Parallel Transport Time-Dependent Density Functional Theory
Calculations with Hybrid Functional on Summit

Weile Jia Lin-Wang Wang Lin Lin®
jiaweile@berkeley.edu Iwwang@Ibl.gov linlin@math.berkeley.edu
University of California, Berkeley Lawrence Berkeley National University of California, Berkeley
Berkeley, California Laboratory Lawrence Berkeley National

Berkeley, California

ABSTRACT

Real-time time-dependent density functional theory (rt-TDDFT)
with hybrid exchange-correlation functional has wide-ranging ap-
plications in chemistry and material science simulations. However,
it can be thousands of times more expensive than a conventional
ground state DFT simulation, and hence is limited to small systems.
In this paper, we accelerate hybrid functional rt-TDDFT calcula-
tions using the parallel transport gauge formalism, and the GPU
implementation on Summit. Our implementation can efficiently
scale to 786 GPUs for a large system with 1536 silicon atoms, and
the wall clock time is only 1.5 hours per femtosecond. This unprece-
dented speed enables the simulation of large systems with more
than 1000 atoms using rt-TDDFT and hybrid functional.

KEYWORDS

Time-dependent density functional theory, real-time, GPU, Non-
equilibrium system, Hybrid exchange-correlation functional, Fock
exchange operator

ACM Reference Format:

Weile Jia, Lin-Wang Wang, and Lin Lin. 2019. Parallel Transport Time-
Dependent Density Functional Theory Calculations with Hybrid Functional
on Summit. In The International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC °19), November 17-22, 2019, Denver, CO,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3295500.
3356144

1 INTRODUCTION

Real-time time-dependent density functional theory(rt-TDDFT) is
one of the newest trends in electronic structure calculations [4, 31,
35, 41, 46]. Its popularity rises together with the recent experimental
emphasis in electronic ultrafast phenomena in material science. It
can be used to study ion collision, light absorption spectrum, laser-
induced demagnetization and phase change, charge transfer, excited
carrier dynamics, and chemical reactions. For example, it has been

*Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SC ’19, November 17-22, 2019, Denver, CO, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6229-0/19/11...$15.00
https://doi.org/10.1145/3295500.3356144

Laboratory
Berkeley, California

shown by many recent experiments [7, 28, 29, 37, 39, 40, 47] that
laser excitation can induce structure phase changes and charge den-
sity wave excitations. It has also been shown many of the previously
thought adiabatic catalytic interactions are actually non-adiabatic,
which requires electron excitation simulation to study them. All
these present a new trend in the material science simulations, and
require beyond ground state DFT simulations. Another common
usage of rt-TDDFT is to simulate the optical spectrum and nonlin-
ear optical properties of materials. Unfortunately, the semi-local
exchange correlation functionals such as the local density approxi-
mation (LDA) and generalized gradient approximation (GGA) do
not describe the excited states and band gaps correctly, resulting in
alarge error in the calculated optical spectrum. This problem can be
solved using hybrid functionals [5, 32] within the framework of den-
sity functional theory (DFT). The hybrid functional mixes a fraction
of the explicit Fock exchange integral with the semi-local exchange
correlation functionals. It can be used to accurately describe the
band gaps for a wide range of materials, especially with the recently
developed range-separated hybrid functional [16, 17]. It has been
shown recently, the optimally tuned range separated hybrid func-
tional can reproduce accurate optical absorption spectrum when
compared with more expensive methods like the Bethe-Salpeter
equation based on GW calculation [1]. As a result, the rt-TDDFT +
hybrid functional approach can be extremely powerful to describe,
for example, the exciton excitation and charge transfer processes.
Unfortunately, both rt-TDDFT and hybrid functional are compu-
tationally very expensive compared to conventional ground state
DFT calculations with semi-local functionals. In practice, rt-TDDFT
can be hundreds of times slower than the conventional ground
state molecular dynamics simulations due to the need for using
small time step, hybrid functional can also be tens of times slower
than the semi-local exchange correlation functional due to the eval-
uation of the Fock exchange term. As a result, planewave-based
rt-TDDFT + hybrid functional simulations are rarely found in the
literature, even for small systems with a handful of atoms [36], not
to mention large ones with a thousand atoms. However, for many
problems, e.g., for excited state charge transfer, laser induced struc-
ture phase transition, nano systems like quantum dots and wires,
large system simulation is essential. Besides, planewave basis is also
important due to its flexibility, especially for excited states. This
poses a question for how practical it is to carry out laser rt-TDDFT
hybrid calculations, and whether this can be a realistic approach
for material science simulation.

SC ’19, November 17-22, 2019, Denver, CO, USA

Fortunately, the situation has been improved due to both new
algorithm developments and the emergence of new computer plat-
forms like Summit (located in Oak Ridge National Laboratory, listed
as No.1 supercomputer in the Top500 list in November 2018). On the
algorithmic side, typical rt-TDDFT calculations are simultaneously
limited by the accuracy and stability requirements of the ordinary
differential equation (ODE) integrators. This implies that a small
time step size (often in the sub-attosecond regime) needs to be used
in order to yield accurate dynamics. Hence explicit time integra-
tors, such as the Runge-Kutta 4th order (RK4) method, are often
preferred to implicit time integrators, such as the Crank-Nicolson
(CN) scheme, due to efficiency as well as simplicity of implemen-
tation [12]. By choosing the optimal gauge of propagation, the
recently introduced parallel transport gauge formalism (PT) [2, 21]
reformulated the rt-TDDFT equations, and enabled implicit inte-
grators to be efficiently used with a large step size. Recently it is
demonstrated that the parallel transport Crank-Nicolson (PT-CN)
scheme can significantly increase the time step to around 50 at-
toseconds, and the accuracy can be fully comparable to that of the
RK4 method both for semi-local exchange-correlation functionals
and hybrid functionals [21, 24]. On the hardware side, heteroge-
neous architecture powered by GPU accelerators has become the
most widely used architecture among supercomputers. The latest
GPU based Summit supercomputer has significantly increased the
available computing power. Given this situation, it will be of para-
mount interest to test the limit of the rt-TDDFT+hybrid functional
method on the Summit supercomputer. Given the heterogeneous
architecture of the Summit (GPU+CPU), its latest hardware for
data communication, and the large amount of total memory, the
computer algorithms need to be adapted accordingly.

Through our study, we would like to address the following ques-
tions: (1) How scalable is the implementation, both in terms of
strong scaling and weak scaling? (2) What is the bottleneck in the
most scalable case: computation or communication? (3) Whether
the memory is a bottleneck? If not, what new algorithms one can
use to take advantage of the large amount of memory? (4) How
large is the speedup comparing GPU with CPU, in the sense of the
absolute fastest time to solution, and in the sense of the same power
consumption?

The contribution of this paper is as follows. (1) We find that with
careful treatment of the data distribution, usage of CUDA custom
kernels, batched fast Fourier transform (FFT) operations, and careful
overlapping computation and communication, the resulting multi-
GPU implementation of rt-TDDFT can be highly scalable. (2) While
the CPU implementation of hybrid functional calculations is always
dominated by the computational time (at least for large systems
using up to a few thousands of cores), our GPU implementation
significantly reduces the computational time. Therefore the cost
of hybrid functional calculations is now comparable to that with
semi-local functionals. For a large system, the MPI communication
becomes the bottleneck only when more than 500 GPUs are used. (3)
The large capacity of the Summit machine allows us to implement
some unique algorithms in rt-TDDFT calculations, such as using
Anderson mixing to accelerate the solution of nonlinear equations,
where up to 20 copies of wavefunctions are used. (4) Thanks to the
increase of the time step size and hence the reduction of the number
of Fock exchange operator applications using the PT-CN algorithm,

Weile Jia, Lin-Wang Wang, and Lin Lin

we can now carry out an rt-TDDFT+hybrid functional simulation
with the planewave basis set for an unprecedentedly large system
with 1536 silicon atoms, with a practical time to solution of 1.5
hours per femtosecond on 768 GPUs. Compared to our best CPU
implementation using 3072 cores (also using the parallel transport
formulation), our GPU implementation can be up to 30 times faster
assuming maximum parallelization with 768 GPUs, and is still 7
times faster assuming equal power consumption using 72 GPUs.
We provide a detailed performance analysis, which gives insights
for how to implement similar electronic structure codes in such
heterogeneous platforms, and what aspects of such platforms can
be improved in the future to serve similar applications.

The rest of the manuscript is organized as follows. We review the
algorithm for performing hybrid functional rt-TDDFT calculations
with the parallel transport gauge formulation in section 2. The
GPU implementation is shown in section 3. The setup of the test
systems and the machine configuration are presented in section 4
and section 5, respectively. Then we show the numerical results in
section 6, followed by the analysis in section 7 and conclusion in
section 8.

2 PARALLEL TRANSPORT GAUGE
FORMULATION OF RT-TDDFT

Real-time time-dependent density functional theory solves the fol-
lowing set of time-dependent equations

10, ¥(¢) = H(t, P(1))¥(¢). (1)

Here ¥(t) = [y1(2), ..., ¥, (t)] is the collection of wavefunctions
(also called electron orbitals), and N, is the number of electrons
(spin degeneracy omitted). The density matrix is defined as P(t) =
Y(¢)P*(t), where ¥* is the Hermitian conjugate of ¥. The time-
dependent Hamiltonian takes the form

H(EP()) = =2 A + Vet (1) + Viae[P(O] + @W&POL. @)

Here Vexi(t) encodes the time-dependent external potential such
as the nuclei-electron interaction and the laser field, and Vigy con-
sists of the Hartree potential and the local part of the exchange-
correlation potential. In the absence of the term Vx, this is the semi-
local functional rt-TDDFT. This paper focuses on hybrid functional
rt-TDDFT calculations, where V¥, called the Fock exchange opera-
tor, is an integral operator with kernel Vx[P](r,r’) = —=P(r,r")K(r —
r’). Here K(r — r’) is the kernel for the (possibly screened) electron-
electron interaction [16, 17], and « is a mixing fraction (usually
a = 0.25).

In an rt-TDDFT simulation, the matrix-vector multiplication of
the type H[P]¥ needs to be repeatedly performed. This is particu-
larly the case for hybrid functional calculations, where each set of
multiplications Vx [P]¥ requires the following operations:

Ne
(Vx[Plyj) (r) = - Z Yi(r,t) / K-t)y, (',)y’ dr’. (3)
i=1

Due to the convolutional structure of K, when the planewave basis
set is used, each term fK(r =)/ (',)y;(r) dr’ can be evaluated
by solving a Poisson-like equation using the fast Fourier transform
(FFT). Hence this amounts to solving N? Poisson-like equations.
Due to the Fock exchange term, hybrid functional calculations

Parallel transport TDDFT with hybrid functional on Summit

can be tens of times more expensive than semi-local calculations.
We remark that in the context of ground state hybrid functional
DFT calculations, several approaches have been proposed to reduce
the cost. The application of the Fock exchange operator can be
accelerated with a massive number of CPUs [10, 42], and adaptive
compression techniques [26]. When approximation of the Fock
exchange operator can be tolerated, the cost can also be reduced
through other algorithmic approaches such as localization [6, 8, 9,
45] and density fitting techniques [19]. In the current GPU work,
these techniques are not used in the rt-TDDFT simulation.

The rt-TDDFT equation (1) can be equivalently expressed using
a set of unitarily transformed orbitals. Physical observables such
as the density matrix are by definition invariant to such unitary
rotations (called gauge-invariant). This allows us to seek for the
optimal gauge for numerical simulation of rt-TDDFT. Recently, such
optimal gauge has been identified [2, 21], which is defined implicitly
through the following equation

i0,¥ = HY — ¥(P*HY), P(t) = Y(t)¥*(1). (4)

Here ¥* stands for the Hermitian conjugate of the matrix ¥. Com-
pared to Eq. (1), the only difference is the extra term ¥(¥*HY),
which mixes the information from all orbitals together. The right-
hand side of Eq. (4) is a residual type term. Its magnitude can be
much smaller than HY on the right-hand side of Eq. (1), and the
dynamics become smoother. In fact, ¥(¢) solved from Eq. (1) can be
viewed as the parallel transport (PT) of the initial wavefunctions to
time t within the range of P(t), and the corresponding implicitly
defined gauge is called the parallel transport gauge. Coupled with
implicit integrators such as the Crank-Nicolson (CN) scheme, the
resulting PT-CN scheme solves the following nonlinear equation at
each time step

At .
Pne1 i {Hn+1%n+1 — ¥ns1 (¥, Hne1%ns1) }

At (5
=y, - 17 {Hn¥n — ¥ (¥ Hn¥n)} -

Compared to explicit time integrators such as the explicit 4th order
Runge-Kutta scheme (RK4) which often requires a sub-attosecond
time step, the time step allowed by PT-CN can be significantly im-
proved to around 10-50 attoseconds. This is particularly important
for reducing the number of Fock exchange operator applications in
hybrid functional calculations.

Alg. 1 summarizes the procedure for one step of time propagation
using the PT-CN scheme. During each time step, we first evaluate
the initial residual R,,. The right-hand side of (5) can be viewed as
propagating the wavefunctions by half a step. It is thus denoted by
Y., 1 and is fixed during the self-consistent field iteration. The new
set of wavefunction ¥,4+1 needs to satisfy a fixed point problem
and is denoted by ¥y during the iteration, and the residual for the
fixed point problem is denoted by Ry. The fixed point problem is
solved by the Anderson mixing method [3]. When the residual is
sufficiently small, the SCF iteration can be terminated. In practice,
we find that the SCF convergence can also be monitored by the
convergence of the charge density.

SC ’19, November 17-22, 2019, Denver, CO, USA

Algorithm 1 One time propagation step with the PT-CN method.
INPUT: ¥,
OUTPUT: ¥,41

1: Evaluate the initial residual R, = H, ¥y, — Y (¥, Hy ¥n).

— iAt —

2. Evaluate ‘Pn+% =¥, - 5ERy, and let ¥ = \I’n+%.

3: Evaluate the electron density py corresponding to ¥y.

4 forj=1,2,...do

5: Update the potential and the Hamiltonian Hy.

6: Evaluate the fixed point residual Ry = ¥ + iATt(qu,f -
Yr(¥rHp¥p)) =¥, 1

7. Perform Anderson mixing to update wavefunctions ¥y.

8 Evaluate the electron density py corresponding to ¥y.

9: If the change of the electron density is sufficiently small, exit
the loop.

10: end for

11: Orthogonalize ¥y to obtain ¥,,41.

3 MULTI-GPU IMPLEMENTATION

In hybrid functional calculations with a planewave basis set, the
application of the Fock exchange operator in the HY step often
takes around 95% of the total computation time with a CPU imple-
mentation. However, according to Amdahl’s law, in order to achieve
a desirable speedup factor, almost all steps of the calculation needs
to be accelerated using GPUs. Our GPU code is implemented within
PWDFT, which uses the planewave discretization and is an inde-
pendent module of the massively parallel software package DGDFT
(Discontinuous Galerkin Density Functional Theory) [18, 27]. In our
implementation, all computationally intensive parts are performed
using GPUs with either GPU-accelerated libraries or CUDA custom
kernels. We also carefully overlap the MPI communication and GPU
computation to take advantage of the heterogeneous architecture.
We remark that for ground state electronic structure calculations,
the use GPU of acceleration has been reported in various software
packages such as ABINIT [13], BigDFT [33], NWChem [42], Octo-
pus [4], PWmat [22, 23], Quantum ESPRESSO [34], VASP [14, 20],
to name a few.

3.1 Hybrid parallelization scheme

There are two main parallel distribution schemes for the wavefunc-
tions. The first one is the column based distribution scheme (also
called the band index parallelization), i.e., each column of ¥ are
distributed to different MPI tasks based on its band index (i.e. the
column index). This data distribution scheme is highly efficient
for the calculation of HY. This is particularly the case for hybrid
functional calculations since different MPI tasks are able to perform
FFTs independently. The second one is the row based distribution
scheme (also called the G-space parallelization, where G is a stan-
dard notation for the index in the Fourier space). In this scheme,
the data is distributed according to the partition of the Fourier
coefficients. This distribution scheme facilitates the evaluation of
matrix-matrix multiplications, such as the evaluation of the overlap
matrix § = ¥*(HY) once HY is obtained.

SC ’19, November 17-22, 2019, Denver, CO, USA

In PWDFT, the wavefunctions ¥ are mostly distributed in the
band index parallelization to evaluate the HY efficiently. The con-
version from band index parallelization to G-space parallelization
is performed via MPI_Alltoallv for matrix-matrix multiplication
operations such as the evaluation of the overlap matrix, as shown
in Fig. 1. Note that after the evaluation in the G-space, the wave-
functions are converted back to the band index parallelization for-
mat via MPI_Alltoallv. In this fashion, both H¥Y and matrix-matrix
multiplication operations can be evaluated efficiently. In the GPU
implementation, the hybrid parallelization scheme plays an even
more important role. This is because the band index parallelization
allows us to use the CUFFT library for the H¥ calculation. However,
the band index parallelization cannot scale to a large number of pro-
cessors for matrix-matrix multiplications either on CPUs or GPUs,
and we therefore need to convert to the G-space parallelization
scheme. The hybrid parallelization scheme for the GPU implemen-
tation has been used in [43] for ground state electronic structure
calculations. We remark that there is another level of parallelization
over k-points, which is another index of the wavefunction ¥. For
large physical systems containing a few hundred to a thousand
atoms such as the systems calculated in this paper, only one k-point
(i.e. the I'-point) is needed. Hence k-point parallelization is not
discussed in this paper.

Figure 1: Illustration of the hybrid parallelization scheme
with N, = 8 wavefunctions on 4 MPI tasks. The number of
planewaves Ng is usually on the order of 10° ~ 10°. Thus the
maximum number of processes is limited by the N,.

3.2 Evaluation of HY

The cost of evaluating HY mainly consists of two parts: applying
the Fock exchange operator and applying the pseudopotential.
The algorithm for applying the Fock exchange operator using
a planewave discretization is shown in Alg. 2. The wavefunctions
are distributed according to the band index. For a system with N,
wavefunctions and calculated on N, processors, each processor
holds Ner = N, /N;, wavefunctions (assuming N, is divisible by
Np). According to Eq. (3), each wavefunction ¥; needs to be multi-
plied to all other wavefunctions {‘I’}j]\iel. This is performed using
an MPI_Bcast operation in line 3 of Alg. 2. Then each processor
will solve the N,/ Poisson-like equations with FFTs. Since each
MPI task will eventually receive all N. wavefunctions, the total

Weile Jia, Lin-Wang Wang, and Lin Lin

communication volume is N X NG X N multiplied by the storage
cost of a complex number, where Ng is the number of planewaves
to store a wavefunction.

Algorithm 2 Applying the Fock exchange operator in H¥

INPUT: Wavefunctions ¥ distributed according to the band index.
OUTPUT: Vx V¥ distributed according to the band index.
1: Let Vx ¥ be distributed according to the band index and initial-
ized to zero.
2: fori=1, N, do
if the current processor holds ¥; then
Broadcast ¥; to all processors
end if
forj=1, N, do
if the current processor holds ¥; then
Solve Poisson-like equation using FFT with respect to
the charge-like quantity ¥;(r)¥;(r), and add the solu-
tion to (Vx ¥);.
9: end if
10: end for
11: end for

In order to efficiently carry out Alg. 2 on GPUs, we perform a
number of optimization steps.

