
optimizations (as described in Figure 3). The physical/chemical
reasoning for this sequential optimization strategy stems from
the fact that nonbond interaction terms (e.g., atom, off-diagonal,
and H-bond sections in a ReaxFF force field) play a major role
in chemistry of any reactive process. Many reactions start and

Table 4. Silicon Carbide Training Set and Optimization Results Using the s−p form ECP for Carbona

structure feature QM(BY3LYP) eFF−ECP % error

SiH3CH3 Si−C bond 3.5527 3.8177 7.4594
SiH2CH2 Si−C bond 3.2314 4.0231 24.5002
2SiH22CH2 Si−C bond 3.6417 3.5643 2.1241
2(SiH2CH2) Si−Si−C angle 78.500 80.1411 2.0906
2(SiH2CH2) Si−C−C angle 101.5000 99.8589 1.6168
2(SiH2CH2) H−C−H angle 106.5000 118.1523 10.9411
2(SiH2CH2) H−Si−H angle 107.6000 113.7215 5.6891
C2H5SiH3 C−C−Si angle 114.1000 114.8811 0.6846
2(CH3)SiH2 C−Si−C angle 112.1000 116.4574 3.8871
Si2H5CH3 C−Si−Si angle 112.0000 112.298 0.2662
2(SiH3)CH2 Si−C−Si angle 115.7000 111.8900 3.2930
SiCH Si−C−H angle 111.3000 116.6054 4.7667
CSiH C−Si−H angle 109.3000 101.8441 6.8215

aAll bond lengths in Bohrs and angles in degrees.

Figure 11. Speedup for ReaxFF SiC parameter set optimization under
Los Alamos’ National Laboratory supercomputer Mapache.
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proceed due to intermolecular interactions. Therefore, it is of
crucial importance to first obtain nonbond energy terms that can
accurately capture these interactions. Simultaneous optimization
of covalent term parameters (i.e., bond, angle, and torsion
sections) would negatively affect the quality and partitioning of
nonbond and valence energies. Consequently, in our sequential
optimization strategy, we start with the nonbond energy param-
eters, followed by bond, angle, and torsion energy terms. Valence
terms are also optimized in sequence by treating highest energy
contributions first (i.e., bonds have larger contributions to the
total energy of a system than angles or torsions, and angle terms
have larger contributions to the total energy than torsions). This
strategy can be adapted to the specific force field being trained,
considering the training set definitions and other inputs to
GARFfield are standardized (see GARFfield’s UserManual in the
Supporting Information).
As a general rule of thumb, we recommend performing an

initial optimization with an unweighted training set, followed by a
subsequent run with weights adjusted according to the appli-
cation requirements (e.g., exact geometries versus energetics)
and based on the initial unweighted training errors (train-
set.err.best). A thorough revision of the initial training set results,
including evaluating the errors reported in trainset.err.best, the
physical significance of parameters in ffield.best, visualizing the
minimized geometries, and confirming any applied restraints, is
essential for adequately spotting and troubleshooting any
problems early on. Last but not least, the user should experiment
with the different error calculation forms depending on the target
properties. For example, the use of squared error criteria (e.g.,
RMSE) emphasizes values away from equilibrium, whereas nor-
malized differences (e.g., MPE) are less dependent on the rate of
change of the fitted functions.
The fact that GARFfield generates multiple sets of solutions

per iteration allows for the computation of an approximate of the
entire Pareto front. Although this does not necessarily guarantee
Pareto optimality, it is known that none of the generated solu-
tions dominates the others. GARFfield, on the other hand,
enables selection of a Pareto-optimal solution from the execution
of multiple runs, with or without randomization of training
set weights. Manual consolidation and inspection of the
trainset.err.best file results for all runs is then required for the
selection of the Pareto-optimal solution.
Future versions of the GARFfield force field optimization

framework will include heuristics that allow finer control on the
optimization procedure. For example, the user will be able to
specify sequential optimization stages by groups of parameters
(e.g., bond-order parameters, followed by atom and off-diagonal
parameters associated to nonbond interactions, followed by
bond parameters, followed by angle and torsion parameters, and
finalizing with H-bond parameters (when required)). We also
expect to add a parameter prepopulation step from an UFF pass
of the training set. This will allow initialization of parameters for
new elements in force fields like ReaxFF.
In summary, GARField (1) is a general force field optimization

framework, with significant flexibility, as opposed to a hardwired
single force field solution, (2) enables multiobjective optimiza-
tion of complex force fields (including adiabatic and nonadiabatic
reactive force fields), (3) supports alternative optimization crite-
ria to improve computationally efficiency (i.e., 2-norm force
versus standard geometry optimization) and convergence speed
(automatic switching to gradient-based optimization), (4)
enables nondeterministic solutions, via hill-climbing and weight
randomization of objective functions, (5) scales linearly in the

string population size (pS) and population replacement (prf)
fraction (i.e., with a speedup proportional to pS × prf/p ) (for p
processors), and has demonstrated superlinear speedups under
multihierarchy cache cluster architectures, (6) is designed
around a modular software architecture that is amenable to
extensions of default base of force fields (i.e., ReaxFF, eFF−ECP,
charge-optimized many-body interaction potentials −COMB
and atomistic and coarse-grain Morse potentials), and objective
functions and restraints, and (7) offers a unique opportunity for
systematic reversible multiscale simulations, via up-scaling (e.g.,
from atomistic to coarse-grain force field) and down-scaling (e.g.,
coarse-grain tuning from atomistic).
An open source version of the GARFfield code will be made

available after this publication, through the LAMMPS Web site
(http://lammps.sandia.gov) or through http://www.wag.
caltech.edu/home/ajaramil/.
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