1. CUFFT and CUDA custom kernels (band-by-band). The first step
of porting PWDFT onto GPU is to use the CUFFT library and CUDA
custom kernels to accelerate the computation of Alg. 2. In this step,
all relevant computation(from line 6 to line 10 in Alg. 2) are moved
onto GPU in a band-by-band manner. In our implementation, the
CUDA custom kernels are written to fill the gaps between the
CUFFT calls, and there is no CPU-GPU synchronization during
the computation. At the current stage, the CPUs are only used for
performing MPI communication, and the data copy between CPU
and GPU is necessary after the MPI_Bcast operation.

2. Batched implementation. Each V100 GPU on the Summit su-
percomputer has a peak performance of 7.8 TFLOPS and a peak
bandwidth of 900 GB/s. The band-by-band implementation above
cannot saturate the bandwidth of the GPUs. One way of improving
GPU performance is to send more data to the GPU. In the GPU ver-
sion of PWDFT, instead of sending the data ¥} (r)¥;(r) one by one,
we batch them together and call a batched CUFFT. The correspond-
ing CUDA custom kernels are also changed to a batched fashion.
The batched version of code has two benefits: first it increases the
computational intensity of the CUDA kernels to take advantage
of the computing power of GPU; second, it reduces the latency
between CPU and GPU by reducing the number of CUDA kernel
launches. The solution of the Poisson-like equations for wavefunc-
tions ¥; are batched at line 6 of Alg. 2, and the maximum batch
size is set to 8 in our GPU implementation. We remark that the
performance of the batched implementation can vary with the GPU
architecture, and batched FFTs work well when the GPU memory
bandwidth is yet not saturated, which is mostly the case for the
V100 GPUs on Summit when the testing system is less than a few
hundred of atoms.

Parallel transport TDDFT with hybrid functional on Summit

3. GPUDirect and CUDA-aware MPI On the Summit supercom-
puter, the IBM Spectrum CUDA-aware MPI is supported by hard-
ware, which means inter-node GPUs can communicate with each
other via MPI without explicitly coping data to the CPU. In PWDFT,
we take advantage of this feature, and MPI communication is per-
formed directly on the GPU data. In this step, the wavefunctions
are always kept on the GPU, and MPI_Bcast is performed using
the CUDA-aware MPI in a band-by-band manner. This fine-grained
(band-by-band MPI_Bcast) communication creates more opportu-
nity to overlap the GPU computation and the MPI communication,
since conceptually the CUDA-aware MPI and GPU computation
can be performed simultaneously.

4. Single precision MPL As will be seen later in the performance
analysis, the MPI communication is mainly limited by the band-
width of network adapters (NIC). To reduce the communication
time of the Fock exchange operator applications, we use the sin-
gle precision format for sending and receiving the wavefunctions,
which reduces the communication volume by half. We also remark
that the single precision format is only used in the MPI communi-
cation, which means wavefunctions will be converted back to the
double precision format for computation. We find that this leads
to negligible changes in the accuracy of the rt-TDDFT dynamics,
for example, the error of the total energy is as little as 107 eV for
a silicon system with 768 atoms after a single step of time prop-
agation, compared to the double precision implementation. This
agrees with observations of ground state DFT calculations [11]. We
remark that at the current stage, the MPI_Bcast is performed with
CUDA-aware MPI with single precision wavefunctions.

5. Overlap computation and communication. In principle, CUDA-
aware MPI communication can naturally overlap with the GPU
computation. However, we find that the MPI_Bcast and compu-
tation of the Fock exchange operator cannot be fully overlapped
when the CUDA-aware MPI_Bcast is involved on Summit. Profiling
of the Fock exchange part shows that there are two synchronized
CPU-GPU memory copy operations in the communication step, as
shown in Fig. 2. This is caused by the fact that the NIC is connected
to the IBM POWER 9 socket as shown in Fig. 5. Thus MPI_Bcast will
first copy the data from GPU to CPU, then the inter-node communi-
cation is performed over the NIC. This memory copy operation will
introduce the CPU-GPU synchronization, thus the overlapping of
computation and communication is disrupted. We suspect that the
synchronization between CPU and GPU is mainly caused by the
specific implementation of the IBM Spectrum MPI. Therefore we
propose another implementation without using the CUDA-aware
MPI. This implementation uses an asynchronous CPU-GPU mem-
ory copy operation explicitly, followed by the MPI_Bcast using CPU.
We remark that the CUDA-aware MPI is still used in other parts
of the communication such as MPI_Alltoallv, since the CPU-GPU
synchronization does not play such an important role. Fig. 3 shows
that the MPI communication and GPU computation can overlap
perfectly, as the MPI communication time is entirely hidden behind
the computation time. We stress that the overlapping is achieved
based on the fact that CPU and GPUs can work independently, not
on the unblocked MPI_Isend/MPI_lrecv communication. We have
also implemented the round-robin communication strategy [33] via
MPI_Send/MPI_Recv. We notice that the performance using the
round-robin strategy and using MPI_Bcast is approximately the

SC ’19, November 17-22, 2019, Denver, CO, USA

same on Summit. We also find that the round-robin strategy needs
to be carefully implemented to be load-balanced. On the other hand,
MPI_Bcast is a simpler strategy and takes advantage of the fat-tree
interconnect topology of Summit.

= [0] Tesla V100-SXM2-16GB

=] Context 1 (CUDA)
5 MemCpy (HtoD) I
7 MemCpy (DtoH)]
L 57 MemCpy (DtoD)

[Compute (LE]

Figure 2: CUDA profiling reveals the implicit CPU-GPU syn-
chronization introduced by the CUDA-aware Spectrum MPIL.

Fig. 3 shows the reduction of the computational time associated
with different stages of optimization. The testing system is a 1536
silicon atoms system, which will be discussed in section 4. The CPU
version of PWDFT uses 3072 CPU cores (about 73 nodes on Summit
and 96 Haswell nodes on Cori supercomputer). Each Cori node is
equipped with two Intel Xeon E5-2698 v3 16-core sockets and in our
tests we use one MPI per CPU core. We find that the performance
of the CPU performance is almost the same for the Fock exchange
operator calculation on both Summit and Cori. The GPU version
uses 72 GPUs (12 Summit nodes), and is around 7 times faster than
the CPU version on Summit in terms of applying the Fock exchange
operator. We find that step 1 (CUFFT and CUDA custom kernels)
leads to most of the performance improvement from CPU to GPU,
and this step is responsible for most of the implementation efforts
as well.

We remark that besides moving the computationally intensive
steps from CPU to GPU, our optimization steps mainly aim at re-
ducing the communication cost on the GPU. On the other hand,
the cost of the CPU implementation is strongly dominated by the
computation, and hence would benefit less from the same opti-
mization steps. More specifically, the CPU has considerably less
amount of memory bandwidth than the V100 GPU, and hence can-
not use the batched implementation of FFTs efficiently. The CPU
also lacks the heterogeneous architecture for overlapping commu-
nication and computation as in the GPU method. Therefore the
performance comparison here and below between the GPU and
CPU implementation should be fair.

Besides the application of the Fock exchange operator, we also
apply the pseudopotentials to ¥ using the band index parallelization
on GPU with CUFFT and CUDA custom kernels. In our implemen-
tation, we choose the real space representation for the nonlocal
projectors, which can be stored as sparse vectors. This can often
be more than 5 times faster compared to the reciprocal space im-
plementation when the system size is more than a few hundred
atoms [44]. In our current implementation, the entire set of local
pseudopotentials and nonlocal projectors are stored on every pro-
cessor. For the largest system tested in this paper with 1536 silicon
atoms, the total memory cost for the nonlocal projectors is approx-
imately 432MB. Each V100 GPU has its 16GB on-chip memory and
is therefore sufficient. This simplified implementation allows us to
apply the pseudopotentials without any communication cost, and
thus fully takes advantage of the computational speed provided by
the GPUs.

SC ’19, November 17-22, 2019, Denver, CO, USA

350 T T
MPI time 1
R ion ti
(XXX Computation time &=
300 - 55
(R
293050088
KGR
Fogososss
250 | KIS
KRR
KIS
RIS
—~ KIS
2 200 r KK
5 KRR
Q RIKE
=] RSEES,
E RS
= 150 056558
[R5
[RRRR
KRR
RIKE,
100 RSEES,
KIS
RIS
KRN RIS
S s R s r3%s% [RZZ3
BRRE [CRXLN
RXXXA ...:.:.:.g
0 XXX
Summit Cori Band-by Batched GPU Single MPI/Comp
3072 3072 -band Direct Precision Overlap
CPUcore CPUcore MPI

Figure 3: Wall clock time for applying the Fock exchange
operator for a system with 1536 silicon atoms. The CPU
version uses 3072 CPU cores, and the GPU version uses 72
GPUs.

3.3 Evaluation of the residuals

According to Alg. 1, there are two types of residuals to be evaluated
in the PT-CN algorithm, denoted by Ry, and Ry. For simplicity we
only discuss the evaluation of Ry (Alg. 3); the evaluation of Ry, is
similar.

To calculate the residual R fs the input data ‘I’f, H b ‘I’f, and Y., 1

are first converted from band index parallelization to G-space par-
allelization via an MPI_Alltoallv operation. Then the local overlap
matrix S can be evaluated on GPU by calling the CUBLAS matrix-
matrix multiplication routine. Next, the local information from all
processors is combined into the global overlap matrix using an
MPI_Allreduce operation, followed by the rotation operation on
GPU through a CUBLAS GEMM call. The residual is then calculated
by BLAS-1 operations. Finally, the residual Ry will be transposed
back to band index parallelization using an MPI_Alltoallv opera-
tion. In order to reduce the communication cost, the single preci-
sion format for Ry is used during the communication step using
MPI_Alltoallv, and is then converted back to the double precision
format during the computation step.

Algorithm 3 Algorithm of residual calculation.

INPUT: Wavefunctions ‘I’f, Hf‘I’f, Y1 distributed according to
2

the band index.
OUTPUT: Residual P; distributed according to the band index.

1: Use MPI_Alltoallv to convert ‘Pf, Hf‘Pf, Y, 1to the G-space
2

parallelization format.

2: Evaluate the local overlap matrix Stemp = ‘I’;H [¥r

3: Use MPI_Allreduce operation on Stemp to obtain the total over-
lap matrix S.
4: Rotate the wavefunctions locally ¥temp = ¥rS

5: Evaluate the residual Rp =¥r + iATt(Hf‘I’f = Premp) — ¥, 1
6: Use MPI_Alltoallv to convert Ry to the band index paralleliza-

tion format.

Weile Jia, Lin-Wang Wang, and Lin Lin

3.4 Density Evaluation, Anderson mixing,
wavefunction orthogonalization, and
others

Because the wavefunctions are stored in the band index paralleliza-
tion format, it is straightforward to evaluate the electron density
p(r) = Zﬁ\iel [¢i(r)|?. This step requires representing the wavefunc-
tions on a real space grid, which can be performed using FFTs, fol-
lowed by an MPI_Allreduce operation across all MPI tasks. All above
calculations are evaluated on the GPU, and the MPI_Allreduce op-
eration is performed via CUDA-aware MPL

The Anderson mixing method for solving the nonlinear equa-
tions requires the solution of a least squares problem for each wave-
function [3]. In our calculations, the maximum mixing dimension
is set to 20. Thus after evaluating an overlap matrix with respect
to the history of wavefunctions ¥y and the associated residuals
Ry, the size of the least squares problem becomes very small, up
to 20 X 20. The main cost of the Anderson mixing is then due to
the evaluation of overlap matrices that can be performed efficiently
using the G-space parallelization.

Note that our implementation implies that up to 20 copies of the
wavefunctions are needed for performing the Anderson mixing,
which could be expensive if the wavefunctions are all stored on
GPUs. However, we may store these wavefunctions on the CPU
main memory, which has a large capacity of 512 GB on each com-
puting node of Summit. During the computation, we copy all the
wavefunctions corresponding to a single band i(up to 20 X Ng) from
CPU to GPU, and the overlap matrices needed for the Anderson
mixing can be performed via CUBLAS matrix-matrix multiplica-
tions.

At the end of each rt-TDDFT time step, the wavefunctions ¥ will
be re-orthogonalized. To improve the parallel efficiency, we again
first evaluate an overlap matrix of the type ¥*¥ using the G-space
parallelization. Then we can perform a Cholesky decomposition on
the overlap matrix of size N,, and rotate \I‘f efficiently due to the G-
space parallelization. The Cholesky decomposition is calculated on
a single GPU with cuSOLVER library, and the subsequent rotation
is performed via the GPU Trsm subroutine.

Besides the computationally intensive parts discussed above, all
other operations such as the evaluation of the Hartree potential,
the gradient of the electron density, the local part of the exchange-
correlation potential, etc contributes to less than 2% of the compu-
tational time on CPUs. In the GPU version of PWDFT, these parts
are all parallelized at the CPU level. For example, we parallelize
the FFTs associated with the calculation of the gradient of electron
density by using distributed FFTW in the Z direction. Such paral-
lelization is important for the overall performance since all other
computational intensive parts can be accelerated by up to 40 times
on GPUs. We also keep the variables related to the charge den-
sity (such as the Hartree potential and the gradient of the electron
density) on each MPI task. Hence MPI_AllGatherv and MPI_Bcast
operation are performed after the computation.

4 SETUP OF THE TEST PHYSICAL SYSTEM

We report the efficiency of the GPU version of PWDFT using sil-
icon systems ranging from 48 to 1536 atoms. The supercells are
constructed from 1 X 1 X 3 to 4 X 6 X 8 unit cells, respectively, and

Parallel transport TDDFT with hybrid functional on Summit

each simple cubic unit cell consists of 8 silicon atoms with lattice
constant being 5.43 A . In all the tests, the external potential is
given by a laser pulse shown in Fig. 4(a), and its wavelength is
380nm. The total simulation time is 30 fs, and the time step us-
ing the PT-CN method is set to 50 as. Thus the total number of
rt-TDDFT steps is 600. The stopping criteria is set to 1.0 x 107° for
the electron density error. The average number of SCFs is 22 and
the maximum Anderson mixing dimension is set to 20. We use the
SG15 Optimized Norm-Conserving Vanderbilt (ONCV) pseudopo-
tentials [15, 38] and HSE06 functionals [17] in all the following
tests. The kinetic energy cutoff is set to 10 Hartree. For the system
with 1536 atoms, the number of grid points for a wavefunction is
NG = 60%x90x 120 = 648, 000. This corresponds to a charge density
grid 120 X 180 x 240. The Fock exchange operator is evaluated on
the wavefunction grid. The number of occupied wavefunctions is
3072.

0 2l Bl gl Pl B P 8 P B P o P

(a) 1536 silicon (b) 380nm laser

Figure 4: Atomic configuration and external laser field.

5 MACHINE CONFIGURATION

All numerical tests are performed on the Summit supercomputer.
Fig. 5 shows the architecture of one of the 4608 Summit computing
nodes. Each computing node consists of two identical groups, and
each group has one IBM POWER 9 socket and 3 NVIDIA Volta
V100 GPUs connected via NVLink with a bandwidth of 50GB/s.
Each POWER socket has 22 physical CPU cores and share 256GB
DDR4 CPU main memory, and each V100 GPU has its own 16GB
high bandwidth memory. The CPU bandwidth is 135GB/s and GPU
bandwidth is 900GB/s. Each GPU has a theoretical peak perfor-
mance of 7.8 TFLOPS double precision operations. The two groups
of hardware are connected via X-Bus with a 64GB/s bandwidth. The
computing nodes are interconnected with a non-blocking fat-tree
using a dual-rail Mellanox EDR InfiniBand interconnect with a total
bandwidth of 25GB/s.

In this paper, we use the MPI+CUDA programming model. In all
GPU tests, we use 6 MPI tasks per computing node (3 MPI tasks
per socket to fully take advantage of both CPU-GPU affinity and
network adapter), and each MPI task is bound to an individual GPU.
For the comparison of the numerical performance, the CPU version
of PWDFT only uses the CPU part of the machine. In the CPU
tests, we use the maximum number of cores allowed by PWDFT.

SC ’19, November 17-22, 2019, Denver, CO, USA

Due to the hybrid parallelization scheme, the maximum number
of CPU cores is the number of wavefunctions. In the case of 1536
atom silicon system with 3072 wavefunctions, we find that the CPU
version of the PWDFT efficiently scales up to 3072 CPU cores.

Figure 5: The architecture of a computational node on Sum-
mit.

6 NUMERICAL RESULTS

First, we demonstrate the efficiency of the PT-CN algorithm by
comparing it to the explicit Runge-Kutta 4th order (RK4) integrator
for the system with 1536 silicon atoms. Both algorithms are imple-
mented on GPU, and the time step for PT-CN is set to 50 as and
the time step for RK4 is 0.5 as. This is close to the largest time step
allowed by RK4 due to the stability constraint. In Fig. 6, we compare
the wall clock time for a 50 as simulation using PT-CN and RK4.
The PT-CN method can be about 20 times faster compared to the
explicit time integrator RK4 method using 36 GPUs, and becomes
30 times faster when using 768 GPUs. The increase of the speedup
factor with respect to the number of GPUs is mainly due to that
PT-CN can use a larger step size, and is less impacted by the cost
of “others” component in section 3.4 (such as the evaluation of the
Hartree potential). A detailed discussion of the scaling of different
components will be presented in section 7.

Second, we compare the performance of the GPU version of
PWDFT with the CPU one. The comparison is based on the power
consumption, which is one of most important criteria in high per-
formance computing, especially in the upcoming exascale era. The
power consumption of a single POWER 9 socket is 190 watt and
that of a single NIVIDIA V100 GPU is 300 watt. Hence the power
cost for each CPU node consisting of 2 POWER 9 CPU sockets is
380 watt and each GPU computing node with 6 V100 GPUs and
2 POWER 9 CPU sockets is 2180 watt. Using 3072 CPU cores (in

SC ’19, November 17-22, 2019, Denver, CO, USA

RK-4
PT-CN xXxxxx

40000 [

32000

24000

Time(s)

16000

8000

36 72 144 288 384 768
Number of GPUs

Figure 6: Wall clock time for simulating the 1536 silicon
atom system for 50 attoseconds using RK4 and PT-CN meth-
ods.

practice using 73 computing nodes), the total power consumption is
27740 watt. The power consumption of 12 GPU nodes is 26160 watt,
which consumes slightly less energy than 73 CPU nodes. According
to Table 1, in this setup, the GPU version of PWDFT is still 7 times
faster compared to the CPU version.

While the CPU version of PWDFT has reached its scaling limit,
the GPU version can still scale beyond 72 GPUs. Fig. 7(a) demon-
strates the strong scaling of the wall clock time with respect to
the number of GPUs. We find that our GPU implementation can
scale to 768 GPUs, and near ideal scaling is achieved when the GPU
number is less than 384. After 768 GPUs, the MPI communication
dominates the computational cost, which prevents the code to scale
to a larger number of GPUs. According to Table 1, the GPU version
is 34 times faster than the CPU version using 3072 CPU cores. We
remark that the strong scaling determines the time to solution, and
thus is crucially important in practical calculations. Using the GPU
version of PWDFT, we can achieve 260 seconds per TDDFT step (50
attoseconds), which amounts to about 1.5 hours per femtosecond
for the 1536 silicon atoms system.

The weak scaling using PT-CN method for simulating systems
consisting of 48 to 1536 atoms for 50 as is shown in Fig. 8. The
number of GPUs is set to %Natom- The GPU version of PWDFT
exhibits excellent weak scaling property. Since the computational
complexity of hybrid functional rt-TDDFT simulation scales as
O(N;torn log Natom), the ideal scaling should be O(thom) as in
Fig. 8, neglecting the logarithmic factor. We find that for small
systems, thanks to GPU acceleration, the Fock exchange operator
applications has not yet dominated the computational cost, and
hence our implementation scales even better than that indicated
by the ideal scaling. Even with the system size increases to 1536
atoms, the weak scaling is still very close to the ideal scaling.

Here for a smaller system with 192 atoms, the simulation of 50 as
with 96 GPUs is only 16 seconds. This means that each femtosecond
simulation takes around 5 minutes. Even a picosecond rt-TDDFT
simulation with hybrid functionals is now within reach and would
take approximately 4 days.

Weile Jia, Lin-Wang Wang, and Lin Lin

Total time —=—

HY ——

Anderson mixing —=&—
10 Residual related
Others
Ideal scaling

Speedup

MPI and memory copy time included

36 72 144 288 768
Number of GPUs

@

HY —e—
Density evaluation
Residual related
10 + Anderson mixing —&—
Ideal scaling - - -

Speedup

MPI and memory copy time excluded

36 72 144 288 768
Number of GPUs

(b)

Figure 7: Strong scaling: (a) Scaling of the total computation
time and different components (MPI and CPU-GPU mem-
ory copy time included). (b) Scaling of different components
(MPI and CPU-GPU memory time excluded). The wall clock
time with 36 GPUs is set as the baseline, which is already 3.7
times faster than the CPU version with 3072 CPU cores.

7 PERFORMANCE ANALYSIS

In this section, we present a more detailed analysis of the perfor-
mance of our GPU implementation.

First, we discuss the memory usage of the PT-CN method. In the
GPU version of PWDFT, the most memory demanding part is the
Anderson mixing, which requires up to 20 copies of wavefunction
¥. For the system with 1536 atoms, each wavefunction takes 10MB
(NG = 648,000 multiplied by the cost of a complex number in
double precision format). Using 36 GPUs, each MPI holds less than
100 wavefunctions (1GB). Then Anderson mixing requires less than
20 GB memory per MPL There are 6 MPIs per computing node,
and the total usage of the CPU main memory per node is less than
120GB, which is smaller than the limit of a node on Summit (512GB).
Hence our implementation of PT-CN effectively takes advantage
of the fat node configuration. In our code, we find that the GPU
memory usage is less than 8GB for the system with 1536 atoms.

Parallel transport TDDFT with hybrid functional on Summit

Total time —&—
Ideal scaling - - =

100

10

Time(s)

()] 1 1 1 1 1 1
48 96 192 384 768 1536

Number of atoms

Figure 8: Weak scaling: wall clock time per 50 as for silicon
systems with 48 to 1536 atoms. The number of GPUs used
are always set to half of number of atoms in the calculation.

The “ideal scaling” here scales as O(thom).

Thus it is possible to accommodate a system with up to 3000 atoms
using 72 GPUs based on the GPU memory usage.

The total number of double precision floating point operations
(FLOP) for the 1536 silicon system per TDDFT step is 3.87 x 1016,
This is collected via the CUDA profiling tool NVPROF. Although
NVPROF only collects the total number of FLOP on the GPUs, the
number s still reasonable because in our implementation the CPUs
are only responsible for the computing quantities labeled as “others”
as in section 3.4, which contributes to less than 1% the total num-
ber of FLOP. The floating point operations per second (FLOPS) is

total FLOP

(number of GPUs)x(total time)°’
ing FLOPS efficiency is %4 The efficiency of GPU version
of PWDFT is 5.5% when using 36 GPUs, and goes down to 2% using
768 GPUs. The low FLOPS efficiency of GPU version of PWDFT
is mainly caused by the fact that most FLOP is contributed by the
FFTs in Fock exchange operator calculation. The FFT operations
on GPU is mainly limited by the GPU bandwidth rather than the
computational kernel. For instance, we find that CUFFT execution
reaches about 11% of the peak performance of the V100 GPU in
our implementation, and the result is comparable to the perfor-
mance of CUFFT reported by NVIDIA [30]. The above analysis
can be supported by evaluating the average required bandwidth of
CUFFT and CUDA custom kernels during the Fock exchange oper-
ator calculation. We find that the GPU version of PWDFT achieves
approximately 90% of the GPU maximum bandwidth in all tests.
Such high GPU memory bandwidth utilization indicates that our
calculation is mainly bounded by the hardware memory bandwidth,
rather than the FLOPS.

The total time of a single SCF step can be divided into 5 parts:
HY, Anderson mixing, the residual related part, the electron den-
sity evaluation, and others. The contributions of each part to the
total time is listed in Table 1 and shown in Fig. 9. The scaling of
different computational components of the GPU version of PWDFT
is shown in Fig. 7(a). Since the total computation time is dominated
by the application of the Fock exchange operator, the scaling of HY

then calculated as and the correspond-

SC ’19, November 17-22, 2019, Denver, CO, USA

100 |- HY s
Residual related mm—m
30 Density evaluation

Anderson mixing
Others

2 60
Q
E
& 40
20
0
36 7 144 288 768

Number of GPUs

Figure 9: Strong scaling: the total time of a single SCF step
and the contributions of each part using different number
of GPUs.

is similar to that of the total time. In each TDDFT step, 24 Fock ex-
change operator evaluation is performed (22 in the SCF calculation,
one in total energy evaluation, and one before SCF calculation to
evaluate the residual term Rj,), and this contributes to 93% of the
total FLOP. The Anderson mixing step scales well with respect to
the number of GPUs. The residual related part also scales with the
number of GPUs. Its scaling is mainly limited by the MPI_Alltoallv
and MPI_Allreduce operations. The “others” components as in sec-
tion 3.4 are all parallelized on CPUs. As shown in Fig. 9, “others”
does not scale with the number of GPUs. It contributes 2.6% of the
total time of a single SCF when using 36 GPUs, and grows up to
15% when using 768 GPUs. Such scaling behavior is mainly caused
by the fact that “others” is dominated by the MPI communication
of the density related variables using MPI_Bcast.

Next, we discuss the scalability of different computational com-
ponents in Fig. 7(b). Note that neither MPI communication nor
CPU-GPU memory copy time is included in this figure. We find
that nearly all computational time scale well with respect to the
number of GPUs. The only computational part that does not scale
is the Cholesky decomposition used in the orthogonalization and it
is not shown in Fig. 7(b). This part only takes 0.017s on GPU for
the 1536 atom system and is calculated once every TDDFT step.
Thus it is negligible in the rt-TDDFT calculation. The scaling of
the computational time clearly shows that the scaling bottleneck is
not the computation. Therefore the main bottleneck comes from
the data moment operations, which include both the CPU-GPU
memory copy and the MPI communication.

The breakdown of the wall clock time in terms of the MPI com-
munication, CPU-GPU memory copy and computation shown in
Fig. 10. The detailed numbers are reported in Table 2. Since memory
copies are mostly performed over wavefunctions within each node,
the CPU-GPU memory copy operations scale well with respect
to the number of GPUs. The MPI_Alltoallv operations is mainly
used in the hybrid parallelization scheme to convert the distribu-
tion formats of wavefunctions, and is also found to be scalable.

SC ’19, November 17-22, 2019, Denver, CO, USA

Weile Jia, Lin-Wang Wang, and Lin Lin

Table 1: Wall clock time of the computationally intensive components for calculating a 1536 silicon atom system. The speedup
factor is based on the best CPU implementation with 3072 CPU cores using about 73 computing nodes, and the wall clock time

is 8874s.
Number of GPUs 36 72 144 288 384 768 1536 3072
Fock exchange operator MPI 0.71 0.89 1.25 1.83 1.99 3.72 6.06 8.074
Fock exchange operator computaion 90.99 45.61 27.05 11.27 8.31 4.38 2.44 1.43
Fock exchange operator total time 91.7 46.5 28.3 13.1 10.3 8.1 8.5 9.5
Local and semi-local part 0.337 0.169 0.087 0.043 0.0316 0.0158 0.00805 0.00404
HY total time 92.04 46.67 28.39 13.14 10.33 8.12 8.51 9.50
Wavefunction MPI_Alltoallv 0.884 0.561 0.313 0.227 0.212 0.280 0.095 0.056
(¥|¥) MPI_Allreduce 0.354 0.593 0.552 0.676 0.667 0.523 0.522 0.5243
Computation 1.43 0.72 0.37 0.19 0.145 0.078 0.04 0.023
Residual related total time 2.67 1.87 1.24 1.09 1.02 0.88 0.66 0.60
CPU-GPU memory copy 1.64235 0.8004 0.4094 0.2018 0.1477 0.0746 0.0395 0.0202
Computation time 2.3 1.16 0.59 0.31 0.265 0.142 0.073 0.04
Anderson mixing total time 3.94 1.98 1.00 0.51 0.387 0.194 0.102 0.0553
Computation time 0.1349 0.0672 0.0341 0.0170 0.0124 0.0062 0.0032 0.0016
MPI_Allreduce 0.123 0.176 0.152 0.224 0.219 0.160 0.164 0.171
Density evaluation total time 0.258 0.243 0.186 0.241 0.232 0.167 0.167 0.172
Others 2.66 1.98 1.72 1.54 1.57 1.73 1.66 1.85
per SCF time 101.36 52.4 32.5 16.4 13.4 10.9 10.9 12.1
Total time 2453.8 1269.1 783.0 393.9 323.2 260.9 262.5 286.6
Total speedup 3.6x 7.0x 11.3x 22.5x 27.4x 34x 33.8x 30.9x
HY percentage 90% 88.3% 87% 80% 76.7% 74.6% 77.8% 79.6%

Table 2: Breakdown of the total time into the time for MPI, CPU-GPU memory copy and computation. The CPU-GPU memory
copy time and MPI time are all gathered in the runtime phase, the computational time is calculated by removing all the

communication time from the total time in Table 1.

Number of GPUs 36 72 144 288 384 768 1536 3072
CPU-GPU memory copy time 60.80 29.94 16.04 8.57 6.79 4.15 2.82 2.24
MPI_Alltoallv time 20.97 13.34 7.40 5.38 4.99 6.64 2.41 0.68
MPI_Allreduce time 11.50 18.39 16.70 21.27 21.15 16.19 16.44 16.62
MPI_Bcast time 18.78 20.89 31.06 44.54 48.13 92.26 146.15 193.89
MPI_AllGatherv time 0.44 1.12 1.30 1.35 1.52 1.38 0.98 1.24
MPI total time 51.69 53.74 56.45 72.54 75.79 116.47 165.97 212.43
Computational time 234140 1185.42 710.54 312.83 240.60 140.34 93.73 71.96

The MPI_AllGatherv operationis performed after the exchange-
correlation potential is calculated via Libxc [25]. It contributes less
than 0.6% of total time and is thus negligible. The MPI_Bcast op-
eration is mainly used in the Fock exchange operator to broadcast
one wavefunction to all GPUs. The MPI_Allreduce operation is
performed for computing the charge density and to compute the
overlap matrix. These two components are the communication
bottleneck. We notice that in our testing results, there are some
fluctuations in terms of the communication time in Table 2. For
example, the time for MPI_Allreduce peaks at around 288 and 384
GPUs, and the time for MPI_Alltoallv has a local peak at 768 GPUs.
We confirm that such fluctuation can be repeatedly observed on
Summit with the same configuration, and would like to investigate
the origin of such fluctuation in the future.

Let us now analyze the performance of MPI_Bcast from the
receiving side. In the Fock exchange operator calculation, each

node receives 3072 wavefunctions. Each wavefunction consists of
Ng = 648,000 complex numbers, which is 5.0MB in the single pre-
cision format. Thus total communication volume is 3072 X 5.0MB =
15.36GB . The communication time without overlapping with com-
putation is about 7 seconds with 768 GPUs, thus the MPI communi-
cation speed is 15.36GB/7s = 2.2 GB/s. The Summit supercomputer
has two NICs connecting to two POWER 9 sockets, respectively.
The communication bandwidth for each NIC is 12.5 GB/s. Since we
have three MPI tasks per socket, the network bandwidth utilization
rate is about 52.7% (3% 2.2/12.5) from the receiving side. In the GPU
version of PWDFT, the CPU MPI_Bcast operation is overlapped
with the GPU computation, and the MPI time shown at Table 1 is
part of the total communication time. For example, in the 768 GPU
case, almost half of the MPI communication time is overlapped by
the computation time. Besides the wavefunction MPI_Bcast, we
also have the MPI_Bcast of the gradient of charge density, etc. Data

Parallel transport TDDFT with hybrid functional on Summit

2400 MPI Beast ==—21
2100 | Memory copy operation 1
MPI Alltoallv [XXXX3
1800 - MPI Allreduce ST
> 1500 F Computational time
N
|51
g 1200
= 900
600
300
0

36 72 144 288 384 768 1536

Number of GPUs

Figure 10: Strong scaling of different operations: MPI com-
munication, CPU-GPU memory copy operation and compu-
tation.

size of the charge density is 40MB and it is also network bandwidth
limited. The MPI_Allreduce operation is mainly used to evaluate
the overlap matrix and charge density. Both operations are per-
formed around 24 times in a single TDDFT step. The data size of
the overlap matrix and the charge density vector are 144 MB and
40 MB, respectively. Hence the total data size for MPI_Allreduce is
4.4 GB per time step. This is less than the communication cost of
MPI_Bcast but is of the same order of magnitude.

8 CONCLUSION

In this paper, we presented the GPU version of PWDFT for perform-
ing rt-TDDFT calculations with hybrid exchange-correlation func-
tional. Our implementation is based on the planewave discretization
and the parallel transport (PT) formulation. The PT formulation is
used to increase the size of the time step, and therefore reduces the
frequency of the Fock exchange operator applications. Our GPU
version of PWDFT can effectively scale up to 768 GPUs, and cal-
culate hybrid functional rt-TDDFT for a 1536 atom silicon system
within 1.5 hours per femtosecond. The GPU code is 7 times faster
than the CPU code under the same power consumption. The suc-
cess of our GPU code relies on: 1) Adapt the hybrid parallelization
scheme for the wavefunctions ¥ so that each Poisson-like problem
can be evaluated on a single GPU; 2) Carefully optimize the Fock
exchange operator calculation on GPU by combining CUFFT library
and CUDA custom kernels, batch the GPU calculation to further
utilize the GPU bandwidth, and overlap the CPU MPI communi-
cation and GPU computation; 3) Rewrite all other computational
intensive parts, and move rt-TDDFT PT-CN algorithm almost en-
tirely onto GPU. We remark that the performance of the hardware
directly impacts the choice of optimal algorithms. For example,
recently it has been shown that in CPU machines, the adaptively
compressed exchange (ACE) algorithm [26] can be combined with
the PT formulation to reduce the time for hybrid functional rt-
TDDFT calculations [24]. In this work, we find that with the GPU
acceleration of the Fock exchange calculation, the use of the PT

SC ’19, November 17-22, 2019, Denver, CO, USA

formulation alone in fact leads to more efficient implementation
on the Summit machine.

Although we only demonstrated the performance of the GPU
implementation on the Summit supercomputer, our optimization
strategies can also be beneficial for other heterogeneous architec-
tures, such as the recently announced AMD GPU supercomputer
Frontier targeting at exascale computing. Our optimization meth-
ods are neither limited to PWDFT, and can also be used for other
rt-TDDFT as well as ground state DFT software packages. We also
found that the scalability is eventually limited by the network band-
width on the Summit supercomputer. Hence we expect the parallel
performance could scale further with improved network bandwidth
on future supercomputers. The unprecedented capability for large
scale hybrid functional rt-TDDFT calculations can enable various
practical applications, such as the study of self trapped excitons
(STE). This will be our future work.

ACKNOWLEDGMENTS

This work was partially supported by the National Science Founda-
tion under Grant No. 1450372, No. DMS-1652330 (W. J. and L. L.),
and by the Department of Energy under Grant No. DE-SC0017867
(L. L.). This work was also supported by the Director, Office of Sci-
ence, the Office of Basic Energy Sciences (BES), Materials Sciences
and Engineering (MSE) Division of the U.S. Department of Energy
(DOE) through the theory of material (KC2301) program under Con-
tract No. DEAC02- 05CH11231. It used resources of the Oak Ridge
Leadership Computing Facility through the INCITE project. We
thank Zhanghui Chen and Mauro Del Ben for helpful discussions.

REFERENCES

[1] M Alducin, R Diez Muifio, and JI Juaristi. 2017. Non-adiabatic effects in elementary
reaction processes at metal surfaces. Progress in Surface Science 92, 4 (2017), 317—
340.

[2] D. AnandL. Lin. [n. d.]. Quantum dynamics with the parallel transport gauge.
arXiv:1804.02095 ([n. d.]).

[3] D.G. Anderson. 1965. Iterative procedures for nonlinear integral equations. J.

Assoc. Comput. Mach. 12 (1965), 547-560.

Xavier Andrade, Joseba Alberdi-Rodriguez, David A Strubbe, Micael J T Oliveira,

Fernando Nogueira, Alberto Castro, Javier Muguerza, Agustin Arruabarrena,

Steven G Louie, AlAgn Aspuru-Guzik, Angel Rubio, and Miguel A L Marques.

2012. Time-dependent density-functional theory in massively parallel computer

architectures: the octopus project. . Phys. Condens. Matter 24 (2012), 233202.

[5] A.D. Becke. 1993. Density functional thermochemistry. III. The role of exact
exchange. . Chem. Phys. 98 (1993), 5648.

[6] L Carnimeo, S. Baroni, and P. Giannozzi. 2018. Fast hybrid density-functional
computations using plane-wave basis sets. Electronic Structure (2018).

[7] SK Cushing. 2017. Plasmonic hot carriers skip out in femtoseconds. Nature
Photonics 11, 12 (2017), 748.

[8] A.Damle, L. Lin, and L. Ying. 2015. Compressed Representation of Kohn-Sham
Orbitals via Selected Columns of the Density Matrix. J. Chem. Theory Comput.
11, 4 (2015), 1463-1469.

[9] W. Dawson and F. Gygi. 2015. Performance and Accuracy of Recursive Subspace
Bisection for Hybrid DFT Calculations in Inhomogeneous Systems. J. Chem.
Theory Comput. 11 (2015), 4655-4663.

[10] I Duchemin and F. Gygi. 2010. A scalable and accurate algorithm for the compu-

tation of Hartree-Fock exchange. Comput. Phys. Commun. 181 (2010), 855-860.

[11] J. Fattebert, D. Osei-Kuffuor, E. W. Draeger, T. Ogitsu, and W. D. Krauss. 2016.

Modeling Dilute Solutions Using First-Principles Molecular Dynamics: Comput-
ing more than a Million Atoms with over a Million Cores. In SC ’16: Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis. 12-22. https://doi.org/10.1109/SC.2016.88

[12] Adrian Gémez Pueyo, Miguel AL Marques, Angel Rubio, and Alberto Castro.

2018. Propagators for the time-dependent Kohn-Sham equations: multistep,
Runge-Kutta, exponential Runge-Kutta, and commutator free Magnus methods.
J. Chem. Theory. Comput. (2018).

[4

SC

[13]

[14

[15]
[16]

[17]

[18]

[19]

[20

[21

[22]

[23]

[24

[25

[26

[27]

[28

[29

[30]

[31

[32]

[33

[34]

’19, November 17-22, 2019, Denver, CO, USA

X. Gonze, F. Jollet, F. Abreu Araujo, D. Adams, B. Amadon, T. Applencourt,
C. Audouze, J.-M. Beuken, J. Bieder, A. Bokhanchuk, E. Bousquet, F. Bruneval,
D. Caliste, M. CAftAI, F. Dahm, F. Da Pieve, M. Delaveau, M. Di Gennaro, B.
Dorado, C. Espejo, G. Geneste, L. Genovese, A. Gerossier, M. Giantomassi, Y.
Gillet, D.R. Hamann, L. He, G. Jomard, J. Laflamme Janssen, S. Le Roux, A. Levitt,
A. Lherbier, F. Liu, I. LukaADeviAG, A. Martin, C. Martins, M.J.T. Oliveira, S.
PoncAl, Y. Pouillon, T. Rangel, G.-M. Rignanese, A.H. Romero, B. Rousseau, O.
Rubel, A.A. Shukri, M. Stankovski, M. Torrent, M.J. Van Setten, B. Van Troeye,
M.J. Verstraete, D. Waroquiers, J. Wiktor, B. Xu, A. Zhou, and JW. Zwanziger.
2016. Recent developments in the ABINIT software package. Computer Physics
Communications 205 (2016), 106 — 131. https://doi.org/10.1016/j.cpc.2016.04.003
Mohamed Hacene, Ani Anciaux-Sedrakian, Xavier Rozanska, Diego Klahr,
Thomas Guignon, and Paul Fleurat-Lessard. 2012. Accelerating VASP electronic
structure calculations using graphic processing units. Journal of computational
chemistry 33, 32 (2012), 2581-2589.

D. R. Hamann. 2013. Optimized norm-conserving Vanderbilt pseudopotentials.
Phys. Rev. B 88 (2013), 085117.

J. Heyd, G. E. Scuseria, and M. Ernzerhof. 2003. Hybrid functionals based on a
screened Coulomb potential. 7. Chem. Phys. 118, 18 (2003), 8207-8215.

J. Heyd, G. E. Scuseria, and M. Ernzerhof. 2006. Erratum:“Hybrid functionals
based on a screened Coulomb potential”[J. Chem. Phys. 118, 8207 (2003)]. 7.
Chem. Phys. 124, 21 (2006), 219906.

W. Hu, L. Lin, and C. Yang. 2015. DGDFT: A massively parallel method for large
scale density functional theory calculations. J. Chem. Phys. 143 (2015), 124110.
W. Hu, L. Lin, and C. Yang. 2017. Interpolative separable density fitting decom-
position for accelerating hybrid density functional calculations with applications
to defects in silicon. J. Chem. Theory Comput. 13 (2017), 5420.

Maxwell Hutchinson and Michael Widom. 2012. VASP on a GPU: Application to
exact-exchange calculations of the stability of elemental boron. Computer Physics
Communications 183, 7 (2012), 1422-1426.

W. Jia, D. An, L.-W. Wang, and L. Lin. 2018. Fast real-time time-dependent density
functional theory calculations with the parallel transport gauge. J. Chem. Theory
Comput. 14 (2018), 5645.

Weile Jia, Zongyan Cao, Long Wang, Jiyun Fu, Xuebin Chi, Weiguo Gao, and
Lin-Wang Wang. 2013. The analysis of a plane wave pseudopotential density
functional theory code on a GPU machine. Computer Physics Communications
184, 1(2013), 9 - 18. https://doi.org/10.1016/j.cpc.2012.08.002

Weile Jia, Jiyun Fu, Zongyan Cao, Long Wang, Xuebin Chi, Weiguo Gao, and
Lin-Wang Wang. 2013. Fast plane wave density functional theory molecular
dynamics calculations on multi-GPU machines. . Comput. Phys. 251 (2013), 102
- 115. https://doi.org/10.1016/j.jcp.2013.05.005

Weile Jia and Lin Lin. 2019. Fast real-time time-dependent hybrid functional
calculations with the parallel transport gauge and the adaptively compressed
exchange formulation. Computer Physics Communications (2019). https://doi.
org/10.1016/j.cpc.2019.02.009

Susi Lehtola, Conrad Steigemann, Micael J.T. Oliveira, and Miguel A.L. Marques.
2018. Recent developments in libxc 4AT A comprehensive library of functionals
for density functional theory. SoftwareX 7 (2018), 1 - 5. https://doi.org/10.1016/
j-softx.2017.11.002

L. Lin. 2016. Adaptively Compressed Exchange Operator. . Chem. Theory Comput.
12 (2016), 2242.

L. Lin, J. Lu, L. Ying, and W. E. 2012. Adaptive local basis set for Kohn-Sham
density functional theory in a discontinuous Galerkin framework I: Total energy
calculation. J. Comput. Phys. 231 (2012), 2140-2154.

Matteo Lucchini, Shunsuke A Sato, André Ludwig, Jens Herrmann, Mikhail
Volkov, Lamia Kasmi, Yasushi Shinohara, Kazuhiro Yabana, Lukas Gallmann, and
Ursula Keller. 2016. Attosecond dynamical Franz-Keldysh effect in polycrystalline
diamond. Science 353, 6302 (2016), 916-919.

Antoine Moulet, Julien B Bertrand, Till Klostermann, Alexander Guggenmos,
Nicholas Karpowicz, and Eleftherios Goulielmakis. 2017. Soft x-ray excitonics.
Science 357, 6356 (2017), 1134-1138.

NVIDIA. [n. d.]. CUDA 8 Performance Overview. ([n. d.]).
http://developer.download.nvidia.com/compute/cuda/compute-docs/
cuda-performance-report.pdf

G. Onida, L. Reining, and A. Rubio. 2002. Electronic excitations: density-functional
versus many-body Green’s-function approaches. Rev. Mod. Phys. 74 (2002), 601.
J. P. Perdew, M. Ernzerhof, and K. Burke. 1996. Rationale for mixing exact
exchange with density functional approximations. J. Chem. Phys. 105 (1996),
9982-9985.

Laura E Ratcliff, A Degomme, José A Flores-Livas, Stefan Goedecker, and Luigi
Genovese. 2018. Affordable and accurate large-scale hybrid-functional calcula-
tions on GPU-accelerated supercomputers. Journal of Physics: Condensed Matter
30, 9 (feb 2018), 095901. https://doi.org/10.1088/1361-648x/aaa8c9

Joshua Romero, Everett Phillips, Gregory Ruetsch, Massimiliano Fatica, Filippo
Spiga, and Paolo Giannozzi. 2018. A Performance Study of Quantum ESPRESSO’s
PWscf Code on Multi-core and GPU Systems. In High Performance Computing
Systems. Performance Modeling, Benchmarking, and Simulation, Stephen Jarvis,

[35

[36

[37

@
&,

[39

[40

[41

[42

[44

[45]

[46]

~
=

Weile Jia, Lin-Wang Wang, and Lin Lin

Steven Wright, and Simon Hammond (Eds.). Springer International Publishing,
Cham, 67-87.

E. Runge and E. K .U. Gross. 1984. Density-functional theory for time-dependent
systems. Phys. Rev. Lett. 52 (1984), 997.

S. A. Sato, Y. Taniguchi, Y. Shinohara, and K. Yabana. 2015. Nonlinear electronic
excitations in crystalline solids using meta-generalized gradient approximation
and hybrid functional in time-dependent density functional theory. J. Chem.
Phys. 143, 22 (2015), 224116.

Fabian Schlaepfer, Matteo Lucchini, Shunsuke A Sato, Mikhail Volkov, Lamia
Kasmi, Nadja Hartmann, Angel Rubio, Lukas Gallmann, and Ursula Keller. 2018.
Attosecond optical-field-enhanced carrier injection into the GaAs conduction
band. Nature Physics (2018), 1.

M. Schlipf and F. Gygi. 2015. Optimization algorithm for the generation of ONCV
pseudopotentials. Comput. Phys. Commun. 196 (2015), 36—44.

Martin Schultze, Krupa Ramasesha, CD Pemmaraju, SA Sato, D Whitmore, A
Gandman, James S Prell, L] Borja, D Prendergast, K Yabana, et al. 2014. Attosecond
band-gap dynamics in silicon. Science 346, 6215 (2014), 1348-1352.

Shijing Tan, Adam Argondizzo, Jindong Ren, Liming Liu, Jin Zhao, and Hrvoje
Petek. 2017. Plasmonic coupling at a metal/semiconductor interface. Nature
Photonics 11, 12 (2017), 806.

C. A. Ullrich. 2011. Time-dependent density-functional theory: concepts and appli-
cations. Oxford Univ. Pr.

M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. Van Dam,
D. Wang, J. Nieplocha, E. Apra, T. L. Windus, and W. De Jong. 2010. NWChem:
a comprehensive and scalable open-source solution for large scale molecular
simulations. Comput. Phys. Commun. 181 (2010), 1477-1489.

Long Wang, Yue Wu, Weile Jia, Weiguo Gao, Xuebin Chi, and Lin-Wang Wang.
2011. Large Scale Plane Wave Pseudopotential Density Functional Theory Calcu-
lations on GPU Clusters. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’11). ACM, New
York, NY, USA, Article 71, 10 pages. https://doi.org/10.1145/2063384.2063479
Lin-Wang Wang. 2001. Mask-function real-space implementations of nonlocal
pseudopotentials. Phys. Rev. B 64 (Nov 2001), 201107. Issue 20. https://doi.org/
10.1103/PhysRevB.64.201107

X. Wu, A. Selloni, and R. Car. 2009. Order-N implementation of exact exchange
in extended insulating systems. Phys. Rev. B 79, 8 (2009), 085102.

K. Yabana and G. F. Bertsch. 1996. Time-dependent local-density approximation
in real time. Phys. Rev. B 54 (1996), 4484-4487.

Michael Ziirch, Hung-Tzu Chang, Lauren J Borja, Peter M Kraus, Scott K Cushing,
Andrey Gandman, Christopher] Kaplan, Myoung Hwan Oh, James S Prell, David
Prendergast, et al. 2017. Direct and simultaneous observation of ultrafast electron
and hole dynamics in germanium. Nature communications 8 (2017), 15734.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

We ran the PWDFT code on Summit supercomputer with spectrum-
mpi/10.2.0.11-20190201 and CUDA 9.2, FFTW3.3.8, and Lapack. We
ran the GPU version of PWDFT with 6 MPI tasks per node, each MPI
is connected to an individual GPU. The openMP threads number is
set to 1 in both CPU and GPU runs. Compared to the CPU version of
PWDFT running on 3072 CPU cores with 73 computing nodes, the
GPU version is 7 times faster under the same power consumption
using 72 GPUs(12 computing nodes). The GPU PWDFT can scale
efficiently up to 768 GPUs, to have a speedup factor of 34 compared
to the wall clock time of using 3072 CPU cores.

ARTIFACT AVAILABILITY

Software Artifact Availability: Some author-created software ar-
tifacts are NOT maintained in a public repository or are NOT avail-
able under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: There are no author-created data
artifacts.

Proprietary Artifacts: No author-created artifacts are proprietary.

List of URLs and/or DOIs where artifacts are available:

https://jiaweile@bitbucket.org/berkeleylab/crd-dgdft,
— .git; I think the repo can only be viewed by LBNL
— employee. If you want to have access to the code,
— please contact me at jiaweile@berkeley.edu

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Summit supercomputer, made by IBM,
6GPUs and 2 CPU sockets(44 CPU cores) per computing node

Operating systems and versions: Red Hat Enterprise Linux Server
7.5

Compilers and versions: x1/16.1.1-1, cuda/9.2.148
Applications and versions: PWDFT GPU

Libraries and versions: spectrum-mpi/10.2.0.11-20190201,
CUBLAS, CUFFT, FFTW-3.3.8

Key algorithms: Parallel transport gauge and Crank Nicholson
implicit time integrator

Input datasets and versions: 1536 Silicon atoms physical system

Paper Modifications: We ported the entire PWDFT code from
CPU to GPU with a MPI+CUDA programming model. We write
CUDA custom kernels when no CUDA libraries are available. The
data are mostly kept on GPUs so that CPU-GPU memory copies are
performed only when necessary. We take advantage of the CUDA-
aware MPI on Summit and communicate directly using GPU data.

The communications and computation are overlapped in our code.
We also parallelize other parts, which takes about 1% on CPU,
but can be the bottleneck once we speed up the computationally
intensive parts by 30-40 times.

Output from scripts that gathers execution environment informa-
tion.

LMOD_FAMILY_COMPILER_VERSION=16.1.1-1
MANPATH=/sw/summit/ess1/6.1.0-2/ess1/6.1/man:/autofs
< /nccs-svml_sw/summit/.swci/1-compute/opt/spack/2
— 0180914/1linux-rhel7-ppc64le/x1-16.1.1-1/spectrum
— -mpi-10.2.0.11-20190201-6qypd6rixwrkcyd5gnijoacjq
« xrtblzk/share/man:/sw/sources/hpss/man:/sw/summi |
— t/x1/16.1.1-1/x1C/16.1.1/man/en_US: /sw/summit/x1,
— /16.1.1-1/x1f/16.1.1/man/en_US:/sw/summit/1lmod/7
< .7.10/rhel7.3_gnu4.8.5/1mod/1mod/share/man:/opt/
— ibm/spectrumcomputing/1sf/10.1/man::
XDG_SESSION_ID=8321
XALT_ETC_DIR=/sw/summit/xalt/1.1.3/etc
LSB_EXEC_CLUSTER=summit

HOSTNAME=batch1
ModuleTable@0@3=LXJ1bnRpbWUiLH@sZXNzbD17WyJmbiJdPSI |
< vec3cve3VtbWloL21vZHVsZWZpbGVzL 3NpdGUVbGludXgtcemh |
— 1bDctcHBjNjRsZS9Db3J1L2VZzc2wvNi4xL jAtMiIsWyImdWx |
— sTmFtZSJdPSJ1c3NsLzYuMS4wLTIiLFsibGOhZE9yZGVyI1@
< 9MTEscHJvcFQ9e30sWyJzdGF ja@R1cHRoI1@9IMCxbINNAYXR |
— TcyJdPSThY3RpdmUiLFsidXN1ck5hbWUiXT@iZXNzbCIsfSx |
— 0c2k9e1siZm4iXTOiL3N3L3NT1bW1pdCItb2R1bGVmaWx1lcy9
< zaXR1L2xpbnV4LXJoZWw3LXBwYzY@bGUvQ29yZS90c2kvNS4 |
— WL3jIucDUubHVhIixbImZ1bGx0YW111189ImhzaS81LjAuMi5
— WNSIsWyJsb2FkT3JkZXIiXT@yLHByb3BUPXtILFsic3RhY2t
— EZXBQaCJdPTEsWyJzdGFQAXMiXT@iYWN@aXZ1IixbInVz
LSB_EFFECTIVE_RSRCREQ=1*{select[((LN) && (type ==

— any))] order[ri15s:pg] span[hosts=1]

— cu[type=rack:pref=config]}+42x{select[((CN) &&

— (type == any))] order[ri15s:pg] span[ptile=42]

— cul[type=rack:pref=config]}
ModuleTable@@9=YXNITVBBVEgiXT@iL3N3L3N1bW1pdCIsbW9
kLzcuNy4xMC9yaGVsNy4zX2dudTQuOC41L21vZHVSZWZpbGV |
zL@xpbnV40i9zdy9zdW1taXQvbG1vZC83L jcuMTAvemhlbDc |
uM19nbnUOL jguNS9tb2R1bGVmaWx1cy9Db3J710i9zdy9zdW1
taXQvbG1vZC83LjcuMTAvemhlbDcuM19nbnUGL jguNS9sbW9 |
— kL2xtb2QvbW9kdWx1ZmlsZXMvQ29yZSIsfQ==
LSF_LOGDIR=/var/log/1sf

LSF_LIM_API_NTRIES=1

SHELL=/bin/bash

LSB_BATCH_JID=332784

HISTSIZE=1000

SSH_CLIENT=24.4.103.17 56300 22
LMOD_SYSTEM_DEFAULT_MODULES=DefApps
MODULEPATH_ROOT=/sw/summit/1lmod/7.7.10/rhel7.3_gnu4.
— 8.5/modulefiles

rrrt

LIBRARY_PATH=/autofs/nccs-svml_sw/summit/.swci/1-com
— pute/opt/spack/20180914/1linux-rhel7-ppc64le/x1-1,
— 6.1.1-1/netlib-lapack-3.8.0-ttlwyyreoxj3d4aaefvk,
— 2mhdynsso6xo/1ib64:/autofs/nccs-svml_sw/summit/. ,
— swci/1-compute/opt/spack/20180914/1linux-rhel7-pp,
— c64le/x1-16.1.1-1/netlib-scalapack-2.0.2-4pges4o
— 2k2myo2mssvug72icubygctlz/1lib:/sw/summit/cuda/9.
— 2.148/1ib64:/autofs/nccs-svml_sw/summit/.swci/1-
— compute/opt/spack/20180914/1linux-rhel7-ppc64le/x
1-16.1.1-1/spectrum-mpi-10.2.0.11-20190201-6qypd
6rixwrkcydSgnijoacjgxrtblzk/lib:/autofs/nccs-svm
— 1_sw/summit/.swci/1-compute/opt/spack/20180914/1
— inux-rhel7-ppc64le/gcc-4.8.5/darshan-runtime-3.1,
— .7-uwak6exr43zvhu2vasiddrov57baf37t/1lib
LSB_TRAPSIGS=trap # 15 10 12 2 1
LS_EXECCWD=/gpfs/alpine/proj-shared/nti0@9/USER/SC_T
— DDFT/si32/SI/environment
PAMI_IBV_ADAPTER_AFFINITY=1

LS_JOBPID=47341
LMOD_PKG=/sw/summit/1mod/7.7.10/rhel7.3_gnu4.8.5/1mo,
— d/1lmod

LSB_MAX_NUM_PROCESSORS=43
LSB_JOBRES_CALLBACK=59349@batch1
OLDPWD=/gpfs/alpine/proj-shared/nti@@9/USER/SC_TDDFT
— /si32/SI/environment
OLCF_XL_ROOT=/sw/summit/x1/16.1.1-1
PAMI_ENABLE_STRIPING=0
LSF_SERVERDIR=/opt/ibm/spectrumcomputing/1sf/10.1/1i,
— nux3.10-glibc2.17-ppc64le-csm/etc
LSB_JOBID=332784

LSB_JOB_EXECUSER=USER
OMPI_FC=/sw/summit/x1/16.1.1-1/x1f/16.1.1/bin/x1f200
— 8_r

LMOD_VERSION=7.7.10

LSB_JOBRES_PID=47341

SSH_TTY=/dev/pts/162
OLCF_XLSMP_ROOT=/sw/summit/x1/16.1.1-1/x1smp/5.1.1
OLCF_DARSHAN_RUNTIME_ROOT=/autofs/nccs-svml_sw/summi |
— t/.swci/1-compute/opt/spack/20180914/1linux-rhel7
— -ppc64le/gcc-4.8.5/darshan-runtime-3.1.7-uwakéexr
— 43zvhu2vasiddrov57baf37t

LSB_JOBNAME=si48
ModuleTable@@7=bWUiXT0ieGFsdC8xLJEuMyIsWyJsb2FKT3J
— kZXIiXT@zLHByb3BUPXt9LFsic3RhY2tEZXBOaCJdPTEsWyJ
— zdGFOdXMiXTOiYWNOaXZ1IixbInVzZXJOYW11I109InhhbHQ
— iLHOseGw9e1siZm4iXTOiL3N3L3N1bW1pdCItb2RTbGVmaWx
— lcy9zaXR1L2xpbnV4LXJoZWw3LXBwYzY@bGUVQ29yZS94bC8 |
< XNi4xLJEtMS5sdWEiLFsiZnVsbEShbWUiXT@ieGwvMTYuMS4
— XLTEiLFsibG9hZE9yZGVyI1@9IMSxwcmIwVD17fSxbINNOYWN |
— rRGVwdGgiXTOxLFsic3RhdHVZI1@9ImFjdG12ZSIsWyJ1c2V
— yTmFtZSJdPSJ4bCIsfSx9LGTwYXRoQT17Ii9hdXRvZnMvbmN
— Jjcy1zdm@xX3N3L3N1bW1pdCItb2R1bGYmaWxlcy9zaXR1L2x
— pbnV4LXJoZWw3LXBwYzYQbGUvc3B1lY3RydWotbXBpLzEw

Jia, et al.

__LMOD_REF_COUNT_CMAKE _PREFIX_PATH=/autofs/nccs-svm1
_sw/summit/.swci/1-compute/opt/spack/20180914/1i
nux-rhel7-ppc64le/x1-16.1.1-1/netlib-lapack-3.8.
0-ttlwyyreoxj3d4aaefvk2mhdynsso6xo: 1;/autofs/ncc
s-svm1_sw/summit/.swci/1-compute/opt/spack/20180
914/1inux-rhel7-ppc64le/x1-16.1.1-1/netlib-scala,
pack-2.0.2-4pges4o2k2myo2mssvug72icubygctlz:1;/s
w/summit/cuda/9.2.148:1;/autofs/nccs-svml_sw/sum,
mit/.swci/1-compute/opt/spack/20180914/1linux-rhe
17-ppc64le/x1-16.1.1-1/spectrum-mpi-10.2.0.11-20
190201-6qypd6rixwrkcyd5gnijoacjgxrtblzk:1;/autof
s/nccs-svml_sw/summit/.swci/1-compute/opt/spack/
20180914/linux-rhel7-ppc64le/gcc-4.8.5/darshan-r
untime-3.1.7-uwak6exr43zvhu2vasiddrov57baf37t:1
__LMOD_REF_COUNT_LOADEDMODULES=x1/16.1.1-1:1;hsi/5.0
— .2.p5:1;xalt/1.1.3:1;1sf-tools/2.0:1;darshan-run
— time/3.1.7:1;DefApps:1;spectrum-mpi/10.2.0.11-20
— 190201:1;cuda/9.2.148:1;netlib-scalapack/2.0.2:1,
— ;netlib-lapack/3.8.0:1;ess1/6.1.0-2:1
BSUB_BLOCK_EXEC_HOST=
LSF_LIBDIR=/opt/ibm/spectrumcomputing/1sf/10.1/1linux
— 3.10-glibc2.17-ppc64le-csm/1lib
OPAL_PREFIX=/autofs/nccs-svml_sw/summit/.swci/1-comp
— ute/opt/spack/20180914/1linux-rhel7-ppc64le/x1-16
— .1.1-1/spectrum-mpi-10.2.0.11-20190201-6qypd6rix
— wrkcyd5gnijoacjgxrtblzk

LSB_PROJECT_NAME=NTI009

USER=USER

L

Parallel Transport Time Dependent Density Functional Theory Calculations with Hybrid Functional on Summit

LS_COLORS=rs=0:di=01;34:1n=01;36:mh=00:pi=40;33:50=0,
< 1;35:do=01;35:bd=40;33;01:cd=40;33;01:0r=40;31;0
— 1:mi=01;05;37;41:5u=37;41:5g=30;43:ca=30;41:tw=3
— 0;42:0w=34;42:s5t=37;44:ex=01;32:*%.tar=01;31:%.tg
«— z=01;31:%.arc=01;31:x.arj=01;31:%.taz=01;31:%.1h,
— a=01;31:%.124=01;31:%.1zh=01;31:%.1zma=01;31:%.t
— 1z=01;31:%.txz=01;31:%.tz0=01;31:*.t7z=01;31:%.2,
— 1p=01;31:%.z=01;31:%.7=01;31:%.dz=01;31:%.gz=01; ,
31:%.1rz=01;31:%.12=01;31:%.12z0=01;31:%.xz=01; 31,
1x.bz2=01;31:%.bz=01;31:*.tbz=01;31:%.tbz2=01;31,
1%, tz=01;31:%.deb=01;31:*.rpm=01;31:%.jar=01;31:,
*.war=01;31:%.ear=01;31:%.sar=01;31:x.rar=01;31:
.alz=01;31:.ace=01;31:%.2z00=01;31:*.cpio=01;31
1%.72=01;31:%.rz=01;31:%.cab=01;31:%. jpg=01;35:%,
.Jjpeg=01;35:%.gif=01;35:*.bmp=01;35:*.pbm=01;35: ,

*

*

L A

)

.pgm=01;35:%.ppm=01;35:%.tga=01;35:*.xbm=01;35: |
.xpm=01;35:%.tif=01;35:%.tiff=01;35:%.png=01;35
1%.5vg=01;35:*%.svgz=01;35:%.mng=01;35:%.pcx=01;3
5:%.mov=01;35:%.mpg=01;35:%x.mpeg=01;35:%.m2v=01;
35:%.mkv=01;35:%.webm=01;35:%.0gm=01;35:%.mp4=01,
;35:%.m4v=01;35:%.mp4v=01;35:*%.vob=01;35:*.qt=01
;35:%.nuv=01;35:%.wmv=01;35:%.asf=01;35:%.rm=01; |
35:%.rmvb=01;35:%.f1c=01;35:*%.avi=01;35:%.f1i=01,
;35:% . flv=01;35:%.g1=01;35:*.d1=01;35:%.xcf=01;3
— 5:%.xwd=01;35:*%.yuv=01;35:%.cgm=01;35:*.emf=01; 3,
— 5:x.axv=01;35:%.anx=01;35:%.0gv=01;35:%.0gx=01; 3
— 5:%.a2ac=01;36:*.au=01;36:%.flac=01;36:*.mid=01;3,
— 6:%.midi=01;36:%.mka=01;36:%.mp3=01;36:%.mpc=01; ,
— 36:%.0gg=01;36:%.ra=01;36:%.wav=01;36:%.axa=01;3
— 6:%.0ga=01;36:%.spx=01;36:%.xspf=01;36:
LMOD_sys=Linux
LD_LIBRARY_PATH=/gpfs/alpine/stf@@7/world-shared/bs1
— /fftw/lib:/opt/ibm/spectrumcomputing/1sf/10.1/1i
— nux3.10-glibc2.17-ppc64le-csm/1lib:/sw/summit/ess
1/6.1.0-2/ess1/6.1/1ib64:/autofs/nccs-svmi_sw/su
mmit/.swci/1-compute/opt/spack/20180914/1linux-rh
— el7-ppc64le/x1-16.1.1-1/netlib-lapack-3.8.0-ttlw,
— yyreoxj3d4aaefvk2mhdynsso6xo/1ib64:/autofs/nccs-
— svml_sw/summit/.swci/1-compute/opt/spack/2018091
— 4/linux-rhel7-ppc64le/x1-16.1.1-1/netlib-scalapa
— ck-2.0.2-4pges402k2myo2mssvug72icubygctlz/lib: /s,
— w/summit/cuda/9.2.148/1ib64:/autofs/nccs-svml_sw
— /summit/.swci/1-compute/opt/spack/20180914/1inux
— -rhel7-ppc64le/x1-16.1.1-1/spectrum-mpi-10.2.0.11,
— —20190201-6qypd6rixwrkcyd5gnijoacjgxrtblzk/lib:/a,
— utofs/nccs-svml_sw/summit/.swci/1-compute/opt/sp,
— ack/20180914/1inux-rhel7-ppc64le/gcc-4.8.5/darsh,
«— an-runtime-3.1.7-uwak6exr43zvhu2vasiddrov57baf37,
— t/lib:/sw/summit/x1/16.1.1-1/x1smp/5.1.1/1ib:/sw,
— /summit/x1/16.1.1-1/x1lmass/9.1.1/1ib:/sw/summit/ |
— x1/16.1.1-1/x1C/16.1.1/1ib:/sw/summit/x1/16.1.1-
— 1/x1f/16.1.1/1ib:/sw/summit/x1/16.1.1-1/1ib
SBD_KRB5CCNAME_VAL=

PAMI_IBV_ENABLE_OOO_AR=1

LSB_EEXEC_REAL_UID=

LMOD_MPI_NAME=spectrum-mpi

rrrrrs

1!

*
*
*
*

)

—
—

CPATH=/autofs/nccs-svml1_sw/summit/.swci/1-compute/op
— t/spack/20180914/1linux-rhel7-ppc64le/x1-16.1.1-1
/netlib-lapack-3.8.0-ttlwyyreoxj3d4aaefvk2mhdyns
so6xo/include:/sw/summit/cuda/9.2.148/include:/a
utofs/nccs-svml_sw/summit/.swci/1-compute/opt/sp
ack/20180914/1linux-rhel7-ppc64le/x1-16.1.1-1/spe
ctrum-mpi-10.2.0.11-20190201-6qypd6rixwrkcyd5gni
joacjgxrtblzk/include
ModuleTable@04=ZXJOYW111109ImhzaSIsfSxbImxzZi10b29
scyJdPXtbImZuI109Ii9zdy9zdW1taXQvbWOkdWx1ZmlsZXM
vc210ZS9saW51eC1yaGVsNy TwcGM2NGx1LONvemUVbHNMLXR |
vb2xzLzIuMC5sdWEiLFsiZnVsbE5ShbWUiXT@ibHNmLXRvb2x |
zLzIuMCIsWyJsb2FKkT3JkZXIiXT@OLHBYb3BUPXtILFsic3R
hY2tEZXBOaCJdPTEsWyJzdGFOdXMiXT@iYWN@aXZ1IixbInV
zZXJOYW111109ImxzZi10b29scyIsfSxbIm51dGxpYiT1sYXB
hY2siXT17WyJmbiJdPSIvc3cve3VtbW1oL21vZHVSZWZpbGY
zL 3NpdGUvbGludXgtcmhlbDctcHBjNjRsZS94bC8xNi4xL JE |
tMS9uZXRsaWI tbGFwYWNrLzMuOC4wLmx 1YSIsWyJmdWxsTmF |
— tZSJdPSJuZXRsaWItbGFwYWNrLzMuOC4wIixbImxvYWRP
HOSTTYPE=LINUXPPC64LE
__LMOD_REF_COUNT__LMFILES_=/sw/summit/modulefiles/si
te/linux-rhel7-ppc64le/Core/x1/16.1.1-1.1ua:1;/s
w/summit/modulefiles/site/linux-rhel7-ppc64le/Co
re/hsi/5.0.2.p5.1ua:1;/sw/summit/modulefiles/sit
e/linux-rhel7-ppc64le/Core/xalt/1.1.3.1lua:1;/sw/
summit/modulefiles/site/linux-rhel7-ppc64le/Core
/1sf-tools/2.0.1lua:1;/sw/summit/modulefiles/site
/linux-rhel7-ppc64le/Core/darshan-runtime/3.1.7.
lua:1;/sw/summit/modulefiles/site/linux-rhel7-pp,
c64le/Core/DefApps.lua:1;/sw/summit/modulefiles/
site/linux-rhel7-ppc64le/x1/16.1.1-1/spectrum-mp
i/10.2.0.11-20190201.1ua:1;/sw/summit/modulefile
s/site/linux-rhel7-ppc64le/x1/16.1.1-1/cuda/9.2.
148.1ua:1;/autofs/nccs-svml_sw/summit/modulefile
s/site/linux-rhel7-ppc64le/spectrum-mpi/10.2.0.1
1-20190201-6qypd6r/x1/16.1.1-1/netlib-scalapack/
2.0.2.1ua:1;/sw/summit/modulefiles/site/linux-rh
el7-ppc64le/x1/16.1.1-1/netlib-lapack/3.8.0.1lua:
1;/sw/summit/modulefiles/site/linux-rhel7-ppc641
— e/Core/essl/6.1.0-2:1

LSF_INVOKE_CMD=bsub
OLCF_XLMASS_ROOT=/sw/summit/x1/16.1.1-1/x1lmass/9.1.1
OLCF_LMOD_ROOT=/sw/summit/1mod/7.7.10/rhel7.3_gnu4.8
— .5

LS_EXEC_T=START

PROJWORK=/gpfs/alpine/proj-shared

LSF_VERSION=34
LS_SUBCWD=/gpfs/alpine/proj-shared/nti0@9/USER/SC_TD
— DFT/si32/SI/environment
LSB_SUB_RES_REQ=1x{select[LN]span[hosts=1]} +

— 42x{select[CN]span[ptile=42]}
LSB_UNIXGROUP_INT=USER
LMOD_FAMILY_MPI_VERSION=10.2.0.11-20190201

rrrrrd

rrereoerrrt

L

LSB_HOSTS=batch1 h36n13 h36n13 h36n13 h36n13 h36n13
— h36n13 h36n13 h36n13 h36n13 h36n13 h36n13 h36n13
h36n13 h36n13 h36n13 h36n13 h36n13 h36n13 h36n13
h36n13 h36n13 h36n13 h36n13 h36n13 h36n13 h36n13
— h36n13 h36n13 h36n13 h36n13 h36n13 h36n13 h36n13
— h36n13 h36n13 h36n13 h36n13 h36n13 h36n13 h36n13
— h36n13 h36n13
NLSPATH=/sw/summit/x1/16.1.1-1/msg/en_US/%N:/sw/summ
— 1t/x1/16.1.1-1/x1C/16.1.1/msg/en_US/%N:/sw/summi
— t/x1/16.1.1-1/x1f/16.1.1/msg/en_US/%N
LSB_JOBFILENAME=/ccs/home/USER/.1sbatch/1554845590.3
— 32784

MAIL=/var/spool/mail/USER
PATH=/opt/ibm/spectrumcomputing/1sf/10.1/1inux3.10-g
— 1libc2.17-ppc64le-csm/bin:/sw/sources/1sf-tools/2,
— .0/summit/bin:/sw/summit/xalt/1.1.3/bin:/sw/summ
— it/cuda/9.2.148/bin:/autofs/nccs-svml_sw/summit/
< .swci/1-compute/opt/spack/20180914/1linux-rhel7-p,
— pc64le/x1-16.1.1-1/spectrum-mpi-10.2.0.11-201902,
— 01-6qypd6rixwrkcyd5gnijoacjgxrtblzk/bin:/usr/bin,
« :/usr/sbin:/autofs/nccs-svml_sw/summit/.swci/1-c
— ompute/opt/spack/20180914/1inux-rhel7-ppc64le/gc,
— c-4.8.5/darshan-runtime-3.1.7-uwak6exr43zvhu2vas
« iddrov57baf37t/bin:/sw/sources/hpss/bin:/sw/summ
— it/x1/16.1.1-1/x1C/16.1.1/bin:/sw/summit/x1/16.1
— .1-1/x1f/16.1.1/bin:/opt/ibm/spectrumcomputing/1,
— sf/10.1/1inux3.10-glibc2.17-ppc64le-csm/etc:/opt
— /ibm/csm/bin:/usr/local/bin:/usr/local/sbin:/opt
— /ibm/flightlog/bin:/opt/ibutils/bin:/opt/ibm/spe
— ctrum_mpi/jsm_pmix/bin:/opt/puppetlabs/bin:/usr/
— lpp/mmfs/bin
ModuleTable@@1=X@1vZHVsZVRhYmx1Xz17WyJINVHZ1cnNpb24 |
— 1XT@zLFsiY19yZWJ1aWxkVG1tZSJdPWZhbHNILFsiY19zaG9
— ydFRpbWUiXT1mYWxzZSxkZXB0aFQ9e30sZmF taWx5PXtbImN
— VvbXBpbGVyI109InhsIixbImiwaSJdPSJzcGYjdHI1bSTtcGk
— 1LHOsbVQ9e@R1ZkFwcHM9e1siZm4iXT@OiL3N3L3NTbW1pdC9
— tb2R1bGVmaWxlcy9zaXR1L2xpbnV4LXJoZWw3LXBwYZzY0@bGU
— VvQ29yZS9EZWZBCcHBzLmx1YSIsWyImdWxsTmFtZSJdPSJEZWZ |
— BcHBzIixbImxvYWRPcmR1ciJdPTYscHIvcFQ9e30sWyJzdGF
< JaOR1cHRoI109MCxbINN@YXR1cyJdPSIThY3RpdmUilLFsidXN
— 1ck5hbWUiXT@iRGVMQXBwcyIsfSxjdWRhPXtbImZuIle9Ii9
— zdy9zdW1taXQvbWokdWx1ZmlsZXMvc210ZS9saW51eCly
__LMOD_REF_COUNT_NLSPATH=/sw/summit/x1/16.1.1-1/msg/
— en_US/%N:2;/sw/summit/x1/16.1.1-1/x1C/16.1.1/msg,
— /en_US/%N:1;/sw/summit/x1/16.1.1-1/x1f/16.1.1/ms
— g/en_US/%N:1

LSB_JOBINDEX=0

PAMI_IBV_QP_SERVICE_LEVEL=8
OLCF_XLC_ROOT=/sw/summit/x1/16.1.1-1/x1C/16.1.1
OPAL_LIBDIR=/autofs/nccs-svml_sw/summit/.swci/1-comp
— ute/opt/spack/20180914/1linux-rhel7-ppc64le/x1-16
— .1.1-1/spectrum-mpi-10.2.0.11-20190201-6qypd6rix
— wrkcydbgnijoacjgxrtblzk/1lib

LSB_EXIT_PRE_ABORT=99

LSB_JOBEXIT_STAT=0

—
—

Jia, et al.

OMPI_DIR=/autofs/nccs-svml_sw/summit/.swci/1-compute
— /opt/spack/20180914/1linux-rhel7-ppc64le/x1-16.1.
— 1-1/spectrum-mpi-10.2.0.11-20190201-6qypd6rixwrk
— cyd5gnijoacjgxrtblzk
PWD=/gpfs/alpine/proj-shared/nti@@9/USER/SC_TDDFT/si
— 32/SI/environment
LMFILES=/sw/summit/modulefiles/site/linux-rhel7-pp
c64le/Core/x1/16.1.1-1.1ua:/sw/summit/modulefile
s/site/linux-rhel7-ppc64le/Core/hsi/5.0.2.p5.1ua
:/sw/summit/modulefiles/site/linux-rhel7-ppc64le
/Core/xalt/1.1.3.1ua:/sw/summit/modulefiles/site
/linux-rhel7-ppc64le/Core/1sf-tools/2.0.1lua:/sw/
summit/modulefiles/site/linux-rhel7-ppc64le/Core
/darshan-runtime/3.1.7.1ua:/sw/summit/modulefile
s/site/linux-rhel7-ppc64le/Core/DefApps.lua:/sw/
summit/modulefiles/site/linux-rhel7-ppc64le/x1/1
6.1.1-1/spectrum-mpi/10.2.0.11-20190201.1lua:/sw/
summit/modulefiles/site/linux-rhel7-ppc64le/x1/1
6.1.1-1/cuda/9.2.148.1lua:/autofs/nccs-svml_sw/su
mmit/modulefiles/site/linux-rhel7-ppc64le/spectr
um-mpi/10.2.0.11-20190201-6qypd6r/x1/16.1.1-1/ne |
tlib-scalapack/2.0.2.1ua:/sw/summit/modulefiles/
site/linux-rhel7-ppc64le/x1/16.1.1-1/netlib-1apa
ck/3.8.0.1ua:/sw/summit/modulefiles/site/linux-r
— hel7-ppc64le/Core/essl/6.1.0-2
OLCF_CUDA_ROOT=/sw/summit/cuda/9.2.148
OLCF_MODULEPATH_ROOT=/sw/summit/modulefiles
__LMOD_REF_COUNT_PYTHONPATH=/sw/summit/xalt/1.1.3/si
— te:1;/sw/summit/xalt/1.1.3/libexec:1
LSB_RES_GET_FANOUT_INFO=Y
MODULEPATH=/autofs/nccs-svml_sw/summit/modulefiles/s
— 1ite/linux-rhel7-ppc64le/spectrum-mpi/10.2.0.11-2
0190201-6qypd6r/x1/16.1.1-1:/sw/summit/modulefil
es/site/linux-rhel7-ppc64le/x1/16.1.1-1:/sw/summ
it/modulefiles/site/linux-rhel7-ppc64le/Core:/sw,
/summit/modulefiles/core:/sw/summit/1lmod/7.7.10/
rhel7.3_gnu4.8.5/modulefiles/Linux:/sw/summit/1m
0d/7.7.10/rhel7.3_gnu4.8.5/modulefiles/Core:/sw/
summit/Imod/7.7.10/rhel7.3_gnu4.8.5/1mod/1mod/mo
— dulefiles/Core
LSB_CHKFILENAME=/ccs/home/USER/.1sbatch/1554845590.3
< 32784

_ModuleTable_Sz_=9
LOADEDMODULES=x1/16.1.1-1:hsi/5.0.2.p5:xalt/1.1.3:1s
— f-tools/2.0:darshan-runtime/3.1.7:DefApps:spectr
— um-mpi/10.2.0.11-20190201:cuda/9.2.148:netlib-sc,
— alapack/2.0.2:netlib-lapack/3.8.0:ess1/6.1.0-2
LMOD_SYSTEM_NAME=summit
LSB_DJOB_HOSTFILE=/ccs/home/USER/.1sbatch/1554845590
— .332784.hostfile
OLCF_ESSL_ROOT=/sw/summit/essl/6.1.0-2/essl/6.1
OMPI_LD_PRELOAD_PREPEND=/autofs/nccs-svml_sw/summit/
< .swci/1-compute/opt/spack/20180914/1linux-rhel7-p
— pc64le/gecc-4.8.5/darshan-runtime-3.1.7-uwak6exr4
— 3zvhu2vasiddrov57baf37t/1lib/1libdarshan.so
OLCF_XLF_ROOT=/sw/summit/x1/16.1.1-1/x1f/16.1.1

L

rrrrrrt

Parallel Transport Time Dependent Density Functional Theory Calculations with Hybrid Functional on Summit

LSF_JOB_TIMESTAMP_VALUE=1554845606
ModuleTable@@5=cmR1ciJdPTEWLHBYb3BUPXt9LFsic3RhY2t
— EZXB@aCJdPTAsWyJzdGFOdXMiXT@iYWN@aXZ1IixbInVzZXJ,
— OYW11I109Im51dGxpYilsYXBhY2siLHOsWyJuZXRsaWItc2N
— hbGFWYWNrI109e1siZm4iXT@iL2F1dGImcy9uY2NzLXN2bTF
— fc3cve3VtbWloL21vZHVsZWZpbGYzL 3NpdGUVbGludXgtcemh
<> 1bDctcHB3iNjRsZS9zcGVjdHI1bS1tcGkvMTAUMi 4wl JEXLTT |
< WMTkwMJAXLTZxeXBKNnIveGwvMTYuMS4xLTEvbmVObGLiLXN
— JYWxhcGFjay8yLjAuMi5sdWEiLFsiZnVsbE5ShbWUiXT@ibmV
<> @bGLiLXNjYWxhcGF jay8yL jAuMiIsWyJsb2FkT3TkZXIiXTo
— 5LHByb3BUPXt9LFsic3RhY2tEZXBOaCJdPTAsWyJzdGFOdXM
— 1XTOiYWNQaXZ1IixbInVzZXJOYW11I109Im51dGxpYilz
LMOD_CMD=/sw/summit/1mod/7.7.10/rhel7.3_gnu4.8.5/1mo,
— d/1mod/libexec/1mod
LSB_AFFINITY_HOSTFILE=/ccs/home/USER/.1sbatch/155484
— 5590.332784.hostAffinityFile
LSF_BINDIR=/opt/ibm/spectrumcomputing/1sf/10.1/1linux
— 3.10-glibc2.17-ppc64le-csm/bin
LSB_EXEC_HOSTTYPE=LINUXPPC64LE

LSB_DJOB_NUMPROC=43

HISTCONTROL=ignoredups
WORLDWORK=/gpfs/alpine/world-shared

SHLVL=4

MEMBERWORK=/gpfs/alpine/scratch/USER
HOME=/ccs/home/USER
OLCF_NETLIB_SCALAPACK_ROOT=/autofs/nccs-svm1_sw/summ
— 1it/.swci/1-compute/opt/spack/20180914/1linux-rhel
— 7-ppc64le/x1-16.1.1-1/netlib-scalapack-2.0.2-4pg
— esd4o02k2myo2mssvug72icubygctlz
__LMOD_REF_COUNT_PATH=/sw/sources/1sf-tools/2.0/summ
— it/bin:2;/sw/summit/xalt/1.1.3/bin:1;/sw/summit/
— cuda/9.2.148/bin:1;/autofs/nccs-svml_sw/summit/. |
— swci/1-compute/opt/spack/20180914/1linux-rhel7-pp,
— c64le/x1-16.1.1-1/spectrum-mpi-10.2.0.11-2019020
— 1-6qypdérixwrkcyd5gnijoacjgxrtblzk/bin:1;/usr/bi
— n:2;/usr/sbin:2;/autofs/nccs-svml_sw/summit/.swc
— 1/1-compute/opt/spack/20180914/1inux-rhel7-ppc64
— le/gcc-4.8.5/darshan-runtime-3.1.7-uwak6exr43zvh
— u2vasiddrov57baf37t/bin:1;/sw/sources/hpss/bin: 1
— ;/sw/summit/x1/16.1.1-1/x1C/16.1.1/bin:1;/sw/sum
— mit/x1/16.1.1-1/x1f/16.1.1/bin:1;/opt/ibm/spectr
— umcomputing/1sf/10.1/1inux3.10-glibc2.17-ppc64le
— -csm/etc:1;/opt/ibm/spectrumcomputing/1sf/10.1/11,
< nux3.10-glibc2.17-ppc64le-csm/bin:1;/opt/ibm/csm
— /bin:1;/usr/local/bin:1;/usr/local/sbin:1;/0pt/i,
— bm/flightlog/bin:1;/opt/ibutils/bin:1;/opt/ibm/s
— pectrum_mpi/jsm_pmix/bin:1;/opt/puppetlabs/bin:1,
— ;/usr/lpp/mmfs/bin:1
OMPI_CC=/sw/summit/x1/16.1.1-1/x1C/16.1.1/bin/x1lc_r
LSB_APPLICATION_NAME=small

__LMOD_REF_COUNT_CPATH=/autofs/nccs-svm1_sw/summit/. |
swci/1-compute/opt/spack/20180914/1inux-rhel7-pp
c64le/x1-16.1.1-1/netlib-lapack-3.8.0-ttlwyyreox
j3d4aaefvk2mhdynsso6xo/include: 1;/sw/summit/cuda
/9.2.148/include: 1;/autofs/nccs-svml_sw/summit/. |
swci/1-compute/opt/spack/20180914/1linux-rhel7-pp
c64le/x1-16.1.1-1/spectrum-mpi-10.2.0.11-2019020
1-6qypd6rixwrkcyd5gnijoacjgxrtblzk/include:1
JOB_TERMINATE_INTERVAL=10
ModuleTable@@2=aGVsNy1wcGM2NGx1L3hsLzE2L JEUMSOXL2N
1ZGEv0OS4yL JE@OC5sdWEiLFsiZnVsbEShbWUiXT@iY3VkYSS8
5L3IuMTQ4IixbImxvYWRPcmR1ciJdPTgscHIvcFQ9e30sWyJ
zdGF ja@R1cHRoI1@9IMCxbINNOYXR1cyJdPSThY3RpdmUiLFs
1dXN1ck5hbWUiXT@iY3VkYSIsfSxbImRhcnNoYW4tcnVudGl |
tZSJdPXtbImZuI109Ii9zdy9zdW1taXQvbWIkdWx1ZmlsZXM
vc210ZS9saW51eClyaGVsNy TwcGM2NGx1LONvemUvZGFyc2h |
hbilydW50aW11LzMuMS43Lmx1YSIsWyJImdWxsTmFtZSJdPST
kYXJzaGFuLXJ1bnRpbWUvMy4xLjcilLFsibGOhZE9yZGVyI1@
INSxwem9IwVD17fSxbINNOYWNrRGVwdGgiXTOXLFsic3RhdHV
— zI1@9ImFjdGl2ZSIsWyJ1c2VyTmFtZSJdPSIkYXJzaGFu
BINARY_TYPE_HPC=

CSM_ALLOCATION_ID=243773
LSB_ACCT_FILE=/tmp/332784.tmpdir/.1554845590.332784.
— acct

SHOST=login2

LSB_SUB_HOST=1login2

ModuleTable@08=L jTuMC4xMSOyMDESMDIWMS@2cX1wZDZyL 3h |
sLzE2L jEuMSOxIiwil 3N3L3N1bW1pdC9tb2R1bGVmaWx1lcy9
zaXR1L2xpbnV4LXJoZWw3LXBwYZzYObGUveGwvMTYUMS4XLTE |
iLCIvc3eve3VtbWloL21vZHVsSZWZpbGVzL 3NpdGUvbGludXg |
tcmhlbDctcHBjNJjRsZS9Db3J1Iiwil 3N3L3NTbWTpdCOtb2R |
1bGVmaWx1cy9jb3J1Iiwil 3N3L3NTbW1pdCIsbWIkLzcuNy4
XMC9yaGVsNy4zX2dudTQuOC41L21vZHVsZWZpbGVzLoxpbnV
4Iiwil3N3L3N1bW1pdC9sbWIkLzcuNy4xMC9yaGVsNy4zX2d
udTQuOC41L21vZHVsSZWZpbGVzLONvemUiLCIve3cve3VtbWl
0L2xtb2QvNy43L jEWL3JoZWw3LjNfZ251NC44L jUvbGTvZCI
— sbW9kL21vZHVsZWZpbGVzL@ONvcmUiLHOsWyJzeXNOZW1C
OLCF_HSI_ROOT=/sw/sources/hpss
BASH_ENV=/sw/summit/1lmod/7.7.10/rhel7.3_gnu4.8.5/1mo,
— d/1lmod/init/bash

LSFUSER=USER

LSB_SUB_USER=USER
__LSF_JOB_TMPDIR__=/tmp/332784.tmpdir

LOGNAME=USER
MPI_ROOT=/autofs/nccs-svml_sw/summit/.swci/1-compute
— /opt/spack/20180914/1linux-rhel7-ppc64le/x1-16.1.
— 1-1/spectrum-mpi-10.2.0.11-20190201-6qypd6rixwrk
— cyd5gnijoacjgxrtblzk
PYTHONPATH=/sw/summit/xalt/1.1.3/site:/sw/summit/xal
— t/1.1.3/libexec

PAMI_IBV_ENABLE_DCT=1

LSB_OUTPUTFILE=s148.332784

LSB_MCPU_HOSTS=batch1 1 h36n13 42

LSB_QUEUE=batch
LSB_OUTDIR=/gpfs/alpine/proj-shared/nti@@9/USER/SC_T
— DDFT/si32/SI/environment

L A

!

L

L

OLCF_SPECTRUM_MPI_ROOT=/autofs/nccs-svml_sw/summit/.
— swci/1-compute/opt/spack/20180914/1linux-rhel7-pp,
— c64le/x1-16.1.1-1/spectrum-mpi-10.2.0.11-2019020
— 1-6qypdérixwrkcyd5gnijoacjgxrtblzk

CVS_RSH=ssh

SSH_CONNECTION=24.4.103.17 56300 128.219.134.72 22
XLSF_UIDDIR=/opt/ibm/spectrumcomputing/1sf/10.1/1linu
— x3.10-glibc2.17-ppc64le-csm/lib/uid
__LMOD_REF_COUNT_LIBRARY_PATH=/autofs/nccs-svml_sw/s
< ummit/.swci/1-compute/opt/spack/20180914/1linux-r
— hel7-ppc64le/x1-16.1.1-1/netlib-lapack-3.8.0-ttl,
— wyyreoxj3d4aaefvk2mhdynsso6xo/1ib64:1;/autofs/nc
« cs-svml_sw/summit/.swci/1-compute/opt/spack/2018
— 0914/linux-rhel7-ppc64le/x1-16.1.1-1/netlib-scal,
— apack-2.0.2-4pges4o2k2myo2mssvug72icubygctlz/1lib
«— :1;/sw/summit/cuda/9.2.148/1ib64:1;/autofs/nccs-
— svml_sw/summit/.swci/1-compute/opt/spack/2018091
— 4/linux-rhel7-ppc64le/x1-16.1.1-1/spectrum-mpi-1
— 0.2.0.11-20190201-6qypd6rixwrkcyd5gnijoacjogxrtbl
— zk/1ib:1;/autofs/nccs-svml_sw/summit/.swci/1-com
— pute/opt/spack/20180914/1linux-rhel7-ppc64le/gcc-
— 4.8.5/darshan-runtime-3.1.7-uwak6exr43zvhu2vasid
— drov57baf37t/lib:1

LSB_ECHKPNT_RSH_CMD=ssh -o 'PasswordAuthentication

— no' -o 'StrictHostKeyChecking no'
MODULESHOME=/sw/summit/1mod/7.7.10/rhel7.3_gnu4.8.5/,
— 1mod/1mod

OMP_NUM_THREADS=7
OMPI_CXX=/sw/summit/x1/16.1.1-1/x1C/16.1.1/bin/xlc++
— _r
PKG_CONFIG_PATH=/autofs/nccs-svml_sw/summit/.swci/1-
— compute/opt/spack/20180914/1inux-rhel7-ppc64le/x
— 1-16.1.1-1/netlib-lapack-3.8.0-ttlwyyreoxj3d4aae
fvk2mhdynsso6xo/1ib64/pkgconfig: /autofs/nccs-svm
1_sw/summit/.swci/1-compute/opt/spack/20180914/1,
inux-rhel7-ppc64le/x1-16.1.1-1/netlib-scalapack-
2.0.2-4pges4o2k2myo2mssvug72icubygctlz/1lib/pkgco
nfig:/autofs/nccs-svml_sw/summit/.swci/1-compute
/opt/spack/20180914/1linux-rhel7-ppc64le/gcc-4.8.
5/darshan-runtime-3.1.7-uwak6exr43zvhu2vasiddrov
— 57baf37t/1lib/pkgconfig

R A

)

Jia, et al.

__LMOD_REF_COUNT_LD_LIBRARY_PATH=/sw/summit/essl/6.1
.0-2/ess1/6.1/1ib64:1;/autofs/nccs-svml_sw/summi |
t/.swci/1-compute/opt/spack/20180914/1linux-rhel7
-ppc64le/x1-16.1.1-1/netlib-lapack-3.8.0-ttlwyyre
oxj3d4aaefvk2mhdynsso6xo/1ib64:1;/autofs/nccs-sv
m1_sw/summit/.swci/1-compute/opt/spack/20180914/
linux-rhel7-ppc64le/x1-16.1.1-1/netlib-scalapack
-2.0.2-4pges4o02k2myo2mssvug72icubygctlz/1ib:1;/sw
/summit/cuda/9.2.148/1ib64:1;/autofs/nccs-svmi_s
w/summit/.swci/1-compute/opt/spack/20180914/1linu
x-rhel7-ppc64le/x1-16.1.1-1/spectrum-mpi-10.2.0.
11-20190201-6qypd6rixwrkcyd5gnijoacjaxrtblzk/lib
:1;/autofs/nccs-svml_sw/summit/.swci/1-compute/o
pt/spack/20180914/1linux-rhel7-ppc64le/gcc-4.8.5/
darshan-runtime-3.1.7-uwak6exr43zvhu2vasiddrov57
baf37t/1ib:1;/sw/summit/x1/16.1.1-1/x1smp/5.1.1/
lib:1;/sw/summit/x1/16.1.1-1/xImass/9.1.1/1ib:1;
/sw/summit/x1/16.1.1-1/x1C/16.1.1/1ib:1;/sw/summ
it/x1/16.1.1-1/x1f/16.1.1/1ib:1;/opt/ibm/spectru
mcomputing/1sf/10.1/1inux3.10-glibc2.17-ppc64le-
— csm/1lib:1;/sw/summit/x1/16.1.1-1/1ib:2
LMOD_SETTARG_FULL_SUPPORT=no
LESSOPEN=| | /usr/bin/lesspipe.sh %s
LSF_CGROUP_TOPDIR_KEY=summit
LMOD_MPI_VERSION=10.2.0.11-20190201-6qypd6r
OMPI_MCA_io=romio321

__Init_Default_Modules=1

LMOD_FAMILY_COMPILER=x1

LSB_XFER_OP=
CMAKE_PREFIX_PATH=/autofs/nccs-svml_sw/summit/.swci/
— T-compute/opt/spack/20180914/1linux-rhel7-ppc64le
/x1-16.1.1-1/netlib-lapack-3.8.0-ttlwyyreoxj3d4a
aefvk2mhdynsso6xo: /autofs/nccs-svml_sw/summit/.s
wci/1-compute/opt/spack/20180914/1linux-rhel7-ppc
64le/x1-16.1.1-1/netlib-scalapack-2.0.2-4pges402
k2myo2mssvug72icubygctlz:/sw/summit/cuda/9.2.148
:/autofs/nccs-svml_sw/summit/.swci/1-compute/opt
/spack/20180914/1inux-rhel7-ppc64le/x1-16.1.1-1/
spectrum-mpi-10.2.0.11-20190201-6qypd6rixwrkcyd5
gnijoacjgxrtblzk:/autofs/nccs-svml_sw/summit/.sw
ci/1-compute/opt/spack/20180914/1linux-rhel7-ppc6
4le/gcc-4.8.5/darshan-runtime-3.1.7-uwak6exr43zv
— hu2vasiddrov57baf37t

DISPLAY=login2:27.0

XDG_RUNTIME_DIR=/run/user/11840
__LMOD_REF_COUNT_PKG_CONFIG_PATH=/autofs/nccs-svml_s
w/summit/.swci/1-compute/opt/spack/20180914/1inu
x-rhel7-ppc64le/x1-16.1.1-1/netlib-lapack-3.8.0-
ttlwyyreoxj3d4aaefvk2mhdynsso6xo/1ib64/pkgconfig
:1;/autofs/nccs-svml_sw/summit/.swci/1-compute/o
pt/spack/20180914/1linux-rhel7-ppc64le/x1-16.1.1-
1/netlib-scalapack-2.0.2-4pges402k2myo2mssvug72i
cubygctlz/lib/pkgconfig:1;/autofs/nccs-svml_sw/s
ummit/.swci/1-compute/opt/spack/20180914/1linux-r
hel7-ppc64le/gcc-4.8.5/darshan-runtime-3.1.7-uwa
k6exr43zvhu2vasiddrov57baf37t/1lib/pkgconfig:1

L

L

L

Parallel Transport Time Dependent Density Functional Theory Calculations with Hybrid Functional on Summit

XALT_OLCF=1
XL_LINKER=/sw/summit/xalt/1.1.3/bin/1d
LSB_EEXEC_REAL_GID=
OLCF_NETLIB_LAPACK_RO0T=/autofs/nccs-svml_sw/summit/ |
< .swci/1-compute/opt/spack/20180914/1linux-rhel7-p,
— pc64le/x1-16.1.1-1/netlib-lapack-3.8.0-ttlwyyreo
— Xxj3d4aaefvk2mhdynsso6xo
ModuleTable@06=Y2FsYXBhY2silLHOsWyJzcGVjdHI1bST1tcGk
— 1XT17WyJmbiJdPSIvc3cvc3VtbWloL21vZHVSZWZpbGVzZL3N
— pdGUvbGludXgtcmhlbDctcHBjNjRsZS94bC8xNi4xL jELMSI
— zcGVjdHI1bS1tcGkvMTAUMi4wL JEXLTIWMTkwMJAXLmx1YST |
— sWyJmdWxsTmFtZSJdPSJzcGVjdHI1bSTtcGkvMTAUMi4wL jE |
— XLTIWMTKwMjAxIixbImxvYWRPcmR1ciJdPTcscHIvcFQ9e30
— sWyJzdGF ja@R1cHRoI1@9MCxbInNOYXR1cyJdPSThY3RpdmU
< 1LFsidXN1ck5hbWUiXT@ic3B1Y3RydWotbXBpLzEwLjIuMC4
— XMSQyMDESMDIWMSIsfSx4YWx@PXtbImZuI109Ii9zdy9zdW1
— taXQvbW9kdWx1ZmlsZXMvc210ZS9saW51eClyaGVsNy1wcGM
— 2NGx1L@ONvcmUveGFsdC8xLjEuMy5sdWEiLFsiZnVsbESh
__LMOD_REF_COUNT_MANPATH=/sw/summit/essl/6.1.0-2/ess
— 1/6.1/man:1;/autofs/nccs-svml_sw/summit/.swci/1-
— compute/opt/spack/20180914/1inux-rhel7-ppc64le/x
— 1-16.1.1-1/spectrum-mpi-10.2.0.11-20190201-6qypd
— 6rixwrkcyd5gnijoacjgxrtblzk/share/man:1;/sw/sour
— ces/hpss/man:1;/sw/summit/x1/16.1.1-1/x1C/16.1.1,
— /man/en_US:1;/sw/summit/x1/16.1.1-1/x1f/16.1.1/m
— an/en_US:1;/sw/summit/1mod/7.7.10/rhel7.3_gnu4.8,
— .5/1mod/1mod/share/man:1;/opt/ibm/spectrumcomput
— ing/1sf/10.1/man:1
LMOD_DIR=/sw/summit/Imod/7.7.1@/rhel7.3_gnu4.8.5/1mo
— d/1mod/libexec
LSF_ENVDIR=/opt/ibm/spectrumcomputing/lsf/conf
__LMOD_Priority_PATH=/sw/sources/1sf-tools/2.0/summi |
— t/bin:-9999;/sw/summit/xalt/1.1.3/bin:-9999
LMOD_FAMILY_MPI=spectrum-mpi
LSB_DJOB_RANKFILE=/ccs/home/USER/.1sbatch/1554845590
— .332784.hostfile

BASH_FUNC_module()=() { eval $($LMOD_CMD bash "$@")
— && eval $(${LMOD_SETTARG_CMD:-:3} -s sh)

}

BASH_FUNC_m1()=() {
}

_=/usr/bin/env

+ 1lsb_release -a
LSB Version:
Distributor ID:

eval $($LMOD_DIR/ml_cmd "$@")

:core-4.1-noarch:core-4.1-ppc64le
RedHatEnterpriseServer

Description: Red Hat Enterprise Linux Server
— release 7.5 (Maipo)

Release: 7.5

Codename: Maipo

+ uname -a

Linux batchl 4.14.0-49.18.1.el7a.ppc64le #1 SMP Thu
— Nov 29 03:27:24 EST 2018 ppcb4le ppcbdle ppcbdle
— GNU/Linux

+ lscpu
Architecture: ppc64le
Byte Order: Little Endian

CPU(s):

On-line CPU(s) list:

Thread(s) per core:
Core(s) per socket:
Socket(s):

NUMA

node(s):

Model:

Model name:
CPU max MHz:
CPU min MHz:
L1d cache:
L1i cache:
L2 cache:

L3 cache:

NUMA
NUMA
NUMA
NUMA
NUMA
NUMA

node@ CPU(s):
node8 CPU(s):

node252 CPU(s):
node253 CPU(s):
node254 CPU(s):
node255 CPU(s):

128

0-127

4

16

2

6

2.1 (pvr 004e 1201)
POWER9, altivec supported
3800.0000

2300.0000

32K

32K

512K

10240K

0-63

64-127

+ cat /proc/meminfo

MemTotal: 601183424 kB
MemFree: 481976960 kB
MemAvailable: 508303872 kB
Buffers: 0 kB
Cached: 41386880 kB
SwapCached: 0 kB
Active: 22920448 kB
Inactive: 25564416 kB
Active(anon): 21301568 kB
Inactive(anon): 18956480 kB
Active(file): 1618880 kB
Inactive(file): 6607936 kB
Unevictable: 16840896 kB
Mlocked: 16840896 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 0 kB
Writeback: 0 kB
AnonPages: 23940096 kB
Mapped: 21150080 kB
Shmem: 33160128 kB
Slab: 27915392 kB
SReclaimable: 20700928 kB
SUnreclaim: 7214464 kB
KernelStack: 50384 kB
PageTables: 107648 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 300591680 kB
Committed_AS: 60759808 kB
VmallocTotal: 549755813888 kB
VmallocUsed: 0 kB
VmallocChunk: 0 kB
HardwareCorrupted: 0 kB
AnonHugePages: 3244032 kB

ShmemHugePages: 0 kB

ShmemPmdMapped: 0 kB

CmaTotal: 26853376 kB

CmaFree: 23674880 kB
HugePages_Total: 0

HugePages_Free:]

HugePages_Rsvd: 0

HugePages_Surp:]

Hugepagesize: 2048 kB

+ inxi -F -c@

+ 1sblk -a

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sdb 8:16 1 1.8T 0 disk

loopo 7:0 0 1 loop

sda 8:0 1 1.8T @ disk

nvme@nl 259:0 @ 1.5T 0 disk

+ lsscsi -s

+ module list

++ /sw/summit/Imod/7.7.10/rhel7.3_gnu4.8.5/1mod/1mod

—

—

Curr
D)
2)
3)
4)
5)
6)

+ ev

—

rerrri

!

/libexec/1mod bash

list
ently Loaded Modules:
x1/16.1.1-1 7)
spectrum-mpi/10.2.0.11-20190201
hsi/5.0.2.p5 8) cuda/9.2.148

xalt/1.1.3
1sf-tools/2.0
darshan-runtime/3.1.7
DefApps

10) netlib-lapack/3.8.0
11) essl/6.1.0-2

al 'MODULEPATH="/autofs/nccs-svm1_sw/summit/modu
lefiles/site/linux-rhel7-ppc64le/spectrum-mpi/10,
.2.0.11-20190201-6qypd6r/x1/16.1.1-1:/sw/summit/
modulefiles/site/linux-rhel7-ppc64le/x1/16.1.1-1)
:/sw/summit/modulefiles/site/linux-rhel7-ppc64le
/Core:/sw/summit/modulefiles/core:/sw/summit/1lmo
d/7.7.10/rhel7.3_gnu4.8.5/modulefiles/Linux:/sw/
summit/Imod/7.7.10/rhel7.3_gnu4.8.5/modulefiles/
Core:/sw/summit/1lmod/7.7.10/rhel7.3_gnu4.8.5/1mo
d/1mod/modulefiles/Core" ;' export 'MODULEPATH;'
'_ModuleTable@@1_="X01vZHVsZVRhYmx1Xz17WyJNVHZ1c
NNpb24iXTOzLFsiY19yZWJ1aWxkVG1tZSIJdPWZhbHNILFsiY
19zaG9ydFRpbWUiXTTmYWxzZSxkZXB0aFQ9e3@sZmF taWx5P |
XtbImNvbXBpbGVyI1@9InhsIixbImlwaSJdPSJzcGVjdHI1b
S1tcGkiLHOsbVQ9e@R1ZkFwcHM9e1siZm4iXTOiL3N3L3N1b
W1pdC9tb2R1bGVmaWx1cy9zaXR1L2xpbnV4LXJoZWw3LXBwY |
zYObGUVQ29yZS9IEZWZBcHBzLmx 1YSIsWy JmdWxsTmFtZSJdP |
SJEZWZBcHBzIixbImxvYWRPcmR1ciJdPTYscHIvcFQ9e30sW
yJzdGF ja@R1cHRoI1@9MCxbINNOYXR1cyJdPSThY3RpdmUil
FsidXN1ck5hbWUiXT@iRGVMQXBwcyIsfSxjdWRhPXtbImZul |
109I119zdy9zdW1taXQvbWokdWx1ZmlsZXMvc210ZS9saW51e
Cly";"' export

' _ModuleTable00@1_;"'

9) netlib-scalapack/2.0.2

Jia, et al.

'_ModuleTable@@2_="aGVsNy1wcGM2NGx1L3hsLzE2L JEUMSOXL |

rrererrrd

!

[

2N1ZGEvO0S4yL jJE@OC5sdWEiLFsiZnVsbEShbWUiXT@1iY3VKY
S85LjIuMTQ4IixbImxvYWRPcmR1ciJdPTgscHIvcFQ9e30sW
yJzdGF ja@R1cHRoI109MCxbINNOYXR1cyJdPSThY3RpdmUilL |
FsidXN1ck5hbWUiXT@iY3VkYSIsfSxbImRhcnNoYW4tcnVud
G1tZSJdPXtbImZuIl09Ii9zdy9zdW1taXQvbWokdWx1ZmlsZ
XMvc210ZS9saW51eC1yaGVsNy 1wcGM2NGx1LONvemUVZGFyc
2hhbilydW50aW11LzMuMS43Lmx1YSIsWyJmdWxsTmFtZSJdP |
SJKYXJzaGFuLXJ1bnRpbWUVMy4xL jcilLFsibGOhZE9yZGVyI
109NSxwecm9wVD17fSxbInNOYWNrRGVwdGgiXTOxLFsic3Rhd |
HVZI109ImFjdG12ZSIsWyJ1c2VyTmFtZSJdPSIkYXJzaGFu" |
;' export

' _ModuleTable002_;"

'_ModuleTable@@3_="LXJ1bnRpbWUiLHOsZXNzbD17WyJmbiJdP

L

SIvec3cve3VtbWloL21vZHVsZWZpbGYVzL3NpdGUvbGludXgtc
mh1lbDctcHBjNjRsZS9Db3J1L2Vzc2wvNi4xLjAtMiIsWyImd |
WxsTmFtZSJdPSJ1c3NsLzYuMS4wLTIiLFsibGOhZE9YZGVyI
109MTEscHIvcFQ9e30sWyJzdGF ja@R1cHRoI1@9MCxbINNQY |
XR1cyJdPSThY3RpdmUiLFsidXN1ck5hbWUiXT@iZXNzbCIsf
Sxoc2k9e1siZm4iXTOiL3N3L3NTbW1pdCItb2R1bGVmaWxlc
y9zaXR1L2xpbnV4LXJoZWw3LXBwYZzY@ObGUVQ29yZS90c2kvN |
S4wLjTucDUubHVhIixbImZ1bGx0YW111109ImhzaS81LjAuM
15WNSIsWyJsb2FkT3JkZXIiXT@yLHByb3BUPXtILFsic3RhY
2tEZXB0aCJdPTEsWyJzdGF@dXMiXTOiYWN@aXZ1IixbInVz"
;' export

' _ModuleTable0@3_;"

'_ModuleTable@@4_="7ZXJOYW11I109ImhzaSIsfSxbImxzZil@b

L A

29scyJdPXtbImZuIl@9Ii9zdy9zdW1taXQvbWokdWx1ZmlsZ
XMvc210Z7S9saW51eC1yaGVsNy 1wcGM2NGx1LONvemUvbHNmL |
XRvb2xzLzIuMC5sdWEiLFsiZnVsbEShbWUiXT@ibHNmLXRvb
2xzLzIuMCIsWyJsb2FkT3JkZXIiXTOOLHBYb3BUPXtILFsic
3RhY2tEZXB0aCJdPTEsWyJzdGF@AXMiXTOiYWNOaXZ1IixbI
nVzZXJOYW11I109ImxzZi10b29scyIsfSxbIm51dGxpYilsY
XBhY2siXT17WyJmbiJdPSIvc3cve3VtbWloL21vZHVSZWZpb
GVzL3NpdGUvbGludXgtcmhlbDctcHBNjRsZS94bC8xXNi4xL |
JEtMS9uZXRsaWItbGFwYWNrLzMuOC4wLmx1YSIsWy JmdWxsT |
mFtZSJdPSJuZXRsaWItbGFwYWNrLzMuOC4wIixbImxvYWRP"
;' export

' _ModuleTable004_;"'

'_ModuleTable@@5_="cmR1ciJdPTEWLHByb3BUPXt9LFsic3RhY

L

2tEZXBRaCJdPTAsWyJzdGF@dXMiXT@iYWNOaXZ1IixbInVzZ
XJOYW11I109Im51dGxpYil1sYXBhY2silLHOsWyJuZXRsaWItc
2NhbGFwWYWNrI109e1siZm4iXT@iL2F1dGOmcy9uY2NzLXN2b |
TFfc3cve3VtbWloL21vZHVsZWZpbGYzL 3NpdGUVbGludXgtc
mh1bDctcHBINFRSZS9zcGYidHTT1bSTtcGRvMTAUM 4wl JEXL |
TIWMTKkwMjAXLTZxeXBkNnIveGwvMTYuMS4xLTEVbmVObGLil |
XNjYWxhcGF jay8yL jAuMi5sdWEiLFsiZnVsbEShbWUiXT@ib
mV@bG1ilLXNjYWxhcGF jay8yL jAUMiIsWyJsb2FKT3TKZXTiX |
TO5LHBYb3BUPXt9LFsic3RhY2tEZXBOaCJdPTAsWyJzdGFod |
XMiXT@iYWN@aXZ1IixbInVzZXJOYW11I109Im51dGxpYilz"
;' export

' _ModuleTable005_; "

Parallel Transport Time Dependent Density Functional Theory Calculations with Hybrid Functional on Summit

'_ModuleTable@@6_="Y2FsYXBhY2silLHOsWyJzcGVjdHI1bS1tc

rerr it

!

—

—

—

GkiXT17WyJmbiJdPSIvc3cve3VtbWloL21vZHVSZWZpbGYzL
3NpdGUvbGludXgtcmhlbDctcHBjNjRsZS94bC8xNi4xL JELM
S9zcGVjdHIT1bS1tcGkvMTAUMi4wL JEXLTIWMTkwMjAXLmMX1Y |
SIsWyJImdWxsTmFtZSJdPSJzcGYjdHI1bSTtcGkvMTAUMi4wL |
JEXLTIWMTkwMjAxIixbImxvYWRPcmRlciJdPTcscHIvcFQe
30sWyJzdGF ja@R1cHRoI109MCxbINNOYXR1cyJdPSThY3Rpd |
mUiLFsidXN1ck5hbWUiXT@ic3B1Y3RydWotbXBpLzEwL jIuM
C4xMS@yMDESMDIWMSIsfSx4YWxQPXtbImZuIl09Ii9zdy9zd
W1taXQvbWIkdWx1ZmlsZXMvc210ZS9saW51eClyaGVsNylwc
GM2NGx1L@NvcmUveGF sdC8xL jEuMy5sdWEiLFsiZnVsbESh" |
;' export

' _ModuleTable006_;"'

'_ModuleTable0@7_="bWUiXTQieGFsdC8xL jEUMYIsWyJsb2FkT

—

—

3JkZXIiXT@zLHByb3BUPXt9LFsic3RhY2tEZXBOaCJdPTESW
yJzdGFOAXMiXTOiYWNOaXZ1IixbInVzZXJOYW11I109Inhhb
HQiLHOseGw9e1siZm4iXTOiL3N3L3N1bW1pdCItb2R1bGVma
Wx1lcy9zaXR1L2xpbnV4LXJoZWw3LXBwYzY@bGUVQ29yZS94b
C8xNi4xLJEtMS5sdWEILFsiZnVsbEShbWUiXTOieGwvMTYuM
S4AXLTEiLFsibGOhZE9yZGVyI1@IMSxwecmIwVD17fSxbInNeY
WNrRGVwdGgiXTOxLFsic3RhdHVZI1@9ImFjdG12ZSIsWyJlc
2VyTmFtZSJdPSJ4bCIsfSx9LGTwYXRoQT171i9hdXRvZnMvb
mNjcy1zdm@xX3N3L3N1bW1pdCItb2R1bGVmaWx1cy9zaXRIL
2xpbnV4LXJoZWw3LXBwYzY0bGUvc3B1Y3RydWotbXBpLzEw"
;' export

' _ModuleTable0@7_;"'

'_ModuleTable08_="LjIuMC4xMSOyMDE5SMDIwWMS@2cX1wZDZyL |

3hsLzE2L jEuMS@OxIiwil 3N3L3NTbW1pdC9tb2R1bGVmaWxlc
y9zaXR1L2xpbnV4LXJoZWw3LXBwYZzY@bGUveGwvMTYUMS4xL |
TEiLCIvc3cve3VtbWloL21vZHVsZWZpbGVzL3NpdGUvbGlud
XgtcmhlbDctcHBjNjRsZS9Db3J1Tiwil 3N3L3NTbW1pdCIth
2R1bGVmaWx1cy9jb3J1Iiwil 3N3L3NTbW1pdCIsbWIKLzcuN |
y4xMC9yaGVsNy4zX2dudTQuOC41L21vZHVSZWZpbGVzLOxpb
nV4Iiwil 3N3L3N1bW1pdC9sbWIkLzcuNy4xMCOyaGVsNy4zX |
2dudTQuOC41L21vZHVSZWZpbGVzLONvemUiLCIve3cve3Vtb
W1OL2xtb2QvNy43LJEWL3JoZWw3L jNfZ251NC44LjUvbG1vZ |
C9sbWIKL21vZHVsZWZpbGVzLONvemUiLHOsWy JzeXNOZW1C" |
;' export '_ModuleTable0@8_;'
'_ModuleTable0@9_="YXN1TVBBVEgiXT@iL3N3L3NT1bWipd
C9sbW9kLzcuNy4xMC9yaGVsNy4zX2dudTQuOC41L21vZHVsZ
WZpbGVzLoxpbnV40i9zdy9zdW1taXQvbG1vZC83LjcuMTAvc
mh1bDcuM19nbnUOL jguNS9tb2R1bGVmaWx1cy9Db3J10i9zd
y9zdW1taXQvbG1vZC83L jcuMTAvemhlbDcuM19nbnUOL jguN |
S9sbWIkL2xtb2QvbWIkdWx1ZmlsZXMvQ29yZSIsfQ=="}"
export '_ModuleTable@@9_;'

' _ModuleTable_Sz_="9";' export

' _ModuleTable_Sz_;'
MODULEPATH=/autofs/nccs-svm1_sw/summit/modulefile
s/site/linux-rhel7-ppc64le/spectrum-mpi/10.2.0.1
1-20190201-6qypd6r/x1/16.1.1-1:/sw/summit/module
files/site/linux-rhel7-ppc64le/x1/16.1.1-1:/sw/s
ummit/modulefiles/site/linux-rhel7-ppc64le/Core:
/sw/summit/modulefiles/core:/sw/summit/1mod/7.7.
10/rhel7.3_gnu4.8.5/modulefiles/Linux:/sw/summit
/1mod/7.7.10/rhel7.3_gnu4.8.5/modulefiles/Core:/
sw/summit/1mod/7.7.10/rhel7.3_gnu4.8.5/1mod/1mod
/modulefiles/Core

rrerrrrrrt

+ o+
+ +

Ffrrorrrrrrrd

L

+ o+
+ +

L

+
+

export MODULEPATH
ModuleTable@d1=X01vZHVsSZVRhYmx1Xz17WyJNVHZ1cnNp |
b24iXTOzLFsiY19yZWJ1aWxkVG1tZSJdPWZhbHNILFsiY19z
aG9ydFRpbWUiXT1mYWxzZSxkZXB0aFQ9e3@0sZmF taWx5PXth |
ImNvbXBpbGVyI1@9InhsIixbImlwaSJdPSIJzcGVjdHI1bSTt
cGkiLHOsbVQ9e@R1ZkFwcHM9e1siZm4iXTOiL3N3L3NTbW1p
dC9tb2R1bGVmaWx1lcy9zaXR1L2xpbnV4LXJoZWw3LXBwYZYQ |
bGUVQ29yZS9EZWZBcHBzLmx1YSIsWy JmdWxsTmFtZSJdPSJE |
ZWZBcHBzIixbImxvYWRPcmR1ciJdPTYscHIvcFQ9e30sWyJz
dGFja@R1cHRoI109MCxbINNOYXR1cyJdPSThY3RpdmUiLFsi |
dXN1ck5hbWUiXT@iRGVMQXBwcyIsfSxjdWRhPXtbImZuIle9
1i9zdy9zdW1taXQvbW9kdWx1ZmlsZXMvc210ZS9saW51eCly
export _ModuleTable@@1_
ModuleTable@02=aGVsNyT1wcGM2NGx1L3hsLzE2L jJEUMSOXx
L2N1ZGEvOS4yL jE@OC5sdWEiLFsiZnVsbEShbWUiXT@iY3Vk
YS85LJIuMTQ4IixbImxvYWRPcmR1ciJdPTgscHIvcFQ9e30s
WyJzdGF ja@R1cHRoI1@9IMCxbINNOYXR1cyJdPSThY3RpdmUi |
LFsidXN1ck5hbWUiXT@iY3VKYSIsfSxbImRhcnNoYW4tcnVu
dG1tZSJdPXtbImZuIl@9Ii9zdy9zdW1taXQvbWikdWx1Zmls
ZXMvc210ZS9saW51eC1yaGVsNy TwcGM2NGx1LONvemUVZGFy |
c2hhbilydW50aW11LzMuMS43Lmx1YSIsWyImdWxsTmFtZSJd
PSJkYXJzaGFuLXJ1bnRpbWUvMy4xLjcilFsibGOhZE9yZGVy |
I109NSxwecm9wVD17fSxbInNOYWNrRGVwdGgiXTOxLFsic3Rh
dHVZI109ImFjdG12ZSIsWyJ1c2VyTmFtZSIJdPSIkYXJzaGFu
export _ModuleTable@@2_
ModuleTable@@3=LXJ1bnRpbWUiLHOsZXNzbD17WyJmbiJd
PSIvc3cve3VtbWloL21vZHVsZWZpbGVzL3NpdGUVbGludXgt |
cmhlbDctcHBjNjRsZS9Db3J1L2VZzc2wvNi4xL JAtMiIsWyTm
dWxsTmFtZSJdPSJ1c3NsLzYuMS4wLTIiLFsibGOhZE9yZGVy |
I109MTEscHIvcFQ9e30sWyJzdGF jaOR1cHRoI1Q9MCXbINN® |
YXR1cyJdPSJThY3RpdmUiLFsidXN1ck5hbWUiXT@iZXNzbCIs
fSxoc2k9e1siZm4iXTOiL3N3L3NTbW1pdCItb2RTbGYmaWx1
cy9zaXR1L2xpbnV4LXJoZWw3LXBwYzY@bGUVQ29yZS90c2ky |
NS4wL jIucDUubHVhIixbImZ1bGxOYW11I109ImhzaS81LjAu
Mi5wNSIsWyJsb2FkT3JkZXIiXTQyLHByb3BUPXtILFsic3Rh
Y2tEZXBOaCJdPTEsWyJzdGFOAXMiXT@iYWNQaXZ1IixbInVz
export _ModuleTable0@3_
ModuleTable@04=ZXJOYW111109ImhzaSIsfSxbImxzZi1@
b29scyJdPXtbImZuI109Ii9zdy9zdW1taXQvbWokdWx1Zmls
ZXMvc210ZS9saW51eC1yaGVsNy 1wcGM2NGx 1LONvemUvbHNm |
LXRvb2xzLzIuMC5sdWEiLFsiZnVsbEShbWUiXT@ibHNmLXRYv |
b2xzLzIuMCIsWyJsb2FkT3JkZXIiXT@OLHBYb3BUPXtILFsi
c3RhY2tEZXBOaCJdAPTEsWyJzdGFOdXMiXT@iYWNOaXZ1Iixb
InVzZXJOYW111109ImxzZi10b29scyIsfSxbIm51dGxpYils
YXBhY2siXT17WyJmbiJdPSIvc3cve3VtbW1oL21vZHVSZWZp
bGVzL 3NpdGUvbGludXgtcmhlbDctcHBjNjRsZS94bC8xNi4x |
L JEEMSOuUZXRsaWItbGFwYWNrLzMuOC4wLmx1YSIsWyImdWxs |
TmFtZSJdPSJuZXRsaWItbGFwYWNrLzMuOC4wIixbImxvYWRP
export _ModuleTable@@4_

ModuleTable@05=cmR1ciJdPTEwWLHBYb3BUPXt9LFsic3Rh
Y2tEZXB0aCJdPTAsWy JzdGF@dXMiXT@iYWN@aXZ1IixbInVz
ZXJOYW11I109Im51dGxpYil1sYXBhY2silLHOsWyJuZXRsaWIt
c2NhbGFwYWNrI109e1siZm4iXT@iL2F1dGImcy9uY2NzLXN2
bTFfc3cve3VtbWloL21vZHYsZWZpbGVzL 3NpdGUVbGludXgt |
cmhlbDctcHBjNjRsZS9zcGVjdHI1bS1tcGkvMTAuMi4wL JEX |
LTIWMTKkwMjAXLTZxeXBkNnIveGwvMTYuMS4xXLTEvbmVObGL1
LXNJYWxhcGF jay8yL jAuMi5sdWEiLFsiZnVsbEShbWUiXT0Q1i |
bmVObGLiLXNjYWxhcGF jay8yL jAuMiIsWyJsb2FkT3JKZXI1
XT@O5LHBYb3BUPXt9LFsic3RhY2tEZXBOaCJdPTAsWyJzdGFO |
dXMiXTOiYWN@aXZ1IixbInVzZXJOYW11I109Im51dGxpYilz

export _ModuleTable@@5_

ModuleTable@06=Y2FsYXBhY2silLHOsWyJzcGVjdHI1bS1t
cGkiXT17WyJImbiJdPSIvc3cve3VtbWlOL21vZHVSZWZpbGVz |
L3NpdGUvbGludXgtcmhlbDctcHBjNjRsZS94bC8xNi4xLjEL |
MS9zcGVjdHI1bS1tcGkvMTAUMi4wL JEXLTIWMTkwMjAXLmx1 |
YSIsWyJImdWxsTmFtZSJdPSJzcGVjdHI1bS1tcGkvMTAUMi4w |
LFEXLTIWMTkwMjAxIixbImxvYWRPcmR1ciJdPTcscHIveFQ9
€30sWyJzdGF ja@R1cHRoI1@9MCxbInNOYXR1cyJdPSIThY3Rp |
dmUiLFsidXN1ck5hbWUiXT@ic3B1Y3RydWotbXBpLzEwLjIu
MC4xMS@yMDESMDIWMSIsSx4YWxOPXtbImZulle9Ii9zdy9z
dw1taXQvbWokdWx1ZmlsZXMvc210ZS9saW51eClyaGVsNylw
CGM2NGx1LONvcmUveGF sdC8xL jEuMy5sdWEiLFsiZnVsbESh

export _ModuleTable006_

ModuleTable@07=bWUiXT@ieGFsdC8xLjEuMyIsWyJsb2Fk
T3JkZXIiXT@zLHByb3BUPXtILFsic3RhY2tEZXBOaCJdPTES
WyJzdGFOdXMiXT@iYWN@aXZ1IixbInVzZXJOYW1111@9Inhh
bHQiLHOseGw9e1siZm4iXTOiL3N3L3NTbWIpdCItb2RT1bGVm
aWxlcy9zaXR1L2xpbnV4LXJoZWw3LXBwYzY@bGUVQ29yZS94 |
bC8xNi4xLjEtMS5sdWEiILFsiZnVsbEShbWUiXT@ieGwvMTYu
MS4XLTEiLFsibGOhZE9yZGVyI1@9IMSxwecm9IwVD17fSxbInNG |
YWNrRGVwdGgiXTOxLFsic3RhdHVzI109ImFjdG12ZSIsWyJ1
c2VyTmFtZSJdPSJ4bCIsfSx9LGTwYXRoQT17Ii9hdXRvZnMy
bmNjcy1zdm@xX3N3L3N1bW1pdC9tb2R1bGVmaWxlcy9zaXR1
L2xpbnV4LXJoZWw3LXBwYzY@bGUvc3B1Y3RydWotbXBpLzEw

export _ModuleTable@@7_

ModuleTable@08=L jIuMC4xMS@yMDESMDIWMS@2cX1wZDZy |
L3hsLzE2L JEUMSOxIiwil 3N3L3N1bW1pdCItb2RT1bGYmaWx1
cy9zaXR1L2xpbnV4LXJoZWw3LXBwYzY@ObGUveGwvMTYuMS4x |
LTEiLCIvc3cve3VtbW1oL21vZHVsZWZpbGVzL3NpdGUvbGlu
dXgtcmhlbDctcHBjNRsZS9Db3T1Tiwil 3N3L3NTbW1pdCat |
b2R1bGVmaWx1cy9jb3J1Iiwil 3N3L3NTbW1pdCIsbWokLzcu
Ny4xMC9yaGVsNy4zX2dudTQuOC41L21vZHVsSZWZpbGVzLOxp
bnV4Tiwil 3N3L3NTbW1pdC9sbWIkLzcuNy4xMCOyaGVsNy4z |
X2dudTQuOC41L21vZHVsZWZpbGVzLONvemUiLCIve3cve3Vt |
bW10L2xtb2QvNy43LJEWL3JoZWw3L jNfZ251NC44LjUvbG1v |
ZC9sbWIkL21vZHVsSZWZpbGVzLONvcmUiLHOsWyJzeXNOZW1C

export _ModuleTable@@8_

ModuleTable@@9=YXN1TVBBVEgiXT@iL3N3L3N1bW1pdC9s
bW9KLzcuNy4xMC9yaGVsNy4zX2dudTQuOC41L21vZHVSZWZp |
bGVzL0oxpbnV40i9zdy9zdW1taXQvbG1vZC83LjcuMTAvemhl |
bDcuM19nbnUOL jguNS9tb2R1bGVYmaWx1cy9Db3J10i9zdy9z |
dW1taXQvbG1vZC83LjcuMTAvemhlbDcuM19nbnU@L jguNS9s |
bWIkL 2xtb2QvbWokdWx1ZmlsZXMvQ29yZSIsfQ==

export _ModuleTable@@9_

_ModuleTable_Sz_=9

Jia, et al.

++ export _ModuleTable_Sz_
++ : -s sh

+ eval

+ nvidia-smi

Tue Apr 9 17:33:47 2019

— 396.64

| GPU Name Persistence-M| Bus-Id
— | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap]|

— | GPU-Util Compute M. |
| +]

Disp.A

Memory-Usage

Pus ===+ |
| 0 Tesla V100-SXM2... On
= | 0|

| N/A 37C PO 37W / 300W |
E. Process |

| 00000004:04:00.0 Off

OMiB / 16128MiB

Tesla V100-SXM2... On
- 0 |
| N/A 40C Po 37W / 300W |
E. Process |

| 00000004:05:00.0 Off

OMiB / 16128MiB

| 2 Tesla V100-SXM2... On
= | 0|
| N/A 36C PO 38W / 300W |
E. Process |

| 00000035:03:00.0 Off

OMiB / 16128MiB

| 3 Tesla V100-SXM2... On
- | 0 |
| N/A 45C Po 38W / 300W |
E. Process |

| 00000035:04:00.0 Off

OMiB / 16128MiB

| Processes:

o GPU Memory |

| GPU PID Type Process name
o Usage |

| No running processes found

Parallel Transport Time Dependent Density Functional Theory Calculations with Hybrid Functional on Summit

+ lshw -short -quiet -sanitize

+ cat

+ lspci

0000:00:00.0 PCI bridge: IBM Device 04c1
0000:01:00.0 Non-Volatile memory controller: Samsung
— Electronics Co Ltd NVMe SSD Controller 172Xa (rev
- Q1)

0001:00:00.0 PCI bridge: IBM Device 04cl
0001:01:00.0 USB controller: Texas Instruments

— TUSB73x0@ SuperSpeed USB 3.0 xHCI Host Controller
— (rev 02)

0002:00:00.0 PCI bridge: IBM Device 04cl
0002:01:00.0 PCI bridge: ASPEED Technology, Inc.

— AST1150 PCI-to-PCI Bridge (rev 04)

0002:02:00.0 VGA compatible controller: ASPEED

— Technology, Inc. ASPEED Graphics Family (rev 41)
0003:00:00.0 PCI bridge: IBM Device 04c1
0003:01:00.0 Infiniband controller: Mellanox

— Technologies MT28800 Family [ConnectX-5 Ex]
0003:01:00.1 Infiniband controller: Mellanox

— Technologies MT28800 Family [ConnectX-5 Ex]
0004:00:00.0 PCI bridge: IBM Device 04cl
0004:01:00.0 PCI bridge: PLX Technology, Inc. Device
— 8725 (rev ca)

0004:01:00.1 System peripheral: PLX Technology, Inc.
— Device 87d@ (rev ca)

0004:01:00.2 System peripheral: PLX Technology, Inc.
— Device 87d@ (rev ca)

0004:01:00.3 System peripheral: PLX Technology, Inc.
— Device 87d0 (rev ca)

0004:01:00.4 System peripheral: PLX Technology, Inc.
— Device 87d@ (rev ca)

0004:02:02.0 PCI bridge: PLX Technology, Inc. Device
— 8725 (rev ca)

0004:02:0a.0 PCI bridge: PLX Technology, Inc. Device
— 8725 (rev ca)

0004:02:0b.0 PCI bridge: PLX Technology, Inc. Device
— 8725 (rev ca)

0004:02:0c.@ PCI bridge: PLX Technology, Inc. Device
— 8725 (rev ca)

0004:03:00.0 SATA controller: Marvell Technology

— Group Ltd. 88SE9235 PCIe 2.0 x2 4-port SATA 6 Gb/s
— Controller (rev 11)

0004:04:00.0 3D controller: NVIDIA Corporation

— GV100GL [Tesla V100 SXM2] (rev al)

0004:05:00.0 3D controller: NVIDIA Corporation

— GV100GL [Tesla V100 SXM2] (rev al)

0005:00:00.0 PCI bridge: IBM Device 04cl
0005:01:00.0 Ethernet controller: Broadcom Limited
— NetXtreme BCM5719 Gigabit Ethernet PCIe (rev 01)
0005:01:00.1 Ethernet controller: Broadcom Limited
— NetXtreme BCM5719 Gigabit Ethernet PCIe (rev 01)
0006:00:00.0 Bridge: IBM Device 04ea (rev 01)
0006:00:00.1 Bridge: IBM Device 04ea (rev 01)
0006:00:00.2 Bridge: IBM Device 04ea (rev 01)

0006:00:01.0 Bridge: IBM Device 04ea (rev 01)
0006:00:01.1 Bridge: IBM Device 04ea (rev 01)
0006:00:01.2 Bridge: IBM Device 04ea (rev 01)
0007:00:00.0 Bridge: IBM Device 04ea (rev 01)
0007:00:00.1 Bridge: IBM Device 04ea (rev 01)
0007:00:00.2 Bridge: IBM Device 0@4ea (rev 01)
0007:00:01.0 Bridge: IBM Device 04ea (rev 01)
0007:00:01.1 Bridge: IBM Device 04ea (rev 01)
0007:00:01.2 Bridge: IBM Device 04ea (rev 01)
0030:00:00.0 PCI bridge: IBM Device 04cl

0030:01:00.0 Ethernet controller: Broadcom Limited
— NetXtreme II BCM57800 1/10 Gigabit Ethernet (rev
- 10)

0030:01:00.1 Ethernet controller: Broadcom Limited
— NetXtreme II BCM57800 1/10 Gigabit Ethernet (rev
- 10)

0030:01:00.2 Ethernet controller: Broadcom Limited
— NetXtreme II BCM57800 1/10 Gigabit Ethernet (rev
- 10)

0030:01:00.3 Ethernet controller: Broadcom Limited
— NetXtreme II BCM57800 1/10 Gigabit Ethernet (rev
- 10)

0033:00:00.0 PCI bridge: IBM Device 04cl
0033:01:00.0 Infiniband controller: Mellanox

— Technologies MT28800 Family [ConnectX-5 Ex]
0033:01:00.1 Infiniband controller: Mellanox

— Technologies MT28800 Family [ConnectX-5 Ex]
0034:00:00.0 PCI bridge: IBM Device 04c1
0035:00:00.0 PCI bridge: IBM Device 04cl
0035:01:00.0 PCI bridge: PLX Technology, Inc. Device
— 8725 (rev ca)

0035:02:04.0 PCI bridge: PLX Technology, Inc. Device
— 8725 (rev ca)

0035:02:05.0 PCI bridge: PLX Technology, Inc. Device
— 8725 (rev ca)

0035:02:0d.0 PCI bridge: PLX Technology, Inc. Device
— 8725 (rev ca)

0035:03:00.0 3D controller: NVIDIA Corporation

— GV100GL [Tesla V100 SXM2] (rev al)

0035:04:00.0 3D controller: NVIDIA Corporation

— GV100GL [Tesla V100 SXM2] (rev al)

